-Electronic Supplementary Information-

Nucleophilicity parameters for designing transition metal-free C-C bond forming reactions of organoboron compounds

Guillaume Berionni, Biplab Maji, Paul Knochel and Herbert Mayr*

Department Chemie, Ludwig-Maximilians-Universität, Butenandtstr. 5–13 (Haus F), 81377 München, Germany. E-mail: Herbert.Mayr@cup.uni-muenchen.de

Table of contents:

1	General	S2
2	Preparation of organoboron compounds 1c-g	S 3
3	Product studies	S7
4	Kinetics	S14
5	Determination of the nucleophilicity of organoboron compounds 1b–g	S25
6	References	S26
7	Copies of NMR spectra	S27

1. General

Materials

Commercially available acetonitrile (VWR, Prolabo, HPLC-gradient grade and Acros, 99.9%, Extra Dry, AcroSeal) was used as received. Commercially available THF (Sigma-Aldrich, p.a.) was distilled over sodium prior to use.

The benzhydrylium tetrafluoroborates $Ar_2CH^+ BF_4^-$ were prepared as described before.^{S1} 5methylfuran-2-ylboronic acid **1a** was synthesised as described in the literature.^{S2} 2-Methyl-5-(pinacolboryl)furan **1b** (CAS Registry Number: 338998-93-9) is commercially available (ABCR, purity 98 %) and used as received.

Analytics

¹H NMR (400 and 300 MHz), ¹³C NMR (100.6 and 75.5 MHz), and ¹⁹F NMR spectra (376.3 MHz) were recorded on Varian NMR systems in CD₃CN or CDCl₃. Chemical shifts in ppm refer to the solvent residual signal in CD₃CN ($\delta_{\rm H}$ 1.94, $\delta_{\rm C}$ 1.4 ppm) or CDCl₃ ($\delta_{\rm H}$ 7.24, $\delta_{\rm C}$ 77.2 ppm) as internal standard or to external CFCl₃ ($\delta_{\rm F}$ 0.0 ppm), respectively. ¹¹B NMR spectra (128.3 MHz) were obtained by using a JEOL ECX-400 spectrometer and referenced to external BF₃·OEt₂ (0.0 ppm). The following abbreviations were used to describe the mutiplicities of resonances: br s = broad singlet, s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet. NMR signal assignments are based on additional 2D-NMR experiments (COSY, HSQC, and HMBC).

Kinetics

The rates of all investigated reactions were determined photometrically. The temperature of the solutions during all kinetic studies was kept constant $(20.0 \pm 0.1^{\circ}C)$ by using a circulating bath thermostat. The kinetic experiments were carried out with freshly prepared stock solutions of **1** in CH₃CN. The electrophiles **2** and **9–13** (also prepared as stock solutions in CH₃CN if not mentioned otherwise) were always employed as minor component in the reactions with the nucleophiles **1**, resulting in first-order kinetics.

The rates of slow reactions ($t_{1/2} > 15-20$ s) were determined by using a J&M TIDAS diode array spectrophotometer controlled by Labcontrol Spectacle software and connected to a Hellma 661.502-QX quartz Suprasil immersion probe (5 mm light path) via fiber optic cables and standard SMA connectors. For the evaluation of fast kinetics ($t_{1/2} < 20$ s) the stoppedflow spectrophotometer system Applied Photophysics SX.18MV-R stopped-flow reaction analyser was used.

Rate constants k_{obs} (s⁻¹) were obtained by fitting the single exponential $A_t = A_0 \exp(-k_{obs}t) + C$ (exponential decrease if not mentioned otherwise) to the observed time-dependent absorbance (averaged from at least 5 kinetic runs for each nucleophile concentration in case of stopped-flow methodology). Second-order rate constants k_2 (M⁻¹ s⁻¹) were derived from the slopes of the linear correlations of k_{obs} with nucleophile concentrations.

2. Preparation of organoboron compounds 1c-g

5-Methyl-2-(*N*-methyl-1,3,6,2-dioxazaborocane)furan (1c)

The 5-methylfuran-2-ylboronic acid **1a** (1.00 mmol, 126 mg) and *N*-methyldiethanolamine (0.999 mmol, 119 mg) were mixed in diethyl ether (5 mL, freshly distilled). The formed precipitate was separated by filtration, washed with diethyl ether (2 × 50 mL), and dried in vacuum (1 × 10^{-3} mbar). The crude product was purified by precipitation from AcOEt/Et₂O mixtures to give **1c** as a yellowish solid (79 mg, 39 %).

Mp. 116-118 °C (AcOEt/Et₂O).

¹**H NMR** (400 MHz, CD₃CN): δ 2.25 (s, 3 H, 6-H), 2.39 (s, 3 H, 11-H), 2.91–2.97 and 3.12– 3.18 (m, 4 H, 10-H and 10'-H), 3.87–3.95 (m, 4 H, 9-H and 9'-H), 5.88 (d, *J* = 2.0 Hz, 1 H, 4-H), 6.29 (d, *J* = 2.0 Hz, 1 H, 3-H) ppm.

¹³C NMR (100 MHz, CD₃CN): δ 14.2 (q, C-6), 47.2 (q, C-11), 61.4 (t, C-9, C-9'), 63.0 (t, C-10, C-10'), 106.6 (d, C-4), 117.6 (d, C-3), 154.4 (s, C-5) ppm. C-2 has not been detected.^{S3}
¹¹B NMR (128.3 MHz, CD₃CN): δ 10.6 ppm.

(5-Methyl-2-furanyl)boronic acid N-methyliminodiacetic ester (1d)

In analogy to the procedure described in reference S3, a two-necked flask was charged with freshly distilled THF (40 mL) and distilled 2-methylfuran (910 mg, 11.1 mmol) under argon. The solution was cooled at -40 °C and *n*-butyllithium (2.1 M in hexane, 4.8 mL, 10 mmol) was added dropwise. The mixture was then allowed to warm progressively to 0 °C within 2 h. After cooling at -78 °C, neat triisopropylborate (2.16 g, 11.5 mmol) was added dropwise

under vigorous stirring and the solution was allowed to warm to 20 °C within 4 h. Subsequently, the mixture was slowly transferred via a cannula into a flask containing *N*-methyliminodiacetic acid (2.1 g, 15 mmol) in DMSO (20 mL) at a temperature of 100 °C. After 2 h the solution was cooled to 20 °C and filtrated through Celite. The solvents were evaporated under vacuum. The residue was crystallised from acetonitrile/diethyl ether solutions to furnish **1d** as an off-white crystalline solid (1.1 g, 42%).

Mp. 135-137 °C (CH₃CN/Et₂O).

¹**H NMR** (400 MHz, CD₃CN): δ 2.29 (s, 3 H, 6-H), 2.63 (s, 3 H, 11-H), 3.88 (d, *J* = 17.0 Hz, 2 H, 9'-H), 4.04 (d, *J* = 17.0 Hz, 2 H, 9-H), 6.02 (d, *J* = 3.1 Hz, 1 H, 4-H), 6.58 (d, *J* = 3.1 Hz, 1 H, 3-H) ppm.

¹³**C NMR** (100 MHz, CD₃CN): δ 14.1 (q, C-6), 48.3 (q, C-11), 62.8 (t, C-9 and C-9'), 107.4 (d, C-4), 120.5 (d, C-3), 120.6 (s, C-5), 169.6 (s, C-10 and C-10') ppm. C-2 has not been detected.^{S3}

¹¹**B NMR** (128.3 MHz, CD₃CN): δ 9.7 ppm.

Potassium (5-methylfuran-2-yl)trifluoroborate (1e)

(CAS Registry Number: 1111213-54-7)

Following a procedure described in reference S4, the boronic acid **1a** (756 mg, 6.00 mmol) was dissolved in methanol (5 mL), and the solution was cooled at 0 °C. A concentrated aqueous solution of KHF₂ (1.40 g in 5 mL of water, 18.5 mmol) was added dropwise at 0 °C, and the reaction was allowed to warm at r.t. within 1 h. Then the solvent was removed under vacuum. The crude product was purified by two subsequent crystallisations from acetone/diethyl ether solutions to give **1e** as a colorless solid (680 mg, 62 %).

Mp. 265–267 °C (acetone/Et₂O).

¹**H NMR** (400 MHz, CD₃CN): δ 2.23 (s, 3 H, 6-H), 5.78 (m, 1 H, 4-H), 6.04 (m, 1 H, 3-H) ppm.

¹³C NMR (100 MHz, CD₃CN): δ 12.6 (q, C-6), 104.6 (s, C-4), 111.5 (m, C-3), 150.5 (s, C-5) ppm. C-2 has not been detected.^{S3}

¹¹**B** NMR (128.3 MHz, CD₃CN): δ 1.9 (q, J_{B-F} = 47.3 Hz) ppm.

¹⁹**F NMR** (376.3 MHz, CD₃CN): δ –141.9 (m) ppm.

NMR data for compound 1e are in accordance with those reported in reference S3.

Lithium tetrakis(5-methyl-2-furyl)borate (1f)

To a preformed solution of 5-methylfuryl-2-lithium (22.5 mmol, 2.00 mL) in 40 mL of THF (see synthesis of compound **1d** for the lithiation of 2-methylfuran) was added dropwise $BF_3 \cdot OEt_2$ (700 µL, 5.62 mmol) at 0 °C. The reaction mixture was stirred overnight at room temperature. The formed precipitate was separated by filtration and purified by two subsequent crystallisations from acetone/diethyl ether solutions to give **1f** as a yellowish solid (0.34 g, 51%).^{S5}

Mp. 330-333 °C (decomposition).

¹**H NMR** (400 MHz, CD₃CN): δ 2.20 (s, 12 H, 6-H), 5.71-5.72 (m, 4 H, 4-H), 5.76-5.78 (m, 4 H, 3-H) ppm.

¹³**C NMR** (100 MHz, CD₃CN): δ 14.4 (q, C-6), 112.8 (d, J_{C-B} = 5.3 Hz, C-3), 106.2 (d, C-4), 150.3 (s, C-5), 176.8 (s, J_{C-B} = 60.1 Hz, C-2) ppm.

¹¹**B NMR** (128.3 MHz, CD₃CN): δ 1.8 ppm.

HRMS (EI) m/z calcd. for C₂₀H₂₀¹¹BO₄⁻: 335.1460, found 335.1466

Lithium 5-methyl-2-furanyl triol borate (1g)

The procedure described in reference S6 was used, starting from 2-methylfuran (1.00 mL, 11.0 mmol) and 1,1,1-tris(hydroxymethyl)ethane (1.32 g, 11.0 mmol). The crude product was purified by two subsequent crystallisations from acetonitrile/ethyl acetate solutions to give **1g** as a colorless solid (1.55 g, 68 %).

Mp. 124-126 °C (CH₃CN/EtOAc).

¹**H NMR** (400 MHz, DMSO + 1 drop of D₂O): δ 0.44 (s, 3 H, 9-H), 2.14 (s, 3 H, 6-H), 3.50 (s, 6 H, 7-H), 5.63-5.64 (m, 1 H, 4-H), 5.69-5.70 (m, 1 H, 3-H) ppm.

¹³C NMR (100 MHz, DMSO + 1 drop of D₂O): δ 13.5 (q, C-6), 16.2 (q, C-9), 30.7 (s, C-8), 73.4 (t, C-7, C-7' and C-7''), 104.5 (d, C-4), 110.3 (d, C-3), 148.1 (s, C-5) ppm. C-2 has not been detected.
¹¹B NMR (128.3 MHz, CD₃CN): δ 0.5 ppm.

HRMS (EI) m/z calcd. for C₁₀H₁₄¹¹BO₄⁻: 209.0991, found 209.0991.

S6

3. Product studies

2-(Bis(4-methoxyphenyl)methyl)-5-methylfuran (3)

*From 1b and 2a-BF*₄: To a solution of **1b** (209 mg, 1.00 mmol) in acetonitrile (5 mL) was added dropwise a solution of **2a-**BF₄ (310 mg, 1.10 mmol) in acetonitrile (5 mL). The reaction mixture was stirred for 5 min at room temperature. The solvent was then evaporated under vacuum, and the residue was purified by flash chromatography on silica gel (ethyl acetate/*n*-pentane = 1/9) to yield **3** as a colorless oil (228 mg, 78%).

 $R_f = 0.76$ (EtOAc/*n*-pentane = 1/4)

¹**H NMR** (300 MHz, CDCl₃): δ 2.23 (s, 3 H, CH₃), 3.77 (s, 6 H, OCH₃), 5.28 (s, 1 H, 1-H), 5.70 (dd, J = 3.0, 0.5 Hz, 1 H, 3-H), 5.85 (dd, J = 3.0, 1.0 Hz, 1 H, 4-H), 6.81 (d, J = 8.8 Hz, 4 H, 7-H), 7.06 (d, J = 8.4 Hz, 4 H, 8-H) ppm.

¹³**C NMR** (75.5 MHz, CDCl₃): δ 13.9 (q, CH₃), 49.5 (d, C-1), 55.5 (q, OCH₃), 106.1 (d, C-4), 108.9 (d, C-3), 114.0 (d, C-8), 129.8 (d, C-7), 134.8 (s, C-6), 151.5 (s, C-9), 155.8 (s, C-5), 158.4 (s, C-2) ppm.

NMR data for compound 3 are in accord with those reported in reference S7.

*From 1c and 2a-BF*₄: To a solution of 1c (210 mg, 1.00 mmol) in acetonitrile (5 mL) was added dropwise a solution of 2a-BF₄ (310 mg, 1.10 mmol) in acetonitrile (5 mL). The reaction mixture was stirred for 5 min at room temperature. The solvent was then evaporated under vacuum, and the residue was purified by flash chromatography on silica gel (ethyl acetate/*n*-pentane = 1/9) to yield 3 as a colorless oil (170 mg, 55%). Spectroscopic data for 3 were the same as above.

*From 1d and 2a-BF*₄: To a solution of **1d** (237 mg, 1.00 mmol) in acetonitrile (5 mL) was added dropwise a solution of **2a-BF**₄ (310 mg, 1.10 mmol) in acetonitrile (5 mL). The reaction mixture was stirred for 5 min at room temperature. The solvent was then evaporated under vacuum, and the residue was purified by flash chromatography on silica gel (ethyl acetate/*n*-

pentane = 1/9) to give **3** and 3,5-bis(bis(4-methoxyphenyl)methyl)-2-methylfuran (**4**). For the crude product a 1/2-ratio of **3**/**4** was determined from the ¹H NMR spectrum. Isolated yield of **3**: 49 mg (16 %, spectroscopic data for **3** were the same as above); isolated yield of **4**: pale yellow oil, (106 mg, 34 %).

$R_{f} = 0.49$ (EtOAc/*n*-pentane = 1/4).

¹H NMR (CDCl₃, 400 MHz): δ 2.01 (s, 3 H, CH₃), 3.76, 3.77 (2 s, 2 × 6H, OCH₃), 5.10 (s, 3-CH), 5.22 (s, 1-CH), 5.62 (s, 1 H, 2-H), 6.78-6.81 (m, 8 H, Ar), 7.01-7.06 (m, 8 H, Ar) ppm.
¹³C NMR (CDCl₃, 100 MHz): δ 12.2 (q, CH₃), 46.1 (d, 3-CH), 49.5 (d, 1-CH), 55.4 (q, OCH₃), 110.2 (d, C-2), 113.8 (d, Ar), 113.9 (d, Ar), 122.3 (s, C-3), 129.82 (d, Ar), 129.86 (d, Ar), 134.9 (s, Ar), 136.7 (s, Ar), 147.2 (s, C-4), 154.4 (s, C-1), 158.1 (s, Ar), 158.3 (s, Ar) ppm.

2-(Bis((4-dimethylamino)phenyl)methyl)-5-methylfuran (5)

*From 1e and 2f-BF*₄: To a deeply blue solution of **2f**-BF₄ (1.00 mmol, 340 mg) in acetonitrile (10 mL) was added dropwise a solution of **1e** (188 mg, 1.00 mmol) in acetonitrile (10 mL). The reaction mixture was stirred for 5 min while the blue color faded. The solvent was then evaporated under reduced pressure. The residue was purified by flash chromatography on silica gel (*n*-pentane/ethyl acetate = 9/1) to yield **5** as a colorless oil (294 mg, 88%).

 $R_{f} = 0.69 \text{ (EtOAc/$ *n* $-pentane = 1/9)}$

¹**H NMR** (400 MHz, CD₃CN): δ 2.23 (s, 3 H, CH₃), 2.90 (s, 12 H, $2 \times NMe_2$), 5.21 (s, 1 H, 1-H), 5.71 (d, J = 1.8 Hz, 1 H, 3-H), 5.84 (d, J = 1.8 Hz, 1 H, 4-H), 6.67 (d, J = 8.8 Hz, 4 H, 7-H), 7.03 (d, J = 8.5 Hz, 4 H, 8-H) ppm.

¹³C NMR (100 MHz, CD₃CN): δ 13.9 (q, Me), 41.0 (q, 2 × NMe₂). 49.3 (d, C-1), 106.0 (d, C-4), 108.5 (d, C-3), 112.9 (d, C-8), 129.5 (d, C-7), 131.2 (s, C-6), 149.5 (s, C-9), 151.2 (s, C-5), 156.7 (s, C-2) ppm.

HR-MS (ESI, positive): calc. for C₂₂H₂₆N₂O: 334.2045, found: 334.2045.

From If and *2f-BF*₄: To a deeply blue solution of **2f-**BF₄ (1.00 mmol, 340 mg) in acetonitrile (10 mL) was added dropwise a solution of **1f** (342 mg, 1.00 mmol) in acetonitrile (10 mL). The reaction mixture was stirred for 5 min while the blue color faded. The solvent was then evaporated under reduced pressure. The residue was purified by flash chromatography on silica gel (*n*-pentane/ethyl acetate = 9/1) to yield **5** as a colorless oil (237 mg, 71%). Spectroscopic data for **5** were the same as above.

From 1g and 2f-BF₄: To a deeply blue solution of 2f-BF₄ (1.00 mmol, 340 mg) in acetonitrile (10 mL) was added dropwise a solution of 1g (216 mg, 1.00 mmol) in acetonitrile (10 mL). The reaction mixture was stirred for 5 min while the blue color faded. The solvent was then evaporated under reduced pressure. The residue was purified by flash chromatography on silica gel (*n*-pentane/ethyl acetate = 9/1) to yield 5 as a colorless oil (274 mg, 82%). Spectroscopic data for 5 were the same as above.

2-((5-Methylfuran-2-yl)(phenyl)methyl)-1H-indene-1,3(2H)-dione (14)

To an open flask charged with a mixture of **1e** (28 mg, 0.15 mmol) and 2-benzylidene-1Hindene-1,3(2H)-dione (**9**) (23.4 mg, 0.100 mmol) was added acetonitrile (2 mL) and methanol (0.5 mL). The mixture was stirred for 24 h at room temperature. After removing the solvents, the residue was purified by column chromatography on silica gel (EtOAc/*n*-pentane = 1/9) to yield **14** as a yellow oil (29 mg, 92%).

 $R_{f} = 0.3$ (EtOAc/*n*-pentane = 1/9).

¹**H NMR** (400 MHz, CDCl₃): δ 2.01 (s, 3 H, CH₃), 3.69 (d, J = 3.2 Hz, 1 H, 1-H), 4.96 (d, J = 2.9 Hz, 1 H, 2-H), 5.77-5.78 (m, 1 H, 5-H), 5.93-5.94 (m, 1 H, 4-H), 7.13-7.25 (m, 3 H, Ar, superimposed with CHCl₃), 7.35–7.38 (m, 2 H, Ar), 7.72–7.77 (m, 2 H, Ar), 7.86–7.90 (m, 2 H, Ar) ppm.

¹³**C NMR** (100 MHz, CDCl₃): δ 13.5 (q, CH₃), 44.2 (d, C-1), 57.6 (d, C-2), 106.3 (d, C-5), 109.0 (d, C-4), 106.4 (d, Ar), 109.1 (d, Ar), 123.2 (d, Ar), 123.3 (d, Ar), 127.5 (d, Ar), 128.6 (d, Ar), 129.4 (d, Ar), 135.6 (d, Ar), 138.7 (s, Ar), 142.6 (s, Ar), 142.9 (s, Ar), 151.2 (s, Ar), 152.3 (s, Ar), 198.9 (s, C=O), 199.0 (s, C=O) ppm.

HRMS (ESI): Calculated for [C₂₁H₁₅O₃] is 315.1027; obtained 315.1026.

2-((5-Methylfuran-2-yl)(phenyl)methyl) malononitrile (15)

To an open flask charged with a mixture of **1e** (28 mg, 0.15 mmol) and 2benzylidenemalononitrile (**10**) (15.4 mg, 0.10 mmol) was added acetonitrile (2 mL) and methanol (0.5 mL). The mixture was stirred for 20 h at room temperature. After removing the solvents, the residue was purified by column chromatography on silica gel (EtOAc/*n*-pentane = 1/9) to yield **15** as a colorless oil (22 mg, 93%).

 $R_{f} = 0.25$ (EtOAc/*n*-pentane = 1/19)

¹**H NMR** (300 MHz, CDCl₃): δ 2.29 (s, 3 H, CH₃), 4.40 (d, *J* = 7.4 Hz, 1 H, 1-H), 4.55 (d, *J* = 7.4 Hz, 1 H, 2-H), 5.94–5.95 (m, 1 H, 5-H), 6.19–6.20 (m, 1 H, 4-H), 7.37–7.44 (m, 5 H, Ar) ppm.

¹³**C NMR** (75.5 MHz, CDCl₃): δ 13.8 (q, CH₃), 29.1 (d, C-1), 46.5 (d, C-2), 107.0 (d, C-5), 110.6 (d, C-4), 111.70 (s, C≡N), 111.74 (s, C≡N), 128.5 (d, Ar), 129.4 (d, Ar), 129.5 (d, Ar), 135.2 (s, Ar), 147.6 (s, C-3), 153.5 (s, C-6) ppm.

2,2-Dimethyl-5-((5-methylfuran-2-yl)(phenyl)methyl)-1,3-dioxane-4,6-dione (16)

To an open flask charged with a mixture of **1e** (28.2 mg, 0.150 mmol) and 5-benzylidene-2,2dimethyl-1,3-dioxane-4,6-dione (**11**) (23.2 mg, 0.100 mmol) was added CH₃CN (2 mL) and CH₃OH (0.5 mL). The mixture was allowed to stir for 24 h at room temperature. After removing the solvent, the residue was purified by column chromatography on silica gel (EtOAc/*n*-pentane = 1/4) to yield **16** as an off-white powder (27 mg, 86%).

$R_{f} = 0.07 \text{ (EtOAc/$ *n* $-pentane = 1/9)}$

¹**H NMR** (300 MHz, CDCl₃): δ 1.47 (s, 3 H, CH₃), 1.71 (s, 3 H, CH₃), 2.24 (s, 3 H, CH₃), 4.21 (d, J = 3.1 Hz, 1 H, 1-H), 5.22 (d, J = 2.7 Hz, 1 H, 2-H), 5.88-5.93 (m, 2 H, 5-H and 4-H), 7.27-7.34 (m, 3 H, Ar), 7.42-7.46 (m, 2 H, Ar) ppm.

¹³C NMR (75.5 MHz, CDCl₃): δ 13.7 (q, CH₃), 28.1 (q, CH₃), 28.4 (q, CH₃), 44.6 (d, C-1), 50.7 (d, C-2), 105.3 (s, <u>C</u>(CH₃)₂), 106.8 (d, C-4 or C-5), 109.1 (d, C-4 or C-5), 128.2 (d, Ar), 128.8 (d, Ar), 129.9 (d, Ar), 137.7 (s, Ar), 151.2 (s, C-3 or C-6), 151.3 (s, C-3 or C-6), 164.4 (s, C=O), 164.6 (s, C=O) ppm.

2-Methyl-5-(4-nitrobenzodifuroxanyl)furan (17)

In an NMR tube **12** (15 mg, 0.063 mmol) and **1e** (12 mg, 0.063 mmol) were mixed in CD₃CN (1 mL) at room temperature. After 5 min a drop of H₂O was added. Then the NMR spectra were recorded to characterise **17**. Attempts to isolate **17** failed.

¹**H NMR** (400 MHz, CD₃CN): δ 2.19 (s, 3 H, CH₃), 5.52 (m, 1 H, 6-H), 5.99 (m, 1 H, 4-H), 6.31 (m, 1 H, 3-H), 6.53 (m, 1 H, 7-H) ppm.

¹³C NMR (100 MHz, CD₃CN): δ 12.5 (q, CH₃), 34.9 (d, C-6), 78.1 (d, C-7), 106.9 (d, C-4), 111.3 (d, C-3), 121.6 (s, C-10 or C-11), 152.7 and 152.9 (s, C-1 and C-5) ppm. C-8, C-9, C-10, and C-11 have not been detected.

10-Methyl-9-(5-methylfuran-2-yl)-4a,9,9a,10-tetrahydroacridine (18)

A solution of *N*-methylacridinium tetrafluoroborate **13** (281 mg, 1.00 mmol) in acetonitrile (5 mL) was prepared. At 20 °C, a solution of trifluoroborate **1e** (188 mg, 1.00 mmol) was added dropwise. After 1 h the reaction was complete. Then the solvent was removed in vacuum. The crude product was purified by chromatography on silica gel (*n*-pentane/AcOEt = 9/1) to yield **18** (yellow oil, 250 mg, 92 %).

 $R_{f} = 0.85 (n-pentane/AcOEt = 9/1).$

¹**H NMR** (400 MHz, CD₃CN): δ 2.23 (s, 3 H, Me), 3.42 (s, 3 H, NMe), 5.24 (s, 1 H, 6-H), 5.52 (m, 1 H, 3-H), 5.78 (1 H, 4-H), 6.90-6.98 (m, 4 H, 8-H and 10-H) and 7.18–7.30 (m, 4 H, 7-H and 9-H) ppm.

¹³**C NMR** (100 MHz, CD₃CN): δ 13.7 (C-1), 33.1 (C-13), 42.6 (C-6), 105.9 (d, C-4), 106.8 (d, C-3), 111.9 (d, Ar), 112.3 (d, Ar), 120.5 (d, Ar), 124.2 (q, Ar), 126.9 (q, Ar), 127.5 (d, Ar) 128.7 (d, Ar), 142.5 (q, Ar), 143.6 (q, Ar), 151.3 and 154.4 (C-2 and C-5) ppm.

N,N-Dimethyl-1-(5-methylfuran-2-yl)methanamine (20)

The organoboron compound **1b,d,e,g** (1.1 mmol) was added to a solution of the iminium salt **19-X**⁻ (1.0 mmol) in acetontrile (10 mL). After stirring at r.t. for 1 h, the reaction was quenched by adding a few drops of an aqeous saturated NH₄Cl solution. The resulting mixture was washed with brine (10 mL), and the aqueous phase was extracted with ethyl acetate (2 × 10 mL). Combining the organic phases, drying (MgSO₄) and evaporating the volatile components gave the disubstituted furan **20** as a pale liquid (yields of **20**: (a) 120 mg, 88 %, from the reaction of **1b** with **19**-CF₃CO₂⁻; (b) 130 mg, 93 % from the reaction of **1e** with **19**-CF₃CO₂⁻; (c) yields of further reactions (see Scheme 4 of the main text) were calculated from the crude ¹H NMR spectra.)

¹**H NMR** (400 MHz, CDCl₃): δ 2.29 (s, 6 H, NMe₂), 2.30 (s, 3 H, Me), 3.43 (s, 2 H, 7-H), 5.91 (m, 1 H, 3-H), 6.08 (m, 1 H, 4-H) ppm.

¹³C NMR (100 MHz, CDCl₃): δ 13.6 (C-6), 44.9 (NMe₂), 55.9 (C-7), 105.83 (C-4), 109.4 (C-3), 150.2 (C-2), 151.92 (C-5) ppm.

4. Kinetics

4.1 Kinetics of the reactions of 1b-g with benzhydrylium ions 2a-j (Ar₂CH⁺X⁻)

The rates of the reactions of **1b–g** with the benzhydrylium ions **2a–j** (Ar₂CH⁺X[–]) were measured photometrically, by using diode array detector or conventional stopped flow technique as described previously (Ref. S1) at 20 °C in dry CH₃CN.

First-order rate constants k_{obs} were obtained by least-squares fitting of the absorbances to the mono-exponential curve $A_t = A_0 \exp(-k_{obs}t) + C$. Since $k_{obs} = k_2$ [Nu], the second-order rate constants k (M⁻¹ s⁻¹) were derived from the slopes of the linear plots of k_{obs} (s⁻¹) vs. [Nu].

Supplementary Table S1. Kinetics of the reactions of 1b with $Ar_2CH^+X^-$ 2a and 2b in CH_3CN at 20°C

$k_2 / \mathrm{M}^{-1} \mathrm{s}^{-1}$ $k_{\rm obs}$ / s⁻¹ $[2a-SbCl_6^-]/M$ [**1b**] / M $\lambda = 500 \text{ nm}$ 1.2×10^{-5} 2.28×10^{-4} 5.78×10^{-2} 2.48×10^{2} 0.5 4.56×10^{-4} 1.31×10^{-1} = 2.48 x 10² [1b] + 0.009 0.4 R² = 0.998 2.86×10^{-1} 1.14×10^{-3} 0.3 k_{obs} / S⁻¹ 1.82×10^{-3} 4.60×10^{-1} 0.2 0.1 0.0 0.002 0.000 0.001 [1b] / M ⇒ $k_{\rm obs}$ / s⁻¹ $k_2 / \mathrm{M}^{-1} \mathrm{s}^{-1}$ $[2a-PF_6^-]/M$ [**1b**] / M] $\lambda = 500 \text{ nm}$ 2.92×10^{-4} 1.2×10^{-5} 1.65×10^{-1} 4.39×10^{2} 0.8 5.84×10^{-4} 2.46×10^{-1} 0.7 = 4.39 x 10² [1b] + 0.017 R² = 0.995 0.6 1.17×10^{-3} 5.34×10^{-1} 0.5 s, 1.75×10^{-3} 7.88×10^{-1} 0.4 Kobs 0.3 0.2 0.1 0.0 0.000 0.001 0.002 [1b] / M ⇒ $k_{\rm obs}$ / s⁻¹ $k_2 / \mathrm{M}^{-1} \mathrm{s}^{-1}$ $[2b-BF_4^-]/M$ [**1b**] / M $\lambda = 524 \text{ nm}$ 3.21×10^{1} 5.8×10^{-5} 3.11×10^{-3} 1.25×10^{-1} 0.30 $k_{obs} = 3.21 \times 10^{1} [1b] + 0.024$ R² = 0.999 4.67×10^{-3} 1.74×10^{-1} 0.25 6.23×10^{-3} 2.28×10^{-1} 0.20 ່ 0.15 7.79×10^{-3} 2.74×10^{-1} Kobs 0.10 0.05 0.00 0.000 0.002 0.004 0.006 0.008 0.010 [**1b**]/M ≻

Supplementary Table S1. (Continued)

[2b] / M	[1c] / M	$k_{\rm obs}$ / s ⁻¹	$\lambda = 524 \text{ nm}$	$k_2 / \mathrm{M}^{-1} \mathrm{s}^{-1}$
5.2 × 10 ⁻⁵	5.46×10^{-4} 1.09×10^{-3} 1.64×10^{-3} 2.18×10^{-3}	5.93 1.34×10^{1} 2.42×10^{1} 3.59×10^{1}	$ \begin{array}{c} 40 \\ 35 \\ 30 \\ 25 \\ 0 \\ \end{array} + \begin{array}{c} k_{obs} = 1.85 \times 10^{4} [1c] - 5.357 \\ \mathbb{R}^{2} = 0.990 \\ \end{array} $	1.85 × 10 ⁴
			0.000 0.001 0.002 0.003 [1c] / M	
[2c] / M	[1c] / M	$k_{\rm obs}$ / s ⁻¹	$\lambda = 592 \text{ nm}$	$k_2 / \mathrm{M}^{-1} \mathrm{s}^{-1}$
3.6×10^{-5}	3.99×10^{-4}	3.52×10^{-1}	↑ ^{1.4}	7.11×10^2
	$6.98 imes 10^{-4}$	4.74×10^{-1}	1.2 - $k_{obs} = 7.11 \times 10^2 [1c] + 0.031$	
	1.20×10^{-3}	8.26×10^{-1}	$R^2 = 0.986$	
	1.60 × 10 ⁻³	1.20	is 0.8 is 0.6 is 0.4 0.2 -	
			0.0 0.000 [1c] / M>	
[2d] / M	[1c] / M	$k_{\rm obs}$ / s ⁻¹	$\lambda = 586 \text{ nm}$	$k_2 /{ m M}^{-1}{ m s}^{-1}$
3.9 × 10 ⁻⁵	5.46×10^{-4} 1.09×10^{-3} 1.64×10^{-3} 2.18×10^{-3}	3.60×10^{-2} 1.18×10^{-1} 1.89×10^{-1} 2.41×10^{-1}	$\begin{array}{c} 0.30 \\ 0.25 \\ 0.20 \\ \hline b \\ 0.15 \\ \hline g \\ 0.10 \\ 0.05 \\ 0.00 \\ 0.000 \\ 0.001 \\ 0.002 \\ 0.002 \\ 0.003 \\ \hline \textbf{1c]} / M \end{array}$	1.26 × 10 ²

Supplementary Table S2. Kinetics of the reactions of 1c with $Ar_2CH^+BF_4^-$ 2b-d in CH_3CN at 20°C

[2a] / M	[1d] / M	$k_{\rm obs}$ / s ⁻¹	$\lambda = 500 \text{ nm}$	$k_2 / \mathrm{M}^{-1} \mathrm{s}^{-1}$
4.0 × 10 ⁻⁵	$\begin{array}{c} 2.50 \times 10^{-3} \\ 3.74 \times 10^{-3} \\ 4.99 \times 10^{-3} \\ 6.24 \times 10^{-3} \end{array}$	3.78×10^{-1} 6.36×10^{-1} 8.75×10^{-1} 1.14	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.02 × 10 ²
[2b] / M	[1d] / M	$k_{ m obs}$ / ${ m s}^{-1}$	$\lambda = 524 \text{ nm}$	$k_2 / \mathrm{M}^{-1} \mathrm{s}^{-1}$
$\frac{12017}{5.1 \times 10^{-5}}$	2.65×10^{-3} 3.97×10^{-3} 5.29×10^{-3} 6.61×10^{-3}	7.12×10^{-3} 1.21×10^{-2} 1.61×10^{-2}	$\begin{array}{c c} & & & & \\ \hline & & & \\ \hline & & \\$	3.96
			0.00 0.000 0.002 0.004 0.006 0.008 [1d] / M	

Supplementary Table S3. Kinetics of the reactions of 1d with $Ar_2CH^+BF_4^-$ 2a and 2b in CH_3CN at 20°C

$[2d-BF_4^{-}]/M$	[1e] / M	$k_{\rm obs}$ / s ⁻¹	$\lambda = 586 \text{ nm}$	$k_2 / \mathrm{M}^{-1} \mathrm{s}^{-1}$
2.2×10^{-5}	1.93×10^{-4}	1.34	↑ ¹⁴ [8.01×10^{3}
	3.86×10^{-4}	3.01	12 $k_{obs} = 8.01 \times 10^{3} [1e] - 0.038$ R ² = 0.997	
	7.72×10^{-4}	6.34	10	
	1.16×10^{-3}	9.56	¹ / ₂ ² / ₂ ² / ₂ ² / ₂	
	1.54×10^{-3}	$1.20 imes 10^1$	4 4	
			2	
			0.000 0.001 0.002	
			[1e]/M>	
[2e -BF ₄ ⁻] / M	[1e] / M	$k_{\rm obs}$ / s ⁻¹	$\lambda = 610 \text{ nm}$	$k_2 / \mathrm{M}^{-1} \mathrm{s}^{-1}$
2.4×10^{-5}	7.72×10^{-4}	1.28×10^{-1}	$\begin{pmatrix} 0.8 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \\ 0.047 \\ 0.047 \\ 0.047 \\ 0.047 \\ 0.047 \\ 0.8 \\ 0.7 \\ 0.8 \\ 0.7 \\ 0.8 \\ 0.7 \\ 0.8 \\ 0.7 \\ 0.8 \\ 0.7 \\ 0.8 \\ 0.7 \\ 0.8 \\ 0.7 \\ 0.8 \\ 0.7 \\ 0.8 \\ 0.7 \\ 0.8 \\ 0.7 \\ 0.8 \\ 0.7 \\ 0.8 \\ 0.7 \\ 0.8 \\ 0.7 \\ 0.8 \\ 0.7 \\ 0.8 \\ 0.7 \\ 0.8 \\ 0.7 \\ 0.8 \\ 0.7 \\ 0.8 \\ 0.7 \\ 0.8 $	2.32×10^{2}
	1.54×10^{-3}	3.14×10^{-1}	$\begin{array}{c} 0.7 \\ 0.6 \\ - \end{array} = \begin{array}{c} 2.32 \times 10^2 \ [1e] - 0.047 \\ R^2 = 0.998 \end{array}$	
	2.32×10^{-3}	5.06×10^{-1}	5 0.5 -	
	3.09×10^{-3}	6.62×10^{-1}		
			0.2	
			0.1 -	
			0.0 0.001 0.002 0.003 0.004	
[2f- BF ₄ ⁻] / M	[1e] / M	$k_{\rm obs}$ / s ⁻¹	$[1e] / M \longrightarrow$ $\lambda = 607 \text{ nm}$	$k_2 / M^{-1} s^{-1}$
$\frac{1}{2.8 \times 10^{-5}}$	8.27×10^{-4}	3.16×10^{-3}		3.88
	1.54×10^{-3}	5.45×10^{-3}	0.020	
	1.65×10^{-3}	5.48×10^{-3}	$k_{obs} = 3.88 [1e] - 0.001$ 0.015 $R^{2} = 0.998$	
	3.86×10^{-3}	1.42×10^{-2}	نِّهِ 0.010 -	
	5.41×10^{-3}	2.07×10^{-2}	چ 0.005 - •	
			0.005	
			0.000 0.002 0.004 0.006	
			[1e]/M ———>	
$[2f-BF_4^-]/M$	[1e] / M	$k_{\rm obs}$ / s ⁻¹	(with 1 equivalent of 18-crown-6) $\lambda = 607 \text{ nm}$	$k_2 / M^{-1} s^{-1}$
2.8×10^{-5}	6.22×10^{-4}	1.51×10^{-3}	↑ ^{0.008} Г	2.60
	1.24×10^{-3}	3.30×10^{-3}	$k_{obs} = 2.60 [1e] - 2.00 \times 10^{-5}$ 0.006 - R ² = 0.998	
	1.87×10^{-3}	4.92×10^{-3}		
	2.49×10^{-3}	6.36×10^{-3}	5 0.004 g	
			0.002	
			•	
			0.000 0.001 0.002 0.003	
			[1e] / M>	

Supplementary Table S4. Kinetics of the Reactions of 1e with $Ar_2CH^+X^-$ 2d-f in CH_3CN at 20°C

Supplementary Table S4. (Continued)

Supplementary Table S5. Kinetics of the reactions of 1f with $Ar_2CH^+X^-$ 2e-g in CH₃CN at 20°C

Supplementary Table S5. (Continued)

[2g] / M	[1g] / M	$k_{\rm obs}$ / s ⁻¹	$\lambda = 620 \text{ nm}$	$k_2 / \mathrm{M}^{-1} \mathrm{s}^{-1}$
1.4×10^{-5}	4.82×10^{-4}	17.0	↑ ⁴⁰ [2.94×10^{4}
	6.02×10^{-4}	19.1	$\begin{array}{c c} 35 \\ 30 \\ - \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	
	7.22×10^{-4}	22.6	25 -	
	9.63×10^{-4}	31.6	5 20 - 8 15 -	
	1.20×10^{-3}	37.0	ଞ୍ଚଁ 15 - ● 10 -	
			5 -	
			0	
			0.0000 0.0005 0.0010 [1g] / M	
[2h] / M	[1g] / M	$k_{\rm obs}$ / s ⁻¹	$\lambda = 620 \text{ nm}$	$k_2 / M^{-1} s^{-1}$
1.6×10^{-5}	2.96×10^{-4}	3.25	$\int_{14}^{16} \left[k_{obs} = 9.20 \times 10^3 [1g] + 0.482 \right]$	9.20×10^{3}
	5.93×10^{-4}	6.21	14 12 $R^2 = 0.996$	
	8.89×10^{-4}	8.25	10	
	1.19×10^{-3}	11.4	Sec. 8	
	1.48×10^{-3}	14.3		
			2 -	
			0.0000 0.0005 0.0010 0.0015 0.0020	
			[1g] / M>	
[2i] / M	[1g] / M	$k_{\rm obs}$ / s ⁻¹	$\lambda = 620 \text{ nm}$	$k_2 / M^{-1} s^{-1}$
1.4×10^{-5}	2.96×10^{-4}	1.14	$\int_{-6}^{6} \left[k_{obs} = 3.46 \times 10^{3} [1g] + 0.181 \right]$	3.46×10^{3}
	5.93×10^{-4}	2.33	5 R ² = 0.998	
	8.89×10^{-4}	3.27		
	1.19×10^{-3}	4.21		
	1.48×10^{-3}	5.33		
			1 - •	
			0.0000 0.0005 0.0010 0.0015 0.0020	
[7;] / M	[1]] / M	$k_{\rm obs}$ / s ⁻¹	$[1g] / M \longrightarrow \lambda = 620 \text{ nm}$	$k_2 / \mathrm{M}^{-1} \mathrm{s}^{-1}$
$\frac{[2j] / M}{1.4 \times 10^{-5}}$	[1g] / M 2.28 × 10 ⁻⁴	$\frac{\kappa_{\rm obs} / \rm s}{3.66 \times 10^{-2}}$		$\frac{\kappa_2 / M}{1.98 \times 10^2}$
1,1 10	4.56×10^{-4}	8.62×10^{-2}	0.12	1.90 10
	4.30×10^{-4} 5.70×10^{-4}	1.07×10^{-1}		
		1.07×10^{-1} 1.17×10^{-1}		
	0.30^ 10	1.17 ^ 10	$k_{obs} = 1.98 \times 10^2 [1g] - 0.007$ R ² = 0.995	
			0.04 - R ² = 0.995	
			0.00	
			0.0000 0.0005 0.0010	
			[1g] / M ────>	

Supplementary Table S6. Kinetics of the reactions of 1g with $Ar_2CH^+BF_4^- 2g$ -j in CH_3CN at 20 °C.

4.2 Kinetics of the reactions of 1e with Michael acceptors 9–13

The rates of the reaction of **1e** with Michael acceptors **9–13** were measured photometrically, under pseudo-first order conditions (excess of **1e**) at the absorption maxima of **9-13** by UV-Vis spectrometers (using diode array detector at 20 °C). First-order rate constants k_{obs} were obtained by least-squares fitting of the absorbances either to the monoexponential curve $A_t = A_0 \exp(-k_{obs}t) + C$ (exponential decrease) or to $A_t = A_0[1 - \exp(1 - k_{obs}t)] + C$ (mono-exponential increase). Since $k_{obs} = k_2[Nu]$, the second-order rate constants k_2 (M^{-1} s⁻¹) were derived from the slopes of the linear plots of k_{obs} (s⁻¹) vs. [Nu].

[9] / M	[1e] / M	$k_{\rm obs}$ / s ⁻¹	$\lambda = 340 \text{ nm}$	$k_2 / \mathrm{M}^{-1} \mathrm{s}^{-1}$
4.93×10^{-5}	2.21×10^{-3}	8.52×10^{-6}	▲ 0.00004	3.23×10^{-3}
4.43×10^{-5}	7.21×10^{-3}	2.48×10^{-5}	0.00003	
$4.52\times 10^{\text{-5}}$	$8.46 imes 10^{-3}$	$2.78 imes 10^{-5}$	ъ 0.00002	
4.56×10^{-5}	1.13×10^{-2}	3.81×10^{-5}	/sqq	
			0.00000 0.005 0.010 0.015	
			[1e] / M>	
[10] / M	[1e] / M	$k_{\rm obs}$ / s ⁻¹	$\lambda = 306 \text{ nm}$	$k_2 / \mathrm{M}^{-1} \mathrm{s}^{-1}$
4.72×10^{-5}	4.79×10^{-3}	5.36×10^{-6}	$ \int_{0.00002}^{0.00002} \int_{0.005} k_{obs} = 1.41 \times 10^{-3} [1e] + 7.39 \times 10^{-7} $	1.41×10^{-3}
$4.68\times10^{\text{-5}}$	5.94×10^{-3}	8.58×10^{-6}	$R^2 = 0.980$	
$4.64\times 10^{\text{-5}}$	1.08×10^{-2}	1.44×10^{-5}		
			ົ້າ 0.00001 -	
			€ ×0	
			0.00000	
			0.000 0.005 0.010 0.015	
			[1e] / M ────>	
[11] / M	[1e] / M	$k_{\rm obs}$ / s ⁻¹	$\lambda = 306 \text{ nm}$	$k_2 / \mathrm{M}^{-1} \mathrm{s}^{-1}$
4.97×10^{-5}	1.50×10^{-3}	2.68×10^{-5}	↑ 0.00004	7.53×10^{-3}
4.90×10^{4}	2.31×10^{-3}	3.29×10^{-5}	0.00003 -	
			$k_{obs} = 7.53 \times 10^{-3}$ [1e] + 1.55 x 10 ⁻⁵	
			8 R ² = 1.000	
			¥ 0.00001 -	
			0.00000 0.001 0.002 0.003	
			0.000 0.001 0.002 0.003 [1e] / M	

Supplementary Table S7. Kinetics of the reactions of 1e with 9-11 in CH₃CN/MeOH (95:5).

[12] / M	[1e] / M	$k_{\rm obs}$ / s ⁻¹	Increase at $\lambda = 395 \text{ nm}$	$k_2 / \mathrm{M}^{-1} \mathrm{s}^{-1}$
6.1 × 10 ⁻⁴	$\begin{array}{c} 4.14 \times 10^{-4} \\ 1.49 \times 10^{-3} \\ 2.48 \times 10^{-3} \\ 3.31 \times 10^{-3} \\ 4.14 \times 10^{-3} \end{array}$	$\begin{array}{c} 6.47 \times 10^{-2} \\ 1.04 \times 10^{-1} \\ 1.57 \times 10^{-1} \\ 1.83 \times 10^{-1} \\ 2.17 \times 10^{-1} \end{array}$	$\begin{array}{c} 0.25\\ 0.20\\ 0.15\\ 0.05\\ 0.00\\ 0.000\\ 0.000\\ 0.001\\ 0.002\\ 0.003\\ 0.003\\ 0.004\\ 0.005\\ 0.003\\ 0.004\\ 0.005\\ 0.004\\ 0.005\\ 0.003\\ 0.004\\ 0.005\\ 0.004\\ 0.005\\ 0.005\\ 0.003\\ 0.004\\ 0.005\\ 0.005\\ 0.003\\ 0.004\\ 0.005\\ 0.005\\ 0.005\\ 0.003\\ 0.004\\ 0.005\\ 0.005\\ 0.005\\ 0.003\\ 0.004\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.003\\ 0.004\\ 0.005\\ 0.005\\ 0.005\\ 0.003\\ 0.004\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.003\\ 0.004\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.003\\ 0.004\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.003\\ 0.004\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.003\\ 0.004\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.003\\ 0.003\\ 0.004\\ 0.005\\ 0.005\\ 0.005\\ 0.005\\ 0.003\\ 0.003\\ 0.004\\ 0.005\\ $	4.14 × 10 ¹
[13] / M	[1e] / M	$k_{\rm obs}$ / s ⁻¹	$ \begin{array}{c} [1e] / M & \longrightarrow \\ \lambda = 415 \text{ nm} \end{array} $	$k_2 / \mathrm{M}^{-1} \mathrm{s}^{-1}$
4.1 × 10 ⁻⁴	1.11×10^{-3} 2.21×10^{-3} 3.32×10^{-3} 4.43×10^{-3} 5.53×10^{-3}	$\frac{1.46 \times 10^{-1}}{2.42 \times 10^{-1}}$ $\frac{3.18 \times 10^{-1}}{4.17 \times 10^{-1}}$ $\frac{4.80 \times 10^{-1}}{4.80 \times 10^{-1}}$	$ \begin{array}{c} 0.6 \\ 0.5 \\ 0.4 \\ \hline b \\ 0.3 \\ \hline c \\ 0.2 \\ 0.1 \\ 0.000 \\ 0.000 \\ 0.002 \\ \hline \textbf{[1e]} / M \\ \hline 0.04 \\ 0.004 \\ 0.006 \\ \hline \textbf{[1e]} / M \\ \hline [$	7.65×10^{1}

Supplementary Table S8. Kinetics of the Reactions of 1e with 12–13 in CH₃CN.

5. Determination of the nucleophilicity of organoboron compounds 1b-g

Figure S1. Plots of the logarithm of the second-order rate constants $\log k_2$ versus the electrophilicity parameters *E* used for the determination of the nucleophilicity *N* and sensitivity (slope) parameters s_N (see equation (1) and Table 1 in the main text).

Supplementary Table S8	. Determination of the	e nucleophilicity of 1b-g .
------------------------	------------------------	------------------------------------

Nucleophiles	<i>s</i> _N (slopes)	Ν	R^2
1b	0.98	2.90	-
1c	1c 0.86		-
1d	1.26	1.84	0.997
1e	1.04	7.66	0.994
1f	1.12	9.09	0.998
1g	0.92	12.55	0.999

6. References

S1. H. Mayr, T. Bug, M. F. Gotta, N. Hering, B. Irrgang, B. Janker, B. Kempf, R. Loos, A. R. Ofial, G. Remennikov and H. Schimmel, *J. Am. Chem. Soc.*, 2001, **123**, 9500.

S2. D. Florentin, M. C. Fournié-Zaluski, M. B Callanquin and P. Roques, J. Heterocycl. Chem., 1976, 13, 1265.

S3. D. M. Knapp, E. P. Gillis and M. D. Burke, Org. Lett., 2010, 12, 2314.

S4. G. A. Molander, B. Canturk and L. E. Kennedy, J. Org. Chem, 2009, 74, 973.

S5. For an early synthesis of potassium tetrakis(5-methyl-2-furyl)borate, see: A. N. Nesmeyanov, V. A. Sazonova and V. N. Drozd, *Russ. Chem. Bull.*, 1959, **8**, 147.

S6. X.-Q, Yu, T. Shirai, Y. Yamamoto and N. Miyaura. Chem. Asian. J., 2011, 6, 932.

S7. M. Hofmann, N. Hampel, T. Kanzian and H. Mayr, Angew. Chem. Int. Ed,. 2001, 43, 5402.

7. Copies of NMR Spectra

- -141 70 - -141 85 - -141 99

1e : ¹⁹F NMR CD₃CN (376.3 MHz)

S31

- 0.50

S39

