Electronic Supplementary Information for

5

10

Heterometallic Cu^{II}/Dy^{III} 1D chiral polymer: Chirogenesis and Exchange Coupling of Toroidal Moments in trinuclear Dy₃ Single Molecule Magnets

Ghenadie Novitchi^a, Guillaume Pilet^a, Liviu Ungur^{b,c}, Victor V. Moshchalkov^d, Wolfgang Wernsdorfer^e, Liviu F. Chibotaru^b*, Dominique Luneau^a*, Annie K. Powell^{f,g}*

Infrared spectra were recorded on a NICOLET spectrophotometer with solid samples on a Golden Gate diamond ATR accessory. The circular dichroism (CD) spectra were recorded on a Chirascan spectropolarimeter using Chirascan software (Applied Biophysics Ltd., Leatherhead, UK). All starting materials and solvents were purchased from Aldrich and were used without further purification.

Synthesis of $L-2({CuDy_3}_n)$:

The 0.15g (1mmol) *o-vanillin*, 0.12g (1mmol) *L-valine* and 0.23g (1mmol) $Cu(NO_3)_2 2.5H_2O$ were dissolved in 10 ²⁰ ml of methanol and stirred for 10 min. A solution of $Dy(NO_3)_3 6H_2O$ 0.70g (1.53mmol) in 7 ml of methanol was added. Upon formation of a green solution the 0.4-0.5 ml of *triethylamine* were added dropwise. The intense green solution was filtered and covered. After two days of slow evaporation 0.085g of blue well-formed crystal were isolated by filtration and dried in air. *Anal.* Found, %: C, 27.01; H, 2.92; N, 5.12. Calc. for C₆₉H₈₅Cu₂Dy₆N₁₁O₅₄(3034.57 g/mol): C, 27.31; H, 2.82; N, 5.08.

The compounds $L-1({CuY_3}_n)$, $D-2({CuDy_3}_n)$, and $D-3({CuGd_3}_n)$, were obtained in similar ways.

L-1 *Anal.* Found, %: C, 32.05; H, 3.23; N, 6.10. Calc. for $C_{69}H_{85}Cu_2Y_6N_{11}O_{54}(2592.98)$: C, 31.96; H, 3.30; N, 5.95%. **D-2** *Anal.* Found, %: C, 27.03; H, 2.96; N, 5.09. Calc. for $C_{69}H_{85}Cu_2Dy_6N_{11}O_{54}(3034.57 \text{ g/mol})$: C, 27.31; H, 2.82; N, 5.08. **D-3** *Anal.* Found, %: C, 27.10; H, 2.91; N, 5.17. Calc. for $C_{69}H_{85}Cu_2Gd_6N_{11}O_{54}(2568.6)$: C, 27.60; H, 2.85; N, 5.13%.

Figure S1 IR spectra of 1-3 compounds.

5 *Figure S2*. The CD spectra of L-2 and D-2 in KBr

Figure S3.(a) chains A and B running along the *a*-axis of the unit-cell; (b) copper(II) complex bridging two Ln₃ units. For clarity, the fifth coordination position (H₂O or MeOH) has been removed; (c) Ln₃ cluster. Axial ligands (NO₃ and H₂O) have been removed for clarity; hydrogen atoms have been removed for clarity.

Figure S4:Ln₃ units (a) and Cu complex (b) with labelling

Figure S5 Thermal dependence of the χT products per CuY₃ units at 0.1T for L-1.

Figure S6 Magnetisation M vs applied field H at 2K and 5K, for **D-3**, The solid lines correspond to the best simulated data corresponding to coupled Cu^{II} and Gd^{III} ions see main text for details.

Figure S7. Magnetisation M vs applied field H at 2K and 5K, for D-2 (left), L-2(right), The solid lines are just to guide the eyes.

Figure S8 Temperature dependence of the in-phase (χ') and out-of-phase (χ'') ac susceptibility component at different frequencies for **D-2**

s *Figure S9* Frequency dependence of the out-of-phase (χ ") ac susceptibility component at different field for L-2 at 2K

Figure S10 Single-crystal magnetization (M) vs. applied field measurements for complex L-2 (left) D-2 (right) . a) and d) with different field sweep rates at 0.04 K; c) and f) at constant field sweep rate (0.14T/s) at different temperatures. b) and e) s is zoom of a) and d). M is normalised to its saturation value at 1.4 T.

rable 51. Important bond lengths (III A) for L-2, D-2 and D-5 compounds						
		D- 2	L-2	D-3		
	Ln1 - O123	2.34(1)	2.33(1)	2.37(1)		
	Ln1 - O9	2.30(1)	2.30(1)	2.32(1)		
	Ln1 - O11	2.36(1)	2.38(1)	2.38(1)		
	Ln1 - O42	2.63(1)	2.61(1)	2.61(2)		
	Ln1 - O49	2.33(1)	2.32(1)	2.37(1)		
	Ln1 - O62	2.46(1)	2.48(1)	2.54(1)		
	Ln1 - O63	2.594(9)	2.59(1)	2.62(1)		
	Ln1 - O101	2.301(8)	2.297(8)	2.354(9)		
	Ln1 - O102	2.345(8)	2.351(8)	2.397(8)		
	Ln2 - O22	2.51(1)	2.53(1)	2.54(2)		
	Ln2 - O29	2.31(1)	2.30(1)	2.33(1)		
	Ln2 - O49	2.32(1)	2.32(1)	2.35(1)		
	Ln2 - O51	2.38(2)	2.42(1)	2.38(2)		
	Ln2 - O72	2.44(1)	2.46(1)	2.48(1)		
8	Ln2 - O73	2.72(1)	2.72(1)	2.70(1)		
	Ln2 - O101	2.330(8)	2.335(8)	2.367(9)		
hai	Ln2 - O102	2.34(1)	2.327(9)	2.384(8)		
Ū	Ln2 - O111	2.351(9)	2.335(9)	2.41(1)		
	Ln3 - O2	2.61(1)	2.54(1)	2.61(2)		
	Ln3 - 09	2.312(9)	2.324(9)	2.391(9)		
	Ln3 - O29	2.29(1)	2.29(1)	2.33(1)		
	Ln3 - O31	2.34(1)	2.33(1)	2.36(1)		
	Ln3 - 082	2.46(1)	2.461(9)	2.51(1)		
	Ln3 - 083	2.54(1)	2.50(1)	2.54(1)		
	Ln3 - 092	2.40(1)	2.41(1)	2.46(1)		
	Ln3 - 0101	2.370(9)	2.359(9)	2.386(9)		
	Ln3 - 0102	2.35(1)	2.379(8)	2.358(9)		
	Cul - 0113	1 930(8)	1 934(9)	1 956(9)		
	Cu1 - N118	1.95(1)	1.97(1)	1.96(1)		
	Cul - 0121	1.928(8)	1.93(1)	1 935(8)		
	Cu1 - N128	2.01(1)	2.02(2)	2.03(2)		
	Cu1 - 0131	2.38(1)	2.32(1)	2.34(1)		
	Ln11 - 0323	2.36(1)	2 35(1)	2 37(1)		
	Ln11 = 0.000000000000000000000000000000000	2.34(1) 2 32(2)	2.55(1) 2 34(1)	2.37(1) 2 33(2)		
	Ln11 = 0209 L n11 = 0211	2.32(2) 2.37(1)	2.54(1)	2.55(2) 2 41(1)		
	Ln11 - 0242	2.57(1) 2.58(2)	2.50(1)	2.41(1) 2 57(2)		
	Ln11 - 0242 Ln11 - 0249	2.30(2)	2.31(1) 2 316(9)	2.37(2)		
	Ln11 - 0249	2.52(1)	2.510(5)	2.57(1) 2.62(1)		
	Ln11 - 0262	2.00(1) 2.49(2)	2.00(1)	2.52(1)		
	Ln11 - 0205	2.7(2) 2.31(1)	2.30(1)	2.52(2) 2 35(1)		
	Ln11 - 0302	2.31(1) 2.38(1)	2.34(1)	2.55(1) 2.42(1)		
	Lill - 0302	$\frac{2.38(1)}{2.53(2)}$	2.59(1)	2.42(1)		
	Ln12 - 0222 Ln12 - 0220	2.33(2) 2.33(1)	2.32(1) 2.33(1)	2.33(2) 2.35(1)		
	Ln12 - 0229 L n12 - 0240	2.33(1)	2.33(1) 2.22(1)	2.53(1) 2.22(1)		
	Ln12 - 0249 Ln12 - 0251	2.31(1) 2.35(1)	2.35(1) 2.35(1)	2.32(1) 2.39(1)		
	Ln12 - 0231 L n12 - 0272	2.33(1) 2.47(1)	2.55(1) 2.47(1)	2.59(1) 2.52(1)		
	Lm12 - 0272 Lm12 - 0273	2.47(1)	2.47(1) 2.67(1)	2.52(1) 2.60(1)		
A I	Ln12 - 0273 L n12 - 0201	2.00(1)	2.07(1) 2.240(0)	2.09(1) 2.262(0)		
air	Lil12 - 0301	2.320(9)	2.349(9)	2.302(9)		
C	Ln12 - 0302 L n12 - 0311	2.34(1) 2.36(1)	2.534(8) 2.32(1)	2.59(1) 2.41(1)		
	Lill2 - 0311	2.50(1)	2.53(1)	2.41(1)		
	LIII3 - 0202	2.33(2)	2.37(1) 2.20(1)	2.38(2)		
	Lill3 - 0209	2.29(2)	2.29(1)	2.55(2)		
	LIII3 - 0229	2.30(1)	2.29(1)	2.53(1)		
	Ln13 - 0231 Ln12 - 0282	2.33(2)	2.30(2)	2.51(2)		
	Ln13 - 0282	2.47(2)	2.49(2)	2.54(2)		
	Ln13 - 0283	2.62(2)	2.59(2)	2.70(2)		
	Ln13 - 0291	2.44(2)	2.40(2)	2.52(2)		
	Ln13 - 0301	2.3/(1)	2.3/(1)	2.41(1)		
	$\frac{113 - 0302}{0.11 - 0212}$	2.30(1)	2.356(9)	2.35(1)		
	Cull - 0313	1.96(1)	1.95(1)	1.96(1)		
	Cull - N318	1.94(2)	1.94(1)	1.92(1)		
	Cu11 - O321	1.97(2)	1.95(1)	2.00(2)		
	Cull - N328	1.95(2)	2.00(2)	1.96(2)		
	Cu11 - O331	2.51(2)	2.71(2)	2.87(2)		

Table S1. Important bond lengths (in Å) for L-2, D-2 and D-3 compounds

		D-2	L-2	D-3
	Ln1 - O101 - Ln2	99.4(3)	99.8(3)	99.1(3)
	Ln1 - O49 - Ln2	99.0(4)	99.5(4)	99.2(5)
	Ln1 - O102 - Ln2	97.9(3)	98.4(3)	97.5(3)
B	Ln1 - O9 - Ln3	99.0(4)	98.9(4)	98.2(3)
air	Ln1 - O101 - Ln3	97.3(3)	97.9(3)	97.3(3)
CP	Ln1 - O102 - Ln3	96.7(3)	95.8(3)	96.9(3)
	Ln2 - O29 - Ln3	99.5(3)	99.4(3)	99.1(3)
	Ln2 - O101 - Ln3	96.7(3)	96.5(3)	96.4(3)
	Ln2 - O102 - Ln3	97.1(3)	96.1(3)	96.7(3)
	Ln11 - O249 - Ln12	98.8(5)	98.7(4)	99.6(4)
	Ln11 - O301 - Ln12	99.0(4)	97.5(3)	98.8(3)
	Ln11 - O302 - Ln12	96.4(4)	96.6(3)	96.1(4)
Y	Ln11 - O209 - Ln13	99.1(4)	98.7(4)	98.2(4)
air	Ln11 - O301 - Ln13	97.1(3)	96.4(3)	96.1(3)
Ch	Ln11 - O302 - Ln13	95.2(3)	95.5(3)	95.8(4)
	Ln12 - O229 - Ln13	99.8(5)	100.2(4)	99.8(5)
	Ln12 - O301 - Ln13	98.2(4)	97.2(4)	97.7(4)
	Ln12 - O302 - Ln13	97.8(3)	97.9(3)	98.4(4)

Table S2. Important angles (in deg.) for L-2, D-2 and D-3 compounds

Ab initio results for D-Dy₃Cu chain

Figure S11. Structure of the calculated Dy1 fragment of the D-Dy₃Cu complex. Model fragments for Dy2 and Dy3 are similar. Hydrogen atoms are not shown for clarity.

Figure S12. Structure of the calculated Cu fragment of the D-Dy₃Cu complex. Hydrogen atoms are not shown for clarity.

Computational details:

⁵ **Basis Sets:** All employed basis sets were taken from the standard ANO-RCC basis set library from MOLCAS. The following contractions were used for the atoms:

Dy-8s7p5d4f2g1h

La –.7s6p4d3f1g.

Zn – Zn.ECP.Lopez-Moraza.0s.0s.0e-AIMP-KZnF3.

¹⁰ N, O – 4s3p2d. (only for the first coordinated atoms, which make a bond with Dy)

C - 4s3p2d.(only for the atoms which are directly bonded to the first coordination sphere of O and N)

N,O, C - 3s2p. (for distant atoms)

H - 3s1p. (only for the atoms which are directly bonded to the first coordination sphere of O and N)

H - 2s. (for distant atoms)

Active space of the CASSCF method included 9 electrons in 7 orbitals. It includes the 4f shell of the Dy^{3+} ion. The spin orbit interaction was computed by mixing of 21 sextets, 128 quartets and 32 doublet spin free states.

Table S3. CASSCF energies of the lowest spin-free states (cm⁻¹) on magnetic sites.

20

15

Spin multiplicity		Spin free energies			
		Dy1	Dy2	Dy3	Cu
		0.000	0.000	0.000	
		58.547	37.708	42.769	
6	Н	114.738	122.597	164.704	
		192.204	181.795	233.910	
		221.912	284.944	300.483	

	_				
		282.877	314.131	340.609	
		302.631	367.924	379.556	
		421.734	430.904	458.440	
		441.565	464.930	483.917	
		565.586	678.246	537.146	
		578.746	689.955	560.746	
		7637.184	7668.929	7677.012	
		7669.328	7686.831	7704.940	
		7704.903	7747.301	7748.476	
	F	7763.935	7794.063	7782.296	
		7797.614	7833.875	7809.627	
		7806.572	7874.712	7835.987	
		7849.228	7895.155	7871.694	
		34863.266	34811.224	34842.200	
	Р	34976.271	35101.538	35095.198	
		35149.086	35194.005	35142.731	
		24921.338	24935.248	24950.297	
		24932.571	24941.165	24955.975	
		24971.905	24985.656	25031.445	
		24972.482	25004.350	25039.293	
		24997.838	25015.956	25053.241	
		25013.514	25035.701	25060.538	
		25034.771	25070.681	25074.027	
		25059.803	25083.984	25082.517	
		25066.513	25094.751	25101.128	
		25085.484	25100.519	25109.640	
4		25088.979	25133.752	25118.739	
		25114.661	25170.122	25161.065	
		25129.636	25178.985	25179.714	
		25205.112	25245.370	25251.573	
		25274.500	25288.708	25290.019	
		25286.552	25323.901	25334.903	
		25313.357	25325.601	25355.237	
		25336.014	25344.771	25373.237	
		25340.959	25368.331	25384.941	
		25344.690	25389.946	25388.548	
		37354.086	37371.424	37386.579	0.000
		37365.103	37376.730	37390.437	16791.038
		37373,495	37389.643	37428.001	17955.770
		37382.668	37394.561	37434.720	18613.942
		37399.086	37430.764	37436.525	19278.372
		37420.832	37448.663	37481.421	22898.133
		37470.519	37509.928	37512.880	39717.705
		37486.726	37520.625	37526.860	40890.507
		37505.008	37554.523	37529.926	41567.112
		37560.492	37588.057	37569.176	42230.478
2		37577.797	37617.094	37575.014	
_		37588.154	37617.726	37594.714	
		37601.318	37645.417	37632.357	
		37633.091	37668.563	37653.810	
		37641 610	37668 617	37658 583	
		37649 880	37694 565	37667 426	
		37663 999	37713 147	37682.429	
		39033 593	39055 683	39070 861	
		39046 601	39066 455	39075 776	
		39084 498	39111 077	39132 158	
		57007.770	57111.077	57152.150	

Table S4. Energies of the lowest spin-orbit states (cm⁻¹).

Spin orbit energies (RASSI)						
Dy1	Dy2	Dy3	Cu			
0.000	0.000	0.000	0.000			
89.773	94.571	118.074	16627.750			
118.022	176.540	182.822	17580.246			
164.407	227.134	229.912	18725.574			
208.756	282.757	297.322	19989.554			
307.808	338.063	343.775	22948.429			
336.295	400.718	383.366	39752.866			
423.123	560.323	430.332	40853.364			
3551.928	3546.645	3560.904	41677.107			
3620.905	3659.036	3674.445	42356.186			
3669.121	3713.725	3730.757				
3724.763	3776.179	3760.973				
3751.344	3825.827	3798.209				
3776.087	3863.476	3833.829				
3843.512	3931.708	3872.628				
6114.084	6113.740	6134.979				
6173.736	6209.531	6216.301				
6212.571	6273.561	6256.435				
6252.427	6326.127	6305.842				
6283.432	6369.102	6359.751				
6373.973	6441.745	6389.779				
8068.298	8083.296	8105.473				
8124.199	8170.589	8166.007				
8185.385	8244.191	8224.562				
8224.474	8307.926	8293.394				
8312.462	8377.693	8338.530				
9587.747	9615.002	9632.561				
9694.531	9732.668	9734.192				
9749.728	9829.804	9798.893				
9827.277	9895.367	9866.874				

	Α	В	С
g _x	2.0879	2.0561	2.0757
g _v	2.1174	2.0896	2.0994
gz	2.5098	2.3357	2.4137

Table S5. Main values of the *g* tensors for the lowest Kramers doublet on Cu (II) calculated in different computational approximations:

A – CAS (9 in 10), RASSI – mixing of 5 ligand field (LF) states;

B – CAS (11 in 11), RASSI – mixing of 5 LF states + 5 charge transfer (CT) states;

C - CAS (11 in 11), CASPT2, RASSI - mixing of 5 LF states + 5 CT states.

10

The exchange couplings between all interacting magnetic sites were found antiferromagnetic. The values of the best Lines exchange parameters, obtained from the fitting of $\chi T(T)$ and M(H) for **D-2** are $J_1(\text{Dy-Dy})=-0.47 \text{ cm}^{-1}$ and $J_2(\text{Dy-Cu}) = -150.64 \text{ cm}^{-1}$. Figures 5 (from the main text) and S3-S5 show the comparison between measured and calculated magnetic properties.

Figure S13. A comparison between measured (empty squares) and calculated (red line) molar magnetization at 2.0 K for ²⁰ the D-Dy₃Cu chain.

15

Figure S14. A comparison between measured (empty squares) and calculated (red line) molar magnetization at 4.0 K for the D-Dy₃Cu chain.

⁵ Figure S15. A comparison between measured (empty squares) and calculated (red line) molar magnetization at 5.0 K for the **D-2** chain.