Electronic Supplementary Information

New tetrathiafulvalene fused-naphthalene diimides for solution processible and air stable *p*-type and ambipolar organic semiconductors

Luxi Tan, Yunlong Guo, Yang Yang, Guanxin Zhang,^{*} Deqing Zhang,^{*} Gui Yu, Wei Xu, Yunqi Liu Beijing National Laboratory for Molecular Sciences, Organic Solids Laboratory, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. E-mail: dqzhang@iccas.ac.cn

Contents

1.	General information for synthesis and characterizationS2
2.	TGA analysis of 1-6S3
3.	The absorption spectra of <i>N</i> , <i>N</i> '-hexyl NDI, 2, 3, 5, 6 and 13S5
4.	Cyclic voltammograms of <i>N</i> , <i>N</i> '-hexyl NDI, 2, 3, 5, 6 and 13S7
5.	The performance data of OFETs with 4-6 using unmodified Au as electroS9
6.	XRD patterns and AFM images of 1, 2 and 4, 6S10
7.	DFT calculation dataS11
8.	¹ H NMR and ¹³ C NMR spectra of 1-8S15
9.	The absorption spectra of compounds 2 and 4 after UV light irradiantion.S21

1. General information for synthesis and characterization

Chemicals were purchased form Alfa-Aesar, Sigma-Aldrich and used without further purification. Solvents and other common reagents were obtained from Beijing Chemical Co.. ¹H NMR (400 MHz) and ¹³C NMR (100 MHz) spectra were obtained on a Bruker DMX-400 NMR Spectrometer using tetramethylsilane as internal standard. Elemental analysis was performed on a Carlo Erba model 1160 elemental analyzer. MALDI-TOF MS were recorded with BEFLEX III spectrometer. Solution and thin films (which were frabricated on a quartz plate) absorption spectra were measured with JASCO V-570 UV-Vis spectrophtometer. TGA-DTA measurements were carried out on a SHIMADZU DTG-60 instruments under a dry nitrogen flow, heating from room temperature to 500 °C, with a heating rate of 10 °C/min. Cyclic voltammetric measurements were carried out in a conventional three-electrode cell using Pt wires of 2 mm diameter as working and counter electrodes, and an Ag/AgCl reference electrode on a computer-controlled CHI660C instruments at room temperature. X-ray diffraction (XRD) measurements were carried out in the reflection mode at room temperature, using a 2-kW Rigaku X-ray diffraction system. The molecular structures of the compounds were calculated with the DFT method at B3LYP/6-31G(d, p) level. All calculations were performed with the Gaussian 09 program.

Figure S1. TGA curve of **1**.

Figure S2. TGA curve of **2**.

Figure S3. TGA curve of **3**.

Figure S4. TGA curve of **4**.

Figure S5. TGA curve of **5**

Figure S6. TGA curve of **6**.

Figure S7. Absorption spectra of *N*,*N*'-hexyl NDI $(1.0 \times 10^{-4} \text{ M})$ and compound **13** $(1.0 \times 10^{-4} \text{ M})$ in CH₂Cl₂.

Figure S8. Absorption spectra of compound **2** in solution ($\epsilon_{550nm} = 1.0 \times 10^4 \text{ M}^{-1} \text{ cm}^{-1}$ in CH₂Cl₂) and thin film.

Figure S9. Absorption spectra of compound **3** in solution ($\epsilon_{550nm} = 1.0 \times 10^4 \text{ M}^{-1} \text{ cm}^{-1}$ in CH₂Cl₂) and thin film.

Figure S10. Absorption spectra of compound **5** in solution ($\epsilon_{530nm} = 8.8 \times 10^3 \text{ M}^{-1} \text{ cm}^{-1}$ in CH₂Cl₂) and thin film.

Figure S11. Absorption spectra of compound **6** in solution ($\epsilon_{530nm} = 8.9 \times 10^3 \text{ M}^{-1} \text{ cm}^{-1}$ in CH₂Cl₂) and thin film.

4. Cyclic voltammograms of of N,N'-hexyl NDI, 2, 3, 5, 6 and 13

Figure S12. Cyclic voltammogram of N,N'-hexyl NDI in CH₂Cl₂ (1.0×10^{-3} M) at a scan rate of 100 mV s⁻¹, with Pt as the working and counter electrodes and Ag/AgCl electrode (saturated KCl) as the reference electrode, and *n*-Bu₄NPF₆ (0.1 M) as supporting electrolyte.

Figure S13. Cyclic voltammograms of compound **13** in $CH_2Cl_2(1.0 \times 10^{-3} \text{ M})$ at a scan rate of 100 mV s⁻¹, with Pt as the working and counter electrodes and Ag/AgCl electrode (saturated KCl) as the reference electrode, and *n*-Bu₄NPF₆ (0.1 M) as supporting electrolyte.

Figure S14. Cyclic voltammograms of compound **2** in $CH_2Cl_2(1.0 \times 10^{-3} \text{ M})$ at a scan rate of 100 mV s⁻¹, with Pt as the working and counter electrodes and Ag/AgCl electrode (saturated KCl) as the reference electrode, and *n*-Bu₄NPF₆ (0.1 M) as supporting electrolyte.

Figure S15. Cyclic voltammograms of compound **3** in $CH_2Cl_2(1.0 \times 10^{-3} \text{ M})$ at a scan rate of 100 mV s⁻¹, with Pt as the working and counter electrodes and Ag/AgCl electrode (saturated KCl) as the reference electrode, and *n*-Bu₄NPF₆ (0.1 M) as supporting electrolyte.

Figure S16. Cyclic voltammograms of compound **5** in $CH_2Cl_2(1.0 \times 10^{-3} \text{ M})$ at a scan rate of 100 mV s⁻¹, with Pt as the working and counter electrodes and Ag/AgCl electrode (saturated KCl) as the reference electrode, and *n*-Bu₄NPF₆ (0.1 M) as supporting electrolyte.

Figure S17. Cyclic voltammograms of compound **6** in $CH_2Cl_2(1.0 \times 10^{-3} \text{ M})$ at a scan rate of 100 mV s⁻¹, with Pt as the working and counter electrodes and Ag/AgCl electrode (saturated KCl) as the reference electrode, and *n*-Bu₄NPF₆ (0.1 M) as supporting electrolyte.

5. The performance data of OFETs with 4-6 using unmodified Au as electrodes

Table S1. The hole mobilities (μ_h), threshold voltages (V_{th}), and on/off ratios ($I_{on/off}$) for bottom contact OFET devices based on thin-films of **4-6** with unmodified Au as electrodes at different annealing temperatures.^a

Compd.	Temp./°C	$\mu_{\rm h} / {\rm cm}^2 {\rm V}^{-1} {\rm s}^{-1}$	$V_{\rm th}/{ m V}$	$I_{ m on/off}$
4	25	$3.8 - 4.0 imes 10^{-4}$	-5–1	10^{2}
	120	$0.8 - 1.0 \times 10^{-3}$	-6-1	10^{2}
	140	$1.4 - 1.8 \times 10^{-3}$	-5–4	0.5×10^{3}
	160	$4.9 - 7.0 \times 10^{-3}$	-3–2	10^{3}
5	25	$4.4 - 5.1 imes 10^{-4}$	-1–7	10^{2}
	120	0.03-0.05	-2–10	10^{2}
	140	0.05-0.08	-4-7	10^{3}
	160	0.09–0.1	-5–6	10^{3}
6	25	$1.4 - 2.0 imes 10^{-4}$	-1-1	10^{2}
	100	0.01-0.02	-4–5	10^{3}
	120	0.02-0.03	1–4	10^{3}
	140	$1.5 - 2.8 \times 10^{-2}$	-41	10 ³

^[a] The performance data were obtained based on more than 10 OFET devices.

6. AFM images and XRD patterns of thin-films of 1, 2 and 4, 6

Figure S18. XRD patterns (*left*) and AFM images (*right*, on OTS modified Si substrate with taping mode) of **1** at different annealing temperatures.

Figure S19. XRD patterns (*left*) and AFM images (*right*, on OTS modified Si substrate with taping mode) of **2** at different annealing temperatures.

Figure S20. XRD patterns (*left*) and AFM images (*right*, on OTS modified Si substrate with taping mode) of **4** at different annealing temperatures.

Figure S21. XRD patterns (*left*) and AFM images (*right*, on OTS modified Si substrate with taping mode) of $\mathbf{6}$ at different annealing temperature.

7. DFT calculation data

Calculation method: B3LYP/6-31G (d, p) with Gaussian 09

Data for compounds **1-3**:

			Coordinates		
		Х	Y	Ζ	
1	C	0 59619	0 (057	1 1150	
1	C	-0.58618	-0.6957	-1.1152	
2	С	-0.57974	0.742165	-1.06435	
3	С	-1.78373	1.429124	-0.84491	
4	С	-2.9763	0.722692	-0.53586	
5	С	-2.98319	-0.69199	-0.5882	
6	С	-1.79694	-1.3853	-0.94695	
7	С	-4.15663	1.416068	-0.16356	
8	С	-5.31259	0.710325	0.170687	
9	С	-5.31978	-0.70933	0.117113	
10	С	-4.17057	-1.39952	-0.26883	
11	С	-4.20089	-2.87181	-0.32369	
12	Ν	-3.04526	-3.5076	-0.76171	
13	С	-1.88582	-2.84676	-1.18396	
14	С	-1.85957	2.90469	-0.97561	
15	Ν	-3.01127	3.5437	-0.50169	
16	С	-4.17214	2.888522	-0.10816	
17	S	-0.99786	-3.48521	-1.73271	
18	С	-5.20812	-3.50364	-0.0155	
19	С	-5.17215	3.505642	0.249395	
20	S	-0.96768	3.573237	-1.48039	
21	S	-3.0643	-4.96892	-0.92825	

22	С	-3.01671	5.013435	-0.56055
23	S	0.888269	-1.64396	-1.50998
24	С	2.128361	-0.67128	-0.72002
25	S	2.135014	0.667672	-0.67575
26	С	0.90279	1.702224	-1.39609
27	С	3.385942	-1.52655	0.205249
28	S	4.368667	-0.0502	0.409244
29	0	3.402755	1.447254	0.301667
30	0	5.698169	-0.06571	0.644849
31	0	6.670829	1.401136	0.900394
32	0	8.245091	0.59558	0.652971
33	С	8.237389	-0.75782	0.619984
34	С	6.656787	-1.55927	0.786923
35	Н	9.679168	1.629121	0.598821
36	Н	9.619289	-1.8506	0.408525
37	Н	9.531295	2.356684	-1.08201
38	Н	10.50554	-1.65654	2.004635
39	Н	-6.80852	1.493767	0.676504
40	Н	-7.69035	-0.01567	0.888394
41	S	-6.82388	-1.51363	0.562393
42	S	-9.00636	-0.02449	1.296104
43	С	-9.71306	-1.2522	1.466676
44	С	-9.70069	1.193781	1.559702
45	С	-10.2728	-2.26488	1.600063
46	С	-10.2501	2.199054	1.769879
47	Ν	-3.94974	-5.34909	-0.42581
48	Ν	-3.09338	-5.22522	-1.98979
49	S	-2.15678	-5.38882	-0.49456
50	S	-2.10477	5.391992	-0.09894
51	С	-3.89788	5.363815	-0.02975
52	Н	-3.04478	5.347159	-1.60036
53	Н	10.35361	3.069738	-1.17268
54	Н	8.582069	2.882277	-1.19497
55	С	9.633031	1.581039	-1.84194
56	Н	11.31488	-2.39016	1.982353
57	Н	10.92511	-0.65422	2.094906

Total energy: 7447.0052061542 Hartrees

Data for compounds 4-6:

		Coordinates			
		Х	Y	Z	
1	С	2.447844	-2.08417	1.008677	

2	С	2.447748	-2.25621	-0.4149
3	С	1.239755	-2.53279	-1.0734
4	С	0.000591	-2.45781	-0.38081
5	С	0.000367	-2.28781	1.022709
6	С	1.239391	-2.19546	1.713575
7	С	-1.23837	-2.53115	-1.07392
8	С	-2.44647	-2.25407	-0.4159
9	С	-2.4471	-2.08305	1.007811
10	С	-1.23893	-2.19497	1.713069
11	С	-1.23463	-2.25751	3.192733
12	Ν	-0.00013	-2.16335	3.835261
13	С	1.234695	-2.2578	3.193285
14	С	1.235871	-2.94596	-2.49555
15	Ν	0.00112	-3.00703	-3.14181
16	С	-1.23362	-2.94274	-2.49635
17	S	-3.96723	-2.23601	-1.37917
18	С	-4.87461	-0.99137	-0.52036
19	С	-4.87629	-0.83331	0.809756
20	S	-3.96925	-1.84044	1.938366
21	S	-5.73083	0.231615	-1.49115
22	С	-6.58719	0.895562	-0.07244
23	S	-5.73523	0.582079	1.464588
24	С	-7.74442	1.585867	-0.15559
25	S	-8.58889	2.274383	1.253142
26	С	-10.1358	2.524238	0.407194
27	С	-10.133	2.358914	-0.93678
28	S	-8.56611	1.950977	-1.69069
29	0	2.255737	-2.41842	3.850642
30	0	2.257452	-3.25872	-3.09488
31	0	-2.25455	-3.25252	-3.09842
32	0	-2.25572	-2.41802	3.850057
33	С	-0.00119	-2.23088	5.303945
34	С	-0.0021	-3.42542	-4.55119
35	Н	0.901193	-1.74476	5.667576
36	Н	-0.89686	-1.73213	5.667294
37	Н	-0.00892	-3.27058	5.642997
38	Н	-0.03631	-4.51568	-4.63031
39	Н	0.911775	-3.06254	-5.01557
40	Н	-0.88535	-3.00788	-5.02951
41	S	-11.5072	2.951095	1.448747
42	S	-11.5022	2.643135	-2.01835
43	С	-11.8028	4.703865	0.989761
44	Н	-12.172	4.779935	-0.03337
45	Н	-12.5683	5.06437	1.680966

46	Η	-10.8941	5.293436	1.119424
47	С	-11.8715	0.936756	-2.5911
48	Η	-12.6765	1.035241	-3.32266
49	Н	-10.9992	0.49028	-3.07038
50	Н	-12.2076	0.319162	-1.75735
51	S	3.969723	-1.84098	1.939562
52	S	3.969252	-2.23975	-1.37713
53	С	4.876887	-0.83442	0.810543
54	С	4.875853	-0.99377	-0.51942
55	S	5.731815	0.228726	-1.49104
56	S	5.734768	0.582066	1.464383
57	С	6.587133	0.894623	-0.07262
58	С	7.743931	1.585625	-0.15596
59	S	8.566046	1.949789	-1.69106
60	S	8.587339	2.276092	1.252468
61	С	10.13442	2.526197	0.406939
62	С	10.13238	2.359547	-0.93687
63	S	11.50507	2.955093	1.448668
64	S	11.50182	2.643559	-2.01816
65	С	11.79963	4.707568	0.987941
66	Η	12.16928	4.782789	-0.03512
67	Η	10.89052	5.296667	1.116599
68	Η	12.56468	5.069323	1.679078
69	С	11.87275	0.936753	-2.58855
70	Η	11.00102	0.488923	-3.06757
71	Η	12.67794	1.034957	-3.31993
72	Н	12.20904	0.320535	-1.75386

Total energy: 10618.3959634218 Hartrees

Figure S23. ¹³C NMR spectrum of **1**.

Figure S25. ¹³C NMR spectrum of **2**.

Figure S27. 13 C NMR spectrum of **3** (inset shows the details of the high field section).

Figure S29. 13 C NMR spectrum of **4** (inset shows the details of the high field section).

Figure S31. ¹³C NMR spectrum of **5** (inset shows the details of the high field section).

i.8 5.6 5.4 5.2 5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.6 3.4 3.2 3.0 2.8 2.6 2.4 2.2 2.0 1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 fl (ppm)

Figure S32. ¹H NMR spectrum of **6**.

Figure S33. 13 C NMR spectrum of **6** (inset shows the details of the high field section).

9. The absorption spectra of compounds 2 and 4 after UV light irradiation

Figure S34. Absorption spectra of compound **2** in CH_2Cl_2 (~10⁻⁵ M) before and after UV light irradiation for 30.0 min (with a light source of wavelength: 365 nm, power: 8.0 mW, 5.0 cm away from the sample).

Figure S35. Absorptions of compound **4** in CH_2Cl_2 (~10⁻⁵ M) before and after UV light irradiation for 30 min. (with a light source of wavelength: 365 nm, power: 8.0 mW, 5.0 cm away from the sample).