Supporting Information

Phosphorous complexes of a triply-fused [24]pentaphyrin

Tomohiro Higashino, and Atsuhiro Osuka*

Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan

E-mail: osuka@kuchem.kyoto-u.ac.jp

Contents

- 1. Experimental Section
- 2. Synthesis
- 3. High-Resolution ESI-MS
- 4. UV/Vis Absorption Spectra
- 5. NMR Spectra
- 6. Cyclic Voltammograms
- 7. X-Ray Crystallographic Details
- 8. DFT Calculations
- 9. References

1. Experimental Section

Instrumentation and Materials.

Commercially available solvents and reagents were used without further purification unless otherwise mentioned. Dry CH₂Cl₂ was obtained by refluxing and distillation over CaH₂. Dry toluene was obtained by refluxing and distillation over CaH₂. Silica-gel column chromatography was performed on Wakogel C-300 or C-400. Alumina column chromatography was performed on Sumitomo Active alumina. UV/Vis absorption spectra were recorded with a Shimadzu UV-3100PC spectrometer. ¹H, ¹⁹F, ³¹P and ¹¹B NMR spectra were recorded with a JEOL ECA-600 spectrometer (operating at 600.17 MHz for ¹H, 150.91 MHz for ¹³C, 564.73 MHz for ¹⁹F, 242.95 MHz for ³¹P, and 192.56 MHz for ¹¹B) by using the residual solvent as the internal reference for ¹H (CDCl₃: δ = 7.26 ppm), the residual solvent as the internal reference for ¹³C (CDCl₃: δ = 77.16 ppm, CD₂Cl₂: δ = 53.84 ppm), hexafluorobenzene as the external reference for ¹⁹F (δ = –162.9 ppm), 85% phosphoric acid as the external reference for ³¹P ($\delta = 0.00$ ppm), and BF₃·Et₂O as the external reference for ¹¹B ($\delta = 0.00$ ppm). NMR signals were assigned from the ¹H–¹H COSY, ¹⁹F–¹⁹F COSY, ¹H–³¹P HMBC spectra, and the comparison with the spectra in the presence of D₂O (signals assigned for NH protons disappear in the presence of D₂O). Mass spectra were recorded with a BRUKER microTOF LC by using the ESI-TOF method in the positive ion mode and in the negative ion mode in an acetonitrile solution. Single-crystal X-ray diffraction analysis data for compound 2, 3, and 4 were collected at -180 °C with a Rigaku R-AXIS RAPID II diffraction by using graphite monochromated Cu-K_a radiation ($\lambda = 1.54187$ Å). The structures were solved by direct method (SHELXS-97). Redox potentials were measured by cyclic voltammetry method on an ALS electrochemical analyzer model 660.

2. Synthesis

meso-Pentakis(pentafluorophenyl)-substituted N-fused [24]pentaphyrin(1.1.1.1) (1):

For 1, the synthetic details were previously described.^[S1]

Phosphine oxide complex of *meso*-pentakis(pentafluorophenyl)-substituted *N*-fused [24]pentaphyrin(1.1.1.1) (2):

A dry flask containing 1 (31.0 mg, 25 μ mol) was filled with N₂, to which were added toluene (25 mL), POCl₃ (0.23 mL, 2.5 mmol) and triethylamine (0.70 mL, 5.0 mmol). The reaction mixture was stirred for 12 h under N₂ atmosphere at 120 °C. Then, the reaction was quenched by the addition of

water, and the product was extracted with ethyl acetate (3×25 mL). The combined organic layer was washed with water and dried over Na₂SO₄ and the solvent was removed. The crude product was purified by silica gel column chromatography using CH₂Cl₂ to give an orange fraction. Recrystallization from CH₂Cl₂ and *n*-hexane gave brown solid of **2** (20.7 mg, 16.7 µmol, 66%). Single crystals suitable for X-ray crystallographic analysis were obtained by vapor diffusion of hexane into chlorobenzene solution of **2**.

2: ¹H NMR (600.17 MHz, CDCl₃, 25 °C): $\delta = 6.35$ (d, J = 4.8 Hz, 1H, β_D), 6.05 (d, J = 4.8 Hz, 1H, β_D), 4.59 (t, J = 3.4 Hz, 1H, β_A), 4.43 (quintet, J = 4.8 Hz, 1H, β_A), and 4.34 (d, J = 2.0 Hz, 2H, β_B) ppm; ¹³C NMR (150.91 MHz, CD_2Cl_2 , 25 °C): $\delta = 150.5$, 145.6, 145.0, 144.9, 144.7, 144.5, 144.4, 144.2, 143.2, 143.0, 142.8, 142.3, 142.0, 141.9, 141.5, 141.1, 141.0, 140.2, 140.1, 139.7, 139.5, 139.1, 138.3, 138.2, 138.1, 137.9, 137.8, 137.5, 137.3, 134.2, 139.8, 129.5, 129.3, 129.2, 127.0, 126.9, 125.1, 124.4, 123.3, 123.1, 123.0, 122.8, 122.0, 121.9, 119.5, 116.7, 113.1, 110.4, 106.4, 106.0, 104.8, 102.9, 100.3, 99.6, and 96.2 ppm; ¹⁹F NMR (564.73 MHz, CDCl₃, 25 °C): *δ* = –133.46 (d, *J* = 24.2 Hz, 1F, ortho-F), –134.25 (m, 1F), –135.60 (d, J = 24.2 Hz, 1F, ortho-F), -136.43 (d, J = 24.2 Hz, 1F, ortho-F), -136.55 (d, J = 24.2 Hz, 1F, ortho-F), -137.22 (d, J = 20.7 Hz, 1F, ortho-F), -137.30 (d, J = 20.7 Hz, 1F, ortho-F), -137.46 (d, J = 17.3 Hz, 1F, ortho-F), -137.88 (d, J = 24.2 Hz, 1F, ortho-F), -150.08 (t, J = 20.7 Hz, 1F, para-F), -151.17 (t, J = 20.7 Hz, 1F, para-F), -152.12 (t, J = 20.7 Hz, 1F, para-F), -153.82 (t, J = 20.7 Hz, 1F, para-F), -154.51 (t, J = 20.7 Hz, 1F), -158.97 (td, J = 24.2 Hz, J = 10.4 Hz, 1F, meta-F), -159.68 (td, J = 20.7 Hz, J = 6.9 Hz, 1F, meta-F), -159.98 (td, J = 20.7 Hz, J = 6.9 Hz, 1F, meta-F), -160.48 (td, J = 20.7 Hz, J = 10.4 Hz, 1F, meta-F), -160.65 (t, J = 17.3 Hz, 1F), -161.90 (td, J = 20.7 Hz, J = 6.9 Hz, 1F, meta-F), -162.14 (m, 2F, *meta*-F), -162.92 (t, J = 20.7 Hz, 1F, *meta*-F), and -163.82 (t, J = 20.7 Hz, 1F) ppm; ³¹P NMR (242.95) MHz, CDCl₃, 25 °C): $\delta = 7.12$ (s) ppm. UV/vis: λ_{max} (CH₂Cl₂)/nm 319 (ε /dm³ mol⁻¹ cm⁻¹ 45000), 398 (47000), 473 (25000), 561 (10000), 696 (2000) and 770 (1600). HRMS (ESI-TOF, negative) calcd. for $C_{55}H_6F_{24}N_5OPCl [M+Cl]^-$ 1273.9621; found 1273.9612.

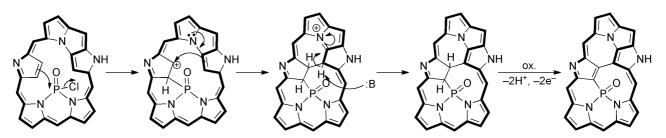
Phosphine sulfide complex of *meso*-pentakis(pentafluorophenyl)-substituted *N*-fused [24]pentaphyrin(1.1.1.1) (3):

A dry flask containing **2** (11.5 mg, 9.3 μ mol) and Lawesson's Reagent (7.8 mg, 19 μ mol) was filled with N₂, to which were added toluene (25 mL). The reaction mixture was refluxed for 1 h under N₂ atmosphere, and then cooled down. After evaporation of the solvent, the residue was separated by silica gel column chromatography using a 1:1 mixture of CH₂Cl₂ and *n*-hexane to give an orange fraction. Recrystallization from CH₂Cl₂ and *n*-hexane gave brown solid of **3** (9.7 mg, 7.8 μ mol, 84%). Single crystals suitable for X-ray crystallographic analysis were obtained by vapor diffusion of heptane into toluene solution of 3.

3: ¹H NMR (600.17 MHz, CDCl₃, 25 °C): $\delta = 6.18$ (d, J = 4.8 Hz, 1H, β_D), 5.88 (d, J = 4.8 Hz, 1H, β_D), 4.36 (s, 1H, β_A), 4.26 (quintet, J = 4.8 Hz, 1H, β_A), 4.16 (d, J = 5.5 Hz, 1H, β_B), and 4.13 (d, J = 5.5 Hz, 1H, $\beta_{\rm B}$) ppm; ¹³C NMR (150.91 MHz, CDCl₃, 25 °C): δ = 165.0, 164.9, 155.3, 153.3, 153.1, 150.2, 145.2, 144.6, 144.4, 144.3, 144.2, 144.1, 143.8, 142.5, 142.0, 141.6, 141.4, 140.8, 140.1, 139.6, 139.5, 137.8, 137.7, 137.4, 137.3, 137.2, 137.0, 136.8, 133.8, 133.6, 131.5, 131.4, 129.6, 129.3, 129.2, 127.6, 127.5, 126.3, 125.3, 125.2, 124.3, 123.5, 122.9, 122.7, 122.3, 121.7, 121.6, 115.9, 109.8, 105.9, 105.6, 104.3, 103.3, 99.9, and 99.7 ppm; ¹⁹F NMR (564.73 MHz, CDCl₃, 25 °C): $\delta = -133.27$ (d, J = 24.2 Hz, 1F, ortho-F), -134.11 (m, 1F), -135.70 (d, J = 24.2 Hz, 1F, ortho-F), -136.24 (t, J = 24.2 Hz, 2F, ortho-F), -137.35 (d, J = 24.2 Hz, 1F, ortho-F), -137.46 (d, J = 20.7 Hz, 1F, ortho-F), -137.72 (d, J = 20.7 Hz, 2F, ortho-F), -150.34 (t, J = 20.7 Hz, 1F, para-F), -151.45 (t, J = 20.7 Hz, 1F, para-F), -152.32 (t, J = 20.7 Hz, 1F, para-F), -154.11 (t, J = 20.7 Hz, 1F, para-F), -155.04 (t, J = 20.7 Hz, 1F), -159.20 (td, J = 24.2 Hz, J = 10.3 Hz, 1F, meta-F), -159.78 (td, J = 20.7 Hz, J = 10.3 Hz, 1F, meta-F), -160.08 (td, J = 20.7 Hz, J = 6.9 Hz, 1F, meta-F), -160.60 (td, J = 24.2 Hz, J = 10.3 Hz, 1F, meta-F), -160.71 (t, J = 17.3 Hz, 1F), -162.05 (td, J = 24.7 Hz, J = 6.9 Hz, 1F, meta-F), -162.25 (m, 2F, meta-F), -163.08 (t, J = 20.7 Hz, 1F, meta-F), and -164.06 (t, J = 20.7 Hz, 1F, meta-F), and -164.06 (t, J = 20.7 Hz, 1F, meta-F), -162.25 (m, 2F, meta-F), -163.08 (t, J = 20.7 Hz, 1F, meta-F), -164.06 (t, J = 20.7 Hz, 1F, -162.25 (m, 2F, -162.25 (m, 2F, -163.08 (t, J = 20.7 Hz, -164.06 (t, J = 20.7 20.7 Hz, 1F) ppm; ³¹P NMR (242.95 MHz, CDCl₃, 25 °C): $\delta = 58.55$ (s) ppm. UV/vis: λ_{max} (CH₂Cl₂)/nm 318 (ϵ /dm³mol⁻¹cm⁻¹ 51000), 403 (55000), 477 (33000), 581 (13000), 707 (2700) and 784 (2500) nm. HRMS (ESI-TOF, negative) calcd. for C₅₅H₆F₂₄N₅SPCl [M+Cl]⁻ 1289.9392; found 1289.9379.

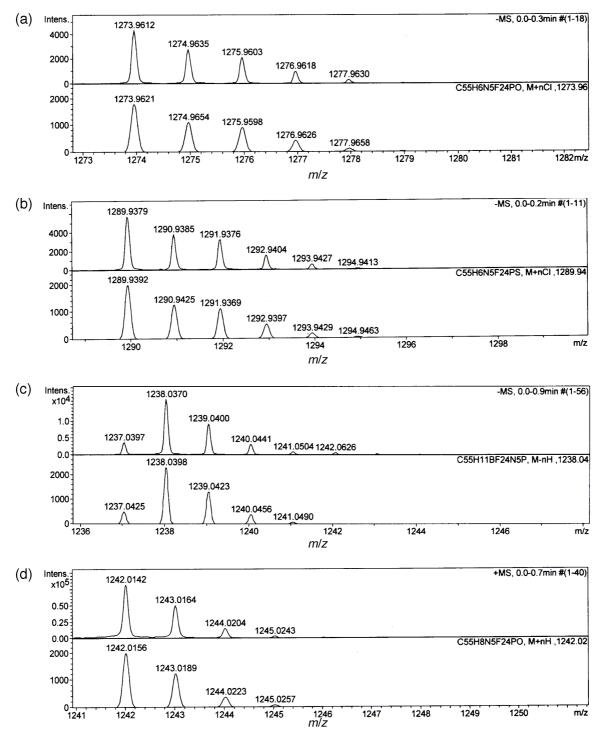
Phosphine-borane complex of *meso*-pentakis(pentafluorophenyl)-substituted *N*-fused [24]pentaphyrin(1.1.1.1) (4):

A dry flask containing **2** (12.3 mg, 10 µmol) was filled with N₂, to which were added CH₂Cl₂ (10 mL) and BH₃·SMe₂ (19 µL). The reaction mixture was stirred for 24 h under N₂ atmosphere. After evaporation of the solvent, the residue was separated by silica gel column chromatography using a 1:1 mixture of CH₂Cl₂ and *n*-hexane to give an orange fraction. Recrystallization from CH₂Cl₂ and *n*-hexane gave brown solid of **4** (6.7 mg, 5.4 µmol, 54%). Single crystals suitable for X-ray crystallographic analysis were obtained by vapor diffusion of hexane into toluene solution of **4**. **4**: ¹H NMR (600.17 MHz, CDCl₃, 25 °C): δ = 7.22 (d, *J* = 4.2 Hz, 1H, β_D), 6.96 (d, *J* = 4.2 Hz, 1H, β_D), 6.33 (quintet, *J* = 4.8 Hz, 1H, β_A), 5.57 (d, *J* = 3.5 Hz, 1H, β_A), 2.65 (m, 1H, β_B), 2.53 (m, 1H, β_B), 2.37 (m, 1H, β_B), 2.28 (br, 3H, BH₃), and 2.18 (m, 1H, β_B) ppm; ¹³C NMR (150.91 MHz, CDCl₃, 25 °C): δ = 159.2, 159.1, 153.3, 153.2, 151.2, 145.7, 145.2, 145.0, 144.9, 144.5, 142.6, 142.2, 141.9, 141.7, 141.4, 141.2, 141.1, 139.9, 138.2, 138.1, 138.0, 137.9, 137.7, 137.6, 137.4, 136.9, 134.7, 134.4, 134.2, 134.1, 134.0, 131.9,

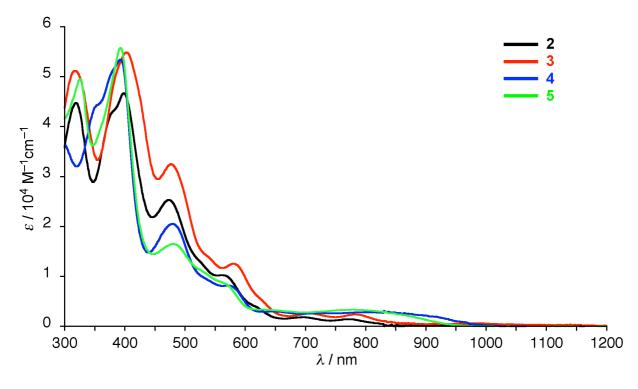

127.5, 127.4, 127.1, 127.0, 123.6, 122.0, 121.9, 121.2, 119.2, 117.2, 117.0, 112.7, 111.4, 108.8, 108.5, 106.1, 105.7, 105.6, 101.0, 99.2, 96.8, 27.0, and 24.5 ppm; ¹⁹F NMR (564.73 MHz, CDCl₃, 25 °C): δ = -133.44 (d, *J* = 24.2 Hz, 1F, ortho-F), -133.90 (m, 1F), -135.88 (d, *J* = 24.2 Hz, 1F, ortho-F), -136.89 (d, *J* = 24.2 Hz, 1F, ortho-F), -137.17 (d, *J* = 20.7 Hz, 1F, ortho-F), -137.44 (d, *J* = 24.2 Hz, 1F, ortho-F), -137.78 (t, *J* = 24.2 Hz, 2F, ortho-F), -137.86 (d, *J* = 20.7 Hz, 1F, ortho-F), -150.41 (t, *J* = 20.7 Hz, 1F, para-F), -151.94 (t, *J* = 20.7 Hz, 1F, para-F), -152.32 (t, *J* = 20.7 Hz, 1F, para-F), -153.94 (t, *J* = 20.7 Hz, 1F, para-F), -154.38 (t, *J* = 20.7 Hz, 1F, meta-F), -160.55 (td, *J* = 24.2 Hz, *J* = 6.9 Hz, 1F, meta-F), -161.85 (td, *J* = 20.7 Hz, *J* = 6.9 Hz, 1F, meta-F), -162.07 (td, *J* = 24.2 Hz, *J* = 6.9 Hz, 1F, meta-F), -161.85 (td, *J* = 20.7 Hz, 1F, meta-F), -163.29(t, *J* = 20.7 Hz, 1F, meta-F), and -163.68 (t, *J* = 20.7 Hz, 1F) ppm; ³¹P NMR (242.95 MHz, CDCl₃, 25 °C): δ = 119.22 (br) ppm; ¹¹B NMR (192.56 MHz, CDCl₃, 25 °C): δ = -32 ~ -33 (br) ppm. UV / vis: λ_{max} (CH₂Cl₂) / nm 355 (sh) (ε /dm³ mol⁻¹ cm⁻¹ 44000), 393 (54000), 479 (20000), 571 (8200), 645 (3000) and 865 (2800) nm. HRMS (ESI-TOF, negative) calcd. for C₅₅H₁₀F₂₄N₅PB [M-H]⁻ 1238.0398; found 1238.0370.

Phosphine oxide complex of chlorin-type *meso*-pentakis(pentafluorophenyl)-substituted *N*-fused [24]pentaphyrin(1.1.1.1) (5):

A dry Schlenk flask containing 4 (12.4 mg, 10 μ mol) was filled with N₂, to which were added freshly distilled CH₂Cl₂ (2 mL) and freshly distilled triethylamine (28 μ L, 200 μ mol). The reaction mixture was stirred for 12 h under N₂ atmosphere. The reaction mixture was passed through a short silica gel column followed by evaporation of the solvent. The residue was separated by silica gel column chromatography using CH₂Cl₂ to give an orange fraction. Recrystallization from CH₂Cl₂ and *n*-hexane gave brown solid of 5 (3.8 mg, 3.1 μ mol, 31%). Single crystals suitable for X-ray crystallographic analysis were obtained by vapor diffusion of water into acetonitrile/tetrachloromethane solution of 5.


5: ¹H NMR (600.17 MHz, CDCl₃, 25 °C): δ = 7.39 (d, *J* = 4.8 Hz, 1H, β_D), 7.12 (d, *J* = 4.8 Hz, 1H, β_D), 6.42 (quintet, *J* = 4.8 Hz, 1H, β_A), 5.74 (s, 1H, β_A), 2.88 (m, 1H, β_B), 2.73 (m, 1H, β_B), 2.56 (m, 1H, β_B), and 2.38 (m, 1H, β_B) ppm; ¹³C NMR (150.91 MHz, CDCl₃, 25 °C): δ = 159.2, 159.1, 153.3, 153.2, 151.2, 145.7, 145.3, 145.0, 144.9, 144.5, 142.6, 142.2, 141.9, 141.7, 141.4, 141.2, 141.1, 139.9, 138.2, 138.1, 138.0, 137.9, 137.7, 137.6, 137.5, 137.4, 136.9, 134.7, 134.4, 134.2, 134.1, 134.0, 131.9, 127.5, 127.4, 127.0, 123.6, 122.0, 121.9, 121.2, 119.2, 117.2, 117.0, 112.7, 111.4, 108.8, 108.5, 106.1, 105.7, 105.6, 101.0, 99.2, 96.8, 26.9, and 24.5 ppm; ¹⁹F NMR (564.73 MHz, CDCl₃, 25 °C): δ = -133.50 (d, *J* = 24.2 Hz, 1F, ortho-F), -134.30 (m, 1F), -136.00 (d, *J* = 17.3 Hz, 1F, ortho-F), -136.89 (t, *J* = 24.2 Hz, 2F, ortho-F), -137.28 (d, *J*

= 20.7 Hz, 1F, ortho-F), -137.32 (d, J = 24.2 Hz, 1F, ortho-F), -137.72 (d, J = 20.7 Hz, 1F, ortho-F), -137.99 (d, J = 24.2 Hz, 1F, ortho-F), -150.25 (t, J = 20.7 Hz, 1F, para-F), -151.65 (t, J = 20.7 Hz, 1F, para-F), -152.11 (t, J = 20.7 Hz, 1F, para-F), -153.62 (t, J = 20.7 Hz, 1F, para-F), -153.98 (t, J = 20.7 Hz, 1F), -159.36 (td, J = 20.7 Hz, J = 10.3 Hz, 1F, meta-F), -160.01 (m, 2F), -160.18 (td, J = 24.2 Hz, J = 6.9Hz, 1F, meta-F), -160.44 (td, J = 20.7 Hz, J = 6.9 Hz, 1F, meta-F), -160.70 (td, J = 24.2 Hz, J = 10.3 Hz, 1F), -161.93 (td, J = 24.2 Hz, J = 6.9 Hz, 1F, meta-F), -162.34 (t, J = 20.7 Hz, 1F, meta-F), -163.16 (t, J = 24.2 Hz, J = 6.9 Hz, 1F, meta-F), and -163.61 (t, J = 20.7 Hz, 1F) ppm; ³¹P NMR (242.95 MHz, CDCl₃, 25 °C): $\delta = -2.68$ (s) ppm. UV/vis: λ_{max} (CH₂Cl₂)/nm 326 (ε /dm³ mol⁻¹ cm⁻¹ 49000), 393 (56000), 480 (16000), 560 (sh, 8800), and 780 (3300) nm. HRMS (ESI-TOF, positive) calcd. for C₅₅H₉F₂₄N₅PO [*M*+H]⁺ 1242.0156; found 1242.0142.


Scheme S1. The plausible mechanism of β - β bond formation.

3. High-Resolution ESI-MS

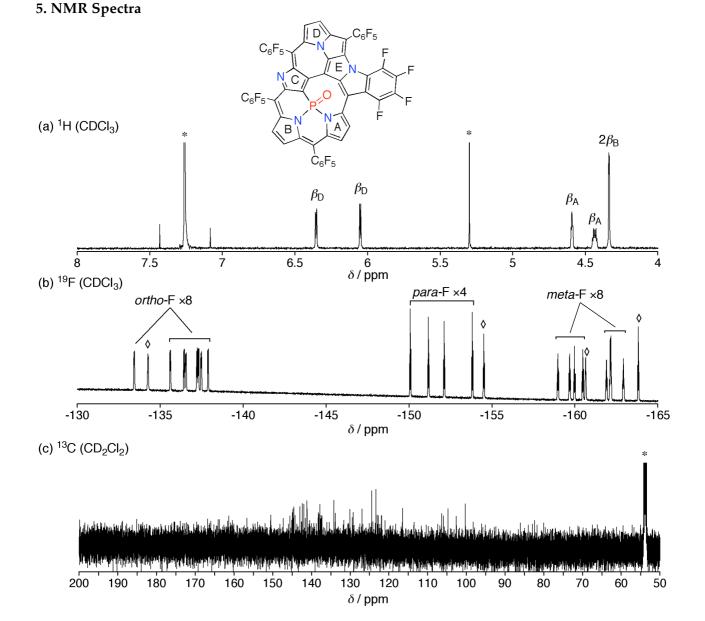
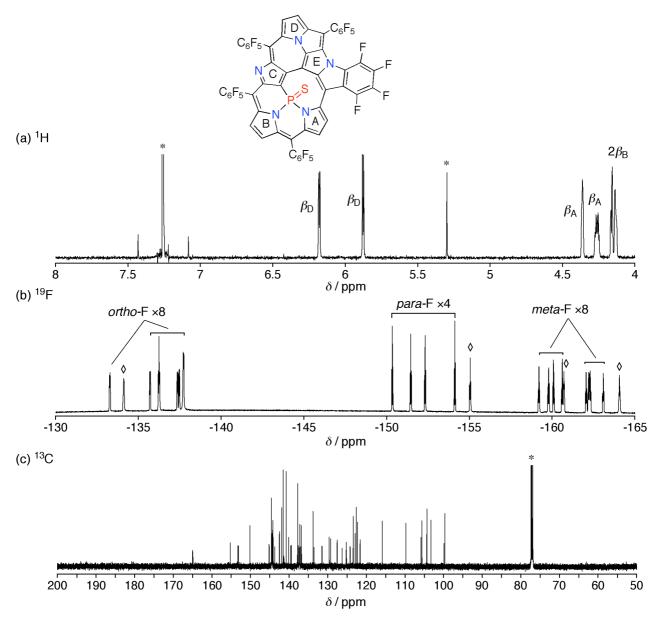
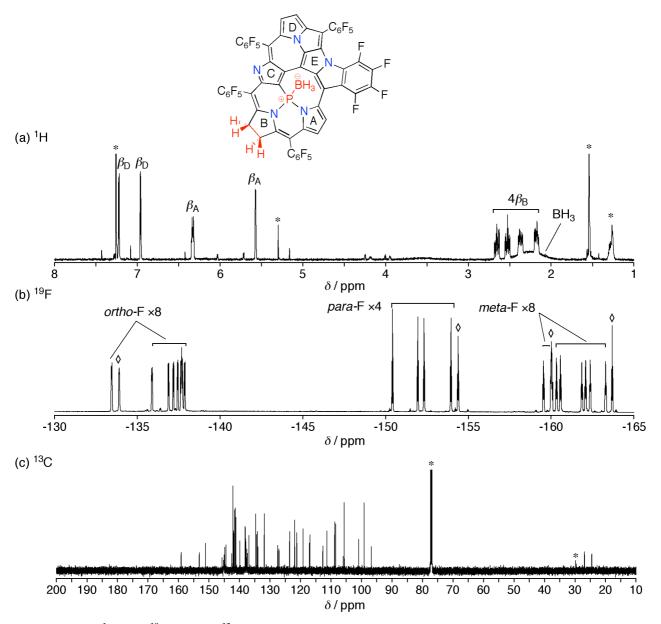
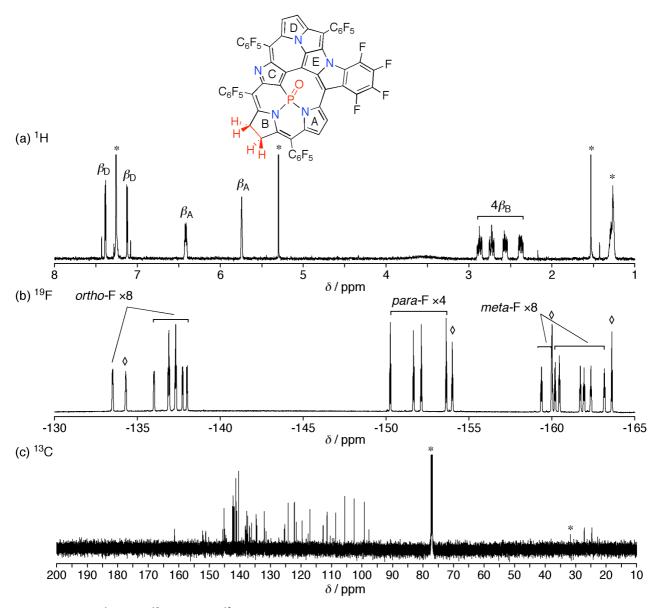
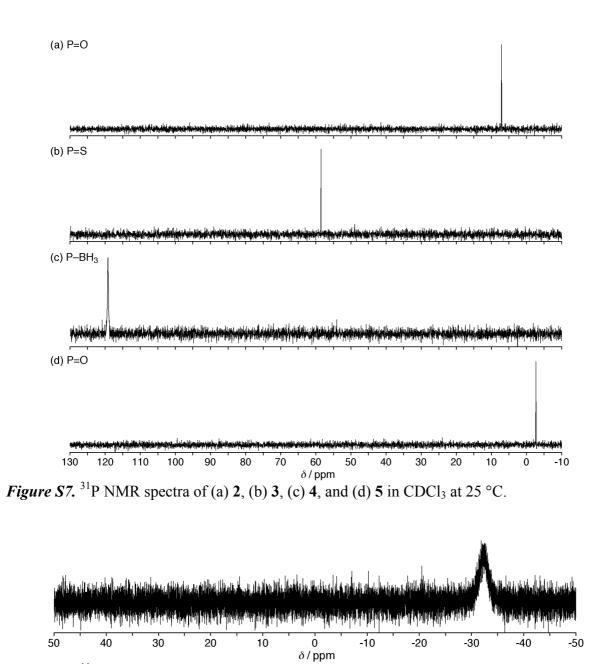


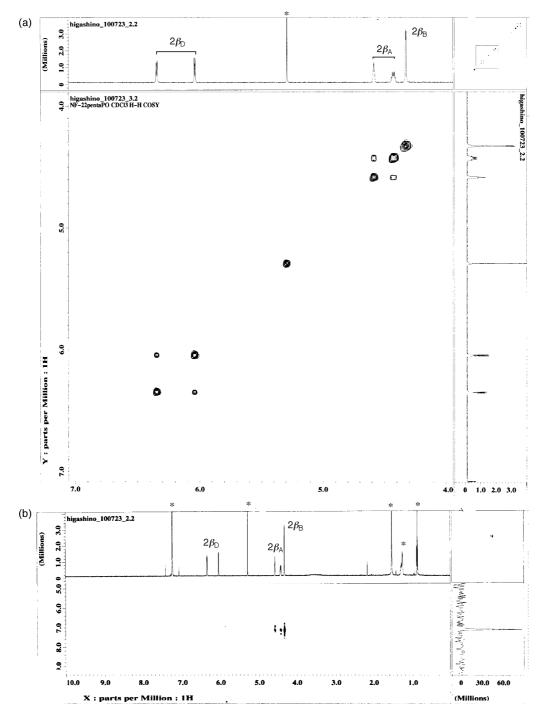
Figure S1. Observed (top) and simulated (bottom) high-resolution ESI-MS of (a) **2**, (b) **3**, (c) **4**, and (d) **5**.

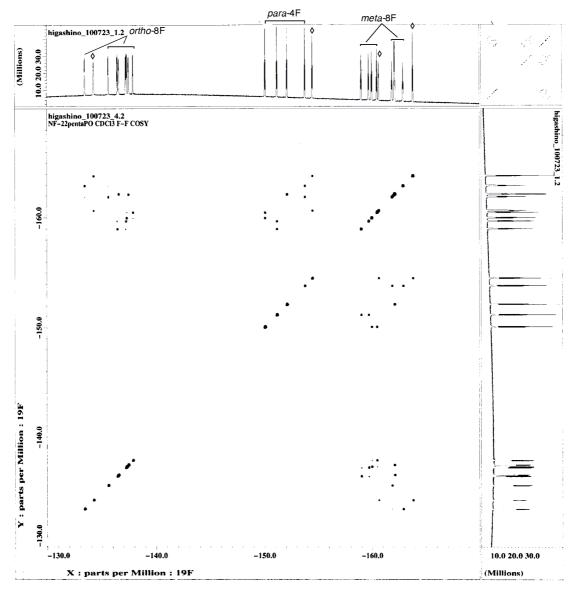

4. UV/Vis Absorption Spectra

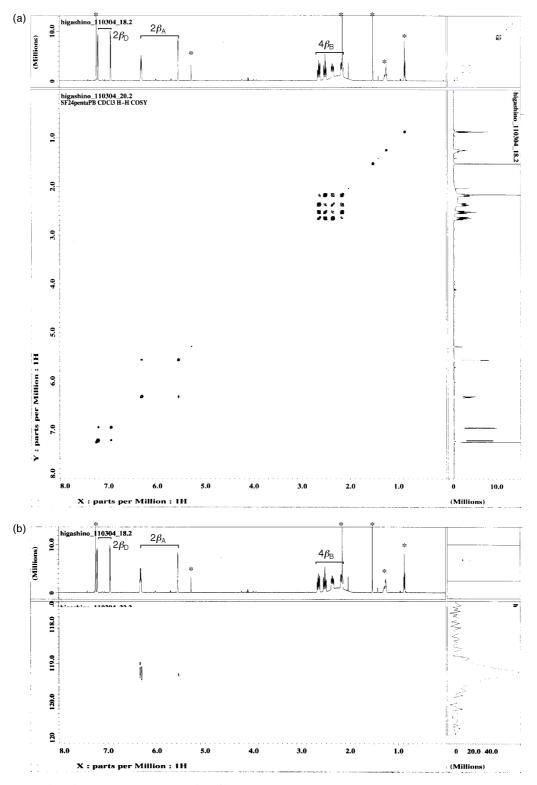

Figure S2. UV/Vis absorption spectra of 2 (black), 3 (red), 4 (blue) and 5 (green) in CH_2Cl_2 .


Figure S3. (a) ¹H, (b) ¹⁹F and (c) ¹³C NMR spectra of **2** at 25 °C. Peaks marked with * are due to residual solvents and impurities. Peaks marked with \diamond are signals of fluorine atoms at the *N*-fused aryl substituent.


Figure S4. (a) ¹H, (b) ¹⁹F and (c) ¹³C NMR spectra of **3** in CDCl₃ at 25 °C. Peaks marked with * are due to residual solvents and impurities. Peaks marked with \diamond are signals of fluorine atoms at the *N*-fused aryl substituent.


Figure S5. (a) ¹H, (b) ¹⁹F and (c) ¹³C NMR spectra of **4** in CDCl₃ at 25 °C. Peaks marked with * are due to residual solvents and impurities. Peaks marked with \diamond are signals of fluorine atoms at the *N*-fused aryl substituent.


Figure S6. (a) ¹H, (b) ¹⁹F and (c) ¹³C NMR spectra of **5** in CDCl₃ at 25 °C. Peaks marked with * are due to residual solvents and impurities. Peaks marked with \diamond are signals of fluorine atoms at the *N*-fused aryl substituent.


Figure S8. ¹¹B NMR spectrum of 4 in CDCl₃ at 25 °C.

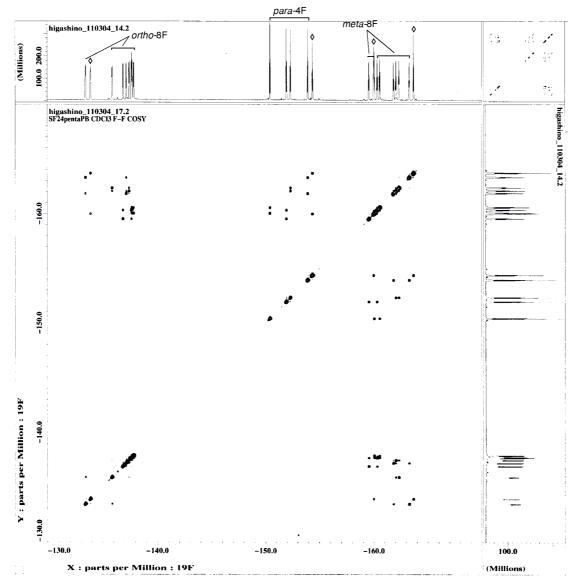
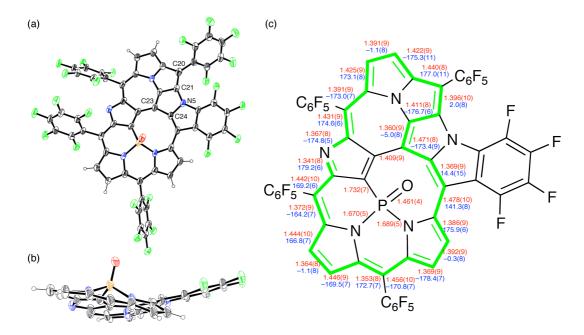
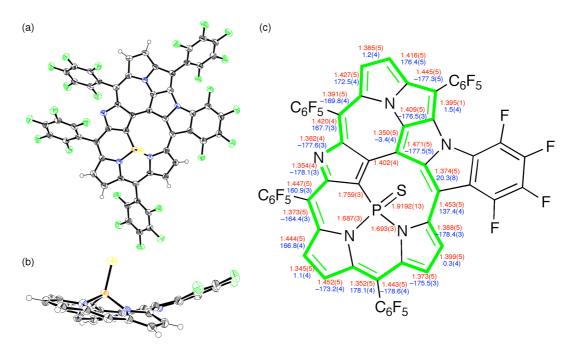

Figure S9. (a) ${}^{1}\text{H}{-}^{1}\text{H}$ COSY and (b) ${}^{1}\text{H}{-}^{31}\text{P}$ HMBC NMR spectra of **2** in CDCl₃ at 25 °C. Peaks marked with * are due to residual solvents and impurities.

Figure S10. ¹⁹F–¹⁹F COSY NMR spectrum of **2** in CDCl₃ at 25 °C. Peaks marked with \diamond are signals of fluorine atoms at the *N*-fused aryl substituent.

Figure S11. (a) ${}^{1}H{}^{-1}H$ COSY and (b) ${}^{1}H{}^{-31}P$ HMBC NMR spectra of 4 in CDCl₃ at 25 °C. Peaks marked with * are due to residual solvents and impurities.


Figure S12. ¹⁹F–¹⁹F COSY NMR spectrum of **4** in CDCl₃ at 25 °C. Peaks marked with \diamond are signals of fluorine atoms at the *N*-fused aryl substituent.

6. Cyclic Voltammograms


Figure S13. Cyclic voltammograms of (a) **2**, (b) **3**, (c) **4**, and (d) **5**. Cyclic voltammograms are measured in the following conditions; solvent: CH_2Cl_2 ; scan rate: (a, b) 0.05 Vs⁻¹, (c, d) 0.1 Vs⁻¹; working electrode: glassy carbon; reference electrode: Ag/AgClO₄; electrolyte: Bu₄NPF₆.

7. X-Ray Crystallographic Details

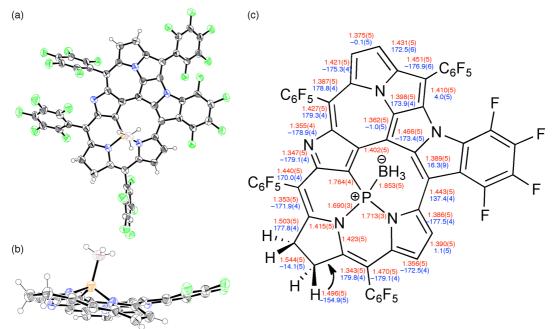


Figure S14. X-Ray crystal structure of **2**: (a) top view and (b) side view. Thermal ellipsoids represents 30% probability and solvent molecules are omitted for clarity. In the side view, *meso*-pentafluorophenyl substituents are omitted for clarity. (c) Detailed structural data of **2**. The conjugated 24π -electron circuit (green), along which bond lengths in Å (numbers in red), and dihedral angles in deg (numbers in blue) are indicated. (These values are one of the two molecules in the unit cell.)

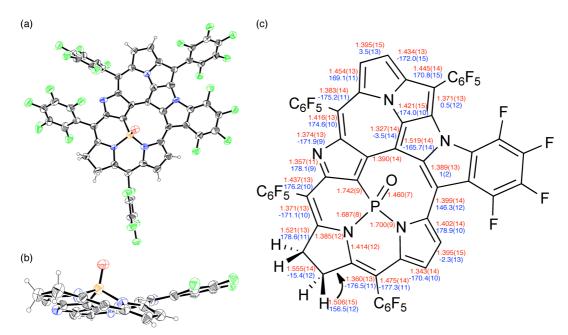

PLAT723_Alert_1_A of **2**: The bond length of C(20)–C(21), C(21)–N(5), N(5)–C(24), C(74)–C(75), C(75)–C(76), and C(76)–N(10) are 1.396(10), 1.412(8), 1.414(8), 1.443(9), 1.407(11), and 1.420(9) Å, respectively. In addition, C(23)–C(24) and C(78)–C(79) distances are 1.471(8) and 1.452(9) Å, which are likely C–C single bond. Probably, the CIF check program regarded the C(20)–C(21)–N(5)–C(24) and C(74)–C(75)–C(76)–N(10) as the sp^3 -hybridized moiety, so that the Alert A may be reported.

Figure S15. X-Ray crystal structure of **3**: (a) top view and (b) side view. Thermal ellipsoids represents 50% probability and solvent molecules are omitted for clarity. In the side view, *meso*-pentafluorophenyl substituents are omitted for clarity. (c) Detailed structural data of **3**. The conjugated 24π -electron circuit (green), along which bond lengths in Å (numbers in red), and dihedral angles in deg (numbers in blue) are indicated.

Figure S16. X-Ray crystal structure of **4**: (a) top view and (b) side view. Thermal ellipsoids represents 50% probability and solvent molecules are omitted for clarity. In the side view, *meso*-pentafluorophenyl substituents are omitted for clarity. (c) Detailed structural data of **4**. The bond lengths in Å (numbers in red), and dihedral angles in deg (numbers in blue) are indicated.

Figure S17. X-Ray crystal structure of 5: (a) top view and (b) side view. Thermal ellipsoids represents 30% probability and solvent molecules are omitted for clarity. In the side view, *meso*-pentafluorophenyl substituents are omitted for clarity. (c) Detailed structural data of 5. The bond lengths in Å (numbers in red), and dihedral angles in deg (numbers in blue) are indicated.

	2	3	4	5
formula	$4(C_{55}H_{6}F_{24}N_{5}OP) \cdot 13(C_{6}H_{5}Cl)$	$C_{55}H_{6}F_{24}N_{5}PS \cdot 3(C_{7}H_{8})$	$2(C_{55}H_{11}BF_{24}N_5P) \cdot 3(C_6H_{14}) \cdot C_7H_8$	$\frac{C_{55}H_8F_{24}N_5OP}{C_2H_3N\cdot0.75(CCl_4)}$
	10(C ₆ 11 ₅ C1)	$S(C_7 I_8)$	$S(C_6 I_{14}) C_7 I_8$	0.5(water)
$M_{ m r}$	6421.63	1532.09	2829.59	1405.92
T [K]	93(2)	93(2)	93(2)	93(2)
crystal system	monoclinic	monoclinic	monoclinic	triclinic
space group	$P2_1/a$ (No.14)	<i>P</i> 2 ₁ / <i>c</i> (No.14)	<i>C2/c</i> (No.15)	<i>P</i> -1 (No.2)
a [Å]	29.5322(5)	19.4591(5)	30.1073(6)	10.1849(5)
b [Å]	10.3705(2)	8.6913(2)	18.0820(3)	14.9773(8)
<i>c</i> [Å]	41.5808(8)	37.1609(11)	22.4608(4)	17.6759(10)
α[°]	90	90	90	85.568(3)
β[°]	99.1602(8)	94.5998(18)	106.2569(10)	88.271(3)
γ [°]	90	90	90	76.766(3)
V [Å ³]	12572.3(4)	6264.6(3)	11738.8(4)	2616.7(2)
Ζ	2	4	4	2
$ ho_{ m calcd}[m g~ m cm^{-3}]$	1.696	1.624	1.601	1.784
$R_1 \left[I > 2\sigma(I) \right]$	0.0993	0.0675	0.0759	0.1190
wR_2 [all data]	0.2961	0.1500	0.1619	0.3747
GOF	0.988	1.057	1.001	1.076
CCDC number	827555	827556	827554	842955

Table S1. Crystal data of 2, 3, 4 and 5.

8. DFT Calculations

All calculations were carried out using the *Gaussian 09* program.⁵¹ Initial geometries were obtained from X-ray structures. All structures were fully optimized without any symmetry restriction. The calculations were performed by the density functional theory (DFT) method with restricted B3LYP (Becke's three-parameter hybrid exchange functionals and the Lee-Yang-Parr correlation functional) level, ^{52,53} employing a basis set 6-31G(d) for C, H, N, F, P, O, S and B. The NICS values and absolute ¹H shielding values were obtained with the GIAO method at the B3LYP/6-31G(d) level. The ¹H chemical shift values were calculated relative to CHCl₃ (δ = 7.26 ppm, absolute shielding: 24.94 ppm). The global ring centers for the NICS values were designated at the nonweighted means of the carbon and nitrogen coordinates on the peripheral positions of macrocycles. In addition, NICS values were also calculated on centres of other local cyclic structures as depicted in the following figures. Excitation energies and oscillator strengths for the crystal and optimized structures were calculated with the TD-SCF method at the B3LYP/6-31G(d) level.

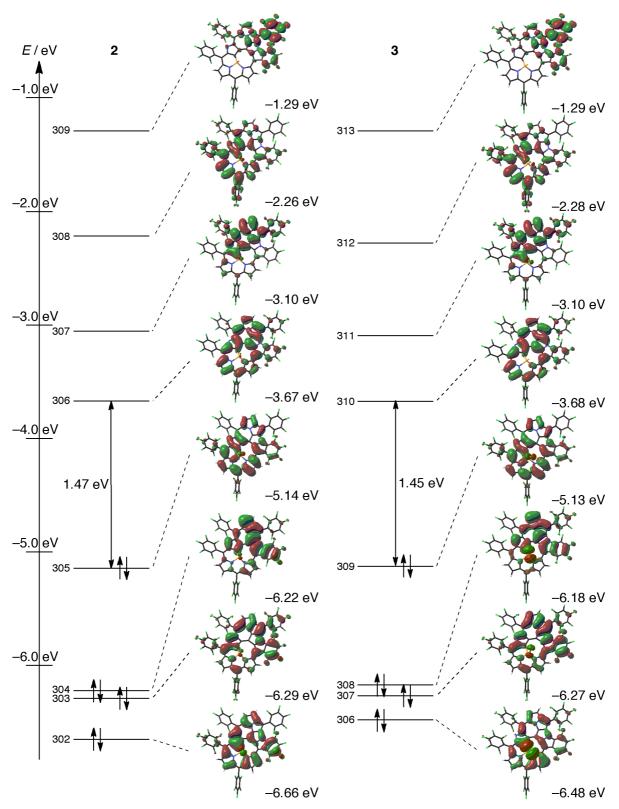
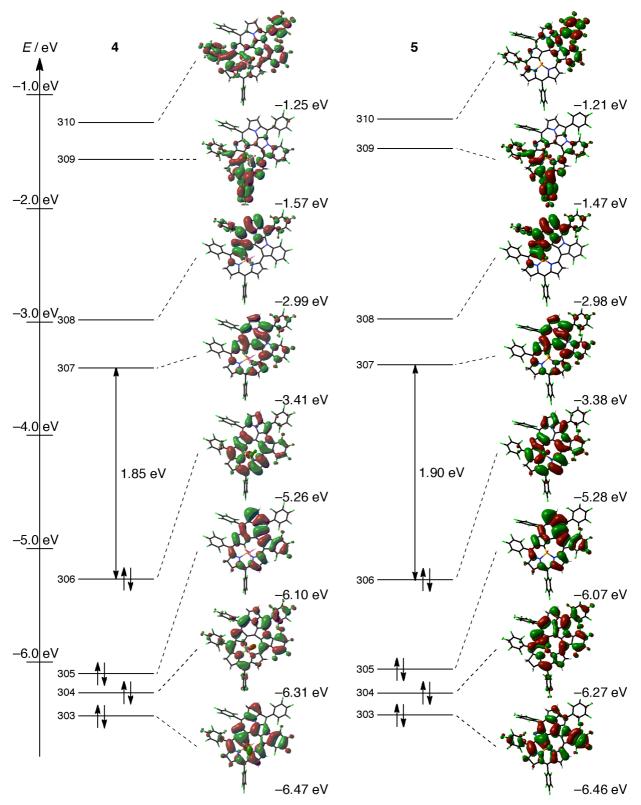
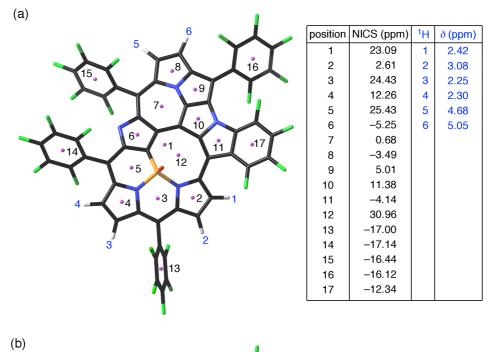
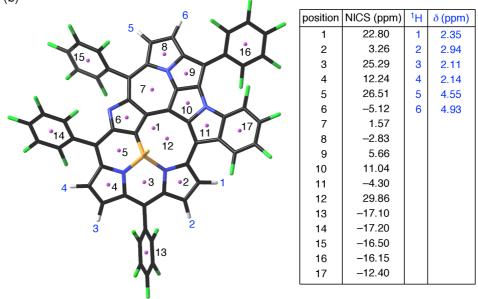





Figure S18. Selected molecular orbitals of 2 and 3 on the optimized structures.

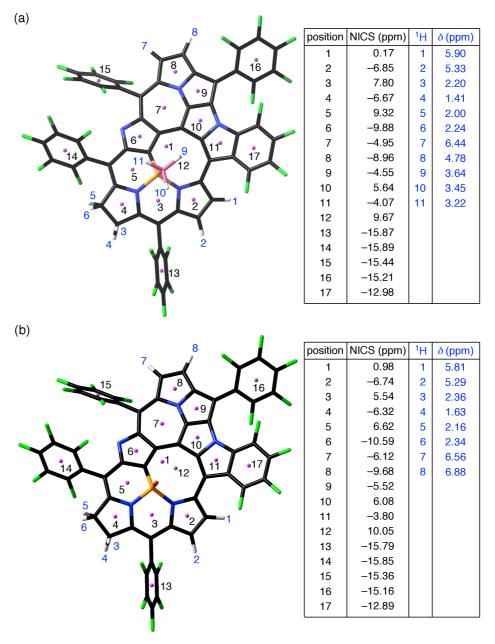


Figure S19. Selected molecular orbitals of **4** and **5** on the optimized structures.

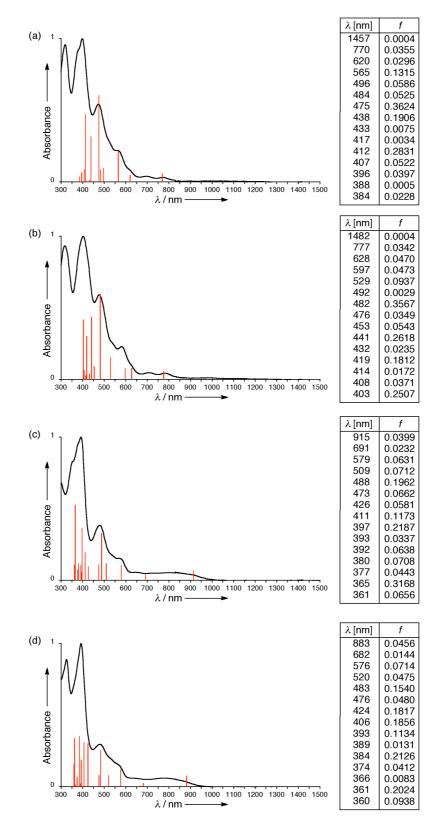


Figure S20. NICS values at various positions and simulated chemical shifts of (a) **2** and (b) **3** based on the optimized structures.

Figure S21. NICS values at various positions and simulated chemical shifts of (a) **4** and (b) **5** based on the optimized structures.

Figure S22. Calculated absorption spectra on the basis of optimized structures (bar) and observed absorption spectra (line) of (a) **2**, (b) **3**, (c) **4**, and (d) **5**.

9. References

[S1] S. Mori, J.-Y. Shin, S. Shimizu, F. Ishikawa, H. Furuta, A. Osuka, *Chem. Eur. J.*, 2005, **11**, 2417–2425.

[S2] Gaussian 09, Revision A.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.

[S3] A. D. Becke, J. Chem. Phys., 1993, 98, 1372–1377.

[S4] C. Lee, W. Yang, R. G. Parr, Phys. Rev. B, 1998, 37, 785–789.