Supporting Information

On the Maximum Bond Multiplicity of Carbon: Unusual C≡U Quadruple Bonding in Molecular CUO

Han-Shi Hu, Yi-Hen Qiu, Xiao-Gen Xiong, W. H. Eugen Schwarz,¹ and Jun Li*

Department of Chemistry & Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing 100084, China

	$\Delta E(Pauli)/eV^{a}$	$\Delta E(elect)/eV^{b}$	$\Delta E(orb)/eV^{c}$	BDE/eV ^d
H ₂ C=ÜF ₂	25.8809	-8.0185	-22.0219	-4.2
FC≡UF ₃	30.1254	-8.5433	-28.7394	-7.2
HC≡UF ₃	33.4349	-9.4762	-29.7765	-5.8
NaC≡UF ₃	41.7001	-11.7500	-34.8090	-4.9
[−] C≡UF ₃	43.0414	-12.0936	-36.8392	-5.9
C≣UN⁻	43.9752	-11.8310	-43.6975	-11.6
$C \equiv UF_2$	47.0433	-13.2149	-42.6037	-8.8
$C \equiv U(OH)^+$	52.5665	-14.2837	-46.6299	-8.4
C≣UNe ²⁺	48.3145	-13.9878	-43.1496	-8.8
$C \equiv UF^+$	51.1906	-14.3855	-46.2595	-9.4
C≣UO	48.8109	-13.4758	-45.5224	-10.2

Table S1. Energy decomposition of C-U bonding in selected R_nCUE compounds

^a Energy of Pauli repulsion ^b Energy of electrostatic interaction ^c Energy of orbital interaction ^d The sum of ΔE (Pauli) and ΔE (elect) represents the steric energy (ΔE_{ster}), and BDE = $\Delta E_{ster} + \Delta E$ (orb).

¹ Present address: Physical and Theoretical Chemistry, University of Siegen, 57068 Siegen, Germany (schwarz@chemie.uni-siegen.de)

^{*} Corresponding author: junli@mail.tsinghua.edu.cn

Figure S1. Percentage of U orbitals in the Weinhold natural localized molecular orbitals (NLMO) of the C \rightarrow U rearward σ -bond, calculated using the B3LYP functional. The vertical dashed bar denotes the optimized C-U distance.

Figure S2 Kohn-Sham occupied orbital energy levels (in eV) of C, CUN^- , CUO, CUF^+ and CUNe^{2+} calculated using B3LYP functional, SR-ZORA Hamiltonian, and TZ2P basis sets. The 3σ and 4σ orbitals are mainly from the heteroatom X 2s and C 2s, respectively.

Figure S3 Kohn-Sham orbital energy levels (in eV) calculated using B3LYP functional, SR-ZORA Hamiltonian, and TZ2P basis sets. The 4σ orbital mainly represents the rearward σ -bond involving C 2s orbital. Left panel: C, UO and CUO. Right panel: C, U(OH)⁺ and CU(OH)⁺

Figure S4 Kohn-Sham orbital energy levels (in eV) calculated using B3LYP functional, SR-ZORA Hamiltonian, and TZ2P basis sets. Left panel: HC, $HC\equiv UF_3$, UF_3 , $NaC\equiv UF_3$ and NaC. Right panel: U substituted by Mo

Electronic Supplementary Material (ESI) for Chemical Science This journal is O The Royal Society of Chemistry 2012

Figure S5 Natural valence orbitals of the CUO molecule (top atom - C, middle - U, bottom O) from CASSCF (8e,8o): orbital types, Löwdin natural orbital occupation numbers NOON, and contour surfaces (0.05 au). The Weinhold bond order from the CAS(8o,8e) calculation is 3.44.

References:

- Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. *Gaussian 03*, revision B.04; Gaussian, Inc.: Wallingford, CT, 2004.
- [2]. ADF 2009.01, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands (<u>http://www.scm.com</u>). (a) G. te Velde, F.M. Bickelhaupt, S.J.A. van Gisbergen, C. Fonseca Guerra, E.J. Baerends, J.G. Snijders, T. Ziegler, J. Comput. Chem. 22 (2001) 931; (b) C. Fonseca Guerra, J.G. Snijders, G. te Velde, E.J. Baerends, Theor. Chem. Acc. 99 (1998) 391.
- [3]. MOLPRO, version 2008.1, a package of ab initio programs, H.-J.Werner, P. J. Knowles, R. Lindh, F. R. Manby, M. Schütz, P. Celani, T. Korona, A. Mitrushenkov, G. Rauhut, T. B. Adler, R. D. Amos, A. Bernhardsson, A. Berning, D. L. Cooper, M. J. O. Deegan, A. J. Dobbyn, F. Eckert, E. Goll, C. Hampel, G. Hetzer, T. Hrenar, G. Knizia, C. Köppl, Y. Liu, A. W. Lloyd, R. A. Mata, A. J. May, S. J. McNicholas, W. Meyer, M. E. Mura, A. Nicklass, P. Palmieri, K. Pflüger, R. Pitzer, M. Reiher, U. Schumann, H. Stoll, A. J. Stone, R. Tarroni, T. Thorsteinsson, M.Wang, and A. Wolf, see http://www.molpro.net.