Supporting information

for

Labelling of nucleosides and oligonucleotides by solvatochromic 4-aminophthalimide fluorophore for studying DNA-protein interactions

Jan Riedl,^a Radek Pohl,^a Nikolaus P. Ernsting,^b Petr Orság,^c Miroslav Fojta,^c Michal Hocek^{*a,d}

 ^a Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead & IOCB Research Center, Flemingovo nam. 2, CZ-16610 Prague 6, Czech Republic. Fax: +420 220183559; Tel: +420 220183324; E-mail: hocek@uochb.cas.cz
^b Institut für Chemie, Humboldt Universität zu Berlin, Brook-Taylor-Str. 2, D-12489 Berlin, Germany

^c Institute of Biophysics, v.v.i. Academy of Sciences of the Czech Republic; Kralovopolska 135, 61265 Brno, Czech Republic.

^d Department of Organic and Nuclear Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, CZ-12843 Prague 2, Czech Republic.

Table of contents:

1. Additional figures	2
2. p53-DNA binding assay	6
3. Full emission spectrum	7
4. Copies of NMR spectra	8
5. Copies of MALDI-TOF spectra	15

1. Additional figures

Figure S1. Excitation (left) and fluorescence spectra (right, quantum distribution over wavenumbers) of dA^{API} (4) in several solvents (*dee* – diethyl ether, *ea* – ethyl acetate, *thf* – tetrahydrofurane, *acn* – acetonitrile, *dmf* – dimethyl formamide, *meoh* – methanol, *w* – water) upon excitation at 340 nm in all cases.

Figure S2. Excitation (left) and fluorescence spectra (right, quantum distribution over wavenumbers) of dA^{DAPI} (6) in several solvents (*dee* – diethyl ether, *ea* – ethyl acetate, *thf* – tetrahydrofurane, *acn* – acetonitrile, *dmf* – dimethyl formamide, *meoh* – methanol, *w* – water) upon excitation at 340 nm in all cases. Excitation at 380 nm was chosen for water solution.

Figure S3. Excitation (left) and fluorescence spectra (right, quantum distribution over wavenumbers) of $dC^{DAPI}(7)$ in several solvents (*dee* – diethyl ether, *ea* – ethyl acetate, *thf* – tetrahydrofurane, *acn* – acetonitrile, *dmf* – dimethyl formamide, *meoh* – methanol, *w* – water) upon excitation at 340 nm in all cases. Excitation at 380 nm was chosen for water solution.

Figure S4. a) Sovatochromism of $dA^{API}(4)$. Shown are the peak positions of the excitation (labelled abs) and emission (fls) bands of Figure S1 against a measure of solvent polarity. b) Sovatochromism of $dA^{DAPI}(6)$. Shown are the peak positions of the excitation (labelled abs) and emission (fls) bands of Figure S2 against a measure of solvent polarity. Regression lines were calculated from the solvents *dee, ea, thf, dmf* and *acn*. Dashed lines represent the behavior of unsubstituted 4-amino-phthalimide.

Figure S5. Sovatochromism of dC^{DAPI} (7). Shown are the peak positions of the excitation (labelled abs) and emission (fls) bands of Figure S4 against a measure of solvent polarity. Regression lines were calculated from the solvents *dee, ea, thf, dmf* and *acn*. Dashed lines represent the behavior of unsubstituted 4-amino-phthalimide.

Figure S6. Comparison of fluorescence excitation (solid lines at left) and absorption bands (dashed) for the $dA^{API}TP$ (8) and $dA^{DAPI}TP$ (10) in water. Florescence excitation bands are structured and appear slightly red-shifted, compared to the unstructured absorption bands (see text).

Study of p53 binding at 1 μ M concentration

Figure S7. Increase of fluorescence intensity of 1 μ M dC^{API}-labeled DNA (pex^{p53} dC^{API}) upon p53 binding. The **API**-labeled DNA was titrated by 0.5 and 1 equivalent of p53 protein.

2. p53-DNA binding assay

Binding of p53 protein to **API**-modified 50-nt ds oligonucleotide substrate (pex^{p53} prepared from temp^{p53} template using **dC**^{**API**}**TP** (9), see sequence in figure below: top strand is template temp^{p53}, primer stretch is denoted by *italics*, p53 recognition site is **bold**, cytosines bearing the **API** labels are red and extension of the primer by arrow) was checked by electrophoretic mobility shift assay (EMSA). The p53 protein was incubated with pex^{p53} in 50 mM KCl, 5 mM Tris (pH 7.6), 2 mM DTT, 0.01% Triton-X100 for 30-min at 10 °C. The reaction mixture contained 20 ng of the ³²P-labeled pex^{p53} and 120 ng of p53 protein. The protein- pex^{p53} complexes were detected by EMSA in 5% native polyacrylamide gel followed by autoradiography. Unmodified pex^{p53} was prepared using mixture of all four natural dNTPs. As evident from the autoradiogram below, the p53 protein formed stable complexes with both unmodified and **API**-modified DNA substrates.

Figure S8. Electrophoretic mobility shift assay of the binding of p53 to unmodified and modified DNA.

3. Full emission spectrum

Figure S9. Full emission spectra of API during SSB-DNA binding study.

4. Copies of ¹H, ³¹P-NMR spectra

¹H NMR spectrum of $dA^{API}TP$ (8)

³¹P NMR spectrum of **dA**^{API}**TP (8)**

¹H NMR spectrum of **dA^{DAPI}TP** (10)

³¹P NMR spectrum of **dA^{DAPI}TP (10)**

¹H NMR spectrum of **dC**^{DAPI}**TP** (11)

³¹P NMR spectrum of **dC**^{DAPI}TP (11)

5. Copies of MALDI-TOF spectra

MALDI-TOF spectrum of $pex^{rnd16}(dC^{API})$ oligonucleotide, peak at 5205.8 represents double charged ion-radical.

Both spectra contain fragmentation products which have lower molecular weight by 125 Da as result of single loss of uracil.