Supporting Information

for

N-Heterocyclic Carbene Cascade Catalysis: Dual Brønsted/Lewis base Rearrangement of Cyclopropyl enol esters to Dihydropyranone

Lisa Candish and David W. Lupton* School of Chemistry, Monash University, Clayton 3800, Victoria, AUSTRALIA

Experimental Procedures, ¹H and ¹³C NMR spectra

Index

Ι	General experimental	SI-1
Π	Synthesis cyclopropyl enol esters 3	SI-2
III	NHC catalysed synthesis of dyhydropyranone 4	SI-9
IV	Mechanistic studies	SI-13
V	¹ H and ¹³ C NMR spectra	SI-17

I. General Experimental

Proton (¹H) and carbon (¹³C) NMR spectra were recorded on a Bruker DRX400 spectrometer operating at 400 MHz for proton and 100 MHz for carbon nuclei or a Bruker DRX300 spectrometer operating at 300 MHz for proton and 75 MHz for carbon nuclei. Infrared spectra (v_{max}) were recorded on a Perkin-Elmer RXI FTIR Spectrometer. High resolution mass spectra (HRMS) (ESI) were recorded on a Bruker BioApex 47e FTMS fitted with an Analytical electrospray source using NaI for accurate mass calibration. Flash column chromatography was performed on silica gel (Davisil LC60A, 40-63 μm silica media) using compressed air or nitrogen. Thin layer chromatography (TLC) was performed using aluminum-backed plates coated with 0.2 mm silica (Merck, DC-Platten, Kieselgel; 60 F₂₅₄ plates). Eluted plates were visualized using a 254 nm UV lamp and/or by treatment with a suitable stain followed by heating. Starting materials and reagents were purchased from Sigma-Aldrich, and other suppliers, were used as supplied or, in the case of some liquids, distilled. Dichloromethane was distilled from calcium hydride and toluene was distilled from sodium. NHCs precursors **IMes[•]HCl** using the procedure of Chung.³ **IPr** was prepared "salt-free" by first generating the carbene from the imidazolium salt, and then filtering the reaction mixture and concentrating the filtrate. **IPrMe** was prepared using the procedure of Lyapkalo.⁴

¹ A. J. Arduengo, R. Krafczyk, R. Schmutzler, H. A. Craig, J. R. Goerlich, W. J. Marshall, M. Unverzagt Tetrahedron 1999, 55, 14523

² G. Berthon-Gelloz, M. A. Siegler, A. L. Spek, B. Tinant, J. N. H. Reek, I. E. Markó Dalton Trans., 2010, 39, 1444

³I. G. Jung, J. Seo, S. I. Lee, S. Y. Choi, Y. K. Chung *Organometallics*, 2006, **25**, 4240

⁴R. A. Kunetskiy, I. Císarová, D. Saman, I. M. Lyapkalo, Chem, Eur. J. 2009, 15, 9477

II. Synthesis of cyclopropyl enol esters

Scheme 1: General strategy for the preparation of cyclopropyl enol esters

Cyclopropyl ethyl esters were prepared according to Orfanopoulos,⁵ through the copper(II) catalysed cyclopropanation of styrenes. Hence, to a magnetically stirred solution of the styrene (6 mmol) and anhydrous CuSO₄ (0.095 g, 0.6 mmol) in dry benzene (8 ml) at 80 °C was added ethyl diazoacetate (1.37 g, 12 mmol) in benzene (6 ml) dropwise over 3 h. Upon completion of the addition, the reaction was allowed to stir overnight at rt. The mixture was then poured into H₂O (20 ml) and extracted with Et₂O (3 x 20 ml). The combined organics were washed with NaHCO₃ (20 ml of a saturated aq. solution) and brine (20 ml), dried (MgSO₄), and the solvent removed under reduced pressure. The crude residue was purified by flash column chromatography to yield the pure cyclopropyl ethyl esters. Following this, the ethyl esters were hydrolysed under basic conditions to afford the cyclopropyl acids.

Cyclopropyl enol esters were prepared in two-steps from the corresponding cyclopropyl acids. Acids were stirred with SOCl₂ under N_2 at rt for 4 h. After this time, the remaining SOCl₂ was removed under reduced pressure to afford the acid chloride, which was used without purification. To a magnetically stirred solution of 1,3cyclohexanedione (0.22 g, 2 mmol) in CH₂Cl₂ (10 ml) and pyridine (0.2 ml, 2.2 mmol) was added the cyclopropyl acid chloride (2.2 mmol) in CH₂Cl₂ (2 ml). The mixture was stirred at rt for 2 h after which time more CH₂Cl₂ (20 ml) was added. The mixture was washed with water (10 ml), NaHCO₃ (10 ml of a sat. aq. solution), HCl (10 ml of a 1 M aq. solution) and brine (10 ml), dried (MgSO₄) and concentrated. The crude material was purified by flash column chromatography (1:4 v/v EtOAc in hexane) to afford the pure cyclopropyl enol esters.

(1S,2S and 1R,2R)-Ethyl 2-(2,6-dimethylphenyl)cyclopropanecarboxylate

 $(0.841 \text{ g}, 64\%) \text{ R}_{f} 0.3 (1:19 \text{ v/v EtOAc in hexane}) \text{ IR } \nu_{\text{max}} 2980, 1726, 1465, 1315, 1181 \text{ cm}^{-1} \text{ H}$ NMR (400 MHz, CDCl₃) & 7.10-6.97 (m, 3H), 4.30-4.21 (m, 2H), 2.40 (s, 6H), 2.39-2.34 (m, 1H), 1.79-1.75 (m, 1H), 1.73-1.67 (m, 1H), 1.34 (dt, J = 7.2, 0.8 Hz, 3H), 1.20-1.15 (m, 1H) ¹³C NMR (100 MHz, CDCl₃) & 172.1, 138.4, 133.7, 128.2, 126.5, 60.1, 23.1, 21.3, 16.0, 13.9 HRMS (ESI) m/z Found (M+H)⁺, 219.1382, C₁₄H₁₈O₂, requires (M+H)⁺, 219.1380

Ethyl 2-(4-methoxybenzyl)cyclopropanecarboxylate

(0.960 g, 68%) as a 1:4 *cis/trans* mixture. R_f 0.2 (1:19 v/v EtOAc in hexane) IR v_{max} 2982, 1723, 1612, 1513, 1248, 1176 cm⁻¹ ¹H NMR (400 MHz, CDCl₃) δ trans 7.13 (d, J = 8.4 Hz, 2H), 6.85-6.82 (m, 2H), 4.14-4.09 (m, 2H), 3.78 (s, 3H), 2.70 (dd, J = 14.8, 6.8 Hz, 1H),

2.53 (dd, J = 14.8, 6.8 Hz, 1H), 1.70-1.52 (m, 1H), 1.52-1.47 (m, 1H), 1.25 (t, J = 6.8 Hz, 3H), 1.26-1.20 (m, 1H), 1.52-1.47 (m, 1H), 1.25 (t, J = 6.8 Hz, 3H), 1.26-1.20 (m, 1H), 1.52-1.47 (m, 1H), 1.52-1.47 (m, 1H), 1.52 (m, 1H),

⁵ M. N. Alberti, M. Orfanopoulos Org. Lett. 2008, 10, 2465

0.83-0.78 (m, 1H) δ *cis* 7.13 (d, *J* = 8.4 Hz, 2H), 6.85-6.82 (m, 2H), 4.26 (q, *J* = 6.8 Hz, 2H), 3.78 (s, 3H), 2.87 (dd, *J* = 14.8, 6.8 Hz, 1H), 2.78 (dd, *J* = 14.8, 6.8 Hz, 1H), 1.80-1.74 (m, 1H), 1.52-1.47 (m, 1H), 1.32 (t, *J* = 6.8 Hz, 3H), 1.13-1.07 (m, 2H) ¹³C NMR (100 MHz, CDCl₃) δ 174.0, 172.8, 158.1, 157.8, 133.5, 132.1, 129.2, 129.1, 113.8, 113.7, 61.2, 60.2(3), 60.2(0), 55.1, 37.4, 31.9, 23.1, 22.8, 20.0, 18.4, 15.0, 14.2(2), 14.1(5), 13.4 HRMS (ESI) *m*/*z* Found (M+H)⁺, 235.1330, C₁₄H₁₈O₃, requires (M+H)⁺, 235.1329

2-(2,6-Dimethylphenyl)cyclopropanecarboxylic acid

2-(4-Methoxybenzyl)cyclopropanecarboxylic acid

(0.512 g, 71%) as a 3:7 *cis/trans* mixture. $R_f 0.3$ (1:1 v/v EtOAc in hexane) IR v_{max} 3006, 2933, 2656, 1868, 1611, 1512, 1458, 1247, 1177 cm⁻¹ ¹H NMR (400 MHz, CDCl₃) δ *trans* 11.93 (s, 1H), 7.23-7.21 (m, 2H), 6.96-6.94 (m, 2H), 3.85 (s, 3H), 2.72 (dd, J = 14.8, 8.0

Hz, 1H), 2.66 (dd, J = 14.8, 6.4 Hz, 1H), 1.91-1.80 (m, 1H), 1.62 (pent, J = 4.4 Hz, 1H), 1.41 (pent, J = 4.4 Hz, 1H), 1.02-0.97 (m, 1H) δ *cis* 11.93 (s, 1H), 7.23-7.21 (m, 2H), 6.96-6.94 (m, 2H), 3.85 (s, 3H), 2.97 (d, J = 7.2 Hz, 2H), 1.91-1.80 (m, 1H), 1.68 (pent, J = 7.2 Hz, 1H), 1.28-1.24 (m, 2H) ¹³C NMR (100 MHz, CDCl₃) δ 180.7, 179.7, 158.0, 157.8, 133.0, 131.7, 129.1, 129.0, 113.7, 113.7, 54.9, 37.2, 31.7, 24.3, 24.0, 19.8, 18.3, 15.7, 14.4 (one signal overlapping) HRMS (ESI) *m/z* Found (M+Na)⁺, 229.0831, C₁₂H₁₄O₃, requires (M+Na)⁺, 229.0835

(E)-2-Styrylcyclopropanecarboxylic acid

(0.497 g, 75%) as a 1:1 *cis/trans* mixture. $R_f 0.3$ (1:1 v/v EtOAc in hexane) IR v_{max} 3010, 2945, 2657, 1870, 1611, 1456, 1250, 1177 cm⁻¹ ¹H NMR (300 MHz, CDCl₃) δ 12.19 (s, 2H), 7.49-7.29 (m, 10H), 6.73 (d, J = 15.9 Hz, 1H), 6.65 (d, J = 15.9 Hz, 1H), 6.39 (dd, J = 15.9, 9.3 Hz, 1H), 5.83 (dd, J = 15.9, 9.3 Hz, 1H), 2.43-2.34 (m, 1H), 2.25 (pent, J = 6.3 Hz, 1H), 2.15-2.08 (m, 1H),

1.87 (pent, J = 4.2 Hz, 1H), 1.66 (pent, J = 4.2 Hz, 1H), 1.57-1.42 (m, 2H), 1.29-1.22 (m, 1H) ¹³C NMR (75 MHz, CDCl₃) δ 179.9, 178.9, 137.1, 136.7, 131.9, 130.6, 129.2, 128.4(0), 128.3(6), 127.2, 127.0, 126.6, 125.9, 125.8, 26.3, 25.6, 22.1, 21.1, 16.4, 15.4 HRMS (ESI) m/z Found (M+H)⁺, 189.0910, C₁₂H₁₂O₂, requires (M+H)⁺, 189.0910

2,2-Bis(4-methoxyphenyl)cyclopropanecarboxylic acid

(0.753 g, 72%). ¹H NMR (400 MHz, CDCl₃) δ 10.65 (s, 1H), 7.31 (d, J = 8.8 Hz, 2H), 7.23 (d, J = 8.8 Hz, 2H), 6.87 (d, J = 8.8 Hz, 2H), 684 (d, J = 8.8 Hz, 2H), 3.79 (s, 3H), 3.76 (s, 3H), 2.48 (dd, J = 8.0, 6.0 Hz, 1H), 2.11 (t, J = 5.6 Hz, 1H), 1.65 (dd, J = 8.0, 4.8 Hz, 1H) ¹³C NMR

(75 MHz, CDCl₃) δ 176.4, 157.4, 155.9, 134.6, 133.9, 128.8(4), 128.8(3), 113.5, 113.3, 55.1, 55.0, 39.6, 28.7, 20.8 HRMS (ESI) *m/z* Found (M+H)⁺, 299.1273, C₁₈H₁₈O₄, requires (M+H)⁺, 299.1278

2,2-Bis(4-chlorophenyl)cyclopropanecarboxylic acid

(0.730 g, 68%). R_f 0.3 (1:1 v/v EtOAc in hexane) ¹H NMR (300 MHz, CDCl₃) δ 7.29-7.16 (m, 8H), 2.49 (dd, J = 8.1, 6.0, Hz, 1H), 2.11 (t, J = 5.4 Hz, 1H), 1.63 (dd, J = 8.1, 5.1 Hz, 1H) ¹³C NMR (75 MHz, CDCl₃) δ 176.4, 142.4, 137.9, 133.1, 130.8, 128.9, 128.8, 128.7, 39.7, 28.5, 20.6 (one signal overlapping) HRMS (ESI) m/z Found (M+H)⁺, 307.0282, $C_{16}H_{12}Cl_2O_2$, requires

(M+H)⁺, 307.0287

(1*S*,2*S* and1*R*,2*R*)-3-Oxocyclohex-1-en-1-yl 2-phenylcyclopropanecarboxylate (3a).

(0.435 g, 85%) $R_f 0.3$ (1:4 v/v EtOAc in hexane) IR v_{max} 2954, 1751, 1674, 1458, 1304, 1120 cm⁻¹ (0.435 g, 85%) $R_f 0.3$ (1:4 v/v EtOAc in hexane) IR v_{max} 2954, 1751, 1674, 1458, 1304, 1120 cm⁻¹ (1 H NMR (400 MHz, CDCl₃) δ 7.31-7.08 (m, 5H), 5.96 (t, J = 1.2 Hz, 1H), 2.78-2.72 (m, 1H), 2.55 (dt, J = 6.4, 0.8 Hz, 2H), 2.39 (t, J = 6.4 Hz, 2H), 2.08-2.01 (m, 2H), 2.01-1.98 (m, 1H), 1.72-1.67 (m, 1H), 1.48-1.44 (m, 1H) ¹³C NMR (100 MHz, CDCl₃) δ 199.8, 170.0, 169.8 167.6, 139.0, 128.6, 126.9, 126.2, 117.3, 36.7, 28.4, 27.6, 24.1, 21.2, 17.9 HRMS (ESI) *m/z* Found (M+H)⁺, 257.1174, C₁₆H₁₆O₃, requires (M+H)⁺, 257.1172

3-Oxocyclohex-1-en-1-yl 2-(p-tolyl)cyclopropanecarboxylate (3b).

(0.428 g, 79%) as a 2:3 *cis/trans* mixture. $R_f 0.3$ (1:4 v/v EtOAc in hexane) IR v_{max} 3020, 2926, 1748, 1674, 1644, 1427, 1363, 1120 cm⁻¹ ¹H NMR (400 MHz, CDCl₃) δ *trans* 7.17-7.00 (m, 4H), 5.95 (t, J = 1.2 Hz, 1H), 2.63-2.59 (m, 1H), 2.56 (dt, J = 6.4, 1.2 Hz, 2H), 2.42-2.39 (dd, J = 6.4, 5.2 Hz, 2H), 2.32 (s, 3H), 2.08-2.03 (m, 2H), 1.99-1.95 (m, 1H), 1.70-1.65 (m, 1H), 1.48-1.41 (m, 1H) δ *cis* 7.17-7.00 (m, 4H), 5.54 (t, J = 1.2 Hz, 1H), 2.75-2.69 (m, 1H),

2.32-2.28 (m, 2H), 2.28 (s, 3H), 2.21-2.15 (m, 2H), 2.15-2.11 (m, 1H), 1.92-1.86 (m, 2H), 1.80-1.76 (m, 1H), 1.48-1.41 (m, 1H) ¹³C NMR (100 MHz, CDCl₃) δ 199.4, 170.0. 169.8(4), 169.7(5), 167.7, 136.8, 136.6, 135.9, 132.4, 129.2, 129.1, 128.8, 126.1, 117.3, 117.2, 36.7, 36.6, 28.3, 27.9, 27.3, 26.5, 23.9, 21.7, 21.2, 21.1, 21.0, 20.9, 17.7, 11.9 (one signal overlapping) HRMS (ESI) *m/z* Found (M+H)⁺, 271.1332, C₁₇H₁₈O₃, requires (M+H)⁺, 271.1334

3-Oxocyclohex-1-en-1-yl 2-(2,6-dimethylphenyl)cyclopropane carboxylate (3c).

(0.433 g, 76%) as a 1:1 *cis/trans* mixture. $R_f 0.3$ (1:4 v/v EtOAc in hexane) IR v_{max} 3018, 2956, 1747, 1673, 1644, 1455, 1361, 1121 cm⁻¹ ¹H NMR (400 MHz, CDCl₃) δ 7.05-6.93 (m, 6H), 5.93 (t, *J* = 1.2 Hz, 1H), 5.51 (t, *J* = 1.2 Hz, 1H), 2.56 (dt, *J* = 6.0, 1.2 Hz, 2H), 2.47-2.40 (m, 2H), 2.36 (s, 6H), 2.35 (s, 6H), 2.28-2.20 (m, 4H), 2.16-2.02 (m, 4H), 1.87-1.65 (m, 7H), 1.37-1.27 (m, 1H)

¹³C NMR (100 MHz, CDCl₃) δ 198.8, 170.5, 169.5, 169.3, 168.3, 137.8, 134.8, 132.5, 128.0, 126.8, 126.5, 117.1, 116.7, 36.4, 36.3, 28.0, 27.4, 24.6, 24.1, 22.6, 20.9, 20.8, 20.2, 18.2, 16.6, 13.9 (four signals overlapping) HRMS (ESI) *m/z* Found (M+H)⁺, 285.1483, C₁₈H₂₀O₃, requires (M+H)⁺, 285.1485

(1*S*,2*S* and 1*R*,2*R*)-3-Oxocyclohex-1-en-1-yl 2-(4-methoxyphenyl)cyclopropane carboxylate (3d).

(0.420 g, 73%) of the *trans* product. R_f 0.2 (1:4 v/v EtOAc in hexane) IR v_{max} 3007, 2954, 1747, 1681, 1645, 1516, 1455, 1250, 1118 cm⁻¹ ¹H NMR (400 MHz, CDCl₃) δ 7.04 (d, J = 8.4 Hz, 2H), 6.83 (d, J = 8.4 Hz, 2H), 5.94 (s, 1H), 3.78 (s, 3H), 2.61-2.55 (m, 1H), 2.55 (t, J = 4.5 Hz, 2H), 2.39 (t, J = 5.4 Hz, 2H), 2.08-2.16 (m, 2H), 1.94-1.90 (m, 1H), 1.67-1.63 (m, 1H),

1.43-1.39 (m, 1H) ¹³C NMR (100 MHz, CDCl₃) δ 199.3, 170.0, 169.7, 158.6, 130.9, 127.4, 117.3, 114.0, 55.2, 36.6, 28.3, 27.0. 23.8, 21.2, 17.5 HRMS (ESI) *m/z* Found (M+H)⁺, 287.1280, C₁₇H₁₈O₄, requires (M+H)⁺, 287.1278

3-Oxocyclohex-1-en-1-yl 2-(4-chlorophenyl)cyclopropane carboxylate (3e).

(0.518 g, 89%) as a 2:3 *cis/trans*. $R_f 0.3$ (1:4 v/v EtOAc in hexane) IR v_{max} 3066, 2954, 1755, 1667, 1633, 1495, 1346, 1117 cm⁻¹ ¹H NMR (400 MHz, CDCl₃) δ *trans* 7.26-7.17 (m, 2H), 7.03-7.01 (m, 2H), 5.92 (t, J = 1.2 Hz, 1H), 2.59-2.55 (m, 1H), 2.52 (dt, J = 6.0, 1.2 Hz, 2H), 2.37 (dd, J = 6.8, 6.4 Hz, 2H), 2.08-1.99 (m, 2H), 1.97-1.92 (m, 1H), 1.69-1.64 (m, 1H), 1.43-

1.38 (m, 1H) δ *cis* 7.26-7.17 (m, 4H), 5.59 (t, *J* = 1.2 Hz, 1H), 2.70-2.64 (m, 1H), 2.26 (dd, *J* = 6.8, 6.4 Hz, 2H), 2.22-2.08 (m, 3H), 1.90-1.86 (m, 2H), 1.75-1.70 (m, 1H), 1.48-1.44 (m, 1H) ¹³C NMR (100 MHz, CDCl₃) δ 199.2(4), 199.1(7), 169.5(4), 169.5(2), 169.5(1), 167.3, 137.5, 134.0, 132.8, 132.5, 130.5, 128.6, 128.1, 127.5, 117.2, 117.1, 36.5, 36.4(5), 28.2, 27.9, 26.6, 26.0, 23.9, 21.7, 21.1, 21.0, 17.6, 12.0 HRMS (ESI) *m/z* Found (M+H)⁺, 291.0786, C₁₆H₁₅ClO₃, requires (M+H)⁺, 291.0788

3-Oxocyclohex-1-en-1-yl 2-(3-chlorophenyl)cyclopropanecarboxylate (3f).

 $(0.396 \text{ g}, 68\%) \text{ as a } 2:3 \ cis/trans \text{ mixture. } R_f \ 0.3 \ (1:4 \ v/v \ \text{EtOAc in hexane}) \ \text{IR } v_{\text{max}} \ 3066, 2955, 1747, 1681, 1626, 1485, 1361, 1118 \ \text{cm}^{-1} \ ^1\text{H} \ \text{NMR} \ (300 \ \text{MHz}, \text{CDCl}_3) \ \delta \ trans \ 7.24-6.98 \ (m, 4\text{H}), 5.93 \ (s, 1\text{H}), 2.61-2.49 \ (m, 3\text{H}), 2.40-2.37 \ (m, 2\text{H}) \ 2.04-1.97 \ (m, 3\text{H}) \ 1.73-1.65 \ (m, 1\text{H}), 1.44-1.40 \ (m, 1\text{H}) \ cis \ 7.24-6.98 \ (m, 4\text{H}), 5.57 \ (s, 1\text{H}), 2.76-2.65 \ (m, 1\text{H}), 2.72-2.13 \ (m, 5\text{H}), 1.95-1.83 \ (m, 2\text{H}), 1.80-1.75 \ (m, 1\text{H}), 1.47-1.43 \ (m, 1\text{H}) \ ^{13}\text{C} \ \text{NMR} \ (75 \ \text{MHz}, \text{CDCl}_3) \ \delta \ 199.3, 169.5, 167.5, 167$

141.1, 137.7, 134.4, 129.8, 129.4, 129.3, 127.4, 127.3, 127.0, 126.3, 124.5, 117.3, 36.6, 36.5, 28.2, 27.9, 26.8, 26.1, 24.0, 21.7, 21.1, 17.7, 14.1, 11.9 (five signals overlapping) HRMS (ESI) *m/z* Found (M+H)⁺, 291.0782, C₁₆H₁₅ClO₃, requires (M+H)⁺, 291.0788

3-Oxocyclohex-1-en-1-yl 2,2-diphenylcyclopropanecarboxylate (3g).

 $(0.518 \text{ g}, 78\%). R_f 0.2 (1:4 \text{ v/v EtOAc in hexane}) \text{ IR } v_{\text{max}} 3084, 2890, 1760, 1731, 1621, 1495, 1360, \\ 1120 \text{ cm}^{-1} \text{ ^1H NMR (300 MHz, CDCl}_3) \delta 7.41-7.22 (m, 10H), 5.59 (s, 1H), 2.71-2.66 (m, 1H), 2.32- \\ 2.27 (m, 3H), 2.23-2.19 (m, 2H), 1.97-1.86 (m, 2H), 1.75-1.70 (m, 1H) \text{ ^{13}C NMR (75 MHz, CDCl}_3) \\ \delta 199.4, 169.7, 167.2, 143.9, 139.3, 129.6, 128.4(9), 128.4(6), 127.4, 127.3, 126.8 117.3, 41.2, 36.5, \\ \end{cases}$

28.8, 27.8, 21.0, 20.6 HRMS (ESI) m/z Found (M+H)⁺, 333.1488, C₂₂H₂₀O₃, requires (M+H)⁺, 333.1485

3-Oxocyclohex-1-en-1-yl 2,2-bis(4-methoxyphenyl)cyclopropane carboxylate (3h).

(0.487 g, 62%). $R_f 0.3$ (1:3 v/v EtOAc in hexane) IR v_{max} 3004, 2958, 1755, 1673, 1610, 1514, 1362, 1227, 1118 cm⁻¹ ¹H NMR (400 MHz, CDCl₃) δ 7.26 (d, J = 8.8 Hz, 2H), 7.17 (d, J = 8.8 Hz, 2H), 6.81 (d, J = 8.8 Hz, 2H), 6.79 (d, J = 8.8 Hz, 2H), 5.64 (s, 1H), 3.74 (s, 3H), 3.73 (s, 3H), 2.59 (dd, J = 8.0, 5.6 Hz, 1H), 2.31-2.29 (m, 2H), 2.30-2.22 (m, 2H), 2.18 (dd, J = 5.6, 5.2 Hz, 1H), 1.94-1.90 (m, 2H), 1.64 (dd, J = 8.0, 4.8 Hz, 1H) ¹³C NMR (100 MHz, CDCl₃) δ

199.2, 169.7, 167.2, 158.6, 158.2, 136.5, 131.6, 130.4, 128.3, 117.1, 113.8, 55.1, 55.0, 40.0, 36.5, 28.9, 27.8, 21.0, 20.7 (one signal overlapping) HRMS (ESI) *m/z* Found (M+H)⁺, 393.1690, C₂₄H₂₄O₃, requires (M+H)⁺, 393.1697

3-Oxocyclohex-1-en-1-yl 2,2-bis(4-chlorophenyl)cyclopropane carboxylate (3i).

(0.610 g, 76%). R_f 0.2 (1:4 v/v EtOAc in hexane) IR v_{max} 3078, 2888, 1765, 1731, 1619, 1495, 1367, 1120 cm^{-1 1}H NMR (400 MHz, CDCl₃) δ 7.28 (s, 4H), 7.22 (d, J = 8.8 Hz, 2H), 7.16 (d, J = 8.8 Hz, 2H), 5.67 (s, 1H), 2.63 (dd, J = 8.4, 6.0 Hz, 1H), 2.30 (t, J = 6.4 Hz, 2H), 2.27-2.23 (m, 1H), 2.20 (t, J = 6.4 Hz, 2H), 1.93 (pent, J = 6.4 Hz, 2H), 1.67 (dd, J = 8.0, 5.2 Hz, 1H) ¹³C NMR (100 MHz, CDCl₃) δ 199.1, 169.4, 166.7, 141.9, 137.4, 133.4, 132.9, 130.8, 128.8,

128.7(4), 128.7(1), 117.3, 39.9, 36.5, 28.7, 27.9, 21.0, 20.7 HRMS (ESI) m/z Found (M+H)⁺, 401.0705, C₂₂H₁₈Cl₂O₃, requires (M+H)⁺, 401.0706

3-Oxocyclohex-1-en-1-yl 2-methyl-2-phenylcyclopropanecarboxylate (4j).

(0.400 g, 74%) of the *cis* product. $R_f 0.3$ (1:4 v/v EtOAc in hexane) IR ν_{max} 3002, 2959, 1754, 1674, 1644, 1362, 1122 cm⁻¹ ¹H NMR (300 MHz, CDCl₃) δ 7.30 (d, J = 4.2 Hz, 2H), 7.29-7.16 (m, 3H), 5.50 (t, J = 0.9 Hz, 1H), 2.26 (dd, J = 8.1, 6.6 Hz, 2H), 2.16-2.10 (m, 2H), 2.03 (dd, J = 7.8, 5.4 Hz,

^{Ph' CH₃} 1H), 1.91-1.85 (m, 3H), 1.52 (s, 3H), 1.30 (dd, J = 7.8, 4.8 Hz, 1H) ¹³C NMR (75 MHz, CDCl₃) δ 199.3, 169.7, 167.6, 140.8, 128.6, 128.3, 127.0, 117.0, 36.5, 33.6, 28.4, 28.2, 27.7, 21.0, 20.1 HRMS (ESI) m/zFound (M+H)⁺, 271.1333, C₁₇H₁₈O₃, requires (M+H)⁺, 271.1329

(1*S*,2*R* and 1*R*,2*S*) 3-Oxocyclohex-1-en-1-yl 2-(4-chlorophenyl)-2-methylcyclopropane carboxylate (3k).

(0.433 g, 71%) *cis* product with around 10% of the *trans* product. $R_f 0.3$ (1:4 v/v EtOAc in hexane) IR v_{max} 3010, 2954, 1754, 1668, 1378, 1122 cm⁻¹ ¹H NMR (400 MHz, CDCl₃) δ 7.24-7.17 (m, 4H), 5.57 (t, J = 1.2 Hz, 1H), 2.35 (t, J = 6.4 Hz, 2H), 2.20-2.12 (m, 2H), 1.98 (dd, J = 8.0, 5.2 Hz, 1H), 1.89-1.83 (m, 2H), 1.77 (t, J = 5.2 Hz, 1H), 1.44 (s, 3H), 1.26 (dd, J = 8.0, 5.2 Hz, 1H) ¹³C NMR (100 MHz, CDCl₃) δ 199.1, 169.6, 168.2, 139.3, 132.5, 129.9, 128.3, 116.9, 36.3, 32.9, 28.1, 27.9,

27.7, 20.9, 20.3 HRMS (ESI) *m/z* Found (M+H)⁺, 305.0939, C₁₇H₁₇ClO₃, requires (M+H)⁺, 305.0939

3-Oxocyclohex-1-en-1-yl cyclopropanecarboxylate (3l).

(0.220 g, 62%). $R_f 0.3$ (1:4 v/v EtOAc in hexane) IR v_{max} 2955, 1754, 1674, 1643, 1427, 1362, 1123 cm⁻¹ ¹H NMR (300 MHz, CDCl₃) δ 5.85 (s, 1H), 2.49 (t, J = 6.0 Hz, 2H), 2.34 (t, J = 6.0 Hz, 2H), 2.04-1.96 (m, 2H), 1.72-1.66 (m, 1H), 1.08-1.04 (m, 2H), 1.03-0.94 (m, 2H) ¹³C NMR (75 MHz, CDCl₃) δ 199.5, 171.4, 169.9, 117.2, 36.6, 28.2, 21.1, 13.0, 9.6 HRMS (ESI) *m/z* Found (M+H)⁺, 181.0863, C₁₀H₁₂O₃, requires (M+H)⁺, 181.0859

3-Oxocyclohex-1-en-1-yl 2-(4-methoxybenzyl)cyclopropane carboxylate (3m).

overlapping) HRMS (ESI) m/z Found (M+H)⁺, 301.1433, C₁₈H₂₀O₄, requires (M+H)⁺, 301.1434

(0.354 g, 59%) as a *cis/trans* mixture 30/70. R_f 0.3 (1:4 v/v EtOAc in hexane) IR v_{max} 3007, 2954, 1755, 1667, 1633, 1514, 1444, 1364, 1117 cm⁻¹ ¹H NMR (300 MHz, CDCl₃) δ *trans* 7.13-7.10 (m, 2H), 6.85-6.81 (m, 2H), 5.89 (t, J = 1.2 Hz, 1H), 3.78 (s, 3H), 2.71 (dd, J = 15.0, 6.9 Hz, 1H), 2.59 (dd, J = 15.0, 6.9 Hz, 1H), 2.48 (t, J = 6.3 Hz, 2H), 2.36 (t, J = 6.3 Hz, 2H), 2.07-1.99 (m, 2H), 1.93-1.68 (m, 1H), 1.63-1.57 (m, 1H), 1.36-1.29 (m, 1H), 1.00-0.93 (m, 1H) *cis* 7.13-7.10 (m, 2H), 6.85-6.81 (m, 2H), 5.81 (t, J = 1.2 Hz, 1H), 3.78 (s, 3H), 2.93 (dd, J = 15.0, 6.9 Hz, 1H), 2.69 (dd, J = 15.0, 6.9 Hz, 1H), 2.48-2.41 (m, 2H), 2.07-1.99 (m, 3H), 1.86-1.79 (m, 1H), 1.72-1.66 (m, 2H), 1.38-1.18 (m, 2H) ¹³C NMR (75 MHz, CDCl₃) δ 199.4, 170.7, 169.9, 169.8, 169.5, 158.2, 158.0, 132.7, 131.4, 129.2, 129.0, 117.4, 117.2, 113.9, 113.8, 60.9, 55.2 37.2, 36.6(4), 36.6(2), 31.7, 28.3, 28.2, 24.8, 24.2, 21.2, 20.0, 18.4, 16.2, 14.9 (two signals

(E)-3-Oxocyclohex-1-en-1-yl 2-styrylcyclopropanecarboxylate (3n).

(0.402 g, 71%) as a 1:1 *cis/trans* mixture. $R_f 0.3$ (1:4 v/v EtOAc in hexane) IR v_{max} 3060, 2954, 1755, 1687, 1624, 1494, 1360, 1117 cm⁻¹ ¹H NMR (400 MHz, CDCl₃) δ *trans* 7.34-7.19 (m, 5H), 6.58 (d, *J* = 15.6 Hz, 1H), 5.94 (t, *J* = 1.2 Hz, 1H), 5.76 (dd, *J* = 15.6, 9.2 Hz, 1H), 2.55 (td, *J* = 6.0, 1.2 Hz, 2H), 2.42-2.36 (m, 4H), 2.10-1.99 (m, 2H), 1.90-1.84 (m, 1H), 1.61-1.55 (m, 1H) δ *cis* 7.34-7.19 (m, 5H), 6.63 (d, *J* = 15.6 Hz, 1H), 6.16 (dd, *J* = 15.6, 9.2 Hz, 1H), 5.91 (t, *J* = 1.2 Hz, 1H),

2.51 (t, J = 6.0 Hz, 2H), 2.32-2.21 (m, 2H), 2.15 (dd, J = 6.0, 2.8 Hz, 1H), 2.10-1.99 (m, 4H), 1.28-1.23 (m, 1H) ¹³C NMR (100 MHz, CDCl₃) δ 199.4(9), 199.4(7), 169.9, 169.8, 169.7, 168.6, 136.9, 136.6, 132.5, 131.2, 128.8, 128.6, 128.5, 127.5, 127.3, 125.9, 125.8(7), 125.8(3), 117.3, 36.7, 28.4, 28.3, 26.9, 25.9, 22.2, 21.4, 21.2, 16.9, 15.7 (three signals overlapping) HRMS (ESI) m/z Found (M+H)⁺, 283.1336, C₁₈H₁₈O₃, requires (M+H)⁺, 283.1329

5,5-Dimethyl-3-oxocyclohex-1-en-1-yl 2-phenylcyclopropanecarboxylate (3q).

(0.460g, 81%) as a 2:3 *cis/trans* mixture. $R_f 0.3$ (1:4 v/v EtOAc in hexane) IR v_{max} 3012, 2954, 1751, 1673, 1641, 1455, 1379, 1119 cm⁻¹ ¹H NMR (400 MHz, CDCl₃) δ *trans* 7.33-7.22 (m, 4H), 7.14-7.12 (m, 1H), 5.97 (t, J = 1.2 Hz, 1H), 2.66-2.61 (m, 1H), 2.44 (s, 2H), 2.28 (s, 2H), 2.04-2.00 (m, 1H), 1.71 (dt, J = 9.2, 4.8 Hz, 1H), 1.51-1.44 (m, 1H), 1.12 (s, 6H) *cis* 7.33-7.22 (m, 4H), 7.14-7.12 (m, 1H), 5.53 (t, J = 1.2 Hz, 1H), 2.70 (q, J = 8.8 Hz, 1H), 2.24-2.19 (m, 1H), 2.13 (s, 2H),

1.96 (s, 1H), 1.88 (s, 1H), 1.86-1.81 (m, 1H), 1.51-1.44 (m, 1H), 0.96 (s, 3H), 0.94 (s, 3H) ¹³C NMR (100 MHz, CDCl₃) δ 199.3, 170.1, 168.1(1), 168.0(6), 167.6, 139.0, 135.5, 129.3, 128.5, 128.1, 127.1, 126.8, 126.1, 116.3, 116.1, 50.7, 50.6, 42.2, 41.7, 33.1, 32.8, 28.0(9), 28.0(7), 28.0, 27.8, 27.5, 26.5, 24.0, 21.9, 17.8, 11.5 (one signal overlapping) HRMS (ESI) m/z Found (M+H)⁺, 285.1486, C₁₈H₂₀O₃, requires (M+H)⁺, 285.1485

III. NHC catalysed synthesis of dihydropyranone 4

To a magnetically stirred solution of the cyclopropyl enol ester (0.3 mmol) in toluene (1.5 ml) in a flame-dried microwave tube fitted with a rubber septum and nitrogen inlet was added **IPr** (0.3 ml of a 0.1 M solution in toluene). The head space of the microwave tube was purged with argon and the rubber septum replaced with a microwave tube cap, which was fastened with a clamp. The sealed tube was then heated to 130 °C for 12 h. After this time, the crude mixture was concentrated under reduced pressure and the crude residue purified by flash column chromatography to afford the pure dihydropyranone.

4-Benzyl-3,4,7,8-tetrahydro-2*H*-chromene-2,5(6*H*)-dione (4a).

(59 mg, 76%). $R_f 0.3$ (1:4 v/v EtOAc in hexane) IR v_{max} 2960, 1785, 1651, 1454, 1381, 1116 cm⁻¹ ¹H NMR (400 MHz, CDCl₃) δ 7.31-7.15 (m, 5H), 3.29-3.24 (m, 1H), 2.87 (dd, J = 13.6, 4.0 Hz, 1H), 2.68 (dd, J = 16.0, 1.2, 1H), 2.52 (t, J = 5.6 Hz, 2H), 2.48-2.43 (m, 3H), 2.36 (dd, J = 13.6, 10.0 Hz, 1H), 2.08 (pent, J = 6.8 Hz, 2H) ¹³C NMR (100 MHz, CDCl₃) δ 196.5, 167.1, 166.1,

137.7, 129.4, 128.5, 126.8, 117.6, 39.1, 36.7, 32.3, 30.4, 27.2, 20.7 HRMS (ESI) m/z Found (M+H)⁺, 257.1171, C₁₆H₁₆O₃, requires (M+H)⁺, 257.1172

3-Hydroxy-2-(2-phenylcyclopropanecarbonyl)cyclohex-2-enone (5a).

 $R_{f} 0.3 (1:5 \text{ v/v EtOAc in hexane}) \text{ IR } v_{\text{max}} 3030, 2952, 1662, 1539, 1436, 1353, 1189, 1029 \text{ cm}^{-1}$ $Ph \longrightarrow OH (M, 1H), 2.68 (t, J = 6.3 \text{ Hz}, 2H), 2.69-2.58 (m, 1H), 7.30-7.12 (m, 5H), 4.00-3.95 (m, 1H), 2.82-2.75 (m, 1H), 2.68 (t, J = 6.3 \text{ Hz}, 2H), 2.69-2.58 (m, 1H), 2.52 (t, J = 6.3 \text{ Hz}, 2H), 2.06-2.90 (m, 2H), 1.59-1.45 (m, 1H) (75 \text{ MHz}, \text{CDCl}_3) \delta 202.6, 196.9, 195.5, 140.1, 128.5, 126.7, 126.3, 112.4, 52.6, 46.8, 31.8, 30.5, 28.3, 21.7 \text{ HRMS (ESI) } m/z \text{ Found } (M+H)^+, 257.1169, C_{16}H_{16}O_3, \text{ requires } (M+H)^+, 257.1172$

4-(4-Methylbenzyl)-3,4,7,8-tetrahydro-2*H*-chromene-2,5(6*H*)-dione (4b).

(65 mg, 80%). $R_f 0.3$ (1:4 v/v EtOAc in hexane) IR v_{max} 3021, 2929, 1787, 1668, 1651, 1455, 1380, 1115 cm⁻¹ ¹H NMR (400 MHz, CDCl₃) δ 7.11-7.04 (m, 4H), 3.26-3.21 (m, 1H), 2.82 (dd, *J* = 13.6, 4.0 Hz, 1H), 2.66 (dd, *J* = 16.4, 1.2 Hz, 1H), 2.53 (t, *J* = 6.0 Hz, 2H), 2.49-2.43 (m, 3H), 2.33 (dd, *J* = 16.4, 8.0 Hz, 1H), 2.32 (s, 3H), 2.08 (p, *J* = 6.4 Hz, 2H) ¹³C NMR (100 MHz, CDCl₃) δ 196.5, 167.0, 166.1, 136.3, 134.5, 129.3, 129.2, 118.0, 38.7, 36.7, 32.3, 30.4, 27.2, 21.0, 20.7 HRMS (ESI) *m/z* Found (M+H)⁺, 271.1333, C₁₇H₁₈O₃, requires (M+H)⁺, 271.1329

4-(2,6-Dimethylbenzyl)-3,4,7,8-tetrahydro-2*H*-chromene-2,5(6*H*)-dione (4c).

(64 mg, 75%). $R_f 0.3$ (1:4 v/v EtOAc in hexane) IR v_{max} 3018, 2955, 1784, 1667, 1651, 1455, 1377, 1117 cm⁻¹ ¹H NMR (400 MHz, CDCl₃) δ 7.06-6.98 (m, 3H), 3.34 (pent, J = 6.4 Hz, 1H), 2.87 (dd, J = 14.0, 4.8 Hz, 1H), 2.63-2.47 (m, 3H), 2.46-2.37 (m, 4H), 2.40 (s, 6H), 2.09 (pent, J = 6.0 Hz, 2H) ¹³C NMR (100 MHz, CDCl₃) δ 196.6, 166.9, 166.7, 137.2, 134.7, 128.5, 128.2,

126.5, 117.1, 36.7, 32.4, 28.7, 27.3, 20.6, 20.3 HRMS (ESI) *m*/*z* Found (M+H)⁺, 285.1480,

 $C_{18}H_{20}O_3$, requires (M+H)⁺, 285.1485

4-(4-Methoxybenzyl)-3,4,7,8-tetrahydro-2*H*-chromene-2,5(6*H*)-dione (4d).

(54 mg, 63%). $R_f 0.3$ (1:3 v/v EtOAc in hexane) IR v_{max} 2931, 1784, 1653, 1512, 1458, 1116 cm⁻¹ ¹H NMR (400 MHz, CDCl₃) δ 7.08-7.03 (m, 2H), 6.83 (d, J = 10.8 Hz, 2H), 3.78 (s, 3H), 3.24-3.21 (m, 1H), 2.80 (dd, J = 13.6, 4.0 Hz, 1H), 2.66 (dd, J = 16.4, 1.2 Hz, 1H), 2.53 (t, J = 6.0 Hz, 2H), 2.50-2.44 (m, 3H), 2.33 (dd, J = 13.6, 10.0 Hz, 1H), 2.10 (pent, J = 6.4 Hz, 2H) ¹³C NMR (75 MHz, CDCl₃) δ 196.6, 167.1, 166.2, 158.5, 130.4, 127.4, 117.6, 113.8, 55.2, 38.2, 36.7, 32.3, 30.5, 27.2, 20.7 HRMS (ESI) m/z Found (M+H)⁺, 287.1275, C₁₇H₁₈O₄, requires (M+H)⁺, 287.1278

4-(4-Chlorobenzyl)-3,4,7,8-tetrahydro-2*H*-chromene-2,5(6*H*)-dione (4e).

(59 mg, 67%). $R_f 0.3$ (1:4 v/v EtOAc in hexane) IR v_{max} 3026, 2952, 1786, 1649, 1492, 1380, 1117 cm⁻¹ ¹H NMR (300 MHz, CDCl₃) δ 7.36-7.03 (m, 4H), 3.27-3.21 (m, 1H), 2.84 (dd, J = 13.5, 4.2 Hz, 1H), 2.63 (dd, J = 16.2, 1.8 Hz, 1H) 2.55 (t, J = 6.0 Hz, 2H), 2.53-2.45 (m, 3H), 2.35 (dd, J = 13.5, 10.2 Hz, 1H), 2.09 (pent, J = 6.3 Hz, 2H) ¹³C NMR (75 MHz, CDCl₃) δ 196.4, 167.2, 165.9, 136.1, 132.7, 130.7, 128.6, 117.4, 38.5, 36.6, 32.3, 30.3, 27.2, 20.6 HRMS (ESI) *m/z* Found (M+H)⁺, 291.0786, C₁₆H₁₅ClO₃, requires (M+H)⁺, 291.0782

4-(3-Chlorobenzyl)-3,4,7,8-tetrahydro-2*H*-chromene-2,5(6*H*)-dione (4f).

(58 mg, 66%). $R_f 0.3$ (1:4 v/v EtOAc in hexane) IR v_{max} 3064, 2954, 1788, 1663, 1651, 1428, 1380, 1116 cm⁻¹ ¹H NMR (400 MHz, CDCl₃) δ 7.23-7.04 (m, 4H), 3.29-3.24 (m, 1H), 2.82 (dd, J = 13.6, 4.0 Hz, 1H), 2.64 (dd, J = 16.4, 1.6 Hz, 1H), 2.56-2.52 (m, 2H), 2.49-2.43 (m, 3H), 2.37 (dd, J = 13.6, 10.2 Hz, 1H), 2.09 (pent, J = 6.4 Hz, 2H) ¹³C NMR (100 MHz, CDCl₃) δ 196.4, 167.3, 165.8,

139.6, 134.3, 129.8, 129.3, 127.6, 127.1, 117.2, 38.8, 36.6, 32.4, 30.2, 27.2, 20.6 HRMS (ESI) m/zFound (M+H)⁺, 291.0782, C₁₆H₁₅ClO₃, requires (M+H)⁺, 291.0782

4-Benzhydryl-3,4,7,8-tetrahydro-2*H*-chromene-2,5(6*H*)-dione (4g).

(79 mg, 79%). $R_f 0.3$ (1:4 v/v EtOAc in hexane) IR v_{max} 3006, 2954, 1751, 1671, 1652, 1380, 1117 cm⁻¹ ¹H NMR (300 MHz, CDCl₃) δ 6.34-7.16 (m, 10H), 3.98 (dd, J = 10.2, 7.2 Hz, 1H), 3.77 (d, J = 10.2 Hz, 1H), 2.80 (dd, J = 16.5, 1.5 Hz, 1H), 2.60 (dd, J = 15.5, 6.6 Hz, 1H), 2.53-2.47 (m, 2H), 2.19-2.11 (m, 2H), 2.01-1.89 (m, 1H), 1.88-1.78 (m, 1H) ¹³C NMR (75 MHz, CDCl₃) δ

195.6, 166.7, 166.1, 141.2, 140.3, 128.8, 128.6(4), 128.5(7), 127.9, 127.3, 126.7, 117.5, 54.7, 36.1, 30.1, 31.6, 27.3, 20.5 HRMS (ESI) *m*/*z* Found (M+H)⁺, 333.1485, C₂₂H₂₀O₃, requires (M+H)⁺, 333.1485

4-(Bis(4-methoxyphenyl)methyl)-3,4,7,8-tetrahydro-2*H*-chromene-2,5(6*H*)-dione (4h).

(88 mg, 75%) $R_f 0.3$ (1:3 v/v EtOAc in hexane) IR v_{max} 3035, 2958, 1755, 1673, 1644, 1610, 1514, 1362, 1247, 1118 cm⁻¹ ¹H NMR (400 MHz, CDCl₃) δ 7.18 (d, J = 8.8 Hz, 2H), 7.07 (d, J = 8.8 Hz, 2H), 6.85 (d, J = 8.8 Hz, 2H), 6.72 (d, J = 8.8 Hz, 2H), 3.89 (dd, J = 8.8, 6.0 Hz, 1H), 3.78 (s, 3H), 3.73 (s, 3H), 3.67 (d, J = 8.8 Hz, 1H), 2.78 (dd, J = 16.4, 1.2 Hz, 1H), 2.57 (dd, J = 16.4, 6.4 Hz, 1H), 2.51-2.46 (m, 2H), 2.19-2.14 (m, 2H),

2.02-1.92 (m, 1H), 1.90-1.81 (m, 1H) ¹³C NMR (100 MHz, CDCl₃) δ 195.6, 166.6, 166.2, 158.7, 158.2, 133.8, 132.8, 129.5(2), 129.4(5), 117.7, 114.2, 113.3, 55.2(3), 55.1(5), 53.1, 36.3, 33.0, 31.9, 27.3, 20.5 HRMS (ESI) *m/z* Found (M+H)⁺, 393.1695, C₂₄H₂₄O₃, requires (M+H)⁺, 393.1697

4-(Bis(4-chlorophenyl)methyl)-3,4,7,8-tetrahydro-2*H*-chromene-2,5(6*H*)-dione (4i).

(100 mg, 83%). $R_f 0.3$ (1:4 v/v EtOAc in hexane) IR v_{max} 3030, 2958, 1751, 1673, 1650, 1372, 1118 cm⁻¹ ¹H NMR (300 MHz, CDCl₃) δ 7.34-7.08 (m, 8H), 3.93 (dd, *J* =10.2, 7.2 Hz, 1H), 3.72 (d, *J* = 10.2 Hz, 1H), 2.74 (dd, *J* = 16.5, 1.8 Hz, 1H), 2.62 (dd, *J* = 16.5, 6.3 Hz, 1H), 2.55-2.49 (m, 2H), 2.22-2.10 (m, 2H), 2.05-1.94 (m, 1H), 1.91-1.81 (m, 1H) ¹³C NMR (75 MHz, CDCl₃) δ 195.5, 167.3, 165.6, 139.2, 138.5, 133.4, 132.9, 130.8, 129.9, 129.2, 128.2, 117.5, 53.7, 36.2, 33.0, 31.5, 27.3, 20.6 HRMS (ESI) *m/z* Found (M+H)⁺,

401.0701, C₂₂H₁₈Cl₂O₃, requires (M+H)⁺, 401.0706

4-(1-Phenylethyl)-3,4,7,8-tetrahydro-2*H*-chromene-2,5(6*H*)-dione (4j).

(68 mg, 84%) dr 1:9. $R_f 0.3$ (1:4 v/v EtOAc in hexane) IR v_{max} 3028, 2964, 1784, 1651, 1453, 1377, 1121 cm^{-1 1}H NMR (400 MHz, CDCl₃) δ 7.32-7.13 (m, 5H), 3.28-3.25 (m, 1H), 3.01 (pent, CH₃ J = 7.2 Hz, 1H), 2.71 (d, J = 16.8 Hz, 1H), 2.56-2.48 (m, 2H), 2.42 (dd, J = 16.8, 7.2 Hz, 1H), 2.39-2.34 (m, 2H), 2.11-2.00 (m, 2H), 1.21 (d, J = 7.2 Hz, 3H) ¹³C NMR (100 MHz, CDCl₃) δ

196.4, 167.2, 166.8, 142.9, 128.2, 127.8, 126.8, 116.6, 41.6, 36.7, 35.2, 30.5, 27.3, 20.6, 14.4 HRMS (ESI) *m/z* Found (M+H)⁺, 271.1330, C₁₇H₁₈O₃, requires (M+H)⁺, 271.1329

4-(1-(4-Chlorophenyl)ethyl)-3,4,7,8-tetrahydro-2*H*-chromene-2,5(6*H*)-dione (4k).

(75 mg, 82%) dr 1:5. $R_f 0.3$ (1:4 v/v EtOAc in hexane) IR v_{max} 3029, 2954, 1784, 1651, 1453, 1380, 1121 ¹H NMR (400 MHz, CDCl₃) δ 7.28-7.07 (m, 4H), 3.24-3.21 (m, 1H), 3.02-2.95 (m, 1H), 2.67 (dd, J = 16.8, 1.2 Hz, 1H), 2.60-2.50 (m, 2H), 2.43 (dd, J = 16.8, 8.0 Hz, 1H), 2.40-2.36 (m, 2H), 2.12-2.00 (m, 2H), 1.18 (d, J = 7.2 Hz, 3H) ¹³C NMR (100 MHz, CDCl₃) δ 196.4, 167.4, 166.6, 141.4, 132.5, 129.1, 128.4, 116.3, 41.0, 36.6, 35.1, 30.4, 27.25, 20.6, 14.4 HRMS

(ESI) *m*/*z* Found (M+H)⁺, 305.0941, C₁₇H₁₇ClO₃, requires (M+H)⁺, 305.0939

4-Methyl-3,4,7,8-tetrahydro-2*H*-chromene-2,5(6*H*)-dione (4l).

 $(0.038 \text{ g}, 69\%). \text{ } \text{R}_{f} 0.2 (2:5 \text{ v/v EtOAc inhexane}) \text{ IR } \nu_{\text{max}} 2959, 1786, 1651, 1460, 1382, 1120 \text{ cm}^{-1}$ ¹H NMR (300 MHz, CDCl₃) δ 3.12 (pent. d, J = 6.8, 1.8 Hz, 2H), 2.65 (dd, J = 16.5, 6.8 Hz, 1H), ⁰CH₃ 2.58 (dd, J = 16.5, 1.8 Hz, 1H), 2.53 (t, J = 6.8 Hz, 2H), 2.42, (sext, J = 3.0 Hz, 2H), 2.04 (t, J = 6.0 Hz, 2H), 1.03 (d, J = 6.8 Hz, 3H) ¹³C NMR (75 MHz, CDCl₃) δ 196.6, 166.5, 166.4, 119.3, 36.6, 35.9, 27.1, 23.5, 20.6, 19.3 HRMS (ESI) m/z Found (M+H)⁺, 181.0860 C₁₀H₁₃O₃ requires (M+H)⁺, 181.0859

4-(4-Methoxyphenethyl)-3,4,7,8-tetrahydro-2*H*-chromene-2,5(6*H*)-dione (4m).

(64 mg, 71%). $R_f 0.3$ (1:3 v/v EtOAc in hexane) IR v_{max} 2931, 1787, 1651, 1512, 1458, 1117 cm⁻¹ ¹H NMR (400 MHz, CDCl₃) δ 7.13-7.06 (m, 2H), 6.85-6.80 (m, 2H), 3.79 (s, 3H), 3.14-3.07 (m, 1H), 2.79 (dd, J = 16.0, 1.2 Hz, 1H), 2.67-2.57 (m, 2H), 2.55-2.39 (m, 5H), 2.11-1.90 (m, 2H), 1.50 (dt, J = 8.8, 4.4 Hz, 1H), 1.27 (dt, J = 8.8, 4.4 Hz, 1H) ¹³C NMR (100 MHz, CDCl₃) δ 196.7, 166.9, 166.6, 158.2, 132.4, 129.3, 117.8, 113.9, 55.2, 37.4, 36.7, 35.1, 33.5,

31.7, 28.0, 20.6 HRMS (ESI) *m/z* Found (M+Na)⁺, 323.1254 C₁₈H₂₀O₄ requires (M+Na)⁺, 323.1254

(*E*)-4-styryl-3,4,7,8-tetrahydro-2*H*-chromene-2,5(6*H*)-dione (4n) and (*E*)-4-(3-Phenylprop-1-en-1-yl)-3,4,7,8-tetrahydro-2*H*-chromene-2,5(6*H*)-dione (4n')

(65 mg, 80%) as a 4:1 mixture. $R_f 0.3$ (1:4 v/v EtOAc in hexane) IR $v_{max} 2932$, 1784, 1651, 1381, 1116 cm^{-1 1}H NMR (400 MHz, CDCl₃) δ **4n** 7.27-7.14 (m, 5H), 6.34 (d, J = 15.6, 1H), 6.05-5.97 (m, 1H), 3.19-3.14 (m, 1H), 2.78 (dd, J = 16.4, 1.6 Hz, 1H), 2.58 (dd, J = 16.4, 7.2 Hz, 1H), 2.53-2.49 (m, 2H), 2.41-2.37 (m, 3H), 2.33-2.30 (m, 1H), 2.05-1.97 (m, 2H) δ **4n**' 7.27-7.14 (m, 5H), 5.62 (dtd, J = 15.6, 6.4, 1.2 Hz, 1H), 5.45 (ddt, J = 15.6, 5.6, 1.2 Hz, 1H), 3.74 (t, J = 5.6 Hz, 1H),

3.32 (d, J = 6.4 Hz, 2H), 2.76 (dd, J = 16.4, 1.6 Hz, 1H), 2.66 (dd, J = 16.4, 7.2 Hz, 1H), 2.53-2.49 (m, 2H), 2.41-2.37 (m, 3H), 2.33-2.30 (m, 1H), 2.05-1.97 (m, 2H) ¹³C NMR (100 MHz, CDCl₃) δ 196.7, 196.2, 167.1, 166.2, 166.0, 139.7, 137.0, 133.8, 130.7, 130.2, 129.5, 129.0, 128.5, 128.4, 127.4, 126.1, 125.9, 125.4, 117.3, 116.8, 38.5, 36.9, 36.7, 36.6, 34.2, 33.0, 30.5, 28.6, 27.2, 26.3, 20.7, 20.6 HRMS (ESI) *m*/*z* Found (M+H)⁺, 283.1331, C₁₈H₁₈O₃, requires (M+H)⁺, 283.1329

4-Benzyl-7,7-dimethyl-3,4,7,8-tetrahydro-2*H*-chromene-2,5(6*H*)-dione (4q)

(16 mg, 19%). $R_f 0.2$ (1:4 v/v EtOAc in hexane) IR v_{max} 2964, 1783, 1651, 1454, 1380, 1117 cm⁻¹ ¹H NMR (300 MHz, CDCl₃) δ 7.35-7.18 (m, 5H), 3.31-3.23 (m, 1H), 2.91 (dd, J = 13.2, 3.9 Hz, 1H), 2.68 (dd, J = 16.5, 1.5 Hz, 1H), 2.46 (dd, J = 16.5, 9.0 Hz, 1H), 2.43 (s, 2H), 2.35 (s, 2H), 2.33 (dd, J = 13.2, 3.0 Hz, 1H), 1.14(4) (s, 3H), 1.14(0) (s, 3H) ¹³C NMR (100 MHz, CDCl₃) δ 196.4,

166.3, 165.4, 137.7, 129.4, 128.7, 128.5, 126.8, 125.0, 116.5, 50.7, 40.9, 39.1, 32.5, 32.3, 30.4, 28.4, 28.1 HRMS (ESI) *m/z* Found (M+H)⁺, 285.1485, C₁₈H₂₀O₃, requires (M+H)⁺, 285.1485

3-Hydroxy-5,5-dimethyl-2-(2-phenylcyclopropanecarbonyl)cyclohex-2-enone (5q)

(65 mg, 77%). $R_f 0.2$ (1:4 v/v EtOAc in hexane) IR v_{max} 3033, 2954, 1666, 1534, 1436, 1353, 1191, 1029 cm^{-1 1}H NMR (300 MHz, CDCl₃) δ 18.38 (s, 1H), 7.28-7.16 (m, 5H), 4.02-3.96 (m, 1H), 2.82-2.75 (m, 1H), 2.53 (s, 2H), 2.37 (s, 2H), 1.90 (dt, J = 9.0, 3.9 Hz, 1H), 1.57-1.50 (m, 1H) 1.08(4) (s, 3H), 1.07(6) (2, 3H) ¹³CNMR (100 MHz, CDCl₃) δ 202.6, 196.9 195.5, 140.1, 128.4, 126.5, 126.4, 112.3, 52.8, 46.8, 31.8, 30.6, 28.3(3), 28.2(7), 28.1, 21.7

IV. Mechanistic Studies

H ^g H ^f	Proton	δ	multiplicity	integration
	H ^a	3.29	m	1H
	H ^b	2.86	dd, <i>J</i> = 13.6 and 4.0 Hz	1H
H^{d}	H^d	2.68	dd, <i>J</i> = 16.0 and 1.2 Hz	1H
	2XH ^g	2.52	t, <i>J</i> = 5.6 Hz	2H
H ^e Ph	2XH ^f and H ^e	2.48-2.43	m	3H
4a	H ^c	2.36	dd, <i>J</i> = 13.6 and 10.0 Hz	1H

2,2-Dideutero-3-phenylcyclopropanecarboxylic acid

The title acid was prepared by the hydrolysis of the corresponding dideutero ethyl ester, which was in turn synthesised following the general cyclopropanation procedure from styrene- β , β - d_2^{-6} and ethyl diazoacetate (0.371 g, 66%) as a 7:3 *cis/trans* mixture. The cyclopropyl acid was 84% deuterated on the basis of ¹H NMR. R_f 0.3 (1:1 v/v EtOAc in hexane). ¹H-NMR (300 MHz, CDCl₃) δ *trans* 7.30-7.09 (m, 5H), 2.58 (d, *J* = 4.2 Hz, 1H), 1.88 (d, *J* = 4.2 Hz, 1H) *cis* 7.30-7.09 (m, 5H), 2.67 (d, *J* = 9.3 Hz, 1H), 2.08 (d, *J* = 9.3 Hz, 1H) ¹³C NMR (75 MHz, CDCl₃) δ 179.8, 139.5, 135.8, 129.3, 128.5, 127.9, 126.8, 126.6, 126.2, 26.9, 26.5, 23.8, 21.3, 14.5 HRMS (ESI) *m/z* Found (M+H)⁺, 165.0879, C₁₀H₈D₂O₂, requires (M+H)⁺, 165.0879

3-Oxocyclohex-1-en-1-yl 2,2-d₂-dideutero-3-phenylcyclopropane carboxylate (30).

The enol ester was synthesised from the acid following the general procedure for the synthesis of cyclopropyl enol esters (0.363 g, 70%) as a 7:3 *cis/trans* mixture. $R_f 0.3$ (1:4 v/v EtOAc in hexane) ¹H NMR (400 MHz, CDCl₃) δ *trans* 7.31-7.10 (m, 5H), 5.95 (t, J = 0.8 Hz, 1H), 2.62 (d, J = 3.6 Hz,

ⁱⁱ_{Ph} 1H), 2.55 (t, J = 6.0 Hz, 2H), 2.40 (t, J = 6.0 Hz, 2H), 2.07-2.03 (m, 2H), 2.00 (d, J = 4.4 Hz, 1H) *cis* 7.31-7.10 (m, 5H), 5.51 (t, J = 0.8 Hz, 1H), 2.74 (d, J = 9.2 Hz, 1H), 2.26 (t, J = 6.4 Hz, 2H), 2.19 (d, J = 6.4 Hz, 1H), 2.07-2.03 (m, 2H), 1.87 (pent, J = 6.4 Hz, 2H) ¹³C NMR (100 MHz, CDCl₃) δ 199.4, 169.9, 169.8, 169.7, 167.5, 138.9, 135.4, 129.2, 128.5, 128.1, 127.1, 126.8, 126.1, 117.3, 117.2, 36.6, 36.5, 28.3, 27.8, 27.3, 26.5, 23.8, 21.6, 21.1, 21.0 (one signal overlapping) HRMS (ESI) *m*/*z* Found (M+H)⁺, 259.1296 C₁₆H₁₄D₂O₃, requires (M+H)⁺, 259.1298

⁶ Wang, W., Wang, F., Shi, M. Organometallics, **2010**, 29, 928

Dideuterated 4-benzyl-3,4,7,8-tetrahydro-2*H*-chromene-2,5(6*H*)-dione (40).

The enol ester was subjected to the general NHC catalysed dihydropyranone forming conditions (53 mg, 68%). R_f 0.3 (1:4 v/v EtOAc in hexane) ¹H NMR (300 MHz, CDCl₃) δ 7.34-7.17 (m, 5H), 3.30-3.27 (m, 0.16H), 2.87 (d, J = 13.5 Hz, 1H), 2.67 (d, J = 16.2 Hz, 0.9H), 2.55 (t, J = 6.3 Hz, 1.6H), 2.51-2.46 (m, 2.5H), 2.38 (d, J = 13.5 Hz, 1H), 2.10 (pent, J = 4.2 Hz, 2H) ¹³C-NMR (75 MHz, CDCl₃) δ 196.5, 167.1, 166.1, 137.7, 129.4, 128.5, 126.8, 117.6, 39.1, 36.7, 32.3, 30.4, 27.2, 20.7 ²H NMR (61 MHz, CHCl₃) δ 3.27 (1D), 2.67 (0.1D), 2.62-2.32 (0.4D) HRMS (ESI) *m*/*z* Found (M+H)⁺, 259.1294, C₁₆H₁₄D₂O₃, requires (M+H)⁺, 259.1298

4,4,6,6-Tetradeutero-3-hydroxycyclohex-2-enone.

A magnetically stirred solution of 2,4,4,6,6-pentadeutero-3-methoxy-2-cyclohexen-1-one⁶ (0.328 g, 2.5 mmol) and CAN (0.137 g, 0.25 mmol) in H₂O (6 ml) and CH₃CN (6 ml) was refluxed for 3 h. The mixture was diluted with brine (20 ml) and extracted with Et_2O (3 x 30 ml). The combine organic extracts were washed with brine, dried (MgSO₄) and concentrated under reduced pressure.

The crude residue was recrystalised from benzene to afford the *tetra*-deuterated enol (0.257 g, 89%). The hydroxycyclohexenone was 96% deuterated on the basis of ¹H-NMR analysis. ¹H NMR (400 MHz, CDCl₃) δ 10.12 (s, 1H), 5.48 (s, 1H), 2.36 (t, *J* = 6.8 Hz, 0.19H), 1.96 (s, 2H) ¹³C NMR (100 MHz, CDCl₃) δ 204.13, 192.7, 104.3, 39.1 (t, *J* = 19.7), 31.5 (pent, *J* = 19.7), 20.7 HRMS (ESI) *m*/*z* Found (M+H)⁺, 117.0844, C₆H₄D₄O₂, requires (M+H)⁺, 117.0848

4,4,6,6-Tetradeutero-3-oxocyclohex-1-en-1-yl 2-phenylcyclopropane carboxylate (3p).

The enol ester was synthesised from the acid following the general procedure for the synthesis of cyclopropyl enol esters (0.333 g, 64%) as a 2:3 *cis/trans* mixture. $R_f 0.3$ (1:4 v/v EtOAc in hexane) ¹H NMR (300 MHz, CDCl₃) δ *trans* 7.34-7.11 (m, 5H), 5.96 (s, 1H), 2.67-2.60 (m, 1H), 2.05-1.99 (m, 3H), 1.71 (dt, J = 9.3, 4.8 Hz, 1H), 1.51-1.43 (m, 1H) *cis* 7.34-7.11 (m, 5H), 5.52 (s, 1H), 2.76

 $(q, J = 8.1 \text{ Hz}, 1\text{H}), 2.25-2.18 \text{ (m, 1H)}, 1.85-1.81 \text{ (m, 3H)}, 1.51-1.43 \text{ (m, 1H)} {}^{13}\text{C NMR} (75 \text{ MHz}, \text{CDCl}_3) \delta 199.9, 170.3, 167.9, 139.4, 135.9, 129.6, 128.9, 128.5, 127.5, 127.2, 126.5, 117.8, 117.7, 27.9, 27.1, 24.4, 22.2, 21.2, 21.1, 18.2, 12.1 (three signals overlapping) HRMS (ESI)$ *m*/*z*Found (M+H)⁺, 261.1427, C₁₆H₁₂D₄O₃, requires (M+H)⁺, 261.1423

Tetradeuterated 4-benzyl-3,4,7,8-tetrahydro-2*H*-chromene-2,5(6*H*)-dione (4p).

The enol ester was subjected to the general NHC catalysed dihydropyranone forming conditions (58 mg, 74%). R_f 0.3 (1:4 v/v EtOAc in hexane) ¹H NMR (400 MHz, CDCl₃) δ 7.34-7.12 (m, 5H), 3.30-3.27 (m, 1H), 2.87 (dd, J = 13.6, 4.0 Hz, 0.8H), 2.68 (dd, J = 16.0, 1.2 Hz, 0.5H), 2.52 (m, 1H), 2.48-2.43 (m, 1H), 2.36 (dd, J = 13.6, 10.0 Hz, 0.7H), 2.08 (pent, J = 6.8 Hz, 2H) ¹³C NMR (150 MHz, CDCl₃) δ 196.6 (m), 167.1, 166.1, 137.7, 129.4, 128.5, 126.8, 117.6, 39.1, 38.7 (m), 36.7, 36.3 (t, J = 19.5 Hz), 32.3, 32.0 (t, J = 19.5 Hz), 30.3 (m), 27.2-26.7 (m), 20.4 (p, J = 13.9 Hz) ²H-NMR (61 MHz, CHCl₃) δ 2.87 (0.4D), 2.64 (0.7D), 2.55-2.30 (2.9D) HRMS (ESI) *m/z* Found (M+H)⁺, 261.1427, C₁₆H₁₂D₄O₃, requires (M+H)⁺, 261.1423

IV. ¹H and ¹³C NMR Spectra

3-Oxocyclohex-1-en-1-yl 2-phenylcyclopropanecarboxylate (3a).

3-Oxocyclohex-1-en-1-yl 2-(2,6-dimethylphenyl)cyclopropanecarboxylate (3c).

3-Oxocyclohex-1-en-1-yl 2-(3-chlorophenyl)cyclopropanecarboxylate (3f)

3-Oxocyclohex-1-en-1-yl 2,2-diphenylcyclopropanecarboxylate (3g)

3-Oxocyclohex-1-en-1-yl 2,2-bis(4-methoxyphenyl)cyclopropanecarboxylate (3h)

3-Oxocyclohex-1-en-1-yl 2,2-bis(4-chlorophenyl)cyclopropanecarboxylate (3i).

3-Oxocyclohex-1-en-1-yl 2-methyl-2-phenylcyclopropanecarboxylate (3j)

3-Oxocyclohex-1-en-1-yl cyclopropanecarboxylate (3l)

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

(E)-3-Oxocyclohex-1-en-1-yl 2-styrylcyclopropanecarboxylate (3n)

3-Oxocyclohex-1-en-1-yl $2,2-d_2$ -dideutero-3-phenylcyclopropane carboxylate (30)

4,4,6,6-Tetradeutero-3-oxocyclohex-1-en-1-yl 2-phenylcyclopropane carboxylate (3p).

5,5-Dimethyl-3-oxocyclohex-1-en-1-yl 2-phenylcyclopropanecarboxylate (3q)

4-Benzyl-3,4,7,8-tetrahydro-2*H*-chromene-2,5(6*H*)-dione (4a)

3-Hydroxy-2-(2-phenylcyclopropanecarbonyl)cyclohex-2-enone (5a)

0[~]

4-(4-Methylbenzyl)-3,4,7,8-tetrahydro-2*H*-chromene-2,5(6*H*)-dione (4b).

4-(2,6-Dimethylbenzyl)-3,4,7,8-tetrahydro-2*H*-chromene-2,5(6*H*)-dione (4c)

4-(4-Methoxybenzyl)-3,4,7,8-tetrahydro-2*H*-chromene-2,5(6*H*)-dione (4d)

:00

4-(3-Chlorobenzyl)-3,4,7,8-tetrahydro-2*H*-chromene-2,5(6*H*)-dione (4f)

4-Benzhydryl-3,4,7,8-tetrahydro-2*H*-chromene-2,5(6*H*)-dione (4g).

4-(Bis(4-methoxyphenyl)methyl)-3,4,7,8-tetrahydro-2*H*-chromene-2,5(6*H*)-dione (4h)

4-(Bis(4-chlorophenyl)methyl)-3,4,7,8-tetrahydro-2*H*-chromene-2,5(6*H*)-dione (4i)

4-(1-Phenylethyl)-3,4,7,8-tetrahydro-2*H*-chromene-2,5(6*H*)-dione (4j)

4-(1-(4-Chlorophenyl)ethyl)-3,4,7,8-tetrahydro-2*H*-chromene-2,5(6*H*)-dione (4k)

 $\label{eq:4-4} 4-(4-Methoxyphenethyl)-3,4,7,8-tetrahydro-2\textit{H-chromene-2,5}(6\textit{H})-dione~(4m)$

(*E*)-4-Styryl-3,4,7,8-tetrahydro-2*H*-chromene-2,5(6*H*)-dione (4n) and (*E*)-4-(3-Phenylprop-1-en-1-yl)-3,4,7,8-tetrahydro-2H-chromene-2,5(6H)-dione (4n')

Dideutero-4-benzyl-4,6,8-trideutero-3,4,7,8-tetrahydro-2*H*-chromene-2,5(6*H*)-dione (40)

Tetradeutero-4-benzyl-3,4,7,8-tetrahydro-2*H*-chromene-2,5(6*H*)-dione (4p)

4-Benzyl-7,7-dimethyl-3,4,7,8-tetrahydro-2*H*-chromene-2,5(6*H*)-dione (4q)

