## **Electronic Supplementary Information**

for

## Substituent Effects in Cation- $\pi$ Interactions. Recognition of Tetramethylammonium Chloride by Uranyl-Salophen Receptors.

Massimo Cametti<sup>†</sup>, Antonella Dalla Cort and Luigi Mandolini<sup>\*</sup>

Dipartimento di Chimica and IMC-CNR, Università "La Sapienza", Piazzale Aldo Moro 5, 00185 Roma, Italy. email: <u>luigi.mandolini@uniroma1.it</u>

<sup>†</sup>Present address: Dipartimento di Chimica, Materiali ed Ingegneria Chimica "Giulio Natta," Politecnico di Milano, Via Mancinelli 7, 20131 Milano, Italy.

Table of content:

| 1. Materials        | page | 28 |
|---------------------|------|----|
| 2. NMR Studies      | page | 28 |
| 3. Titrations Plots | page | 35 |

**Materials.** Salophen-UO<sub>2</sub> complexes **1** (X= CH<sub>3</sub>O, Me, Br and NO<sub>2</sub>) were available from a previous investigation (ref. 9 in the main text). Tetramethylammonium chloride, (TMA)Cl, and triphenylmethane, TPM, were purchased from Sigma-Aldrich; (TMA)Cl was recrystallized before use as described below before use.

**NMR Studies**. <sup>1</sup>H-NMR spectra were recorded on a 250 MHz Bruker Advance spectrometer. All <sup>1</sup>H-NMR titrations were run at 298 K following a published procedure (ref. 11 in the main text). Each tested receptor was washed with CHCl<sub>3</sub> (amylene stabilized, three times) prior to the experiment. (TMA)Cl was re-crystallized from MeOH and dried before its use. Stock solution of (TMA)Cl was obtained by adding an excess of it in a CDCl<sub>3</sub> solution. After 12-18 hours of stirring, the solution was filtrated, and the (TMA)Cl concentration was measured by <sup>1</sup>H-NMR. Triphenylmethane was used as an internal standard. The (TMA)Cl stock solution was then diluted final concentration range 0.15-0.40 mM



**Figure 1S**. Example of (TMA)Cl concentration measurement by signals' integral comparison with an internal standard TPM.

## **Titrations Plots.**

Titration plots for Salophen-UO<sub>2</sub> complexes **1** (**X**= **H**) and Salophen-UO<sub>2</sub> complexes **3** were already reported in reference 10b and 9 (see manuscript), respectively. Reported values are  $\sigma$ -weighted averages from two independent runs using equation (1):

$$K = \left(\sum_{i}^{N} \frac{K_i}{\sigma_i^2}\right) / \left(\sum_{i}^{N} \frac{1}{\sigma_i^2}\right)$$
(1)



Figure 2S. <sup>1</sup>H NMR titration of 0.15 mM (TMA)Cl with receptor 1 (X =OCH<sub>3</sub>) in CDCl<sub>3</sub> at 25°C.

K, X= OCH<sub>3</sub> first run:  $16900 \pm 600$ second run:  $18100 \pm 500$ 



Figure 3S. <sup>1</sup>H-NMR titration of 0.40 mM (TMA)Cl with receptor 1 (X= Me) in CDCl3 at 25°C.

K, X= Me first run: 14150 ± 850 second run: 16200 ± 1000



Figure 4S. <sup>1</sup>H NMR titration of 0.20 mM (TMA)Cl with receptor 1 (X = Br) in  $CDCl_3$  at 25°C.

K, X= Br first run:  $10200 \pm 1000$ second run:  $11300 \pm 600$ 



Figure 5S. <sup>1</sup>H NMR titration of 0.23 mM (TMA)Cl with receptor 1 (X =  $NO_2$ ) in CDCl<sub>3</sub> at 25°C.

K, X= NO<sub>2</sub> first run:  $6500 \pm 1000$ second run:  $8550 \pm 600$