Electronic Supporting Information

The Contrasting Chemical Reactivity of Potent Isoelectronic Iminopyridine and Azopyridine Osmium(II) Arene Anticancer Complexes

Ying Fu, María J. Romero, Abraha Habtemariam, Michael E. Snowden, Lijiang Song, Guy J. Clarkson, Bushra Qamar, Ana M. Pizarro, Patrick R. Unwin and Peter J. Sadler^{*}

Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, U.K,

Contents

1. EXPERIMENTAL (materials, synthesis, methods and instrumentation)

2. TABLES AND FIGURES (Tables S1-S3, Figures S1-S9)

1. EXPERIMENTAL

Materials. OsCl₃·3H₂O was purchased from Alfa-Aesar. Ethanol and methanol were dried over Mg/I₂ or anhydrous quality was used (Aldrich). All other reagents were obtained from commercial suppliers and used as received. The preparations of the starting materials $[Os(\eta^6-bip)Cl_2]_2$, $[Os(\eta^6-bip)I_2]_2$, $[Os(\eta^6-p-cym)Cl_2]_2$ and $[Os(\eta^6-p-cym)I_2]_2$ were based on a previous report.¹ The A2780 human ovarian carcinoma cell line A549 human lung cancer cell line were purchased from European Collection of Cell Cultures, RPMI-1640 media and trypsin from Invitrogen, bovine serum was from Biosera, penicillin, streptomycin, TCA and SRB from Sigma–Aldrich, and tris[hydroxymethyl]aminomethane from Formedium.

Synthesis of iminopyridine ligands. Syntheses of iminopyridine ligand were based on literature reports.²

(1) $[Os(\eta^6-bip)(Impy)I]PF_6·H_2O.$ $[Os(\eta^6-bip)I_2]_2$ (50.0 mg, 0.042 mmol) was dissolved in methanol (30 mL) at 353 K. The Impy ligand (15.3 mg, 0.84 mmol) in methanol (10 mL) was added dropwise, the solution-colour changed from orange to red immediately. The reaction mixture was stirred at 353 K for 3 h. The volume was reduced to about 10 mL by removal of methanol on a rotary evaporator, and ammonium hexafluorophosphate (27.4 mg, 0.17 mmol) was added and the solution left in a freezer for 24 h. Dark coloured powder precipitated which was collected by filtration, washed with cold ethanol and diethyl ether, and finally dried in vacuum. Yield: 51.0 mg (78.1%). ESI-MS Calcd for C₂₄H₂₀IN₂Os: m/z 655.0, found 655.3. ¹H NMR((CD₃)₂CO): δ 9.38 (d, 1H, J=5 Hz), 9.19 (s, 1 H), 8.55 (d, 1H, J=8 Hz), 8.25 (t, 1H, J=8 Hz), 7.70 (d, 2H, J=9 Hz), 7.55-7.48 (m, 7H). 7.40 (d, 2H, J=9 Hz), 6.68 (d, 1H, J=6 Hz), 6.63 (t, 1H, J=6 Hz), 6.58 (t, 1H, J=6 Hz), 6.47 (t, 1H, J=6 Hz),), 6.34 (t, 1H, J=6 Hz). CHN analysis: Found: C, 34.91%; H, 2.41%; N, 3.34%. Calcd. for C₂₄H₂₀F₆IN₂OsP·H₂O: C, 35.24%; H, 2.71%; N, 3.42%.

(2) $[Os(\eta^6-p-cym)(Impy)I]PF_6$. $[Os(\eta^6-p-cym)I_2]_2$ (30.0 mg, 0.026 mmol) was dissolved in methanol (20 mL) at 313 K. The Impy ligand (9.4 mg, 0.052 mmol) in methanol (10 mL) was added dropwise; the solution-colour changed from orange to red immediately. The reaction mixture was stirred at ambient temperature for 2 h. The volume was reduced to about 10 mL by removal of methanol on a rotary evaporator, and ammonium hexafluorophosphate (17.0

mg, 0.1 mmol) was added and the solution left in a freezer for 24 h. Dark coloured powder precipitated which was collected by filtration, washed with cold ethanol and diethyl ether, and finally dried in vacuum. Yield: 30.2 mg (74.8 %). ESI-MS Calcd for $C_{22}H_{24}IN_2Os$: m/z 635.1, found 635.0. ¹H NMR((CD₃)₂CO): δ 9.65 (d, 1H, J=6 Hz), 9.31 (s, 1 H), 8.59 (d, 1H, J=8 Hz), 8.32 (t, 1H, J=8 Hz), 7.97-7.95 (m, 2H), 7.86 (t, 1H, J=8 Hz), 7.68-7.65 (m, 2H), 6.37 (d, 1H, J=8 Hz), 6.08 (d, 1H, J=6 Hz), 5.98 (d, 1H, J=6 Hz), 5,83 (d, 1H, J=6 Hz), 2.81 (s, 3H), 2.75-2.68 (m, 1H), 2.63 (s, 6H), 1.09 (d, 3H, J=7 Hz) 1.07 (d, 3H, J=7 Hz). CHN analysis: Found: C, 34.29%; H, 3.10%; N, 3.57%. Calcd for $C_{22}H_{24}F_6IN_2OsP$: C, 33.94%; H, 3.11%; N, 3.60%.

(3) $[Os(\eta^6-bip)(Impy-OH)I]PF_6\cdot0.5H_2O.$ $[Os(\eta^6-bip)I_2]_2$ (50.0 mg, 0.042 mmol) was dissolved in methanol (30 mL) and water (10 mL) mixture at 353 K. The Impy-OH ligand (16.6 mg, 0.084mmol) in methanol (10 mL) was added dropwise and the solution was stirred at 353 K for 4 h. The volume was reduced to about 10 mL by removal of methanol on a rotary evaporator, and ammonium hexafluorophosphate (52.2 mg, 0.32 mmol) was added. Then the solution was left in a fridge for 24 h. Dark coloured powder precipitated which was collected by filtration, washed with cold ethanol and diethyl ether, and finally dried in vacuum. Yield: 29.0 mg (17.2 %). ¹H NMR((CD₃)₂CO): δ 9.37 (d, 1H, J=6 Hz), 9.10 (s, 1 H), 8.49 (d, 1H, J=8 Hz), 8.20 (t, 1H, J=8 Hz), 7.66 (t, 1H, J=9 Hz), 7.59 (d, 2H, J=8 Hz), 7.41 (m, 5H), 6.91 (d, 2H, J=9 Hz), 6.89 (d, 1H, J=6 Hz), 6.65 (t, 1H, J=6 Hz), 6.55 (d, 1H, J=6 Hz), 6.48 (t, 1H, J=6 Hz), 6.34 (t, 1H, J=6 Hz). CHN analysis: Found: C, 34.92%; H, 2.65%; N, 3.29%. Calcd for C₂₄H₂₀F₆IN₂OOsP·0.5H₂O: C, 34.94%; H, 2.56%; N, 3.39%.

(4) $[Os(\eta^6-p-cym)(Impy-OH)I]PF_6$. $[Os(\eta^6-p-cym)I_2]_2$ (50.0 mg, 0.043 mmol) was dissolved in methanol (30 mL) at 313 K The Impy-OH. ligand (17.1 mg, 0.086 mmol) in methanol (10 mL) was added dropwise, the solution-colour changed from orange to red immediately. The reaction mixture was stirred at ambient temperature for 48 h. The volume was reduced to about 10 mL by removal of methanol on a rotary evaporator, and ammonium hexafluorophosphate (26.1 mg. 0.16 mmol) was added and the solution was left in a freezer for 24 h. Dark coloured powder precipitated which was collected by filtration, washed with

cold ethanol and diethyl ether, and finally dried in vacuum. Yield: 43.7 mg (64.0 %). ESI-MS Calcd for $C_{22}H_{24}IN_2OOs$: m/z 651.0, found 651.1. ¹H NMR((CD₃)₂CO): δ 9.61 (d, 1H, J=5 Hz), 9.22 (s, 1 H), 8.51 (d, 1H, J=7 Hz), 7.85(t, 1H, J=6 Hz), 7.80 (t, 1H, J=7 Hz), 7.07 (d, 2H, J=9 Hz), 6.40 (d, 1H, J=6 Hz), 6.07 (d, 1H, J=6 Hz), 5.97 (d, 1H, J=6 Hz), 5.88 (d, 1H, J=6 Hz), 5.66 (s, 1H), 2.81 (s, 3H), 2.74-2.66 (m, 1H), 2.09 (s, 6H), 1.13 (d, 3H, J=7 Hz) 1.09 (d, 3H, J=7 Hz). CHN analysis: Found: C, 33.01%; H, 3.15%; N, 3.41%. Calcd for $C_{22}H_{24}F_6IN_2OOsP$: C, 33.26%; H, 3.04%; N, 3.53%. Crystals for X-ray diffraction were obtained by crystallization of a concentrated solution of $[(\eta^6-p-cym)Os(Impy-OH)I]PF_6$ in a mixture of DCM and MeOH at 253K.

(5) $[Os(\eta^6-bip)(Impy-NMe_2)I]PF_6$. $[Os(\eta^6-bip)I_2]_2$ (50.0 mg, 0.042 mmol) was dissolved in methanol (30 mL) at 353 K. The Impy-NMe₂ ligand (18,8 mg, 0.84 mmol) in methanol (10 mL) was added dropwise, the solution-colour changed from orange to red immediately. The solution was stirred at 353K for 4 h. The volume was reduced to about 10 mL by removal of methanol on a rotary evaporator, and ammonium hexafluorophosphate (27.3 mg. 0.17 mmol) was added. Then the solution was left in a freezer for 24 h. Red coloured powder precipitated which was collected by filtration, washed with cold ethanol and diethyl ether, and finally dried in vacuum. Yield: 35.1 mg (49.8 %). ESI-MS Calcd for C₂₆H₂₅IN₃Os: m/z 698.1, found 698.1. ¹H NMR((CD₃)₂CO): δ 9.29 (d, 1H, J=5 Hz), 9.02 (s, 1 H), 8.42 (d, 1H, J=8 Hz), 8.18 (t, 1H, J=8 Hz), 7.65 (d, 2H, J=9 Hz), 7.51-7.38 (m, 7H). 6.88 (d, 1H, J=6 Hz), 6.74 (d, 2H, J=9 Hz), 6.62 (t, 1H, J=6 Hz), 6.55 (d, 1H, J=6 Hz), 6.50 (t, 1H, J=6 Hz), 6.34 (t, 1H, J=6 Hz), CHN analysis: Found: C, 41.54%; H, 3.31%; N, 5.61%. Calcd for C₂₄H₂₉ClF₆N₃OsP: C, 41.63% H, 3.36% N, 5.60%.

(6) $[Os(\eta^6-p-cym)(Impy-NMe_2)I]PF_6.0.5H_2O.$ $[Os(\eta^6-p-cym)I_2]_2$ (50.0 mg, 0.043 mmol) was dissolved in methanol (30 mL) at 313 K. The Impy-NMe_2 ligand (19.5 mg, 0.086 mmol) in methanol (10 mL) was added dropwise, the solution-colour changed from orange to red immediately. The solution was stirred at ambient temperature for 2 h. The volume was reduced to about 10 mL by removal of methanol on a rotary evaporator, and ammonium hexafluorophosphate (141.8 mg, 0.87 mmol) was added. Then the solution was left in a

freezer for 24 h. Dark coloured powder precipitated which was collected by filtration, washed with cold ethanol and diethyl ether, and finally dried in vacuum. Yield: 50.7 mg (72.9 %). ESI-MS Calcd for $C_{24}H_{29}IN_3Os$: m/z 678.1, found 678.0. ¹H NMR((CD_3)₂CO): δ 9.55 (d, 1H, J=5 Hz), 9.12 (s, 1 H), 8.45 (d, 1H, J=7 Hz), 8.24 (t, 1H, J=7 Hz), 7.83 (d, 2H, J=9 Hz), 7.73 (t, 1H, J=5 Hz), 6.89 (d, 2H, J=9 Hz), 6.38 (d, 1H, J=6 Hz), 6.04 (d, 1H, J=6 Hz), 5.92-5.87 (m, 2H), 3.15 (s, 6H), 2.65 (s, 3H), 2.21-2.13 (m, 1H), 1.09 (d, 3H, J=6 Hz) 1.07 (d, 3H, J=6 Hz). CHN analysis: Found: C, 34.53%; H, 3.36%; N, 5.06%. Calcd for $C_{24}H_{29}F_6IN_3OsP\cdot0.5H_2O$: C, 34.64%; H, 3.63%; N, 5.05%.

(7) $[Os(\eta^{6}-bip)(OMe-Impy-NMe_2)I]PF_{6}$. $[Os(\eta^{6}-bip)I_2]_2$ (50.0 mg, 0.042 mmol) was dissolved in methanol (30 mL) and water (10 mL) mixture at 353 K. The OMe-Impy-NMe₂ ligand (21.3 mg, 0.84 mmol) in methanol (10 mL) was added dropwise, the solution-colour changed from orange to red immediately. The reaction mixture was stirred at 353 K for 4 h. The volume was reduced to about 10 mL by removal of methanol on a rotary evaporator, and ammonium hexafluorophosphate (27.3 mg, 0.17 mmol) was added. Then the solution was left in a freezer for 24 h. Red-coloured powder precipitated which was collected by filtration, washed with cold ethanol and diethyl ether, and finally dried in vacuum. Yield: 18.0 mg (24.0 %). ESI-MS Calcd for C₂₇H₂₇IN₃OOs: m/z 728.08, found 727.9. ¹H NMR((CD₃)₂CO): δ 9.00 (s, 1H), 8.18 (t, 1H, J=8 Hz), 7.99 (d, 1H, J=8 Hz), 7.60 (d, 2H, J=9 Hz), 7.49-7.39 (m, 5H), 7.34 (d, 1H, J=8 Hz), 6.91 (d, 1H, J=6 Hz), 6.74 (d, 2H, J=9 Hz), 6.56 (d, 1H, J=6 Hz), 6.51 (d, 1H, J=6 Hz), 6.48 (d, 1H, J=6 Hz), 6.21 (d, 1H, J=6 Hz), 4.10 (s, 3H), 3.12 (s, 6H), CHN analysis: Found: C, 37.17%; H, 2.98%; N, 5.04%. Calcd for C₂₇H₂₇F₆IN₃OOsP: C, 37.21% H, 3.12% N, 4.82%.

(8) $[Os(\eta^6-p-cym)(OMe-Impy-NMe_2)I]PF_6$. $[Os(\eta^6-p-cym)I_2]_2$ (50.0 mg, 0.043 mmol) was dissolved in methanol (30 mL) at 313 K. The OMe-Impy-NMe₂ ligand (22.0 mg, 0.086 mmol) in methanol (10 mL) was added dropwise, the solution-colour changed from orange to red immediately. The reaction mixture was stirred at ambient temperature for 2 h. The volume was reduced to about 10 mL by removal of methanol on a rotary evaporator, and ammonium hexafluorophosphate (28.0 mg, 0.172 mmol) was added. Then the solution was

left in a freezer for 24 h. Dark-coloured powder precipitated which was collected by filtration, washed with cold ethanol and diethyl ether, and finally dried in vacuum. Yield: 35.2 mg (49.2 %). ESI-MS Calcd for $C_{25}H_{31}IN_3OOs$: m/z 708.1, found 708.0. ¹H NMR((CD₃)₂CO): δ 9.10 (s, 1 H), 8.23 (t, 1H, J=8 Hz), 8.03 (d, 1H, J=8 Hz), 7.83 (d, 2H, J=8 Hz), 7.64 (d, 1H, J=8 Hz), 6.89 (d, 2H, J=8 Hz), 6.51 (d, 1H, J=6 Hz), 5.96 (d, 1H, J=6 Hz), 5.91(d, 1H, J=6 Hz), 5.75 (d, 1H, J=6 Hz), 4.40 (s, 3H), 3.16 (s, 6H), 2.84 (s, 3H), 2.70-2.61 (m, 1H), 1.11 (d, 3H, J=6 Hz) 1.09 (d, 3H, J=6 Hz). CHN analysis: Found: C 35.20%, H 3.61%, N 5.01%. Calcd for $C_{25}H_{31}F_6IN_3OOsP$: C, 35.26 % H, 3.67 % N, 4.93 %.

(9) $[Os(\eta^6-bip)(Impy)CI]PF_6$. $[Os(\eta^6-bip)Cl_2]_2$ (50.0 mg, 0.060 mmol) was dissolved in methanol (30 mL) at 353 K. The Impy ligand (21.9 mg, 0.12 mmol) in methanol (10 mL) was added dropwise, the solution-colour changed from orange to red immediately. The reaction mixture was stirred at 353 K for 4 h. The volume was reduced to about 10 mL by removal of methanol on a rotary evaporator, and ammonium hexafluorophosphate (39.1 mg. 0.24 mmol) was added. Then the solution was left in a freezer for 24 h. Dark-coloured powder precipitated which was collected by filtration, washed with cold ethanol and diethyl ether, and finally dried in vacuum. Yield: 64.0 mg (75.3 %). ESI-MS Calcd for C₂₄H₂₀ClN₂Os: m/z 563.1, found 563.0. ¹H NMR((CD₃)₂CO): δ 9.42 (d, 1H, J=5 Hz), 9.28 (s, 1 H), 8.53 (d, 1H, J=8 Hz), 7.54-7.45 (m, 6H). 6.71 (d, 1H, J=6 Hz), 6.45 (d, 1H, J=6 Hz), 5.45-5.40 (m, 2H). 6.36 (t, 1H, J=6 Hz), CHN analysis: Found: C, 40.77%; H, 2.79%; N, 3.91%. Calcd for C₂₄H₂₀ClF₆N₂OsP: C, 40.77% H, 2.85% N, 3.96%.

(10) $[Os(\eta^6-p-cym)(Impy)Cl]PF_{6}$. $[Os(\eta^6-p-cym)Cl_2]_2$ (30.0 mg, 0.042 mmol) was dissolved in methanol (30 mL) at 313 K. The Impy ligand (15.2 mg, 0.085 mmol) in methanol (10 mL) was added dropwise, the solution-colour changed from yellow to red immediately. The reaction mixture was stirred at ambient temperature for 2 h. The volume was reduced to about 10 mL by removal of methanol on a rotary evaporator, and ammonium hexafluorophosphate (27.6 mg. 0.17 mmol) was added. Then the solution was left in a freezer for 24 h. Darkcoloured powder precipitated which was collected by filtration, washed with cold ethanol and diethyl ether, and finally dried in vacuum. Yield: 27.4 mg (77.4%). ESI-MS Calcd for $C_{22}H_{24}ClN_2Os: m/z$ 543.1, found 543.1. ¹H NMR((CD₃)₂CO): δ 9.63 (d, 1H, J=6 Hz), 9.37 (s, 1 H), 8.54 (d, 1H, J=8 Hz), 8.37 (t, 1H, J=8 Hz), 7.90 (d, 2H, J=9 Hz), 7.66 (d, 2H, J=8 Hz), 7.86 (d, 2H, J=8 Hz), 6.44 (d, 1H, J=6 Hz), 6.02 (d, 1H, J=6 Hz), 5,96 (d, 1H, J=6 Hz), 5,79 (d, 1H, J=6 Hz), 2.79 (s, 3H), 2.69-2.55 (m, 1H), 2.39 (s, 6H), 1.09 (d, 3H, J=7 Hz) 1.07 (d, 3H, J=7 Hz). CHN analysis: Found: C 38.44%; H 3.38%; N 4.06% Calcd. for $C_{22}H_{24}ClF_6N_2OsP: C$, 38.46%; H, 3.52%; N, 4.08%.

(11) $[Os(\eta^6-bip)(Impy-OH)CI]PF_6-0.5H_2O.$ $[Os(\eta^6-bip)Cl_2]_2$ (50.0 mg, 0.060 mmol) was dissolved in methanol (20 mL) and water (10 mL) mixture at 353 K. The Impy-OH ligand (23.8mg, 0.012mmol) in methanol (10 mL) was added dropwise. The reaction mixture was stirred at 353 K for 4 h. The volume was reduced to about 10 mL by removal of methanol on a rotary evaporator, and ammonium hexafluorophosphate (97.8 mg, 0.6 mmol) was added. Then the solution was left in a freezer for 24 h. Dark-coloured powder precipitated which was collected by filtration, washed with cold ethanol and diethyl ether, and finally dried in vacuum. Yield: 15.3 mg (17.2 %). ESI-MS Calcd for C₂₄H₂₀ClN₂OOs: m/z 579.1, found 579.0. ¹H NMR((CD₃)₂CO): δ 9.36 (d, 1H, J=6 Hz), 9.18 (s, 1 H), 8.47 (d, 1H, J=8 Hz), 8.29 (t, 1H, J=8 Hz), 7.76 (t, 1H, J=9 Hz), 7.58 (d, 2H, J=8 Hz), 7.54-7.43 (m, 5H), 6.92 (d, 2H, J=9 Hz), 6.35 (t, 1H, J=6 Hz), 6.64 (d, 1H, J=6 Hz), 6.45 (t, 1H, J=6 Hz), 6.42 (t, 1H, J=6 Hz), 6.35 (t, 1H, J=6 Hz), CHN analysis: Found: C, 39.44%; H, 2.84%; N, 3.71%. Calcd for C₂₄H₂₀ClF₆N₂OOsP·0.5H₂O: C, 39.32%; H, 2.89%; N, 3.82%.

(12) $[Os(\eta^6-p-cym)(Impy-OH)CI]PF_6$. $[Os(\eta^6-p-cym)Cl_2]_2$ (50.0 mg, 0.063 mmol) was dissolved in methanol (30 mL) at 313 K. The Impy-OH ligand (25.0 mg, 0.12 mmol) in methanol (10 mL) was added dropwise, the solution-colour changed from orange to red immediately. The reaction mixture was stirred at ambient temperature for 2 h. The volume was reduced to about 10 mL by removal of methanol on a rotary evaporator, and ammonium hexafluorophosphate (41.2 mg, 0.25 mmol) was added. Then the solution was left in a freezer for 24 h. Dark-coloured powder precipitated which was collected by filtration, washed with cold ethanol and diethyl ether, and finally dried in vacuum. Yield: 53.8 mg (63.7 %). ESI-MS

Calcd for $C_{22}H_{24}CIN_2OOs$: m/z 559.1, found 559.1. ¹H NMR((CD₃)₂CO): δ 9.60 (d, 1H, J=5 Hz), 9.35 (s, 1 H), 8.50 (d, 1H, J=7 Hz), 8.34 (t, 1H, J=7 Hz), 7.84(t, 1H, J=6 Hz), 7.75 (d, 2H, J=9 Hz), 7.08 (d, 2H, J=9 Hz), 6.46 (d, 1H, J=6 Hz), 6.00 (d, 1H, J=6 Hz), 5.84 (d, 1H, J=6 Hz), 2.81 (s, 3H), 2.65-2.55 (m, 1H), 2.41 (s, 6H), 1.10 (d, 3H, J=7 Hz) 1.08 (d, 3H, J=7 Hz). CHN analysis: Found: C, 37.82%; H, 3.33%; N, 3.91%. Calcd for $C_{22}H_{24}CIF_6N_2OOsP$: C, 37.58% H, 3.44% N, 3.98%.

(13) $[Os(\eta^6-bip)(Impy-NMe_2)CI]PF_6$. $[Os(\eta^6-bip)Cl_2]_2$ (50.0 mg, 0.060 mmol) was dissolved in methanol (20 mL) at 313 K. The Impy-NMe_2 ligand (27.1mg, 0.12 mmol) in methanol (10 mL) was added dropwise; the solution-colour changed from orange to red immediately. The reaction mixture was stirred at 353K for 12 h. The volume was reduced to about 10 mL by removal of methanol on a rotary evaporator, and ammonium hexafluorophosphate (39.1 mg, 0.24 mmol) was added. Then the solution was left in a freezer for 24 h. Red-coloured powder precipitated which was collected by filtration, washed with cold ethanol and diethyl ether, and finally dried in vacuum. Yield: 52.0 mg (57.8 %). ¹H NMR((CD₃)₂CO): δ 9.31 (d, 1H, J=5 Hz), 9.09 (s, 1 H), 8.39 (d, 1H, J=8 Hz), 8.25 (t, 1H, J=8 Hz), 7.70 (t, 1H, J=9 Hz), 7.61-7.44 (m, 7H). 6.77 (d, 2H, J=9 Hz), 6.74 (d, 1H, J=6 Hz), 6.62 (d, 1H, J=6 Hz), 6.63-6.45 (m, 2H), 6.34 (t, 1H, J=6 Hz), CHN analysis: Found: C, 41.54%; H, 3.31%; N, 5.61%. Calcd for C₂₆H₂₅ClF₆N₃OsP: C, 41.63%; H, 3.36%; N, 5.60%.

(14) $[Os(\eta^6-p-cym)(Impy-NMe_2)CI]PF_6$. $[Os(\eta^6-p-cym)Cl_2]_2$ (50.0 mg, 0.063 mmol) was dissolved in methanol (30 mL) at 313 K. The Impy-NMe_2 ligand (28.5mg, 0.126 mmol) in methanol (10 mL) was added dropwise, the solution-colour changed from orange to red immediately. The reaction mixture was stirred at ambient temperature for 2 h. The volume was reduced to about 10 mL by removal of methanol on a rotary evaporator, and ammonium hexafluorophosphate (41.2 mg, 0.253 mmol) was added. Then the solution was left in a freezer for 24 h. Dark-coloured powder precipitated which was collected by filtration, washed with cold ethanol and diethyl ether, and finally dried in vacuum. Yield: 67.2 mg (85.6 %). ESI-MS Calcd for C₂₄H₂₉ClN₃Os: m/z 586.2, found 586.1. ¹H NMR((CD₃)₂CO): δ 9.55 (d, 1H, J=5 Hz), 9.20 (s, 1 H), 8.44 (d, 1H, J=7 Hz), 8.31 (t, 1H, J=7 Hz), 7.82(t, 1H, J=6 Hz),

7.76 (d, 2H, J=9 Hz), 6.92 (d, 2H, J=9 Hz), 6.44 (d, 1H, J=6 Hz), 6.04 (d, 1H, J=6 Hz), 5.97 (d, 1H, J=6 Hz), 5.85 (d, 1H, J=6 Hz), 3.16 (s, 6H), 2.42 (s, 3H), 2.21-2.11 (m, 1H), 1.09 (d, 3H, J=7 Hz) 1.07 (d, 3H, J=7 Hz). CHN analysis: Found: C, 39.43%; H, 3.89%; N, 5.75%. Calcd. for C₂₄H₂₉ClF₆N₃OsP: C, 39.48%; H, 4.00% N, 5.75%.

(15) $[Os(\eta^6-bip)(OMe-Impy-NMe_2)Cl]PF_6\cdot0.5H_2O.$ $[Os(\eta^6-bip)Cl_2]_2$ (50.0 mg, 0.060 mmol) was dissolved in methanol (20 mL) and water (10 mL) at 313 K. The OMe-Impy-NMe₂ ligand (30.6 mg, 0.12 mmol) in methanol (10 mL) was added dropwise, the solution-colour changed from orange to red immediately. The reaction mixture was stirred at 353K for 12 h. The volume was reduced to about 10 mL by removal of methanol on a rotary evaporator, and ammonium hexafluorophosphate (39.1 mg. 0.24 mmol) was added. Then the solution was left in a freezer for 24 h. Red-coloured powder precipitated which was collected by filtration, washed with cold ethanol and diethyl ether, and finally dried in vacuum. Yield: 72.1 mg (77.0 %). ESI-MS Calcd for C₂₇H₂₇ClN₃OOs: m/z 636.2, found 636.0. ¹H NMR((CD₃)₂CO): δ 9.00 (s, 1H), 8.24 (t, 1H, J=8 Hz), 7.95 (d, 1H, J=8 Hz), 7.60-7.56 (m, 5H), 7.50-7.41 (m, 5H), 6.77 (d, 2H, J=9 Hz), 6.60 (d, 1H, J=6 Hz), 6.37-6.32 (m, 2H), 4.14 (s, 3H), 3.12 (s, 6H), CHN analysis: Found: C, 41.04%; H, 3.32%; N, 5.28%. Calcd for C₂₇H₂₇ClF₆N₃OOsP-0.5H₂O: C, 41.04 %; H, 3.57 %; N, 5.32 %.

(16) $[Os(\eta^6-p-cym)(OMe-Impy-NMe_2)CI]PF_6-H_2O.$ $[Os(\eta^6-p-cym)Cl_2]_2$ (50.0 mg, 0.063 mmol) was dissolved in methanol (30 mL) at 313 K. The OMe-Impy-NMe_2 ligand (32.2 mg, 0.126 mmol) in methanol (10 mL) was added dropwise, the solution-colour changed from orange to red immediately. The reaction mixture was stirred at ambient temperature for 2 h. The volume was reduced to about 10 mL by removal of methanol on a rotary evaporator, and ammonium hexafluorophosphate (41.2 mg, 0.253 mmol) was added. Then the solution was left in a freezer for 24 h. Dark-coloured powder precipitated which was collected by filtration, washed with cold ethanol and diethyl ether, and finally dried in vacuum. Yield: 58.7 mg (61.3 %). ESI-MS Calcd for C₂₅H₃₁ClN₃OOs: m/z 616.2, found 616.0. ¹H NMR((CD₃)₂CO): δ 9.10 (s, 1 H), 8.25 (t, 1H, J=8 Hz), 7.98 (d, 1H, J=8 Hz), 7.72 (d, 2H, J=8 Hz), 7.53 (d, 1H, J=8 Hz), 6.90 (d, 2H, J=8 Hz), 6.54 (d, 1H, J=6 Hz), 5.98 (d, 1H, J=6

Hz), 5.82 (dd, 2H, J=6 Hz), 4.38 (s, 3H), 2.86 (s, 6H), 2.61-2.51 (m, 1H), 2.38 (s, 3H), 1.11 (d, 3H, J=7 Hz) 1.08 (d, 3H, J=7 Hz). CHN analysis: Found: C 38.66%, H 4.00%, N 5.29%. Calcd. for C₂₅H₃₁ClF₆N₃OOsP·H₂O: C, 38.54%; H, 4.27%; N, 5.39%.

(14A) $[Os(\eta^6-p-cym)(Impy-NMe_2)OH]PF_6 H_2O. [Os(\eta^6-p-cym)Cl_2]_2$ (100.0 mg, 0.126) mmol) and AgNO₃ (85.9 mg, 0.506 mmol) was stirred in water (20 mL) at 313 K for 12 h, a white precipitate was filtered off. The Impy-NMe₂ ligand (57.0 mg, 0.25 mmol) was added to the yellow clear solution, the solution-colour changed from yellow to red immediately. The stirred at ambient temperature reaction mixture was for 12 h. Ammonium hexafluorophosphate (205 mg, 1.26 mmol) was added. Then the solution was left in a fridge for 24 h. Dark-coloured powder precipitated which was collected by filtration, washed with cold ethanol and diethyl ether, and finally dried in vacuum. Yield: 105 mg (58.5 %). ESI-MS Calcd for C₂₄H₃₀N₃OOs: m/z 568.2, found 569.1. ¹H NMR(D₂O): δ 9.29 (d, 1H, J=5 Hz), 8.98 (s, 1 H), 8.15 (d, 1H, J=7 Hz), 8.12 (t, 1H, J=7 Hz), 7.67 (t, 1H, J=6 Hz), 7.52 (d, 2H, J=9 Hz), 6.96 (d, 2H, J=9 Hz), 6.17 (d, 1H, J=6 Hz), 5.81 (d, 1H, J=6 Hz), 5.66 (d, 1H, J=6 Hz), 5.54 (d, 1H, J=6 Hz), 2.98 (s, 6H), 2.25 (s, 3H), 2.23-2.16 (m, 1H), 0.83 (d, J=7 Hz, 3H), 0.74 (d, J=7 Hz, 3H). CHN analysis: Found: C, 39.59%, H, 3.87%, N, 6.23%. Calcd. for C₂₄H₃₀F₆N₃OOsP·H₂O: C, 39.42%, H, 4.41%, N, 5.74%.

Methods

Electrochemistry. The electrochemical study was carried out using similar conditions to those used for the ruthenium analogues reported previously:³ Electrochemical studies were performed with a CHI730A bipotentiostat (CH Instrument, USA) system, and a three-electrode configuration with all the electrodes in solution. A 2 mm diameter platinum disc electrode was used as the working electrode with a chloridized silver wire as the quasi-reference electrode and a Pt counter electrode (CH Instrument, USA). The reference electrode was Ag/AgCl in a solution of 0.1 M [TBA][BF4] in DMF, against which $E_{1/2}$ for the ferrocenium/ferrocene couple was measured to be +0.55 V.

High resolution Liquid Chromatography–Mass Spectrometry (LC-MS) Analysis. LC-MS analysis was carried with a Dionex 3000RS UHPLC coupled with a Bruker MaXis Q-TOF mass spectrometer. A Sigma Ascentis Express column (C18, 150x2.1 mm, 2.7 μ m) was used. Mobile phases are consisted of A (water with 0.1% formic acid) and B (as methanol with 0.1% formic acid). A gradient of 5% B to 100% B in 15 minutes was employed with flow rate at 0.2 mL/min, UV detection wavelength 210 nm. The mass spectrometer was operated in electrospray positive mode with a scan range 50-2,000 m/z. Source conditions: end plate offset at -500 V; capillary at -4500 V; nebulizer gas (N₂) at 1.6 bar; dry gas (N₂) at 8 L/min; dry temperature at 453 K. Ion tranfer conditions: ion funnel RF at 200 Vpp; multiple RF at 200 Vpp; quadruple low mass set at 55 m/z; collision energy at 5.0 eV; collision RF at 600 Vpp; ion cooler RF at 50-350 Vpp; transfer time 121 μ s; pre-pulse storage time 1 μ s. Calibration was made with sodium formate (10 mM) through a loop injection of 20 μ L of standard solution at the beginning of each run.

NADH (0.5 mM) with or without complex **14A** (0.5 mM) was incubated at 310 K for 24 h; NADH and NAD⁺ were incubated under the same conditions and LC-MS was employed to analyze the 3 samples.

Detection of H₂ by Gas Chromatography (GC). Solutions containing complex **14** [(η^6 -*p*-cym)Os(Impy-NMe₂)OH]PF₆ and NADH (Os 100 μ M, NADH, 2 mM, 100 mM phosphate buffer, pH 7.4, 10% MeOH/90% H₂O) were incubated at 310 K for 18 h before sampling.

Aliquots of the headspace (10 μ l) were removed by using a gas-tight syringe and analyzed on an Agilent GC 7890A instrument equipped with a thermal conductivity detector, using N2 as the carrier gas. Under these conditions H₂ had a retention time of 0.4 min and O₂ a retention time of 0.8 min.

X-ray Crystallography. X-ray diffraction data for $[Os(\eta^6-p-cym)(Impy-OH)I]PF_6$ (3) were obtained on an Oxford Diffraction Gemini four-circle system with a Ruby CCD area detector using Mo K_{α} radiation.⁴ Absorption corrections were carried out using ABSPACK. The crystals were mounted in oil and held at 100(2) K with the Oxford Cryosystem Cryostream Cobra. The structure was solved by direct methods using SHELXS (TREF) with additional light atoms found by Fourier methods⁵ and refined with SHELXL 97^6 (refinement of F^2 against ALL reflections). Hydrogen atoms were added at calculated positions and refined using a riding model except the phenol OHs and the hydrogens on O200 which were located in a difference map. Anisotropic displacement parameters were used for all non-H atoms. Hatoms were given isotropic displacement parameter equal to 1.2 (or 1.5 for methyl or OH Hatoms) times the equivalent isotropic displacement parameter of the atom to which they are attached. No hydrogens were located for water O300. One of the PF₆ counter ions was modelled as disordered around the phosphorus in the ratio 43:57 P10(F11-F16):P10(F11A-F16A). DFIX, DANG and ISOR restraints were used to maintain sensible bonds, angles and thermal parameters of the disordered components P10 F11-F16 and F11A-F16A. Drawings were made with Ortep-3 and Mercury 2.4.

Cell Culture and IC₅₀ **determinations.** Human ovarian A2780 cells were obtained from ECACC (Salisbury, UK). The cells were maintained in RPMI-1640 supplemented with 10% (v/v) foetal calf serum, 1% L-glutamine, and 1% penicillin/streptomycin at 310 K in a humidified atmosphere containing 5% CO₂. The concentrations of the osmium complexes that inhibit 50% of the proliferation of human ovarian A2780, MRC-5 human fetal lung fibroblast cells and human lung cancer A549 cancer cells were determined using the sulforhodamine B assay. Cancer cells were seeded in 96-well plates (Falcon) at 5000 cells/well, after incubation for 48 h. The complexes were solubilised in DMSO (Sigma) to

provide 10 mM stock solutions. These were serially diluted with cell culture media to give concentrations four-fold greater than the final concentrations for the assay. The complexes diluted in cell culture media were added to the 96-well plates with cells in triplicate. The final DMSO concentration in each well was no more than 1% (v/v). The media containing the complexes were removed after 24 h. The cells were washed with phosphate buffered saline once and cell culture medium was added (200 μ L/well). The cells were then allowed to grow for a further 72 h. The surviving cells were fixed by adding 50 μ L/well of 50% (w/v) trichloroacetic acid and incubated for 1 h in a refrigerator (277 K). The plates were washed with tap water three times and dried under a flow of warm air, 0.4% sulforhodamine B (Sigma) solution (50 μ L/well) was added for 30 min, followed by washing with 1% acetic acid five times and drying under a flow of warm air. The dye was dissolved in 10 mM Tris buffer (150 μ L/well). The absorbance of each well was determined using a Multiskan Ascent plate reader (Labsystems) at 540 nm. The absorbance of SRB in each well is directly proportional to the cell number. Then the absorbance was plotted against concentration and the IC₅₀ determined by using Origin software (version 7.5).

ROS detection. The vial of DCFH-DA was opened under N₂ protection, and contents were dissolved in DMSO to give a 10 mM stock solution. A549 cells were seeded (5000 cells/well) into black 96-well plates and incubated for 24 h at 310 K, 5% CO₂, high humidity. Cells were loaded with DCFH-DA (10 μ M) and incubated for 30 min. The probe was removed and PBS was used to wash the cells twice. The cells were then kept in PBS solution then treated with **6** (4 μ M), **14** (4 μ M), L-BSO (50 μ M), **6** or **14** combined with L-BSO (50 μ M), and H₂O₂ (10 μ M, positive control). The fluorescence was recorded over a period of 4 h at 310 K by excitation at 480 nm and emission at 530 nm on a TECAN plate reader (TECAN, USA).

NAD⁺/**NADH Ratio in Cells.** Determination of the nicotinamide adenine dinucleotide NAD⁺/NADH ratio in cellular lysates was carried out using a Biovision NAD⁺ and NADH quantification kit according to the manufacturer's specifications. A stock solution of the Os^{II} complex **14** was prepared in DMSO to assist dissolution and then diluted into medium

(maximum final DMSO concentration 0.25%). A2780 cells (400,000) were seeded in 6-well plates and cultured in complete medium for one day.

Cancer cells were treated with 1.5 μ M of complex **14** for 6 h, washed with PBS, trypsinised, counted and lysed for extraction. Briefly, lysates of 200,000 S7 cells were extracted by freeze/thaw two cycles (20 min on dry ice, then 10 min at room temperature). Extracted samples were filtered through 10 kDa molecular weight cut-off filters to remove enzymes consuming NADH. Samples were stored at -80 °C until the assay was performed. To detect total NADH plus NAD⁺ (NADt), the samples and NADH standards were incubated directly with NAD cycling mix (cycling buffer and enzyme mix). To detect NADH, samples were heated to 60°C for 30 min to decompose NAD⁺ before incubating with NAD cycling mix.

Duplicated samples and standards were then mixed with NADH developer and incubated at room temperature for 4 h before recording the absorbance at 450nm. The amount of NAD⁺ in samples was calculated by subtracting NADH from NADt (NADH + NAD⁺).

Instrumentation

NMR Spectroscopy. ¹H NMR spectra were acquired in 5 mm NMR tubes at 298 K or 310 K on either Bruker DPX-400, Bruker DRX-500, Bruker AV III 600 or Bruker AV II 700 spectrometers. ¹H NMR chemical shifts were internally referenced to TMS using acetone (2.09 ppm), 1, 4-dioxane (3.71 ppm), CHCl₃ (7.27 ppm) or DMSO (2.50 ppm). To minimize the effect of HOD signal overlapping with other proton peaks in ¹H NMR experiments using 10%D₂O/90%H₂O, the HOD signal was suppressed using presaturation methods. All data processing was carried out using MestReC or TOPSPIN version 2.0 (Bruker U.K. Ltd.).

pH^{*} **Measurements.** pH^* values (pH meter reading from D₂O solution without correction for effects of deuterium on glass electrode) were measured at ambient temperature before the NMR spectra were recorded, using a Corning 240 pH meter equipped with a microcombination electrode calibrated with Aldrich buffer solutions at pH 4, 7 and 10. The pH^{*} values were adjusted with dilute NaOH or HNO₃ solutions in D₂O.

Calculation of pK_a^* values. The chemical shift of the ¹H NMR signals were plotted against pH^{*} values. The curve from the pH^{*} titration was fitted to the Henderson-Hasselbalch equation using ORIGIN 7.5. The pK_a^* values were converted to pK_a values by using the equation $pK_a = 0.929 \cdot pK_a^* + 0.42$.⁷

Electrospray Ionisation Mass Spectrometry (ESI-MS). Spectra were obtained by preparing the samples in 50% CH₃CN and 50% H₂O (v/v) and infusing into the mass spectrometer (Bruker Esquire 2000). The mass spectra were recorded with a scan range of m/z 500-1000 for positive ions. Data were processed using Data Analysis version 3.3 (Bruker Daltonics).

Elemental Analysis. Elemental analysis (carbon, hydrogen, and nitrogen) was carried out through Warwick Analytical Service using an Exeter analytical elemental analyzer (CE440).

UV-Vis Spectroscopy. UV-Vis spectra were recorded on a Cary 300-Bio spectrophotometer using 1-cm path-length quartz cuvettes (0.5 mL) and a PTP1 Peltier temperature controller.

Spectra were recorded at 310 K from 800 to 200 nm. All data processing was carried out using Excel 2007 (Microsoft, USA) or Origin 7.5 (Origin, USA).

$\mathbf{4.0.5CH_2Cl_2\cdot H_2O}$
$C_{22.50}H_{27}ClF_6IN_2O_2OsP$
0.20×0.20×0.20
854.98
Triclinic
P-1
11.3168(3)
13.0498(3)
19.2278(4)
95.3980(19)
103.654(2)
97.2625(19)
2714.50(11)
100(2)
4
6.057
12572
9981 [0.0222]
0.0332, 0.0793
0.0450, 0.0817
1.061
4.429, -1.365

Table S1: Crystal data and structure refinement for $[Os(\eta^6-p-cym)(Impy-OH)I]PF_6$ $\cdot 0.5CH_2Cl_2 \cdot H_2O$ ($\mathbf{4} \cdot 0.5CH_2Cl_2 \cdot H_2O$)

Table S2: Selected bond lengths^a [Å] and angles [°] for $[Os(\eta^6-p-cym)(Impy-OH)I]PF_6$ $\cdot 0.5CH_2Cl_2 \cdot H_2O$ (4 $\cdot 0.5CH_2Cl_2 \cdot H_2O$)

$4 \cdot 0.5 CH_2 Cl_2 \cdot H_2 O$											
Os1-N108	2.077(4)	Os2-N208	2.078(4)	Os1- η^6 -arene centroid	1.6962(2)						
Os1-N101	2.087(4)	Os2-N201	2.080(4)	Os2- η^6 -arene centroid	1.6845(2)						
Os1-C120	2.182(5)	Os2-C220	2.169(5)	N108-Os1-N101	76.05(14)						
Os1-C116	2.189(5)	Os2-C216	2.184(5)	N101-Os1-I1	84.80(11)						
Os1-C117	2.206(5)	Os2-C221	2.201(6)	N208-Os2-N201	76.59(15)						
Os1-C121	2.209(5)	Os2-C217	2.209(5)	N208-Os2-I2	85.06(12)						
Os1-C119	2.219(4)	Os2-C219	2.212(5)								
Os1-C118	2.256(4)	Os2-C218	2.245(5)								
Os1-I1	2.7091(4)	Os2-I2	2.7247(4)								

^a Intermolecular hydrogen bonds are observed between one water molecule and both PF₆⁻ counterions [O300-H30A…F33 2.10(3) Å, x+1, y, z; O300-H30B…F21 2.36(3) Å, -x+1, -y, -z]

Table S3. NCI 60-cell line test data: (A) $[Os(\eta^6-p-cym)(Impy-NMe_2)I]PF_6(6)$; (B) $[Os(\eta^6-p-cym)(Impy-NMe_2)Cl]PF_6$ (14).

(A)

National Cancer Institute Developmental Therapeutics Program In-Vitro Testing Results																
NSC : D - 755639 / 1					Experiment ID : 1102NS99							Test Type : 08		Units : Molar		
Report Date :	April 09	, 2011			Tes	Test Date : February 14, 2011						QNS	:	MC :	MC :	
COMI : FY092	2 (10211	8)			Sta	in Rea	gent : S	RB Dual	Pass I	Related	I	SSPI	_: 0Y4T			
Log10 Concentration																
Panel/Cell Line	Time Zero	Ctrl	-8.0	Mear -7.0	-6.0	-5.0	es -4.0	-8.0	Р -7.0	ercent G -6.0	-5.0	-4.0	GI50	TGI	LC50	
Leukemia CCRF-CEM HL-60(TB) K-562 MOLT-4 RPMI-8226	0.405 0.773 0.272 0.584 0.845	1.448 1.450 1.159 1.276 2.098	1.267 1.474 1.248 1.315 2.049	1.323 1.514 1.266 1.401 2.075	1.302 1.067 0.571 1.410 1.385	0.514 0.340 0.305 0.469 0.692	0.342 0.271 0.226 0.360 0.541	83 104 110 106 96	88 109 112 118 98	86 43 34 119 43	10 -56 4 -20 -18	-16 -65 -17 -38 -36	2.99E-6 7.94E-7 6.20E-7 3.16E-6 7.49E-7	2.52E-5 2.73E-6 1.51E-5 7.22E-6 5.06E-6	 > 1.00E-4 8.70E-6 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 	
Non-Small Cell Lung A549/ATCC EKVX HOP-62 HOP-92 NCI-H226 NCI-H226 NCI-H232M NCI-H322M NCI-H460 NCI-H522	Cancer 0.331 0.583 0.420 1.156 0.749 0.479 0.824 0.265 0.865	1.323 1.555 1.142 1.652 1.533 1.428 1.665 1.917 2.102	1.286 1.545 1.118 1.601 1.481 1.399 1.643 1.971 2.097	1.304 1.569 1.176 1.524 1.437 1.278 1.713 1.877 2.085	1.313 1.492 1.023 1.522 1.475 1.278 1.763 1.739 1.907	0.437 0.839 0.543 0.729 0.998 0.631 1.016 0.496 0.745	0.218 0.337 0.076 0.214 0.086 0.232 0.300 0.122 0.285	96 99 97 90 93 97 97 103 100	98 101 105 74 88 84 106 98 99	99 93 83 74 93 84 112 89 84	11 26 17 -37 32 16 23 14 -14	-34 -42 -82 -81 -52 -64 -54 -67	3.58E-6 4.44E-6 3.19E-6 1.64E-6 5.01E-6 4.94E-6 3.32E-6 2.23E-6	1.73E-5 2.42E-5 1.48E-5 4.64E-6 1.84E-5 1.72E-5 1.84E-5 1.61E-5 7.21E-6	> 1.00E-4 > 1.00E-4 4.76E-5 1.96E-5 4.78E-5 9.45E-5 6.96E-5 8.74E-5 4.77E-5	
Colon Cancer COLO 205 HCC-2998 HCT-116 HCT-15 HT29 KM12 SW-620	0.271 0.632 0.227 0.244 0.335 0.468 0.282	1.131 2.139 1.423 1.481 1.498 2.068 1.649	1.144 2.073 1.412 1.485 1.556 2.156 1.593	1.103 2.051 1.465 1.392 1.505 2.140 1.518	0.756 2.001 1.171 1.338 1.397 2.054 1.422	0.065 0.728 0.251 1.459 0.284 0.245 0.375	0.033 0.119 0.027 0.885 0.067 0.059 0.050	101 96 99 100 105 105 96	97 94 104 93 101 104 90	56 91 79 88 91 99 83	-76 6 2 98 -15 -48 7	-88 -81 -88 52 -80 -87 -82	1.12E-6 3.04E-6 2.38E-6 > 1.00E-4 2.44E-6 2.16E-6 2.73E-6	2.66E-6 1.18E-5 1.05E-5 > 1.00E-4 7.18E-6 4.73E-6 1.19E-5	6.34E-6 4.40E-5 3.78E-5 > 1.00E-4 3.42E-5 1.15E-5 4.33E-5	
CNS Cancer SF-268 SF-295 SF-539 SNB-19 SNB-75 U251	0.474 0.718 0.634 0.463 0.753 0.412	1.340 2.339 2.016 1.446 1.256 1.374	1.373 2.314 1.932 1.483 1.190 1.397	1.410 2.378 1.891 1.463 1.265 1.369	1.322 2.380 1.857 1.414 1.230 1.206	0.458 2.231 0.745 0.672 0.604 0.407	0.110 0.502 0.188 0.100 0.086 0.034	104 98 94 104 87 102	108 102 91 102 102 99	98 103 88 97 95 82	-3 93 8 21 -20 -1	-77 -30 -70 -79 -89 -92	2.97E-6 2.24E-5 3.01E-6 4.16E-6 2.46E-6 2.44E-6	9.26E-6 5.70E-5 1.27E-5 1.63E-5 6.71E-6 9.64E-6	4.31E-5 > 1.00E-4 5.50E-5 5.18E-5 2.75E-5 3.45E-5	
Melanoma LOX IMVI MALME-3M M14 MDA-MB-435 SK-MEL-2 SK-MEL-2 SK-MEL-28 SK-MEL-5 UACC-257 UACC-62	0.296 0.685 0.301 0.489 0.887 0.521 0.607 0.749 0.799	1.904 1.415 1.083 1.801 1.716 1.368 1.726 1.345 2.207	1.783 1.389 1.056 1.870 1.745 1.412 1.720 1.303 2.192	1.747 1.379 1.045 1.882 1.747 1.403 1.675 1.290 2.252	1.829 1.255 0.857 1.551 1.706 1.335 1.531 1.116 2.121	0.418 0.680 0.464 0.397 0.557 0.582 0.070 0.552 0.671	0.112 0.202 0.062 0.100 0.223 0.025 0.008 0.134 0.144	92 96 97 105 103 105 100 93 99	90 95 106 104 104 95 91	95 78 71 81 99 96 83 62 94	8 -1 -19 -37 7 -89 -26 -16	-62 -71 -79 -80 -75 -95 -99 -82 -82	3.28E-6 2.27E-6 2.63E-6 2.04E-6 2.28E-6 3.30E-6 1.55E-6 1.35E-6 2.51E-6	1.28E-5 9.77E-6 1.61E-5 6.47E-6 5.32E-6 1.18E-5 3.04E-6 5.01E-6 7.14E-6	6.69E-5 5.07E-5 3.25E-5 2.18E-5 3.61E-5 5.95E-6 2.65E-5 3.27E-5	
Ovarian Cancer IGROV1 OVCAR-3 OVCAR-4 OVCAR-5 OVCAR-8 NCI/ADR-RES SK-OV-3	0.580 0.518 0.497 0.430 0.281 0.417 0.413	1.751 1.585 1.371 1.098 0.852 1.470 0.887	1.854 1.618 1.367 1.030 0.842 1.517 0.869	1.953 1.657 1.391 1.044 0.843 1.415 0.871	1.743 1.423 1.249 1.062 0.795 1.411 0.853	0.775 0.349 0.523 0.494 0.353 1.442 0.494	0.237 0.030 0.164 0.079 0.137 1.242 0.183	109 103 100 90 98 104 96	117 107 102 92 98 95 97	99 85 86 95 90 94 93	17 -33 3 10 13 97 17	-59 -94 -67 -82 -51 78 -56	3.95E-6 1.98E-6 2.72E-6 3.34E-6 3.28E-6 > 1.00E-4 3.67E-6	1.66E-5 5.27E-6 1.10E-5 1.27E-5 1.57E-5 > 1.00E-4 1.71E-5	7.58E-5 1.91E-5 5.70E-5 4.50E-5 9.56E-5 > 1.00E-4 8.32E-5	
Renal Cancer 786-0 A498 ACHN CAKI-1 RXF 393 SN12C TK-10 UO-31	0.450 1.424 0.300 0.910 0.629 0.919 0.686 0.536	1.570 2.132 1.235 2.174 1.161 2.529 1.233 1.737	1.534 1.976 1.152 2.231 1.173 2.536 1.197 1.658	1.522 1.974 1.164 2.228 1.130 2.525 1.243 1.632	1.472 1.923 1.240 2.251 1.128 2.383 1.224 1.662	1.267 1.523 1.158 2.552 1.079 1.136 0.991 1.773	0.113 0.663 0.452 2.263 0.039 0.289 0.088 1.265	97 78 91 105 102 100 94 93	96 78 92 104 94 100 102 91	91 70 101 106 94 91 98 94	73 14 92 130 84 13 56 103	-75 -53 16 107 -94 -69 -87 61	1.43E-5 2.30E-6 3.57E-5 > 1.00E-4 1.56E-5 3.38E-6 1.10E-5 > 1.00E-4	3.11E-5 1.61E-5 > 1.00E-4 > 1.00E-4 2.98E-5 1.46E-5 2.46E-5 > 1.00E-4	6.78E-5 8.89E-5 > 1.00E-4 > 1.00E-4 5.67E-5 5.93E-5 5.50E-5 > 1.00E-4	
Prostate Cancer PC-3 DU-145 Breast Cancer	0.559 0.399	1.700 1.311	1.687 1.394	1.610 1.402	1.510 1.378	0.659 0.597	0.197 0.026	99 109	92 110	83 107	9 22	-65 -93	2.80E-6 4.67E-6	1.31E-5 1.54E-5	6.30E-5 4.19E-5	
MCF7 MDA-MB-231/ATC(HS 578T T-47D MDA-MB-468	0.609 C 0.466 0.904 0.615 0.470	2.562 0.839 1.376 1.295 1.007	2.504 0.881 1.302 1.242 0.978	2.547 0.903 1.296 1.229 0.951	2.089 0.950 1.233 1.091 0.632	0.890 0.338 0.700 0.566 0.412	0.118 0.130 0.586 0.075 0.056	97 111 84 92 95	99 117 83 90 90	76 130 70 70 30	14 -27 -23 -8 -12	-81 -72 -35 -88 -88	2.63E-6 3.21E-6 1.63E-6 1.81E-6 4.64E-7	1.42E-5 6.69E-6 5.69E-6 7.90E-6 5.11E-6	4.76E-5 3.20E-5 > 1.00E-4 3.36E-5 3.14E-5	

(B)

National Cancer Institute Developmental Therapeutics Program In-Vitro Testing Results																
NSC : D - 755640 / 1					Exp	Experiment ID : 1102NS99							Test Type : 08		Units : Molar	
Report Date :	April 09	, 2011		Test Date : February 14, 2011					QNS :		MC :	MC :				
COMI : FY095	5 (10211	19)			Sta	in Rea	gent : S	SRB Dual-	Pass	Related	ł	SSP	PL : 0Y4T			
Log10 Concentration																
Panel/Cell Line	Time Zero	Ctrl	-8.0	Mear -7.0	-6.0	-5.0	es -4.0	-8.0	-7.0	ercent G -6.0	-5.0	-4.0	GI50	TGI	LC50	
CCRF-CEM HL-60(TB) K-562 MOLT-4 RPML-8226	0.405 0.773 0.272 0.584 0.845	1.623 1.619 1.348 1.315 2.160	1.419 1.610 1.253 1.327 2.206	1.438 1.552 1.279 1.353 2.029	1.333 1.560 0.959 1.382 1.722	0.635 0.450 0.336 0.972 0.758	0.359 0.354 0.227 0.404 0.606	83 99 91 102 103	85 92 94 105 90	76 93 64 109 67	19 -42 6 53 -10	-11 -54 -17 -31 -28	2.86E-6 2.08E-6 1.73E-6 1.09E-5 1.65E-6	4.21E-5 4.90E-6 1.83E-5 4.29E-5 7.35E-6	 > 1.00E-4 4.59E-5 > 1.00E-4 > 1.00E-4 > 1.00E-4 	
Non-Small Cell Lung A549/ATCC EKVX HOP-62 HOP-62 NCI-H226 NCI-H226 NCI-H227 NCI-H322M NCI-H460 NCI-H522	Cancer 0.331 0.583 0.420 1.156 0.749 0.479 0.824 0.265 0.865	1.363 1.522 1.269 1.616 1.590 1.428 1.768 2.028 2.249	1.444 1.526 1.302 1.568 1.574 1.373 1.624 2.158 2.137	1.419 1.521 1.319 1.577 1.534 1.324 1.611 2.080 2.118	1.412 1.594 1.236 1.596 1.559 1.344 1.714 2.031 2.188	1.185 1.124 0.710 1.297 1.285 0.987 1.514 0.997 1.314	0.282 0.629 0.409 0.580 0.705 0.466 0.698 0.130 0.304	108 100 104 90 98 94 85 107 92	105 100 106 91 93 89 83 103 91	105 108 96 96 96 91 94 100 96	83 58 34 31 64 54 73 42 32	-15 5 -3 -50 -6 -3 -15 -51 -65	2.16E-5 1.39E-5 5.54E-6 5.03E-6 1.57E-5 1.15E-5 1.82E-5 7.17E-6 5.27E-6	7.03E-5 > 1.00E-4 8.43E-5 2.40E-5 8.22E-5 8.91E-5 6.71E-5 2.81E-5 2.15E-5	<pre>> 1.00E-4 > 1.00E-4 9.72E-5 7.03E-5</pre>	
Colon Cancer COLO 205 HCC-2998 HCT-116 HCT-15 HT29 KM12 SW-620	0.271 0.632 0.227 0.244 0.335 0.468 0.282	1.306 2.112 1.584 1.603 1.734 2.216 1.737	1.338 2.157 1.583 1.577 1.792 2.258 1.752	1.304 2.065 1.505 1.511 1.740 2.298 1.680	1.281 1.991 1.611 1.589 1.821 2.187 1.649	0.066 1.156 0.474 1.363 1.057 0.801 0.590	0.050 0.386 0.064 1.093 0.161 0.041 0.065	103 103 100 98 104 102 101	100 97 94 93 100 105 96	98 92 102 99 106 98 94	-76 35 18 82 52 19 21	-82 -39 -72 62 -52 -91 -77	1.88E-6 5.50E-6 4.18E-6 > 1.00E-4 1.04E-5 4.07E-6 4.01E-6	3.65E-6 2.99E-5 1.59E-5 > 1.00E-4 3.15E-5 1.49E-5 1.64E-5	7.10E-6 > 1.00E-4 5.72E-5 > 1.00E-4 9.58E-5 4.22E-5 5.30E-5	
CNS Cancer SF-268 SF-295 SF-539 SNB-19 SNB-75 U251	0.474 0.718 0.634 0.463 0.753 0.412	1.402 2.417 2.120 1.496 1.299 1.380	1.342 2.243 2.016 1.479 1.222 1.397	1.337 2.172 2.117 1.398 1.205 1.450	1.365 2.302 2.114 1.456 1.243 1.396	0.675 2.077 1.151 0.834 0.999 0.582	0.027 0.614 0.553 0.299 0.493 0.031	93 90 93 98 86 102	93 86 100 91 83 107	96 93 100 96 90 102	22 80 35 36 45 18	-94 -14 -36 -35 -92	4.15E-6 2.08E-5 5.82E-6 5.83E-6 7.77E-6 4.11E-6	1.54E-5 7.03E-5 5.37E-5 3.18E-5 3.68E-5 1.44E-5	4.15E-5 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 4.11E-5	
Melanoma LOX IMVI MALME-3M M14 MDA-MB-435 SK-MEL-2 SK-MEL-2 SK-MEL-28 SK-MEL-5 UACC-257 UACC-62	0.296 0.685 0.301 0.489 0.887 0.521 0.607 0.749 0.799	1.944 1.494 1.206 2.030 2.026 1.433 1.840 1.410 2.292	1.866 1.352 1.154 1.964 1.988 1.441 1.705 1.394 2.244	1.883 1.402 1.159 1.947 1.985 1.444 1.810 1.441 2.174	1.870 1.291 1.154 1.948 2.059 1.424 1.724 1.406 2.265	1.337 0.651 0.596 0.820 1.740 0.730 0.176 0.788 1.341	0.309 0.175 0.209 0.123 0.340 0.039 -0.002 0.146 0.219	95 82 94 96 97 101 89 98 97	96 89 95 96 101 98 105 92	95 75 94 95 103 99 91 99 98	63 -5 33 21 75 23 -71 6 36	1 -74 -31 -75 -62 -93 -100 -81 -73	1.63E-5 2.05E-6 5.22E-6 4.08E-6 1.52E-5 4.40E-6 1.78E-6 3.38E-6 6.01E-6	> 1.00E-4 8.65E-6 3.27E-5 1.67E-5 3.53E-5 3.63E-6 1.17E-5 2.15E-5	<pre>> 1.00E-4 4.44E-5 > 1.00E-4 5.52E-5 8.21E-5 4.28E-5 7.41E-6 4.44E-5 6.20E-5</pre>	
Ovarian Cancer IGROV1 OVCAR-3 OVCAR-4 OVCAR-5 OVCAR-8 NCI/ADR-RES SK-OV-3	0.580 0.518 0.497 0.430 0.281 0.417 0.413	1.788 1.602 1.440 1.173 0.881 1.489 0.995	1.747 1.589 1.395 1.179 0.874 1.495 0.980	1.789 1.561 1.385 1.156 0.906 1.459 0.961	1.884 1.505 1.371 1.210 0.865 1.477 0.961	1.160 0.580 0.839 0.865 0.379 1.423 0.879	0.510 0.034 0.483 0.372 0.230 1.291 0.272	97 99 95 101 99 100 98	100 96 94 98 104 97 94	108 91 93 105 97 99 94	48 6 36 58 16 94 80	-12 -94 -3 -13 -18 81 -34	9.25E-6 3.02E-6 5.71E-6 1.31E-5 3.83E-6 > 1.00E-4 1.84E-5	6.28E-5 1.14E-5 8.47E-5 6.49E-5 2.97E-5 > 1.00E-4 5.03E-5	 > 1.00E-4 3.64E-5 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 	
Renal Cancer 786-0 A498 ACHN CAKI-1 RXF 393 SN12C TK-10 UO-31	0.450 1.424 0.300 0.910 0.629 0.919 0.686 0.536	1.676 2.276 1.343 2.252 1.183 2.650 1.401 1.788	1.396 2.121 1.386 2.252 1.174 2.558 1.353 1.657	1.645 2.114 1.322 2.265 1.147 2.501 1.388 1.638	1.747 2.142 1.354 2.439 1.178 2.606 1.423 1.720	1.318 1.897 1.203 2.484 1.057 1.689 1.208 1.612	0.702 1.028 0.724 2.152 0.666 0.772 0.839 1.203	77 82 104 100 98 95 93 90	97 81 98 101 94 91 98 88	106 84 101 114 99 97 103 95	71 56 87 117 77 44 73 86	21 -28 41 92 7 -16 21 53	2.59E-5 1.16E-5 6.26E-5 > 1.00E-4 2.43E-5 7.87E-6 2.79E-5 > 1.00E-4	 > 1.00E-4 4.63E-5 > 1.00E-4 > 1.00E-4 > 1.00E-4 5.44E-5 > 1.00E-4 > 1.00E-4 > 1.00E-4 	<pre>> 1.00E-4 > 1.00E-4</pre>	
Prostate Cancer PC-3 DU-145	0.559 0.399	1.812 1.456	1.833 1.446	1.823 1.462	1.704 1.427	1.190 0.871	0.626 0.222	102 99	101 100	91 97	50 45	5 -44	1.02E-5 7.89E-6	> 1.00E-4 3.17E-5	> 1.00E-4 > 1.00E-4	
Breast Cancer MCF7 MDA-MB-231/ATC0 HS 578T T-47D MDA-MB-468	0.609 C 0.466 0.904 0.615 0.470	2.611 0.862 1.501 1.418 1.034	2.442 0.895 1.448 1.380 1.036	2.392 0.882 1.420 1.409 0.999	2.599 0.931 1.464 1.364 0.872	1.727 0.848 1.008 0.761 0.489	0.452 0.219 0.644 0.420 0.100	92 108 91 95 100	89 105 86 99 94	99 118 94 93 71	56 97 17 18 3	-26 -53 -29 -32 -79	1.18E-5 2.05E-5 3.74E-6 3.77E-6 2.06E-6	4.82E-5 4.42E-5 2.38E-5 2.31E-5 1.10E-5	 > 1.00E-4 9.53E-5 > 1.00E-4 > 1.00E-4 4.46E-5 	

Figure S1. ¹H NMR spectrum of complex 14 before and after adding 2 mol equivalents of Δ -trisphat in CDCl₃, showing the presence of two enantiomers.

Figure S2. (A) Solid state structure of the two crystallographically-independent cations found in the asymmetric unit of complex 4·0.5CH₂Cl₂·H₂O consisting of enantiomers (S)- $[Os(\eta^6-p-cym)(Impy-OH)I]PF_6$ (left) and (R)- $[Os(\eta^6-p-cym)(Impy-OH)I]PF_6$ (right), showing the atomic numbering scheme. Thermal ellipsoids are drawn at the 50% probability level. Lattice CH₂Cl₂ and H₂O molecules are not shown. Hydrogen atoms and PF₆⁻ counterions are omitted for clarity. (**B**) Hydrogen bond interaction between the phenol group of the chelating iminopyridine ligand in the enantiomer (R)- $[Os(\eta^6-p-cym)(Impy-OH)I]PF_6$ and a water molecule. The (R)- and (S)- configurations at the osmium metal centre were assigned according to Cahn–Ingold–Prelog priority rules (CIP system) for defining the priority sequence of ligands attached to osmium: $I > \eta^6-C_6H_6 > N$ (imine) > N (pyridine).

Figure S3. ¹H NMR spectra of complex **14** (0.1 mM) in MeOD/D₂O (10%/90%) recorded soon after preparing the sample (top spectrum) and after 24 h incubation at 310 K (bottom spectrum), showing the increase in intensity of peaks for the aqua adduct **14A**.

Figure S4. ¹H NMR spectra of solutions containing osmium complex **6** or **14** (0.1 mM) and GSH (5 mM). Samples were prepared in a 10% MeOD/90% D₂O phosphate buffer solution ($pH^* = 7.4$) and spectra recorded after 24 h of incubation of the sample at 310 K. Bottom spectrum: GSH after incubation at 310 K for 24 h; middle spectrum: (**14**) [Os(η^6 -*p*-cym)(Impy-NMe₂)CI]PF₆ with GSH; top spectrum: (**6**) [Os(η^6 -*p*-cym)(Impy-NMe₂)I]PF₆ with GSH, 1 µL of acetone/sample was added as the reference of chemical shifts.

(A)

(B)

(C)

(E)

(F)

Figure S5. ¹H NMR spectra for the reaction between the osmium complex (0.1 mM) and NADH (0.4 mM, 4 mol equivalents). The spectra were recorded in a 10%MeOD/90%D₂O phosphate buffer solution (pH^{*} = 7.4) after 24 h of incubation of the sample at 310 K. (A) Control: NADH at time 0 and time 24 h (310 K oven). (B) (6) $[Os(\eta^6-p-cym)(Impy-NMe_2)I]PF_6$. (C) (14) $[Os(\eta^6-p-cym)(Impy-NMe_2)CI]PF_6$. (D) (8) $[Os(\eta^6-p-cym)(Ome-Impy-NMe_2)I]PF_6$. (E) (16) $[Os(\eta^6-p-cym)(OMe-Impy-NMe_2)CI]PF_6$. (F) NADH Extent of oxidation by osmium iminopyridine complexes: 6, 8, 14, and 16. (G) $[Os(\eta^6-p-cym)(Azpy-NMe_2)I]PF_6$ (FY026). The control (NADH) was stable towards the NAD⁺ formation under the same conditions at millimolar concentrations.

Figure S6. ¹H NMR spectra for the reaction between the hydroxido complex **14A** (2 mM) and NADH (8 mM, 4 mol equivalents). The samples were prepared in a $10\%D_2O/90\%H_2O$ phosphate buffer solution (pH^{*} = 7.4) and spectra recorded at t= 0 h and 20 h after incubation of the sample at 310 K.

(A)

time/min

(B)

Figure S7. NADH (0.5 mM) with or without complex **14A** (0.5 mM) was incubated at 310 K for 24 h; NADH and NAD⁺ were incubated under the same conditions and LC-MS was employed to analyze the 3 samples. (A) HPLC separation of NADH (0.5 mM, green line), NADH with complex **14A** (blue line) and NAD⁺ (0.5 mM, red line). (B) MS of first two appearing peaks from HPLC of NADH with complex **14A** (blue line). (C) MS of second peak appearing from HPLC (green line). (D) MS of third peak appearing from HPLC of NADH with complex **14A** (blue line), (E) MS of NAD⁺, (F) MS of **14A**, (G) MS of phosphate adduct of **14A**.

Figure S8. Kinetic experiments monitored by UV-Vis spectroscopy for samples in a 1 mM phosphate buffer solution (H₂O, pH 7.4). All the data were obtained monitoring the NADH absorption band at 338 nm and recording the spectra at intervals of 20 min during 18 h at 310 K. (A) Percentage of conversion of 2 and 8 mol equiv of NADH to NAD⁺ in the presence of complex **14** (0.025 mM) plotted against time. (B) Percentage of conversion of 8 mol equiv of NADH to NAD+ plotted against time. The experiments were carried out using different concentrations of complex **14**, 0.01 mM (green line, y = 0.67379+ 0.01245x, R²= 0.99885) and 0.025 mM (black line, y = 0.28163+ 0.01159x, R²= 0.99787) respectively.

Complex	Reduction Peak /V
(3) $[Os(\eta^6-bip)(Impy-OH)I]PF_6$	-0.58, -0.95
(6) $[Os(\eta^6-p-cym)(Impy-NMe_2)I]PF_6$	-0.65, -0.82
(10) $[Os(\eta^6-p-cym)(Impy)Cl]PF_6$	-0.67, -1.0
(14) $[Os(\eta^6-p-cym)(Impy-NMe_2)Cl]PF_6$	-0.76, -1.0

Figure S9. Cyclic voltammograms for **3**, **6**, **10** and **14** (in 0.1 M tetrabutylammonium BF₄, sweep width from 0 to -1.5 to 0 V or 0 to -1.0 to 0 V at scan rate 0.1 V/s). Reduction peaks for **3**, **6**, **10** and **14** are listed.

Notes and references

- 1. A. F. A. Peacock, A. Habtemariam, R. Fernandez, V. Walland, F. P. A. Fabbiani, S. Parsons, R. E. Aird, D. I. Jodrell and P. J. Sadler, *J. Am. Chem. Soc.*, 2006, **128**, 1739-1748.
- 2. S. S. Hindo, A. M. Mancino, J. J. Braymer, Y. Liu, S. Vivekanandan, A. Ramamoorthy and M. H. Lim, *J. Am. Chem. Soc.*, 2009, **131**, 16663-16665.
- 3. S. J. Dougan, A. Habtemariam, S. E. McHale, S. Parsons and P. J. Sadler, *Proc. Natl. Acad. Sci. U. S. A.* 2008, **105**, 11628-11633.
- 4. CrysAlis PRO, Oxford Diffraction Ltd., Abington, Oxfordshire, U.K., 2007.
- 5. G. M. Sheldrick, Acta Crystallogr., Sect. A: Found. Crystallogr., 1990, 46, 467–473.
- 6. G. M. Sheldrick, *SHELX97, Programs for Crystal Structure Analysis (Release 97-92),* University of Göttingen, Germany, 1997.
- 7. A. Krezel and W. Bal, J. Inorg. Biochem., 2004, 98, 161-166.