
S1 

 

Supporting information for: 

 

Supramolecular Control over Diels-Alder Reactivity by 

Encapsulation and Competitive Displacement 

 

Maarten M. J. Smulders and Jonathan R. Nitschke 

 

Department of Chemistry 

University of Cambridge 

Lensfield Road, Cambridge CB2 1EW (UK) 

E-mail: jrn34@cam.ac.uk 

 

 

Contents 

1. Experimental ................................................................................................................ S2 

1.1. General ................................................................................................................. S2 

1.2. Synthesis ............................................................................................................... S2 

1.3. Kinetic experiments .............................................................................................. S2 

2. Supporting graphs and Figures ..................................................................................... S4 

2.1. NOESY Spectrum ................................................................................................. S4 

2.2. Ka determination for furan ..................................................................................... S4 

2.3. Furan + Maleimide in D2O: control reaction .......................................................... S7 

2.4. Furan release kinetics at 25 °C .............................................................................. S8 

2.5. Diels-Alder kinetics at 25 °C ............................................................................... S10 

2.6. Furan release kinetics at 5 °C .............................................................................. S11 

2.7. Diels-Alder kinetics at 5 °C ................................................................................. S13 

3. References ................................................................................................................. S14 

Electronic Supplementary Material (ESI) for Chemical Science
This journal is © The Royal Society of Chemistry 2011



S2 

 

1. Experimental 

1.1. General 

All reagents and solvents were purchased from commercial sources and used as supplied. 

NMR spectra were recorded on a Bruker Avance DPX400 spectrometer; δH values are 

reported relative to the internal standard tBuOH (δH = 1.24 ppm). Mass spectra were provided 

by the EPSRC National MS Service Centre at Swansea and were acquired on a Thermofisher 

LTQ Orbitrap XL. 

1.2. Synthesis 

Cage 1 was prepared as the tetramethylammonium salt according to the method reported 

earlier by our group.
S1

 

1.3. Kinetic experiments 

A J-Young NMR tube was loaded with 0.45 mL of a 4.4 × 10
‒3

 M solution of 1 dissolved in 

D2O. To this NMR tube was added 50 µL of a 3.6 × 10
‒2

 M of furan in D2O. After addition, 

the concentration of 1 was 4.0 × 10
‒3

 M, while the concentration of furan was 3.6 × 10
‒3

 M 

(i.e. 0.9 equiv. furan per 1). This solution was left to equilibrate overnight at 50 °C. For the 

room temperature experiments 3.20 mg (3.3 mmol) maleimide was added to the solution, 

while for the experiments at 5 °C 9.71 mg (10 mmol) maleimide was added. To initiate the 

reaction 10 µL of benzene-d6 added and the solution was kept at the appropriate temperature. 

For the control reaction, the reaction was started directly after the addition of maleimide (i.e. 

no benzene-d6 was added). 

 

1.3.1 Monitoring exit kinetics 

As hosts with a different guest are in slow exchange on the NMR timescale, simple 

integration of the imine peaks corresponding to the empty host 1 and its host-guest complexes 

allowed for the determination of these species’ relative proportions as a function of time. 

Table S1 gives the imine peak’s chemical shift for each different host species. 
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Table S1 Chemical shifts for the imine peaks of cage 1 in different host-guest states. 

Guest Chemical shift / ppm 

Furan 9.65 

Benzene 10.26 

Empty 9.35 

 

1.3.2 Monitoring Diels-Alder kinetics 

At room temperature or below, the reaction between furan and maleimide leads primarily to 

the formation of the kinetic endo product.
S2

 Hence, the progress of the Diels-Alder reaction 

was monitored by following the formation of this product. To quantify the yield of the 

reaction, the integrated intensity of the endo product peaks was compared to the internal 

standard’s peak. The internal standard used was tBuOH at a concentration of 5.3 × 10
‒3

 M. 
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2. Supporting graphs and Figures 

2.1. NOESY Spectrum 

 

Fig. S1 NOESY spectrum of furan⊂1 (4.0 × 10
–3

 M) in D2O. The highlighted cross peaks 

indicate the NOE interactions between the two furan proton resonances (6.30 and 5.62 ppm) 

and the inwardly-oriented protons on the cage’s ligand (f (7.20 ppm) and h (5.96 ppm); see 

Scheme 1 in the main text for assignment). 

2.2. Ka determination for furan 

To 5 mL of a 1.0 × 10
–3

 M solution of 1 in D2O was added 4.0 µL of furan, resulting in a total 

furan concentration of 1.1 × 10
–2

 M. The solution was allowed to equilibrate overnight at 50 

°C. Aliquots of this solution were added to 0.50 mL of a 1.0 × 10
–3

 M solution of 1 in D2O. 

After each addition the mixture was equilibrated for 6 hours, after which the 
1
H NMR 

spectrum was recorded (Fig S2). The degree of encapsulation, [HG]/[H]0, was determined by 

comparison of the integrals of the imine peaks of empty 1 (at 9.35 ppm) and furan⊂1 (at 9.65 

ppm). Plotting the degree of encapsulation as a function of the total concentration of furan 

yielded a binding isotherm (Fig S3), which was fitted using a 1:1 binding model we 
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previously derived.
S3

 In this model the degree of encapsulation, [HG]/[H]0, is given by Eq 

S1: 
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in which: 

K = Binding constant, in M
–1

; 

[H]0 = Total host concentration, in M; 

[G]0 = Total guest concentration, in M. 

 

10 9 8 7 6 5 4 3 2 1

Chemical Shift / ppm

 0 eq.
 0.13 eq.
 0.43 eq.
 0.59 eq.
 0.80 eq.
 1.08 eq.
 1.26 eq.
 1.38 eq.
 1.65 eq.
 2.28 eq.
 4.65 eq.
 6.51 eq.

 

Fig. S2 
1
H NMR spectra for 1 in D2O in the presence of increasing equivalents of furan. 

Total concentration of 1: 1.0 × 10
–3

 M. 
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Fig. S3 Degree of encapsulation, [HG]/[H]0, as a function of the total concentration of furan 

and corresponding fit of the data to the 1:1 binding model, revealing a binding constant of 8.3 

± 0.7 × 10
3
 M

–1
.  
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2.3. Furan + Maleimide in D2O: control reaction 

To 900 µL of a solution of maleimide in D2O (4.2 × 10
–2

 M) was added 100 µL of a solution 

of furan in D2O (2.3 × 10
–2

 M). After addition, the concentration of maleimide had become 

3.7 × 10
–2

 M, while the concentration of furan had become 2.3 × 10
–3

 M. The progress of the 

Diels-Alder reaction was monitored by 
1
H NMR spectroscopy by following the 

disappearance of the resonances of the furan (at 7.55 and 6.49 ppm). 

8 7 6 5 4 3

 t = 20 min
 t = 50 min
 t = 200 min
 t = 225 min
 t = 300 min
 t = 1265 min
 t = 1425 min
 t = 1670 min
 t = 2715 min

Chemical Shift / ppm  

Fig. S4 
1
H NMR spectra showing the progress of the Diels-Alder reaction between furan 

(resonances at 7.55 and 6.49 ppm) and maleimide (6.79 ppm) in D2O. The resonances of the 

endo product appear at 6.57, 5.40 and 3.73 ppm, while those of the exo product appear at 

6.61, 5.32 and 3.12 ppm. 
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Fig. S5 Progress of the Diels-Alder reaction between furan and maleimide. The consumption 

of furan could be fitted with a mono-exponential decay function, confirming the validity of 

pseudo-first order conditions. 

2.4. Furan release kinetics at 25 °C 
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Fig. S6 Release kinetics of furan from cage 1 at 25 °C in the absence of benzene (i.e. the 

control reaction). The release of furan was fitted to a mono-exponential decay function, 

resulting in a first-order rate constant (inverse of the life time t1) of 1.65 ± 0.11 × 10
–2

 h
–1

. 
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Fig. S7 Release kinetics of furan from cage 1 at 25 °C. At t = 0 benzene was added to the 

sample, leading to an almost instant release of furan from the cage and encapsulation of 

benzene. As the release of furan was too fast to be monitored, it could not be fitted to a 

mono-exponential decay function. The dotted line is a simulated trace assuming a first-order 

rate constant of 10 h
–1

, showing that the release of furan upon addition of benzene is at least 

three orders of magnitude faster than in the control reaction. 
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2.5. Diels-Alder kinetics at 25 °C 
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Fig. S8 Progress of the Diels-Alder reaction between furan and maleimide at 25 °C. The 

formation of the Diels-Alder product was fitted to a mono-exponential growth function, 

resulting in a rate constant (inverse of the life time t1) of 1.49 ± 0.19 × 10
–2

 h
–1

 for the control 

reaction and 2.03 ± 0.29 × 10
–2

 h
–1

 for the benzene-initiated reaction. This means that at 25 

°C the benzene-initiated Diels-Alder reaction is 36% faster compared to the control reaction. 
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2.6. Furan release kinetics at 5 °C 
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Fig. S9 Release kinetics of furan from cage 1 at 5 °C in the absence of benzene (i.e. the 

control reaction). The release of furan was fitted to a mono-exponential decay function, 

resulting in a first-order rate constant (inverse of the life time t1) of 2.99 ± 0.05 × 10
–3

 h
–1

. 
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Fig. S10 Release kinetics of furan from cage 1 at 5 °C. At t = 0 benzene was added to the 

sample, leading to an almost instant release of furan from the cage and encapsulation of 

benzene. 
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Fig. S11 Release kinetics of furan from cage 1 at 5 °C. At t = 70 h benzene was added to the 

sample, followed by an almost instant release of furan from the cage and encapsulation of 

benzene. 
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2.7. Diels-Alder kinetics at 5 °C 
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Fig. S12 Progress of the Diels-Alder reaction between furan and maleimide at 5 °C. The 

formation of the Diels-Alder product was fitted to a mono-exponential growth function, 

resulting in a rate constant (the inverse of the life time t1) of 3.14 ± 0.11 × 10
–3

 h
–1

 for the 

control reaction and 7.76 ± 0.42 × 10
–2

 h
–1

 for the benzene-initiated reaction. This means that 

at 5 °C the benzene-initiated Diels-Alder reaction is 25 times faster compared to the control 

reaction. For the experiment where the benzene was added at t = 70 h, the following data 

points were fitted to a mono-exponential growth function, resulting in a rate constant (the 

inverse of the life time t1) of 4.95 ± 0.48 × 10
–2

 h
–1

. 
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