Supporting Information

Highly active and reusable organometallic catalysts covalently bonded to

an ordered mesoporous polymer

Fang Zhang,^a Xushi Yang,^a Fengxia Zhu,^a Jianlin Huang,^a Wenhan He,^b Wei Wang,^{b*} and Hexing Li^{a*}

^a The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, P. R. China ^b Department of Chemistry & Chemical Biology, University of New Mexico, MSC03 2060, Albuquerque, NM 87131-0001, USA Table S1. Catalytic performances of Pd-NCP-MPs-2 using different inorganic bases in Sonogashira reactions^a

$\square I + \square I + \square I$				
Catalyst	Base	Conversion	Selectivity	Yield (%)
		(%)	(%)	
Pd-NCP-MPs-2	DBU	82	90	74
	K_2CO_3	81	88	71
	NaOH	73	85	62

^aReaction conditions are shown in Reaction D.

Figure S1. N_2 adsorption-desorption isotherms of Au-NCP-MPs-2, Ni-NCP-MPs-2 and Rh-NCP-MPs-2.

Figure S2. Low-angle XRD patterns of Au-NCP-MPs-2, Ni-NCP-MPs-2 and Rh-NCP-MPs-2.

Figure S3. TEM images of (a) Au-NCP-MPs-2, (b) Ni-NCP-MPs-2 and (c) Rh-NCP-MPs-2.

Figure S4. XPS spectrum of the Pd-NCP-MPs-2 catalyst after being reused repetitively for 5 times.

Figure S5. N_2 adsorption-desorption isotherm of the Pd-NCP-MPs-2 catalyst after being reused for 5 times.