Ligand-Switching and Counteranion-Induced Hierarchical Self-Assembly of Silver-NHC Complexes

Siping Wei, Xiyu Li, Zhuang Yang, Jingbo Lan, Ge Gao, Ying Xue, and Jingsong You*

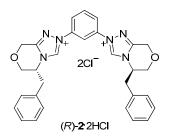
Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, and State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, 29 Wangjiang Road, Chengdu 610064 (PR China)

Fax: 86-28-85412203; E-mail: jsyou@scu.edu.cn

Supporting Information

Table of contents

I. General Remarks	S2
II. Data of (<i>R</i>)-2·2HCl	S3
III. Preparation and characterisation of silver- and gold-NHC complexes	S3
IV. Crystal parameters and refinement results of [(R)-1·Ag] ₂ (PF ₆) ₂ , [(R)-1·Ag] ₂ (BF ₄)(Cl), [(S)-2·Ag]	₃ (PF ₆) ₃ ,
$[(S)-2 \cdot Ag]_{3}(BF_{4})_{3}, [(S)-2 \cdot Au]_{3}(BF_{4})_{3}, [(R)-2 \cdot Ag]_{3}(BF_{4})_{3}, and [(S)-3 \cdot Ag]_{3}(PF_{6})_{2}(Cl) \cdot (CHCl_{3}) \cdot (EtOAc) \dots \dots$	S18
V. Circular dichroism (CD) spectrum investigation of the silver NHC complexes	S19
VI. ¹ H NMR spectral changes of [(S)-2·Ag] ₃ (BF ₄) ₃ upon addition of 10 equiv TBACl in CDCl ₃	S20
VII. Influence of the counteranions of $[(S)-2 \cdot Ag]_3(X)_3$ on the hierarchical self-assemblies	S20
VIII. Morphology analysis of $[(S)-2 \cdot Ag]_3(X)_3$ (X = BF ₄ , Cl and/or AgCl ₂ , CH ₃ CO ₂ , CF ₃ CO ₂)	S21
IX. ¹ H NMR spectrum studies of $[(S)-2 \cdot Ag]_3(X)_3$ (X = BF ₄ , Cl and/or AgCl ₂ , CH ₃ CO ₂ , CF ₃ CO ₂)	S21
X. References	S22
XI. Copies of ¹ H, ¹³ C, and ¹⁹ F NMR spectra	S23

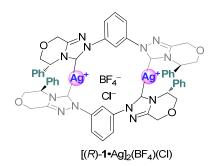

I. General Remarks

¹H NMR spectra were obtained with a Bruker AV II-400 (400 MHz), a Varian Inova-400 (400 MHz) or a Bruker AV II-600 (600 MHz) spectrometer, while ¹³C NMR spectra were recorded with a Bruker AV II-400 (100 MHz) or a Bruker AV II-600 (150 MHz) spectrometer. ¹⁹F NMR spectra were recorded with a Bruker AV II-400 (376 MHz) spectrometer. ROESY and HMQC NMR spectra were obtained with a Bruker AV II-400 (400 MHz) spectrometer. The ¹H and ¹³C NMR chemical shifts were recorded with TMS, CDCl₃, DMSO-*d*₆, or CD₃COCD₃ as the internal standard. Elemental analyses were performed with a Euro EA 3000 instrument. Mass spectra were obtained on a Waters Quattro Premier XE Mass spectrometer or a Finnigan-LCQDECA instrument. The ESI-TOF mass spectra were recorded with a Waters Q-Tof premier instrument. Transmission electron microscopy (TEM) studies were carried out on a Tecnai G2 F20 S-TWIN, operating at 200 kV, or a HITACHI H-600, operating at 75 kV. Scanning transmission electron microscope (STEM) studies were carried out on a Tecnai G2 F20 kV. Circular Dichroism (CD) spectra were recorded on an Aviv Model 215 Circular Dichroism Sepctrometer at 25 °C.

X-Ray single-crystal diffraction data were collected on an Oxford Diffraction Xcalibur Eos Gemini Diffractometer with graphite monochromated Mo K α radiation ($\lambda = 0.7107$ Å) with ω scan mode. Empirical absorption correction using spherical harmonics was implemented in SCALE3 ABSPACK scaling algorithm. All the structures were solved by direct methods using the SHELXS SHELXS-97 program and refined by full-matrix least-squares methods with SHELXL-97.¹ All non-hydrogen atoms were located in successive difference Fourier syntheses and refined with anisotropic thermal parameters on F². Hydrogen atoms were included in calculated positions and refined with constrained thermal parameters riding on their parent atoms. Drawings were produced with Ortep, Diamod, and OLEX2.²

Unless otherwise noted, all reagents were obtained from commercial suppliers and used without further purification. Unless otherwise indicated, all syntheses and manipulations were carried out under dry inert atmosphere. (*R*)-**1**·2HCl, (*S*)-**2**·2HCl, (*R*)-**2**·2HCl, and (*S*)-**3**·2HCl were prepared according to our previous report.³

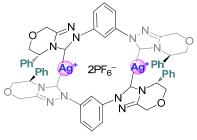
II. Data of (R)-2·2HCl



1,3-Bis{(*R*)-5-benzyl-6,8-dihydro-5*H*-[1,4]oxazino[2,1-*c*]-[1,2,4]triazol-2-ium-2-yl}benzene

dichloride (*R*)-**2**·2HCl. The compound (*R*)-**2**·2HCl was prepared according to our previous report.³ m.p > 300 °C. $[\alpha]_D^{20}$: -0.48 cm³ g⁻¹ dm⁻¹ (c = 0.50 in CH₃OH). ¹H NMR (400 MHz, DMSO-*d*₆): δ 3.18 (dd, *J* = 10.4 Hz, 10.4 Hz, 2H), 3.56 (dd, *J* = 4.4 Hz, 4.4 Hz, 2H), 3.95-4.04 (m, 4H), 4.92-4.95 (m, 2H), 5.20 (dd, *J* = 16.4 Hz, 16.4 Hz, 4H), 7.39-7.45 (m, 10H), 8.10 (t, *J* = 8.0 Hz, 1H), 8.21-8.23 (m, 2H), 8.56 (s, 1H), 11.34 (s, 2H) ppm. ¹³C NMR (150 MHz, DMSO-*d*₆): 37.9, 57.0, 61.9, 65.5, 113.3, 122.5, 128.0, 129.5, 129.9, 133.0, 135.4, 136.5, 136.6, 142.3, 150.6 ppm. HR-MS (ESI) calcd for [M - Cl]⁺: 541.2117, found. 541.2119. Anal. Calcd for C₃₀H₃₀Cl₂N₆O₂: C, 62.39; H, 5.24; N, 14.55; Found: C, 62.61; H, 5.51; N, 14.39.

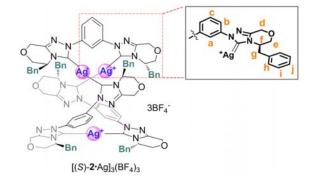
III. Preparation and characterization of silver- and gold-NHC complexes


1. Preparation and characterization of [(*R*)-1·Ag]₂(BF₄)(Cl)

Bis-triazolium salt (*R*)-**1**·2HCl (110 mg, 0.2 mmol), silver oxide (46 mg, 0.2 mmol), and NaBF₄ (24 mg, 0.22 mmol) were added to CH_2Cl_2 (5 mL) under argon. The mixture became gray after being stirred for 10 h at room temperature, and the solvent was then removed in vacuo at room temperature to give a gray solid, followed by extraction with hot DMSO (2~3 mL). The colorless

crystalline product was prepared by slow diffusion of ethyl ether into the solution of crude product in DMSO at room temperature in *ca*. 80 % yield. Colorless block crystals $[(R)-1\cdot\text{Ag}]_2(\text{BF}_4)(\text{Cl})$ suitable for X-ray analysis were obtained by slow diffusion of ethyl ether into the DMSO solution at ambient temperature through several days. ¹H NMR (400 MHz, DMSO-*d*₆): δ 3.97 (dd, *J* = 6.0 Hz, 6.0 Hz, 4H), 4.32 (dd, *J* = 4.4 Hz, 4.4 Hz, 4H), 5.23 (d, *J* = 15.6 Hz, 4H), 5.40 (d, *J* = 16.0 Hz, 4H), 5.94 (s, 4H), 6.47 (t, *J* = 7.2 Hz, 4H), 6.56 (t, *J* = 7.2 Hz, 8H), 6.96 (d, *J* = 7.2 Hz, 8H), 7.44 (s, 2H), 7.88 (t, *J* = 8.4 Hz, 2H), 8.00 (d, *J* = 8.0 Hz, 4H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): δ 59.0, 62.3, 69.7, 110.5, 121.8, 127.6, 128.1, 128.6, 131.9, 137.9, 139.2, 150.6, 178.7 (dd, ¹*J*¹⁰⁷Ag = 189.4 Hz, ¹*J*¹⁰⁹Ag = 214.2 Hz, carbene N-C-N) ppm. ¹⁹F NMR (376 MHz, DMSO-*d*₆): δ -148.2 (s, BF₄⁻) ppm. Anal. Calcd for C₅₆H₄₈Ag₂BCIF₄N₁₂O₄: C, 52.10; H, 3.75; N, 13.02; Found: C, 51.87; H, 4.03; N, 12.71. ESI-TOF found: *m*/*z* = 583.10 (calcd for [(*R*)-1·Ag]⁺ 583.10); *m*/*z* = 1203.17 (calcd for [[(*R*)-1·Ag]₂CI]⁺ 1203.17); *m*/*z* = 1255.20 (calcd for [[(*R*)-1·Ag]₂(BF₄)]⁺ 1255.19).

2. Preparation and characterization of $[(R)-1\cdot Ag]_2(PF_6)_2$



[(R)-1•Ag]₂(PF₆)₂

Bis-triazolium salt (*R*)-**1**·2HCl (110 mg, 0.2 mmol), silver oxide (46 mg, 0.2 mmol), and KPF₆ (40.5 mg, 0.22 mmol) were added to CH₂Cl₂ (5 mL) under argon. The mixture became gray after being stirred for 10 h at room temperature, and the solvent was then removed in vacuo at room temperature to give a gray solid, followed by extraction with hot DMSO (2~3 mL). The crystalline product was prepared by slow diffusion of ethyl ether into the solution of crude product in DMSO at ambient temperature in *ca*. 85 % yield. Colorless block crystals $[(R)-1\cdotAg]_2(PF_6)_2$ suitable for X-ray analysis were obtained by slow diffusion of ethyl ether into the corresponding DMSO solution at room temperature through several days. ¹H NMR (400 MHz, DMSO-*d*₆): δ 3.97 (dd, *J* = 6.8 Hz, 6.8 Hz, 4H), 4.32 (dd, *J* = 4.8 Hz, 4.8 Hz, 4H), 5.25 (d, *J* = 15.6 Hz, 4H), 5.41 (d, *J* = 16.0 Hz, 4H), 5.77 (t, *J* = 5.6 Hz, 4H), 6.47 (t, *J* = 7.2 Hz, 4H), 6.56 (t, *J* = 7.6 Hz, 8H), 6.94 (d, *J* = 7.6 Hz, 8H), 7.38 (s, 2H), 7.90 (t, *J* = 8.4 Hz, 2H), 8.02-8.05 (m, 4H) ppm. ¹³C NMR (100 MHz,

DMSO-*d*₆): δ 59.3, 62.3, 69.7, 110.3, 121.9, 127.6, 128.2, 128.6, 132.1, 137.8, 139.0, 150.8, 178.0 (dd, ¹*J* ¹⁰⁷Ag = 188.86 Hz, ¹*J* ¹⁰⁹Ag = 214.7 Hz, carbene N-C-N) ppm. ¹⁹F NMR (376 MHz, DMSO-*d*₆): δ -69.2 (d, *J* = 756 Hz, PF₆⁻) ppm. Anal. Calcd for C₅₆H₄₈Ag₂F₁₂N₁₂O₄P: C, 46.11; H, 3.32; N, 11.52; Found: C, 45.79; H, 3.63; N, 11.75. ESI-TOF found: *m*/*z* = 583.10 (calcd for [(*R*)-1·Ag]⁺ 583.10); *m*/*z* = 1313.17 (calcd for [[(*R*)-1·Ag]₂(PF₆)]⁺ 1313.17).

3. Preparation and characterization of [(S)-2·Ag]₃(BF₄)₃

Bis-triazolium salt (*S*)-**2**·2HCl (116 mg, 0.2 mmol), silver oxide (46 mg, 0.2 mmol), and NaBF₄ (24 mg, 0.22 mmol) were added to CH_2Cl_2 (5 mL) under argon. The mixture was stirred for 10 h at room temperature, and filtered through Celite. The solvent was removed in vacuo at room temperature to give a white solid, which was recrystallized from $CHCl_3/EtOAc$ to afford a colorless crystalline product in 95% yield. Colorless block crystals $[(S)-2\cdotAg]_3(BF_4)_3$ suitable for X-ray analysis were obtained by slow evaporation of the corresponding $CHCl_3/EtOAc$ solution at ambient temperature through several days.

In addition, $[(S)-2 \cdot Ag]_3(BF_4)_3$ could also be prepared by anion-exchange reaction of $[(S)-2 \cdot Ag]_3(X)_3$ (X = Cl and/or AgCl₂) with NaBF₄ (~ 3.3 equiv) in CH₂Cl₂ for 24 h at room temperature. ¹H NMR (400 MHz, CDCl₃): δ 2.84-2.97 (m, 12H_g), 3.70 (dd, *J* = 11.2 Hz, 12.0 Hz, 12H_e), 3.98 (t, *J* = 7.6 Hz, 6H_f), 4.62 (d, *J* = 15.6 Hz, 6H_d), 5.02 (d, *J* = 16.0 Hz, 6H_d), 6.45 (d, *J* = 7.2 Hz, 12H_h), 7.03 (t, *J* = 7.2 Hz, 12H_i), 7.08 (t, *J* = 7.2 Hz, 6H_j), 7.87 (d, *J* = 7.6 Hz, 6H_b), 8.00 (t, *J* = 8.0 Hz, 3H_c) 8.50 (s, 3H_a) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 40.5, 57.0, 62.1, 65.4, 120.1, 125.6, 127.2, 129.0, 130.7, 136.0, 141.4, 148.6, 148.7 ppm (Note: the carbene resonance of $[(S)-2 \cdot Ag]_3(BF_4)_3$ was inconspicuous). ¹⁸F NMR (376 MHz, CDCl₃): δ -154.2 (s, 8F), -150.7 (s, 4F) ppm. Anal. Calcd for C₉₀H₈₄Ag₃N₁₈O₆B₃F₁₂: C, 51.53; H, 4.04; N, 12.02; Found: C, 51.72; H, 4.21; N, 12.43. ESI-TOF found: *m/z* = 611.11 (calcd for $[(S)-2 \cdot Ag]^+$ 611.13); *m/z* = 2012.41 (calcd for $[[(S)-2 \cdot Ag]_3(BF_4)_2]^+$ 2012.41).

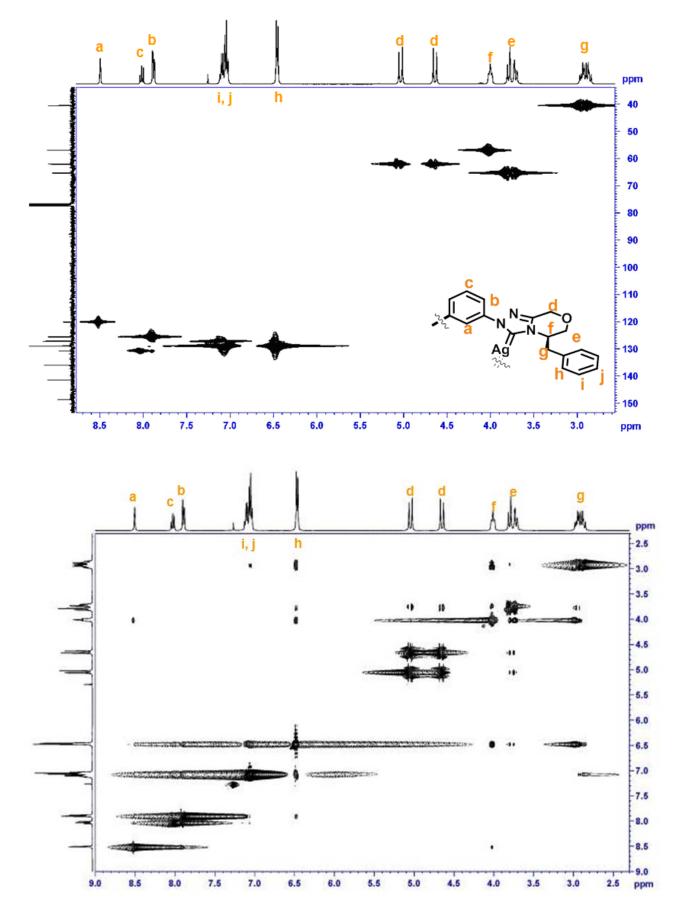
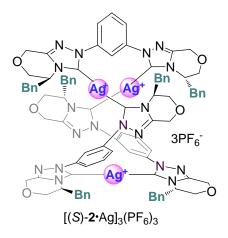
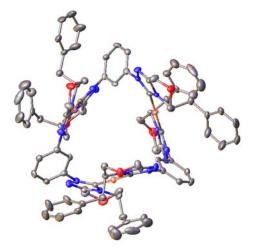
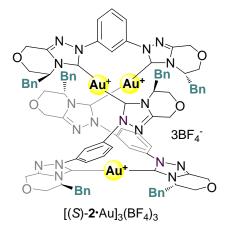



Figure S1. The HMQC and ROESY NMR of [(S)-2·Ag]₃(BF₄)₃ in CDCl₃.

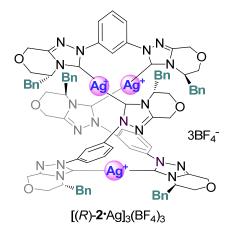

4. Preparation and characterization of [(S)-2·Ag]₃(PF₆)₃

Bis-triazolium salt (*S*)-2·2HCl (58 mg, 0.1 mmol), silver oxide (23 mg, 0.1 mmol), and KPF₆ (20 mg, 0.11 mmol) were added to CH_2Cl_2 (4 mL) under argon. The mixture was stirred for 10 h at room temperature, and filtered through Celite. The solvent was removed in vacuo at room temperature to afford a white solid, which was recrystallized from CHCl₃/EtOAc to afford a colorless crystalline product in 75% yield.


In addition, $[(S)-2 \cdot Ag]_3(PF_6)_3$ could also be prepared by anion-exchange reaction of $[(S)-2 \cdot Ag]_3(X)_3$ (X = Cl and/or AgCl₂) with KPF₆ (~3.3 equiv) in CH₂Cl₂ for 24 h at room temperature. ¹H NMR (400 MHz, CDCl₃): δ 2.85-2.98 (m, 12H), 3.70 (dd, *J* = 12.0 Hz, 11.2 Hz, 12H), 3.98 (t, *J* = 7.6 Hz, 6H), 4.63 (d, *J* = 16.0 Hz, 6H), 5.02 (d, *J* = 16.0 Hz, 6H), 6.45 (d, *J* = 7.2 Hz, 12H), 7.03-7.13 (m, 18 H), 7.88 (d, *J* = 8.0 Hz, 6H), 8.00 (t, *J* = 8.0 Hz, 3H) 8.51 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 40.0, 57.0, 62.2, 65.2, 117.5, 122.2, 122.6, 126.5, 128.4, 129.8, 130.2, 130.3, 136.1, 140.5, 147.7 ppm (Note: the carbene resonance of $[(S)-2 \cdot Ag]_3(PF_6)_3$ was inconspicuous). ¹⁹F NMR (376 MHz, CDCl₃): δ -72.4 (d, *J* = 840 Hz, 6F), -71.5 (d, *J* = 840 Hz, 12F). Anal. Calcd for C₉₀H₈₄Ag₃N₁₈O₆P₃F₁₈: C, 47.57; H, 3.73; N, 11.10; Found: C, 48.22; H, 4.19; N, 11.37. ESI-TOF found: *m*/*z* = 611.12 (calcd for $[(S)-2 \cdot Ag]^+$ 611.13); *m*/*z* = 2125.24 (calcd for $[[(S)-2 \cdot Ag]_3(PF_6)_2]^+$ 2125.33).

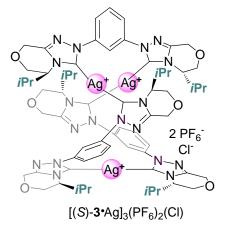
Colorless block crystals $[(S)-2 \cdot Ag]_3(PF_6)_3$ suitable for X-ray analysis were obtained by slow evaporation of the corresponding dichloromethane/ethyl acetate solution at ambient temperature through several days. Because the counteranions and solvent molecules could not be precisely located from the difference maps due to their high thermal disorder, these counteranions and solvent molecules were omitted by Squeeze program, and the Squeeze results were appended to the CIF file. The crystal structure of $[(S)-2\cdot Ag]_3(PF_6)_3$ was shown in Figure S2. The dihedral angle between the two NHC rings connected by a 1,3-phenylene unit was 82.73°, which was close to that in $[(S)-2\cdot Ag]_3(BF_4)_3$ (82.81°).

Figure S2. The crystal structure of $[(S)-2 \cdot Ag]_3(PF_6)_3$ viewed along the c axis. The counteranions and solvent molecules were omitted by Squeeze program. Hydrogen atoms have been omitted for clarity. Atom color code: C (gray), N (blue), O (red), and Ag (orange).


5. Preparation and characterization of [(S)-2·Au]₃(BF₄)₃

[(*S*)-2·Ag]₃(BF₄)₃ (63 mg, 0.03 mmol) and (dimethylsulfide)gold(I) chloride [AuCl(Me₂S)] (29.5 mg, 0.1 mmol, 3.3 equiv) were added to CHCl₃ (10 mL) under argon. The mixture was stirred for 10 h at room temperature, and filtered through Celite. The filtrate was washed with water (5 mL), and the solvent was then removed in vacuo at room temperature to give a white solid, which was recrystallized from CHCl₃/EtOAc to afford colorless crystals (43 mg, ~ 60% yield). Colorless block crystals [(*S*)-2·Au]₃(BF₄)₃ suitable for X-ray analysis were obtained by slow evaporation of the corresponding chloroform/ethyl acetate solution at ambient temperature through several days. ¹H NMR (400 MHz, CDCl₃): δ 2.84-2.98 (m, 12H), 3.70 (dd, *J* = 12.0 Hz, 11.2 Hz, 12H), 3.98 (t, *J* =

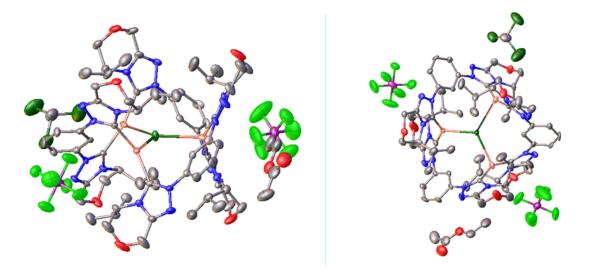
7.6 Hz, 6H), 4.63 (d, J = 15.6 Hz, 6H), 5.02 (d, J = 15.6 Hz, 6H), 6.45 (d, J = 7.6 Hz, 12H), 7.03-7.12 (m, 18 H), 7.88 (d, J = 7.6 Hz, 6H), 8.00 (t, J = 8.0 Hz, 3H) 8.51 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 40.5, 57.0, 62.1, 65.3, 120.1, 125.5, 127.2, 129.0, 130.7, 136.0, 141.4, 148.8, 148.7, 181.2 (dd, J = 60 Hz, 60 Hz, carbene N-C-N) ppm. ¹⁹F NMR (376 MHz, CDCl₃): 150.7 (s, 8F), 154.1 (s, 4F). Anal. Calcd for C₉₀H₈₄Au₃N₁₈O₆B₃F₁₂: C, 45.71; H, 3.58; N, 10.66; Found: C, 45.36; H, 3.93; N, 10.29. ESI-TOF found: m/z = 701.19 (calcd for [(*S*)-**2**·Au]⁺ 701.19); m/z =2277.57 (calcd for [[(*S*)-**2**·Au]₃(BF₄)₂]⁺ 2277.59).



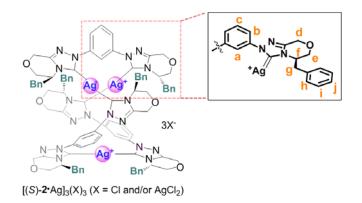
Bis-triazolium salt (*R*)-2·2HCl (58 mg, 0.1 mmol), NaBF₄ (12 mg, 0.11 mmol), and silver oxide (23 mg, 0.1 mmol) were added to CH₂Cl₂ (4 mL) under argon. The mixture was stirred for 10 h at room temperature, and filtered through Celite. The solvent was removed in vacuo at room temperature to give a white solid, which was recrystallized from CHCl₃/EtOAc to afford a colorless crystalline product in 90% yield. Colorless block crystals $[(R)-2\cdot Ag]_3(BF_4)_3$ suitable for X-ray analysis were obtained by slow evaporation of the corresponding dichloromethane/ethyl acetate solution at ambient temperature through several days. ¹H NMR (400 MHz, CDCl₃): δ 2.85-2.98 (m, 12H), 3.71 (dd, *J* = 11.2 Hz, 12.0 Hz, 12H), 3.98 (t, *J* = 7.6 Hz, 6H), 4.63 (d, *J* = 15.6 Hz, 6H), 5.02 (d, *J* = 15.6 Hz, 6H), 6.45 (d, *J* = 7.6 Hz, 12H), 7.03-7.13 (m, 18 H), 7.88 (d, *J* = 7.6 Hz, 6H), 8.00 (t, *J* = 8.0 Hz, 3H) 8.54 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 40.5, 57.0, 62.1, 65.3, 125.5, 127.2, 129.0, 129.0, 130.7, 136.0, 141.4, 148.8 ppm (Note: the carbene resonance of $[(R)-2\cdot Ag]_3(BF_4)_3$ was inconspicuous). Anal. Calcd for C₉₀H₈₄Ag₃N₁₈O₆B₃F₁₂: C, 51.53; H, 4.04; N, 12.02; Found: C, 51.63; H, 4.27; N, 12.08. ESI-TOF found: m/z = 611.12 (calcd for $[(R)-2\cdot Ag]^+ 611.13)$; m/z = 2012.40 (calcd for $[[(R)-2\cdot Ag]_3(BF_4)_2]^+ 2012.41$).

7. Preparation and characterization of silver-NHC complexes through the reaction of Ag_2O and the mixture of (*S*)-2·2HCl and (*R*)-2·2HCl at a 1:1 ratio

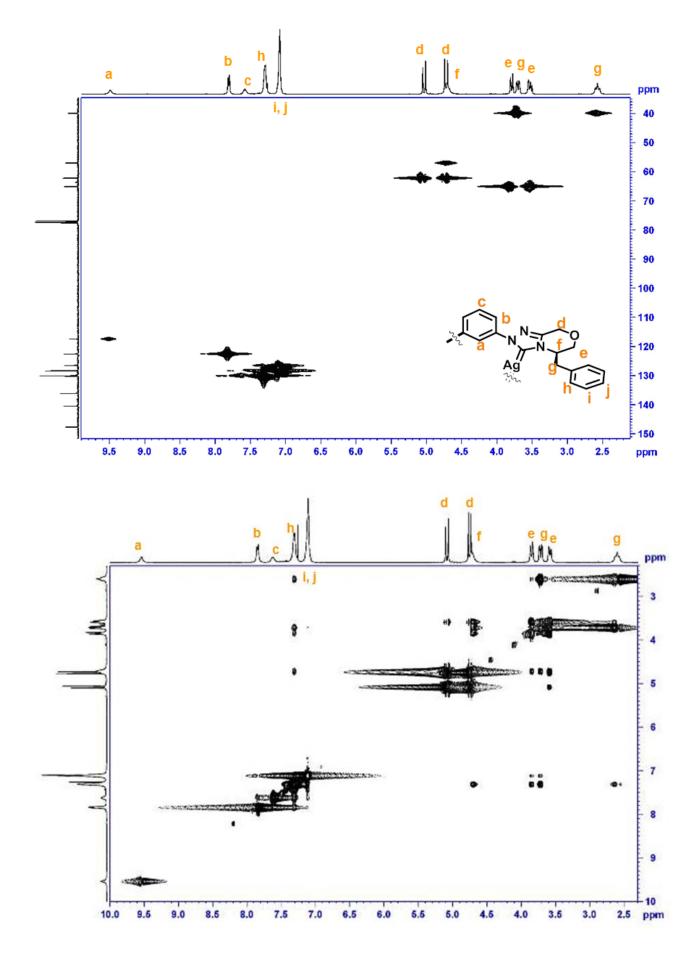
A mixture of bis-triazolium salts (*S*)-**2**·2HCl and (*R*)-**2**·2HCl (at a 1:1 ratio) (116 mg, 0.2 mmol), NaBF₄ (24 mg, 0.22 mmol), and silver oxide (46 mg, 0.2 mmol) were added to CH₂Cl₂ (4 mL) under argon. The suspension became clear after being stirred for 10 h at room temperature, and then filtered through Celite. The solvent was removed in vacuo at room temperature to give a white solid (135 mg, 96% yield). ¹H NMR (400 MHz, CDCl₃): δ 2.85-2.98 (m, 12H), 3.70 (dd, *J* = 11.2 Hz, 12.0 Hz, 12H), 3.98 (t, *J* = 7.6 Hz, 6H), 4.63 (d, *J* = 15.6 Hz, 6H), 5.02 (d, *J* = 15.6 Hz, 6H), 6.45 (d, *J* = 7.6 Hz, 12H), 7.03-7.13 (m, 18 H), 7.88 (d, *J* = 8.0 Hz, 6H), 8.00 (t, *J* = 7.6 Hz, 3H), 8.53 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 40.0, 57.0, 62.2, 65.2, 117.5, 122.7, 126.5, 128.4, 129.9, 130.1, 136.0, 140.5, 147.7 ppm (Note: the carbene resonances of the mixture were inconspicuous). Anal. Calcd for C₉₀H₈₄Ag₃N₁₈O₆B₃F₁₂: C, 51.53; H, 4.04; N, 12.02; Found: C, 51.07; H, 3.64; N, 11.75. ESI-TOF found: *m/z* = 611.13 (calcd for [**2**·Ag]⁺ 611.13); *m/z* = 2012.44 (calcd for [(**2**·Ag)₃(BF₄)₂]⁺ 2012.41).


8. Preparation and characterisation of [(S)-3·Ag]₃(PF₆)₂(Cl)

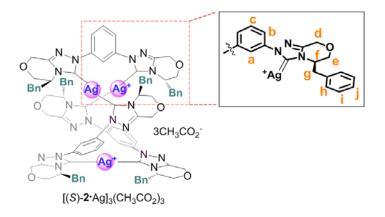
Bis-triazolium salt (*S*)-**3**·2HCl (48.5 mg, 0.1 mmol), KPF₆ (20 mg, 0.11 mmol), and silver oxide (23 mg, 0.1 mmol) were added to CH₂Cl₂ (4 mL) under argon. The mixture was stirred for 10 h at room temperature, and then filtered through Celite. The solvent was removed in vacuo at room temperature to give a white solid, which was recrystallized from CHCl₃/EtOAc to afford a colorless crystalline product (41 mg, ~ 65% yield). ¹H NMR (400 MHz, CDCl₃): δ 0.56 (d, *J* = 6.8 Hz, 12H), 0.74 (d, *J* = 7.2 Hz, 12H), 0.84 (s, 6H), 0.95 (s, 6H), 2.22 (d, *J* = 4.8 Hz, 4H), 2.38 (s, 2H), 3.76 (d, *J* = 9.2 Hz, 6H), 4.02 (t, *J* = 11.6 Hz, 6H), 4.22 (d, *J* = 12.8 Hz, 3H), 4.51 (s, 2H), 4.68 (d, *J* = 15.6


Hz, 4H), 4.84 (d, J = 16.0 Hz, 3H), 4.99 (dd, J = 2.8 Hz, 2.8 Hz, 6H), 7.59 (t, J = 8.0 Hz, 1 H), 7.73-7.78 (m, 6H), 7.85 (d, J = 7.6 Hz, 2H), 8.67 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 17.3, 17.7, 19.3, 19.8, 29.7, 33.1, 59.7, 59.8, 61.7, 61.9, 63.5, 64.4, 119.0, 125.2, 130.6, 131.3, 134.0, 141.3, 149.7, 149.9 ppm (Note: the carbene resonances in [(*S*)-**3**·Ag]₃(PF₆)₂(Cl) were inconspicuous). ¹⁹F NMR (376 MHz, CDCl₃): δ -71.43 (d, 1012 Hz, PF₆) ppm. Anal. Calcd for C₆₆H₈₄Ag₃N₁₈O₆P₂F₁₂Cl: C, 42.29; H, 4.52; N, 13.45; Found: C, 42.01; H, 4.25; N, 13.17. ESI-TOF found: m/z = 515.11 (calcd for [(*S*)-**3**·Ag]⁺ 515.13); m/z = 1582.37 (calcd for [[(*S*)-**3**·Ag]₃Cl]²⁺ 1582.37).

Colorless block crystals $[(S)-3 \cdot Ag]_3(PF_6)_2(Cl) \cdot (CHCl_3) \cdot (EtOAc)$ suitable for X-ray analysis were obtained by slow evaporation of the corresponding chloroform/ethyl acetate solution at ambient temperature through several days. The crystal structure of $[(S)-3 \cdot Ag]_3(PF_6)_2(Cl) \cdot (CHCl_3) \cdot (EtOAc)$ viewed from different angles are shown in Figure S3.


Figure S3. The crystal structure of $[(S)-3\cdot Ag]_3(PF_6)_2(Cl)\cdot(CHCl_3)\cdot(EtOAc)$ viewed from different angles. Hydrogen atoms and solvents have been omitted for clarity. Atom color code: C (gray), N (blue), O (red), Ag (dark gray), Cl (bottle green), P (cyan), and F (green).

9. Preparation and characterization of [(S)-2·Ag]₃(X)₃ (X = Cl and/or AgCl₂)


Bis-triazolium salt (S)-2·2HCl (58 mg, 0.1 mmol), and silver oxide (23 mg, 0.1 mmol) were added to CH₂Cl₂ (4 mL) under argon. The mixture was stirred for 10 h at room temperature, and then filtered through Celite. The solvent was removed in vacuo at room temperature to give a grey solid. The solid was then dissolved in CHCl₃, followed by addition of activated carbon. The mixture was refluxed under argon for 15 min, and then filtered through Celite. The filtrate was concentrated to ca. 5 mL, and then added to ethyl ester (50 mL) under stirring at room temperature to afford a white solid in 95% yield. ¹H NMR (400 MHz, CDCl₃): δ 2.54 (t, J = 12.0 Hz, $6H_g$), 3.52 (d, J = 12.4 Hz, $6H_e$), 3.68 (dd, J = 4.4 Hz, 4.0 Hz, $6H_g$), 3.78 (d, J = 12.4 Hz, $6H_e$), 4.70 (s, br, $6H_f$), 4.70 (d, J = 12.4 Hz, $6H_e$), 4.70 (s, br, $6H_f$), 4.70 (d, J = 12.4 Hz, $6H_e$), 4.70 (s, br, $6H_f$), 4.70 (d, J = 12.4 Hz, $6H_e$), 4.70 (s, br, $6H_f$), 4.70 (d, J = 12.4 Hz, $6H_e$), 4.70 (s, br, $6H_f$), 4.70 (d, J = 12.4 Hz, $6H_e$), 4.70 (s, br, $6H_f$), 4.70 (s, br, 615.4 Hz, $6H_d$), 5.01 (d, J = 16.0 Hz, $6H_d$), 7.11 (s, $12H_i$ and $6H_i$), 7.29 (s, $12H_h$), 7.58 (s, $3H_c$), 7.80 (d, J = 7.6 Hz, $6H_b$), 9.49 (s, $3H_a$) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 39.9, 57.0, 62.2, 65.1, 117.5, 122.6, 126.5, 128.4, 128.9, 129.9, 130.1, 136.1, 140.5, 147.7 ppm (Note: the carbene resonances in $[(S)-2 \cdot Ag]_3(X)_3$ (X = Cl and/or AgCl₂) were inconspicuous). ESI-TOF found: m/z =611.13 (calcd for $[(S)-2 \cdot Ag]^+$ 611.13); m/z = 1905.97 (calcd for $[(S)-2 \cdot Ag]_3 Cl_2]^+$ 1905.33); m/z =2049.08 (calcd for $[(S)-2 \cdot Ag]_3 Cl(AgCl_2)]^+$ 2049.20). Anal. calcd found: C, 51.01; H, 4.51; N, 12.39. It is difficult to calculate the relative amounts of anions (Cl⁻ and AgCl₂⁻) from the elemental analysis data of $[(S)-2 \cdot Ag]_3(X)_3$ (X = Cl and/or AgCl₂).

Electronic Supplementary Material (ESI) for Chemical Science This journal is O The Royal Society of Chemistry 2011

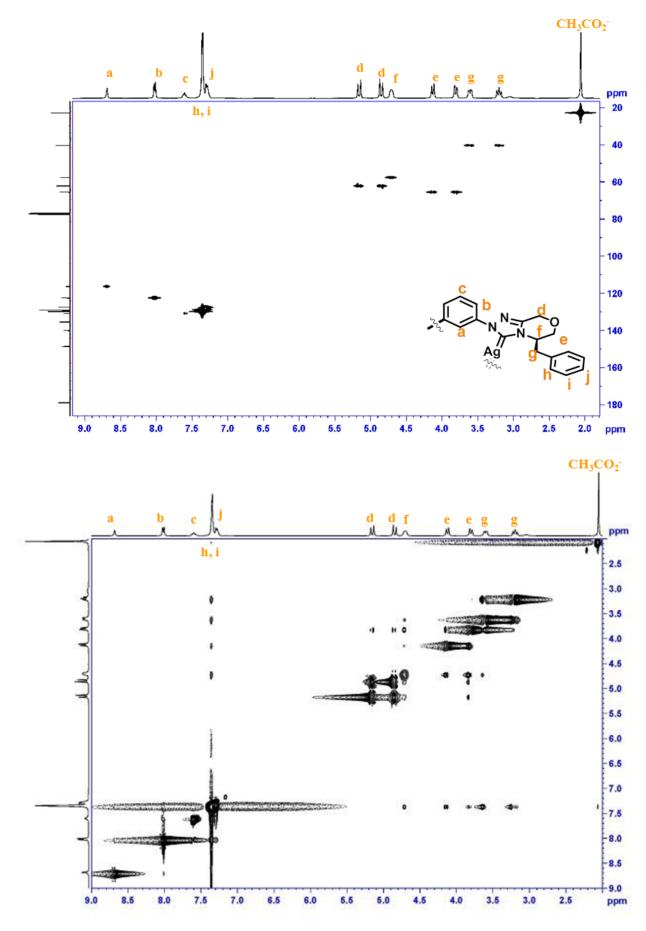
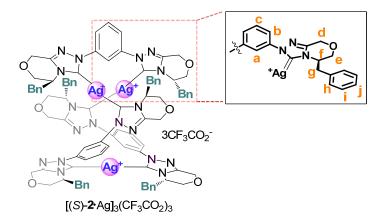


Figure S4. The HMQC and ROESY NMR of $[(S)-2 \cdot Ag]_3(X)_3$ (X = Cl and/or AgCl₂) in CDCl₃.

10. Preparation and characterization of [(S)-2·Ag]₃(CH₃CO₂)₃



[(*S*)-**2**·Ag]₃(X)₃ (X = Cl and/or AgCl₂) (62 mg, ~ 0.03 mmol) and silver acetate (17 mg, 0.1 mmol, 3.3 equiv) were added to CHCl₃ (10 mL) under argon. The mixture was stirred for 10 h at room temperature, followed addition of activated carbon. The resulting mixture was stirred at 30 °C for 15 min, and then filtered through a Celite. The filtrate was washed with water (5 mL), concentrated to *ca.* 4 mL, and then added to ethyl ester (50 mL) under stirring to afford a white solid (56 mg, 94% yield). ¹H NMR (400 MHz, CDCl₃): δ 2.05 (s, 9H, CH₃CO₂), 3.17 (t, *J* = 12.4 Hz, 6H_g), 3.58 (dd, *J* = 4.4 Hz, 4.4 Hz, 6H_g), 3.79 (d, *J* = 10.8 Hz, 6H_e), 4.11 (d, *J* = 12.4 Hz, 6H_e), 4.70 (s, br, 6H_f), 4.83 (d, *J* = 16.4 Hz, 6H_d), 5.13 (dd, *J* = 16.0 Hz, 6H_d), 7.28 (t, *J* = 4.0 Hz, 6H_j), 7.34-7.35 (m, 12H_i and 12H_h), 7.58 (t, *J* = 7.6 Hz, 3H_c), 8.01 (d, *J* = 8.0 Hz, 6H_b) 8.68 (s, 3H_a) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 22.8, 40.0, 57.7, 62.2, 65.6, 116.3, 122.5, 127.5, 129.1, 129.8, 130.1, 135.5, 140.0, 148.6, 178.9 ppm (Note: the carbene resonance of [(*S*)-2·Ag]₃(CH₃CO₂)₃ was inconspicuous). Anal. Calcd for C₉₆H₉₃Ag₃N₁₈O₁₂: C, 57.24; H, 4.65; N, 12.52; Found: C, 57.65; H, 4.88; N, 12.28; ESI-TOF found: *m/z* = 611.10 (calcd for [(*S*)-2·Ag]⁺ 611.13); *m/z* = 1954.41 (calcd for [[(*S*)-2·Ag]₃(CH₃CO₂)₂]⁺ 1954.43); *m/z* = 2014.40 (calcd for [[(*S*)-2·Ag]₃(CH₃CO₂)₃ + H]⁺ 2014.45).

Figure S5. The HMQC and ROESY NMR of [(*S*)-**2**·Ag]₃(CH₃CO₂)₃ in CDCl₃.

11. Preparation and characterization of [(S)-2·Ag]₃(CF₃CO₂)₃

[(*S*)-2·Ag]₃(X)₃ (X = Cl and/or AgCl₂) (62 mg, ~ 0.03 mmol), and silver trifluoroacetate (22.1 mg, 0.1 mmol, 3.3 equiv) were added to CHCl₃ (10 mL) under argon. The mixture was stirred for 10 h at room temperature, and activated carbon was added. The mixture was stirred for 15 min at 30 °C, and then filtered through a Celite. The filtrate was washed with water (5 mL), concentrated to *ca*. 4 mL, and then added to ethyl ester (50 mL) under stirring to afford a white solid (55 mg, 85% yield). ¹H NMR (400 MHz, CDCl₃): δ 3.08 (d, *J* = 11.2 Hz, 6H_g), 3.31 (s, 6H_g), 3.82 (d, *J* = 11.2 Hz, 6H_e), 4.02 (d, *J* = 11.2 Hz, 6H_e), 4.76 (s, br, 3H_f), 4.80 (d, *J* = 16.0 Hz, 6H_d), 4.80 (d, *J* = 16.0 Hz, 6H_d), 7.06-7.16 (m, 12H_h, 12H_i and 6H_j), 7.38 (s, 3H_c), 7.92 (d, *J* = 6.8 Hz, 6H_b), 8.64 (s, 3H_a) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 40.4, 57.2, 62.1, 65.8, 112.9, 115.9, 117.1, 118.8, 121.7, 123.0, 127.3, 129.0, 129.5, 130.6, 135.7, 140.4, 148.9, 161.2, 161.5, 181.6 ppm. ¹⁹F NMR (376 MHz, CDCl₃): δ 74.0 (s, CF₃) ppm. Anal. Calcd for C₉₆H₈₄Ag₃N₁₈O₁₂F₉: C, 52.98; H, 3.89; N, 11.58; Found: C, 53.25; H, 4.22; N, 11.24. ESI-TOF found: m/z = 611.13 (calcd for [(*S*)-**2**·Ag]⁺ 611.13); m/z = 2062.36 (calcd for [(*S*)-**2**·Ag]₃(CF₃CO₂)]²⁺ 2062.37).

Electronic Supplementary Material (ESI) for Chemical Science This journal is O The Royal Society of Chemistry 2011

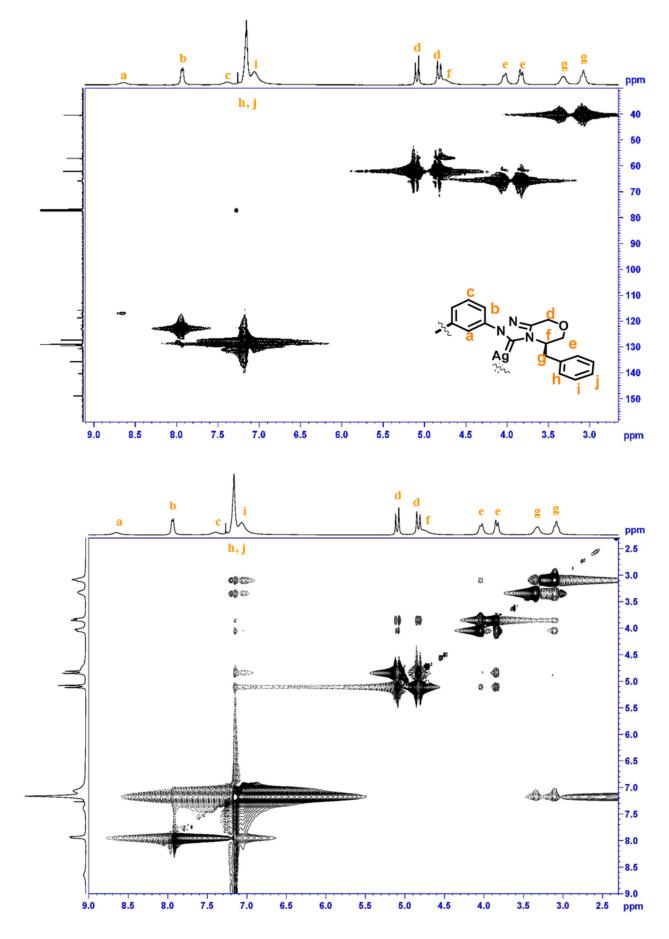


Figure S6. The HMQC and ROESY NMR of [(S)-2·Ag]₃(CF₃CO₂)₃ in CDCl₃.

IV. Crystal parameters and refinement results of [(R)-1·Ag]₂(PF₆)₂, [(R)-1·Ag]₂(BF₄)(Cl),

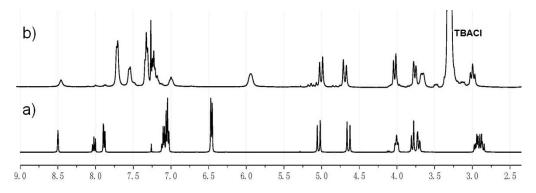
 $[(S)-2\cdot Ag]_3(PF_6)_3$, $[(S)-2\cdot Ag]_3(BF_4)_3$, $[(S)-2\cdot Au]_3(BF_4)_3$, $[(R)-2\cdot Ag]_3(BF_4)_3$, and

$[(S)-3\cdot Ag]_3(PF_6)_2(Cl)\cdot(CHCl_3)\cdot(EtOAc)$

Table S1. Crystal Parameters and Refinement Results of $[(R)-1 \cdot Ag]_2(PF_6)_2$, $[(R)-1 \cdot Ag]_2(BF_4)(CI)$, $[(S)-2 \cdot Ag]_3(PF_6)_3$, $[(S)-2 \cdot Ag]_3(BF_4)_3$, $[(S)-2 \cdot Ag]_3(BF_4)_3$, $[(R)-2 \cdot Ag]_3(BF_4)_3$,and $[(S)-3 \cdot Ag]_3(PF_6)_2(CI) \cdot (CHCI_3) \cdot (EtOAc)$

		[(<i>R</i>) -1 ·Ag	3]2(BF4)(Cl)	[(<i>R</i>)-1·Ag	$[]_2(PF_6)_2$	$[(S)-2\cdot \mathrm{Ag}]_{3}(\mathrm{PF}_{6})_{3}{}^{a}$
Chemical formula	nemical formula		C ₅₆ H ₄₈ Ag ₂ BClF ₄ N ₁₂ O ₄		$_{2}F_{12}N_{12}O_{4}P$	$C_{90}H_{84}Ag_{3}N_{18}O_{6}$
Formula weight (M)		1291.06	-			1837.36
Temperature (K)		150.0	150.0			150.0
Wavelength (Å)		0.7107	0.7107			0.7107
Crystal system		hexagona	hexagonal		ic	hexagonal
Space group (H-M)		P 622	-			P 63
Crystal size (mm ³)		0.25×0.20×0.20		0.28×0.20×0.04		0.32×0.23×0.22
a (Å)		22.2009(5	22.2009(5))	17.2761(2)
<i>b</i> (Å)		22.2009(5	22.2009(5)))	17.2761(2)
<i>c</i> (Å)		12.58554	12.58554(19)))	18.7097(2)
α (deg)		90				90
β (deg)		90		118.38(4)		90
γ (deg)		120		90		120
Volume ($Å^3$)		5372.11(1	5372.11(18)			4836.01(10)
Ζ		3				2
Calculated density (g	$g \text{ cm}^{-3}$)	1.197				1.262
$\mu (\text{mm}^{-1})$		0.639				0.658
Reflections collected	l	6655		0.778 6044		13550
Independent reflections		3134		5535		5251
R _{int}		0.0303		0.0574		0.0228
<i>F</i> (000)				1464		1878
GOF	1.097		1.059		1.078	
		0.0688, 0	0.0688, 0.1874		.2019	0.0409, 0.1165
R_1, wR_2 (all data)			0.0769, 0.1963		.2388	0.0462, 0.1202
	[(<i>S</i>)-2·A	g] ₃ (BF ₄) ₃	[(<i>S</i>) -2 ·Au]₃(BF₄)	3 [(<i>R</i>)	- 2 ·Ag] ₃ (BF ₄) ₃	$[(S)-3\cdot Ag]_{3}(PF_{6})_{2}(Cl)$ $\cdot (CHCl_{3})\cdot (EtOAc)$
	C ₉₀ H ₈₄ A	g ₃ B ₃	$C_{90}H_{84}Au_3B_3$	C ₉₀ I	H ₈₄ Ag ₃ B ₃	C ₇₁ H ₉₃ Ag ₃ Cl ₄
Chemical formula	$F_{12}N_{18}O$	-	F ₁₂ N ₁₈ O ₉		$V_{18}O_6$	$F_{12}N_{18}O_8P_2$
Formula weight (M)	2097.79	•	2413.08		7.79	2082.99
Temperature (K)	294.15		294.15	294.	.15	150.1
Wavelength (Å)	0.7107		0.7107	0.71	.07	0.7107
Crystal system	hexagon	al	hexagonal	hexa	agonal	triclinic
Space group	P 63		P 63	P 63	e	<i>P</i> 1
Crystal size (mm ³)			0.38×0.30×0.28		2×0.28×0.24	0.25×0.20×0.20
a (Å)	17.3366(4)		17.4146(4)		399(3)	12.6553(3)
b (Å)	17.3366(4)		17.4146(4)	17.3399(3)		13.0092(5)
	18.9739(3)		18.8187(4)			
<i>c</i> (Å)	10.9/39	(5)	10.010/(4)	18.9	0738(3)	15.1663(4)

α (deg)	90	90	90	104.239(3)
β (deg)	90	90	90	112.900(3)
γ (deg)	120	120	120	99.765(3)
Volume ($Å^3$)	4938.72(18)	4943.51(18)	4862.46(14)	2128.74(12)
Ζ	2	2	2	1
Calculated density (g cm ⁻³)	1.443	1.621	1.433	1.625
$\mu (\text{mm}^{-1})$	0.674	4.526	0.681	0.936
Reflections collected	15602	13406	13681	13449
Independent reflections	6563	6306	6407	12951
$R_{\rm int}$	0.0207	0.0245	0.0162	0.0168
<i>F</i> (000)	2172	2364	2124	1057
GOF	1.043	0.959	1.027	1.032
$R_1, wR_2 [I > 2\sigma(I)]$	0.0350, 0.1043	0.0363, 0.0963	0.0363, 0.1120	0.0391, 0.1015
R_1 , wR_2 (all data)	0.0522, 0.1095	0.0556, 0.1002	0.0476, 0.1156	0.0413, 0.1045


^{*a*} The counteranions (PF_6) in [(S)-2·Ag]₃(PF_6)₃ were omitted by Squeeze program.

V. Circular dichroism (CD) spectrum investigation of the silver NHC complexes

Figure S7. CD spectra of the silver NHC complexes at a concentration of 0.1 mg mL⁻¹ in CHCl₃. **A** (black line): $[(S)-2 \cdot Ag]_3(BF_4)_3$; **B** (red line): $[(R)-2 \cdot Ag]_3(BF_4)_3$; **C** and **D** (blue and cyan line): two typical CD spectra of the randomly picked bulk single crystals obtained from recrystallization of the rude mixture of the reaction of Ag₂O and the mixture of (*S*)-2·2HCl and (*R*)-2·2HCl at a 1:1 ratio; **E** (tan line): CD spectrum of the rude mixture of the reaction of Ag₂O and the mixture of (*S*)-2·2HCl and (*R*)-2·2HCl at a 1:1 ratio; the recrystallization).

VI. ¹H NMR spectral changes of [(S)-2·Ag]₃(BF₄)₃ upon addition of 10 equiv TBACl in CDCl₃

Figure S8. ¹H NMR spectra (400 MHz, CDCl₃) of a) $[(S)-2 \cdot Ag]_3(BF_4)_3$; and b) upon addition of 10 equivalents of tetrabutylammonium chloride (TBACl) to a CDCl₃ solution of $[(S)-2 \cdot Ag]_3(BF_4)_3$ at 20 °C.

VII. Influence of the counteranions of [(S)-2·Ag]₃(X)₃ on the hierarchical self-assemblies

The compound $[(S)-2 \cdot Ag]_3(X)_3$ (X = Cl and/or AgCl₂, CH₃CO₂, or CF₃CO₂) was dispersed in 1 mL of solvent in a test tube. The resulting suspension was transferred to translucent gel after heating. The gel was simply confirmed by the "stable to inversion of a test tube" method. The results of gelation test in different solvents were summarized in Table S2.

	Result				
Solvent	$[(S)-2 \cdot Ag]_3(X)_3$ $(X = Cl and/or AgCl_2)$	[(<i>S</i>)- 2 ·Ag] ₃ (CH ₃ CO ₂) ₃	$[(S)-2\cdot Ag]_3(CF_3CO_2)_3$		
CH ₂ Cl ₂	S	S	S		
$CH_2Cl_2/EtOAc (\sim 1/10 \text{ v/v})$	G	G	G		
CHCl ₃ /EtOAc (~ 1/10 v/v)	G	G	G		
CHCl ₃ /MeOH (~ 1/10 v/v)	G	G	G		
CHCl ₃ /CH ₃ CN (~ 1/10 v/v)	G	G	Gp		
MeOH	Р	Р	Р		
^{<i>i</i>} PrOH	G	Р	Р		
acetone	S	G	G		
CH ₃ CN	Gp	G	G		
THF	S	G	Gp		
EtOAc	Р	Gp	Gp		
dioxane	S	G	G		
toluene	S	Gp	Gp		
CHCl ₃ ^a	G	G	G		

Table S2. Gelation Test of Silver NHC Complexes (2 wt%) in Different Solvents

^{*a*} Higher concentrations (~ 50 %) of $[(S)-2 \cdot Ag]_3(X)_3$ (X = Cl and/or AgCl₂, CH₃CO₂, CF₃CO₂) at 0 °C. S: solution; G: steady gel; G_p: partial gel; P: precipitate.

VIII. Morphology analysis of [(S)-2·Ag]₃(X)₃ (X = BF₄, Cl and/or AgCl₂, CH₃CO₂, CF₃CO₂)

The morphologies of $[(S)-2\cdot Ag]_3(X)_3$ (X = BF₄, Cl and/or AgCl₂, CH₃CO₂, CF₃CO₂) were investigated using transmission electron microscope (TEM) and scanning transmission electron microscope (STEM). The TEM and STEM specimens were prepared by gently placing a carbon-coated copper grid on a surface of the sample. The grid was removed, stained with phosphotungstic acid aqueous solution (1 wt%) for $[(S)-2\cdot Ag]_3(BF_4)_3$ and $[(S)-2\cdot Ag]_3(CF_3CO_2)_3$, BaCl₂ aqueous solution (1 wt%) for $[(S)-2\cdot Ag]_3(X)_3$ (X = Cl and/or AgCl₂), and uranyl acetate aqueous solution (1%) for $[(S)-2\cdot Ag]_3(CH_3CO_2)_3$ (or unstained), dried for 10 min at room temperature, and then subjected to observation.

IX. ¹H NMR spectrum studies of $[(S)-2\cdot Ag]_3(X)_3$ (X = BF₄, Cl and/or AgCl₂, CH₃CO₂, CF₃CO₂)

The proton assignment of $[(S)-2\cdot Ag]_3(X)_3$ (X = BF₄, Cl and/or AgCl₂, CH₃CO₂, and CF₃CO₂) was confirmed by HMQC and ROESY NMR experiments in CDCl₃ (Figure S1, S4-S6). Compared with the ¹H NMR spectrum of $[(S)-2\cdot Ag]_3(BF_4)_3$, the chemical shifts of H_a, H_h, and H_f of $[(S)-2\cdot Ag]_3(X)_3$ (X = Cl and/or AgCl₂, CH₃CO₂, and CF₃CO₂) downfielded significantly, and the signals of H_c were distinctly upfield shifted (Figure S9). These observations suggested significant differences in cation-anion interactions and noncovalent interactions of neighboring cation frameworks.

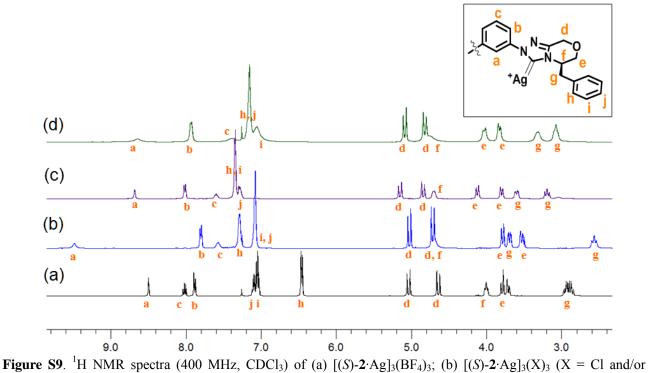
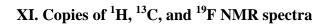
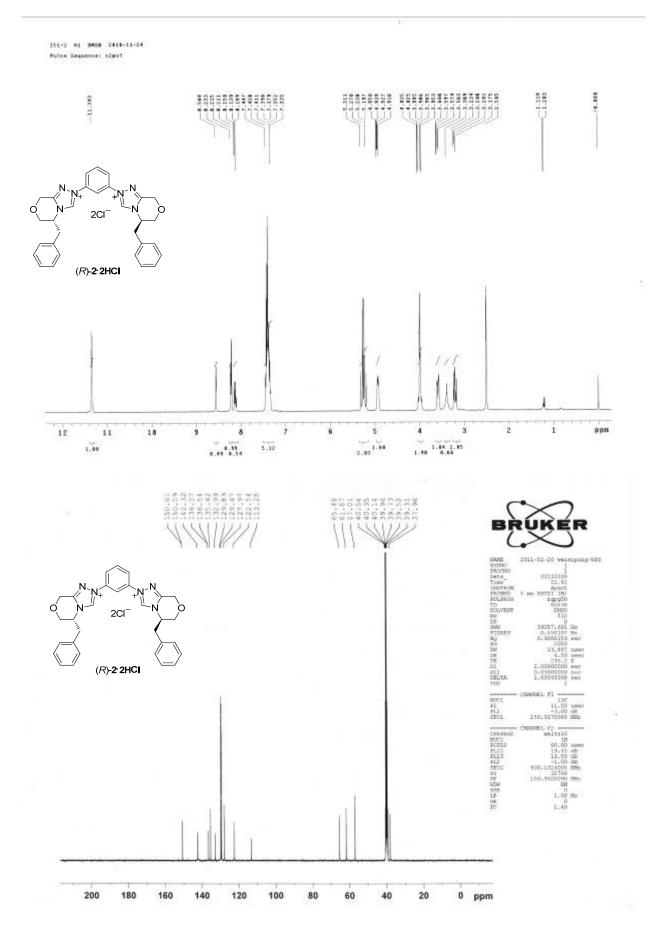
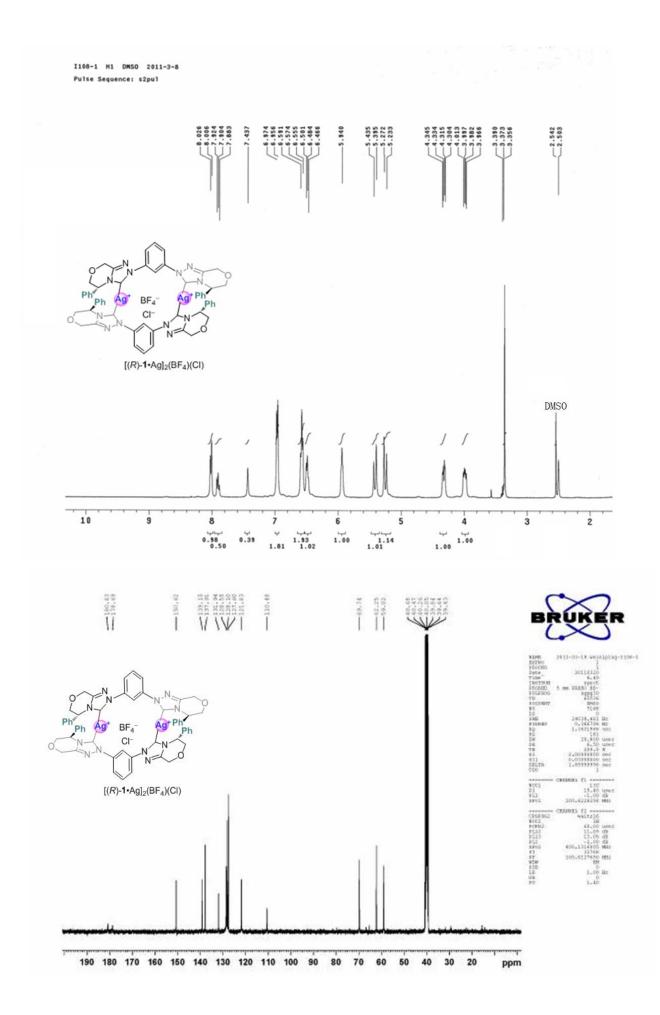
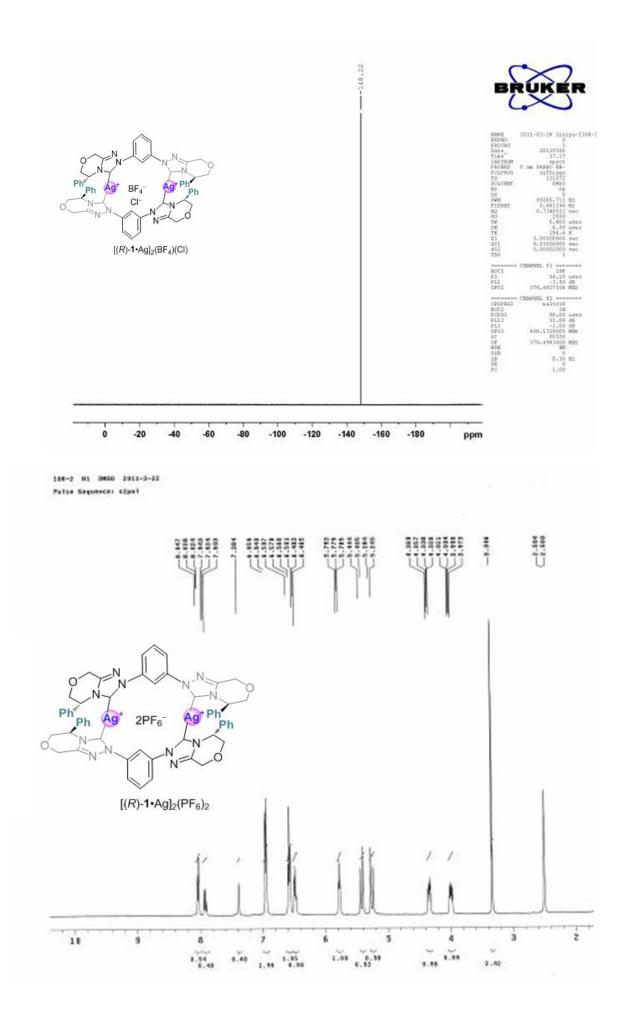
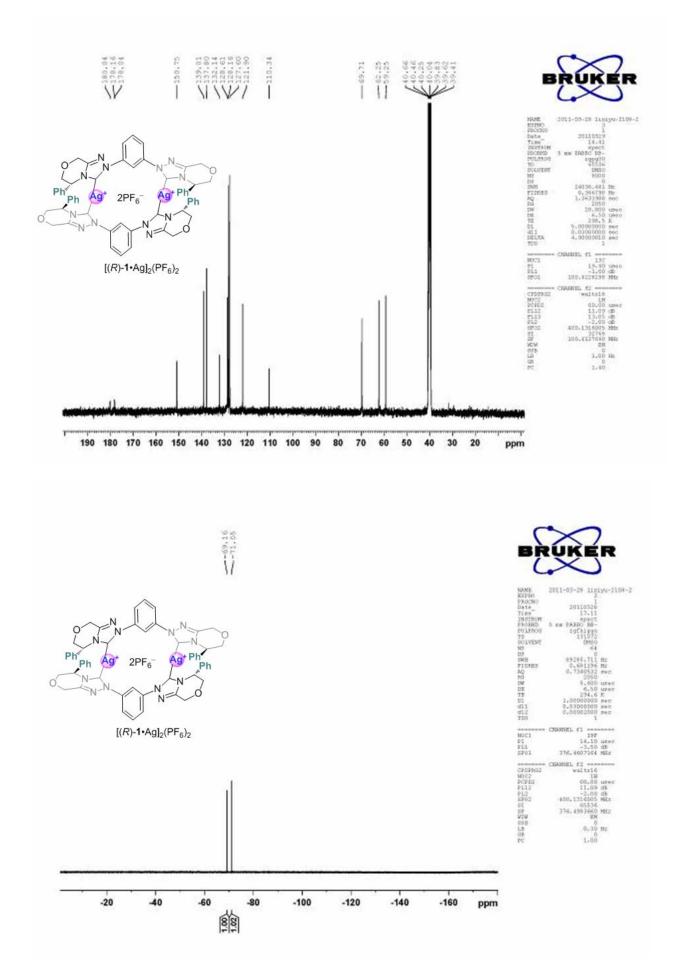
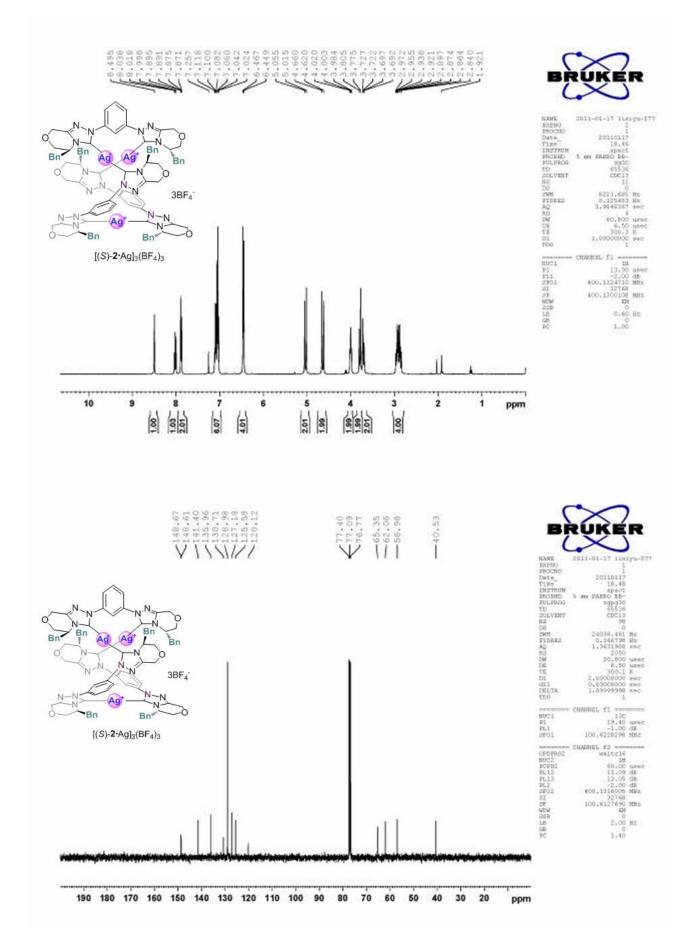




Figure S9. 'H NMR spectra (400 MHz, CDCl₃) of (a) $[(S)-2 \cdot Ag]_3(BF_4)_3$; (b) $[(S)-2 \cdot Ag]_3(X)_3$ (X = Cl and/or AgCl₂); (c) $[(S)-2 \cdot Ag]_3(CH_3CO_2)_3$; and (d) $[(S)-2 \cdot Ag]_3(CF_3CO_2)_3$.

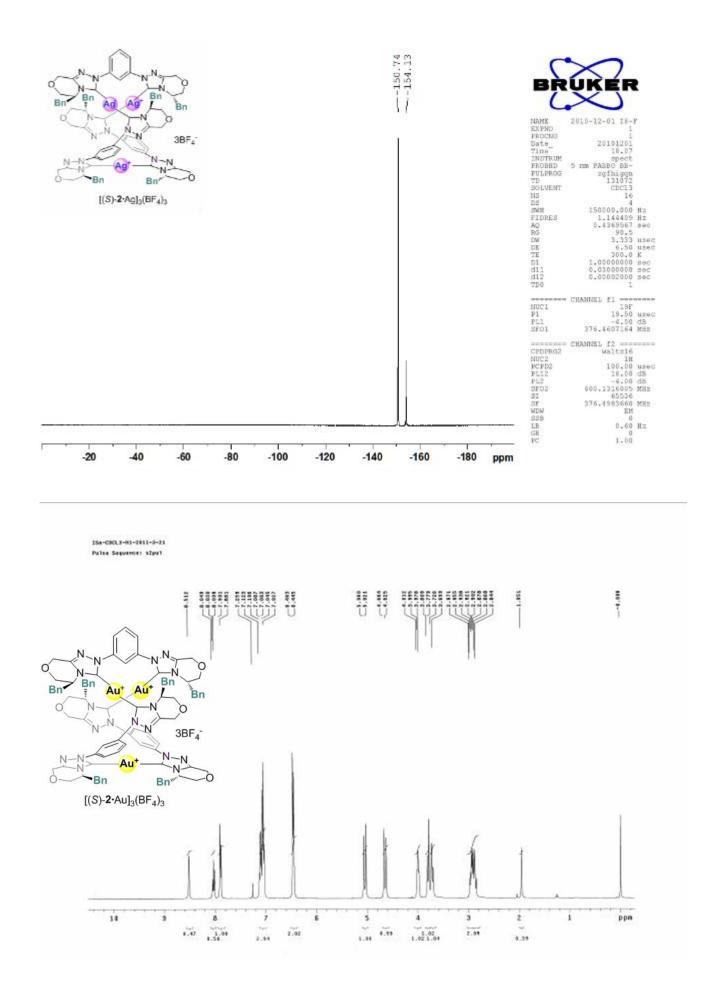

X. References

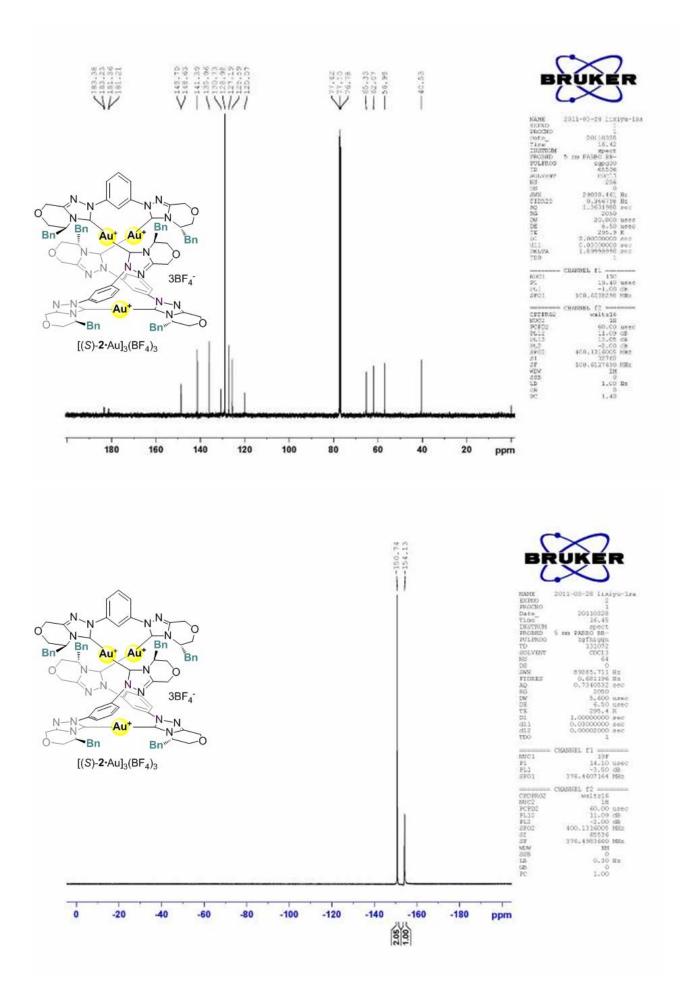

- 1 G. M. Scheldrick, *SHELX-97 and SHELXL-97, Program for Solution and Refinement of Crystal Structures* University of Göttingen: Germany, **1997**.
- 2 (a) L. J. Farrugia, J. Appl. Cryst. 1997, 30, 565; (b) A. L. Spek, J. Appl. Cryst. 2003, 36, 7; (c) O.
 V. Dolomanov, R. J. Gildea, J. A. K. Howard and H. Puschmann, J. Appl. Cryst. 2009, 42, 339.
- 3 Y. Ma, S. Wei, J. Wu, F. Yang, B. Liu, J. Lan, S. Yang and J. You, *Adv. Synth. Catal.* 2008, 350, 2645.

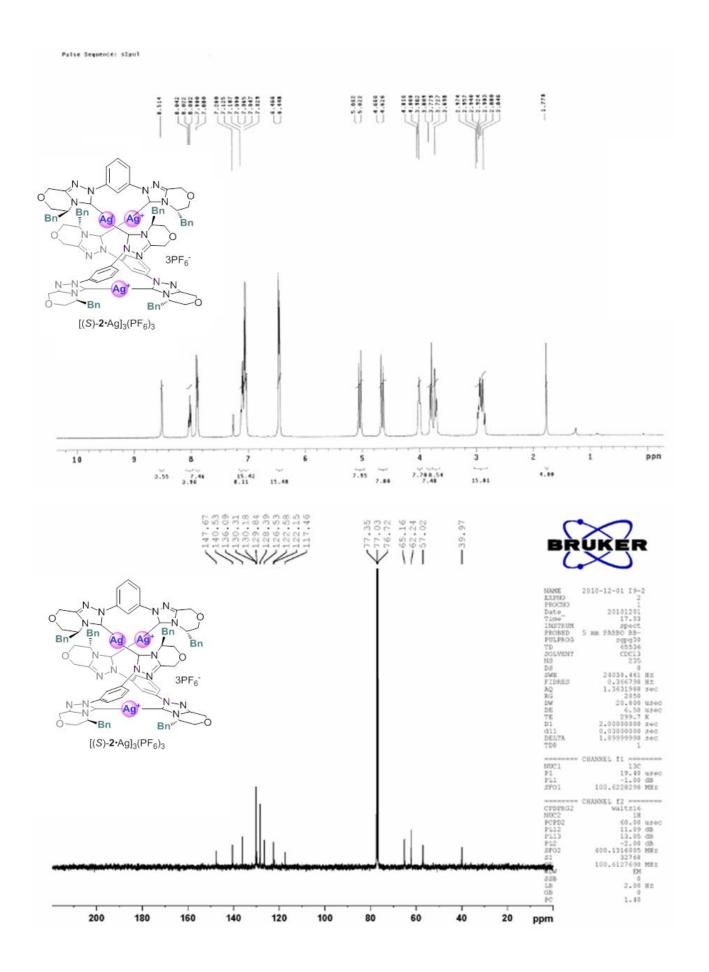


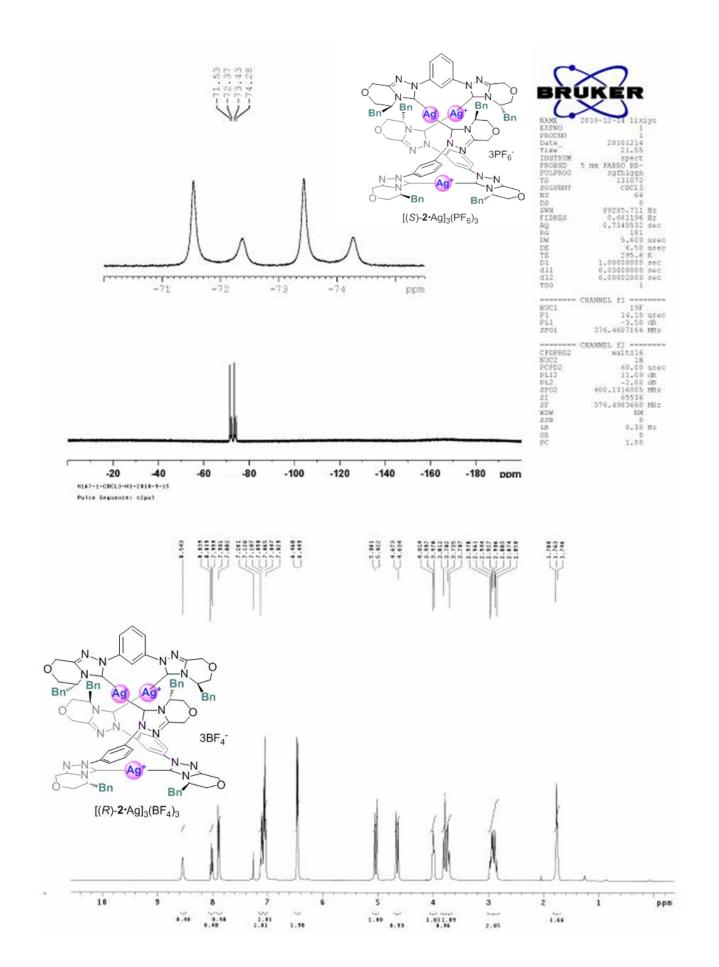


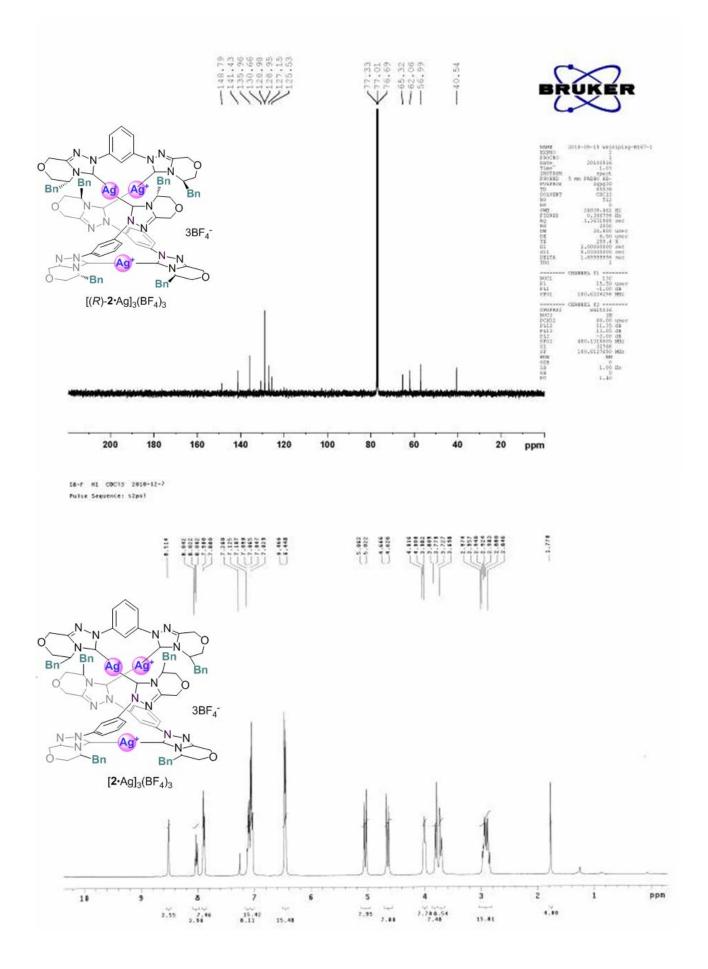
Electronic Supplementary Material (ESI) for Chemical Science This journal is O The Royal Society of Chemistry 2011










Electronic Supplementary Material (ESI) for Chemical Science This journal is © The Royal Society of Chemistry 2011

