Supporting Information for

Homonuclear Bond Activation Using a Stable N,N'-Diamidocarbene

Kelly M. Wiggins, Jonathan P. Moerdyk and Christopher W. Bielawski*

Dept. of Chemistry & Biochemistry, The University of Texas at Austin, Austin, Texas 78712

Correspondence to: bielawski@cm.utexas.edu

Table of Contents

Synthetic Details	S2-S8
General Considerations	S2
Procedures	S2-S8
Thiolate Trapping Experiment	S9
Kinetic Studies	S9-S11
Fig. S1. Plot of the percent conversion of 1 to 7a,e,f	S10
Fig. S2-4. Plots of ln [1] versus time in the presence of various disulfides	S10-S11
Reaction of 1 with a Diphenyl and Dimethyl Disulfide Mixture	S12
Fig. S5. ¹ H NMR spectrum of 1:1 mixture of 7a and 7b	S12
X-ray Crystallography	S12–15
Fig. S6. ORTEP diagrams of 3 and 4	S13
Table S1. Summary of crystal data for compounds 2–4 and 6	S14
Table S2. Summary of crystal data for compounds 7a, 8b and 9a	S15
¹ H and ¹³ C NMR Spectra	S16-S36
References	S37

General Considerations. Unless otherwise noted, all manipulations were performed in a nitrogen purged glove box or under an atmosphere of nitrogen using standard Schlenk techniques. N,N'-Dimesityl-4,6-diketo-5,5-dimethylpyrimidin-2-ylidene (1), ¹ N,N'-dimesityl-pyrimidin-2ylidene (6Mes),² N,N'-dimesityl-imidazol-2-ylidene (SIMes)³ and 2,3-diphenylcycloprop-2enone⁴ were prepared according to published procedures. All other reagents were commercially available and used as received after drying. Liquid reagents were dried over 3 Å molecular sieves, and solid reagents were dried under high vacuum. Unless otherwise noted, solvents were dried over 3 Å molecular sieves or using a Vacuum Atmospheres Company solvent purification system, and then subsequently stored over 3 Å molecular sieves. ¹H and ¹³C NMR data were collected on a Varian Unity INOVA 400 MHz spectrometer. Chemical shifts (\delta) are reported in ppm and referenced downfield from (CH₃)₄Si using the residual solvent peak as an internal standard (¹H: CDCl₃, 7.24 ppm; C₆D₆, 7.15 ppm; C₇D₈, 7.09 ppm; ¹³C: CDCl₃, 77.0 ppm; C₆D₆ 128.0 ppm; C₇D₈, 137.5 ppm). Mass spectra (CI) were obtained with a Karatos MS9 instrument and are reported as m/z (relative intensity). IR spectra were recorded using either a Thermo Scientific Nicolet iS5 system equipped with an iD3 attenuated total reflectance (ATR) attachment (germanium crystal) or a Perkin-Elmer Spectrum BX system in the solid state in KBr. Melting points or decomposition temperatures (T_d) were collected using a Stanford Research Systems MPA100 OptiMelt automated melting point apparatus (ramp rate: 5 °C min⁻¹) and are uncorrected. Elemental analyses were performed by Midwest Microlab, LLC (Indianapolis, IN).

Synthesis of 1,3-dimesityl-4,6-diketo-5,5-dimethylpyrimidinium-2-bromo bromide (2). An oven dried 10 mL Schlenk flask was charged with 1 (162 mg, 0.44 mmol) and benzene (2 mL) and then sealed with a rubber septum. Under a positive pressure of nitrogen, 1 equiv. of bromine (11.3 μ L, 0.44 mmol) was added dropwise. The immediate formation of a white precipitate was observed. After stirring the resulting mixture for 1 h, the solution was filtered under an atmosphere of nitrogen. The resulting solid was washed with pentane and dried under high vacuum to afford the desired product as a white powder (140 mg, 0.31 mmol) in 70% yield. m.p. 117 °C (decomp.) ¹H NMR (CDCl₃, 400.27 MHz): δ 1.93 (s, 6H), 2.26 (s, 12H), 2.34 (s, 6H), 7.05 (s, 4H). ¹³C NMR (CDCl₃, 100.49 MHz): δ 17.58, 18.16, 19.48, 21.07, 25.17, 72.0, 129.48, 130.40, 131.08, 133.33, 134.82, 135.35, 168.04. IR (KBr): 2920.58, 1792.96, 1689.52, 1507.42, 1338.42, 1338.22, 1262.43, 1232.89, 1172.30, 1075.86, 974.48, 865.04, 847.47, 746.10. HRMS: [M]⁺ calcd. for C₂₄H₂₈N₂O₂Br: 455.1334. Found: 455.1334. Anal. Calcd. for C₂₄H₂₈N₂O₂Br₂: C, 53.75; H, 5.26; N, 5.22. Found: C, 53.57; H, 5.31; N, 5.48. Compound **2** was found to be air sensitive and decomposed to the urea **6** upon exposure to the ambient atmosphere.

Synthesis of 1,3–dimesityl-pyrimidinium-2-bromo bromide (3). An oven dried 10 mL Schlenk flask was charged with 6Mes (115 mg, 0.35 mmol) and benzene (2 mL), and then sealed with a rubber septum. Under a positive pressure of nitrogen, 1 equiv. of bromine (9.2 μ L, 0.35 mmol) was added dropwise. The immediate formation of a tan precipitate was observed. After stirring the resulting mixture for 1 h, the solution was exposed to air and the solid was isolated by filtration. The resulting solid was washed with pentane and dried under high vacuum to afford the desired product as a tan powder (126 mg, 0.32 mmol) in 90% yield. m.p. 109 °C (decomp.) ¹H NMR (CDCl₃, 400.27 MHz): δ 2.16–2.30 (m, 18H), 2.55 (m, 2H), 4.36 (t, *J* = 5.8 Hz, 4H), 6.88 (s, 4H). ¹³C NMR (CDCl₃, 75.47 MHz): δ 17.69, 17.89, 20.85, 20.92, 51.64, 77.21, 130.47, 133.47, 139.21, 140.43, 147.90, 153.51. IR (ATR): 2980.45, 2911.47, 1613.11, 1587.16, 1477.16, 1338.57, 1314.17, 1214.65, 1024.90, 904.05. HRMS: [M]⁺ calcd. for C₂₂H₂₈N₂Br:

399.1430. Found: 399.1431. Anal. Calcd. for $C_{22}H_{28}N_2Br_2$: C, 55.02; H, 5.88; N, 5.83. Found: C, 55.19; H, 6.22; N, 5.95.

Synthesis of 1,3–dimesityl-imidazolium-2-bromo Bromide (4). An oven dried 10 mL Schlenk flask was charged with SIMes (150 mg, 0.49 mmol) and benzene (2 mL), and then sealed with a rubber septum. Under a positive pressure of nitrogen, 1 equiv. of bromine (12.6 μ L, 0.49 mmol) was added dropwise. The immediate formation of a tan precipitate was observed. After stirring the resulting mixture for 4 h, the solution was exposed to air and the solid was isolated by filtration. The resulting solid was washed with pentane and dried under high vacuum to afford the desired product as a tan powder (161 mg, 0.42 mmol) in 85% yield. m.p. 261 °C (decomp.) ¹H NMR (CDCl₃, 400.27 MHz): δ 2.29 (s, 12H), 2.35 (s, 6H), 4.81 (s, 4H), 6.95 (s, 4H). ¹³C NMR (CDCl₃, 75.47 MHz): δ 17.74, 18.13, 21.08, 52.50, 77.21, 130.20, 130.20, 135.11, 141.26, 151.59, 159.00. IR (ATR): 2975.65, 1608.40, 1571.87, 1481.36, 1444.02, 1283.70, 1191.71, 1017.88, 915.96, 946.50, 752.82. HRMS: [M]⁺ calcd. for C₂₁H₂₆N₂Br: 385.1274. Found: 385.1276. Anal. Calcd. for C₂₁H₂₆N₂Br₂: C, 54.10; H, 5.52; N, 6.01. Found: C, 54.49; H, 5.90; N, 6.07.

Synthesis of 1,3-dimesityl-5,5-dimethyl-4,6-dioxohexahydropyrimidine-2,2-diyl dibenzoate (5). An oven dried 8 mL vial was charged with 1 (182 mg, 0.49 mmol), 1 equiv. of benzoyl peroxide (117 mg, 0.49 mmol) and benzene (5 mL). The vial was sealed and the resulting solution stirred for 1 h after which time the reaction mixture was precipitated into hexanes (50 mL). The resulting powder was isolated by filtration and dried under high vacuum yielding the desired product as a white powder (202 mg, 0.33 mmol) in 67% yield. m.p. 157–160 °C. ¹H NMR (C₆D₆, 400.27 MHz): δ 1.61 (s, 6H), 2.05 (s, 6H), 2.07 (s, 12H), 6.72 (s, 4H), 6.93–6.97 (m, 4H), 7.05–7.10 (m, 2H,) 7.92–7.96 (m, 4H). ¹³C NMR (C₆D₆, 75.47 MHz): δ 17.72, 18.61, 20.95, 25.22, 48.08, 126.09, 127.88, 128.84, 129.38, 129.67, 129.88, 130.67, 131.11, 133.95, 134.13, 135.38, 149.12, 162.63, 171.80. IR (KBr): 2922.09, 1786.73, 1724.88, 1695.42, 1599.06, 1451.66, 1387.55, 1349.91, 1245.41, 1212.76, 1173.20, 1039.07, 1016.28, 996.45, 860.83, 701.22, 506.82. HRMS: [M]⁺ calcd. for C₃₈H₃₈N₂O₆: 618.2724. Found: 618.2720. Anal. Calcd. for C₃₈H₃₈N₂O₆: C, 73.33; H, 6.19; N, 4.53. Found: C, 73.31; H, 6.14; N, 4.92.

Synthesis of 1,3-dimesityl-5,5-dimethylpyrimidine-2,4,6(1H,3H,5H)-trione (6). An oven dried 8 mL vial was charged with **1** (200 mg, 0.53 mmol), 1 equiv. of benzoyl peroxide (129 mg, 0.53 mmol) and benzene (5 mL). The vial was sealed and the resulting solution stirred for 5 h at 25 °C. The resulting solution was layered with pentane (5 mL) and placed in a -20 °C freezer. After 24 h, the clear crystals that formed were isolated by filtration and dried under high vacuum to afford the desired product as a white solid (190 mg, 0.48 mmol) in 91% yield. m.p. 177-180 °C. ¹H NMR (C₆D₆, 400.27 MHz): δ 1.61 (s, 6H), 2.05 (s, 6H), 2.07 (s, 12H), 6.72 (s, 4H). ¹³C NMR (C₆D₆, 75.47 MHz): δ 17.48, 20.71, 24.98, 47.83, 127.64, 127.87, 129.43, 130.88, 135.14, 138.37, 148.87, 171.55. IR (ATR): 2923.93, 1694.22, 1609.97, 1464.92, 1387.21, 1348.23, 1245.58, 1199.15, 1177.88, 1034.67, 861.00, 789.94, 757.86. HRMS: [M]⁺ calcd. for C₂₄H₂₈N₂O₃: 392.2904. Found: 392.2902. Anal. Calcd. for C₂₄H₂₈N₂O₃: C, 73.44; H, 7.19; N, 7.14. Found: C, 73.28; H, 7.18; N, 7.16. The filtrate from the recrystallization was saved and the volatiles removed under reduced pressure to yield benzoic anhydride as a pale yellow solid (99 mg, 0.44 mmol) in 83% yield. Spectral data were consistent with literature values.^{5 1}H NMR (CDCl₃, 400.27 MHz): δ 7.53 (t, *J* = 7.6 Hz, 2H), 7.68 (t, *J* = 7.6 Hz, 2H), 8.17 (d, *J* = 8.4 Hz,

1H). ¹³C NMR (CDCl₃, 75.47 MHz): δ 129.1, 129.3, 130.9, 134.8, 162.6. HRMS: [M]⁺ calcd. for C₁₄H₁₀O₃: 226.0630. Found: 226.0631.

Synthesis of 1,3-dimesityl-5,5-dimethyl-2,2-bis(methylthio)dihydropyrimidine-4,6(1H, 5H) - dione (7a). An oven dried 8 mL vial was charged with 1 (80 mg, 0.21 mmol), 1 equiv. of dimethyl disulfide (19 μ L, 0.21 mmol) and benzene (5 mL). The vial was sealed and the resulting solution was stirred for 14 h, after which time the solvent was removed under reduced pressure. The resulting residue was triturated with pentane (5 mL), filtered and dried under high vacuum to afford the desired product as a white powder (85 mg, 0.18 mmol) in 86% yield. m.p. 138-141 °C. ¹H NMR (C₆D₆, 400.27 MHz): δ 1.28 (s, 6H), 1.98 (s, 6H), 2.07 (s, 6H), 2.47 (s, 9H), 6.71 (s, 4H). ¹³C NMR (C₆D₆, 75.47 MHz): δ 17.37, 20.42, 20.53, 20.60, 25.08, 46.85, 99.88, 129.20, 135.03, 135.50, 135.50, 138.60, 170.98. IR (ATR): 2920.43, 1685.50, 1658.04, 1387.28, 1350.05, 1183.73, 1033.96, 857.26, 769.53, 761.89. HRMS: [M]⁺ calcd. for C₂₆H₃₄N₂O₂S₂: 470.6904. Found: 470.2059. Anal. Calcd. for C₂₆H₃₄N₂O₂S₂: C, 66.34; H, 7.28; N, 5.95. Found: C, 66.57; H, 7.13; N, 6.14. Compound **7a** was found to be air sensitive and decomposed to the urea **6** upon exposure to the ambient atmosphere.

Synthesis of S-methyl 3-(mesityli(mesitylimino)(methylthio)methyl)amino)-2,2-dimethyl-3oxopropanethioate (8a). An oven dried 8 mL vial was charged with 7a (100 mg, 0.21 mmol) and benzene (2 mL) and stirred for 12 h at 60 °C. After 12 h, the solvent was removed under reduced pressure, and the resultant residue was triturated with pentane (5 mL). The resulting powder was isolated by filtration and dried under high vacuum to afford the desired product as a white powder (80 mg, 0.17 mmol) in 80% yield. m.p. 58-60 °C. ¹H NMR (C₆D₆, 400.27 MHz): δ 1.56 (s, 6H), 1.75 (s, 3H), 2.07 (s, 3H), 2.11 (s, 6H), 2.22 (s, 6H), 2.37 (s, 6H), 6.68 (s, 2H), 6.71 (s, 2H). ¹³C NMR (C₆D₆, 75.47 MHz): δ 11.34, 15.71, 17.56, 17.72, 18.52, 19.27, 20.81, 21.08, 24.92, 25.44, 59.38, 127.01, 129.54, 1129.81, 129.91, 132.55, 135.78, 136.39, 138.73, 138.81, 142.57, 174.19, 199.72. IR (ATR): 2924.79, 1732.81, 1667.77, 1634.99, 1477.69, 1384.71, 1343.46, 1267.29, 1239.52, 1212.41, 1182.32, 1137.60, 1015.05, 944.02, 898.69, 851.24, 762.35. HRMS: [M]⁺ calcd. for C₂₆H₃₄N₂O₂S₂: 470.6904. Found: 470.2057. Anal. Calcd. for C₂₆H₃₄N₂O₂S₂: C, 66.34; H, 7.28; N, 5.95. Found: C, 66.67; H, 7.30; N, 6.20.

Synthesis of 1,3-dimesityl-5,5-dimethyl-2,2-bis(phenylthio)dihydropyrimidine-4,6(1H,5H)dione (7b). An oven dried 8 mL vial was charged with 1 (127 mg, 0.34 mmol), 1 equiv. of diphenyl disulfide (73.4 mg, 0.34 mmol) and benzene (5 mL). The vial was sealed and the resulting solution was stirred for 1 h at 25 °C, after which time the reaction mixture was poured into excess pentane (50 mL). The precipitate collected by filtration and dried under high vacuum to afford the desired product as a pale yellow powder (162 mg, 0.27 mmol) in 80% yield. m.p. 140-142 °C. ¹H NMR (C₆D₆, 400.27 MHz): δ 1.80 (s, 6H), 2.07 (s, 12H), 2.43 (s, 6H), 6.34 (s, 2H), 6.58–6.68 (m, 2H), 6.69–6.71 (m, 2H), 6.76 (s, 2H), 6.94–6.99 (m, 6H). ¹³C NMR (C₆D₆, 75.47 MHz): δ 18.39, 19.40, 21.81, 31.91, 47.55, 89.24, 127.22, 128.53, 129.94, 131.32, 134.39, 135.48, 137.78, 138.89, 170.71. IR (KBr): 2959.36, 1685.13, 1636.33, 1440.98, 1212.03, 1182.58, 1139.28, 1023.57, 940.03, 887.55, 748375, 705.85. HRMS: [M]⁺ calcd. for C₃₆H₃₈N₂O₂S₂: 594.2369. Found: 594.2372. Anal. Calcd. for C₃₆H₃₈N₂O₂S₂: C, 72.69; H, 6.44; N, 4.71. Found: C, 72.37; H, 6.38; N, 4.51. Compound **7b** was found to be air sensitive and decomposed to the urea **6** upon exposure to the ambient atmosphere. **Synthesis of S-phenyl 4,6-dimesityl-2,2-dimethyl-3-oxo-5-(phenylthio) hexanethioate** (**8b**). An oven dried 8 mL vial was charged with **7b** (100 mg, 0.17 mmol) and benzene (2 mL) and stirred for 2 h at 60 °C. The resulting solution was layered with pentane (5 mL) and placed in a -20 °C freezer. After 24 h, clear crystals were formed which were isolated by filtration (90 mg, 0.15 mmol) in 90% yield. m.p. 195-198 °C. ¹H NMR (C₆D₆, 400.27 MHz): δ 1.06 (s, 3H), 1.29 (s, 6H), 2.24-2.25 (m, 12H), 2.35 (s, 3H), 6.51 (s, 1H), 6.63 (s, 1H), 6.83 (s, 2H), 6.90 (s, 2H), 7.12–7.22 (m, 4H), 7.38–7.41 (m, 4H). ¹³C NMR (C₆D₆, 75.47 MHz): δ 18.78, 18.83, 19.76, 20.56, 20.59 21.05, 21.08, 25.38, 61.29, 129.19, 129.70, 132.26, 134.53, 136.44, 137.81, 138.68, 149.23, 172.71, 196.14. IR (ATR): 2959.31, 1683.20, 1637.02, 1474.93, 1440.82, 1402.51, 1239.74, 1211.71, 1181.54, 1139.33, 1008.09, 940.31, 912.40, 846.53, 748.73, 741.65, 705.33. HRMS: [M]⁺ calcd. for C₃₆H₃₈N₂O₂S₂: 594.2369. Found: 594.2365. Anal. Calcd. for C₃₆H₃₈N₂O₂S₂: C, 72.69; H, 6.44; N, 4.71. Found: C, 72.74; H, 6.46; N, 4.73.

Synthesis of 1,3-dimesityl-2,2-bis(4-methoxyphenylthio)-5,5-dimethyldihydropyrimidine-4,6(1H,5H)-dione (7c). An oven dried NMR tube was charged with a solution of 1 (20 mg, 0.053 mmol) in 0.5 mL of deuterated toluene (C_7D_8), sealed with a septum cap, and equilibrated to -78 °C in a dry ice/acetone bath. A separate 8 mL vial was charged with a solution of bis(4-methoxyphenyl) disulfide (15 mg, 0.053 mmol) in 0.4 mL of C_7D_8 , sealed and then equilibrated to -78 °C in a dry ice/acetone bath. After 15 min of equilibration, the disulfide solution was added via syringe to the NMR tube which remained at -78 °C in a dry ice/acetone bath. The tube was removed from the bath, and then quickly inserted into a 400 MHz Varian NMR spectrometer with the probe previously cooled to -50 °C. The reaction proceeded to 75% conversion as determined by the relative integrations of 1 and 7c by ¹H NMR spectroscopy. For clarity, the signals associated with 1 were excluded. ¹H NMR (C_7D_8 , 400.27 MHz): δ 1.89 (bs, 6H), 2.0–2.07 (m, 12H), 2.30 (bs, 6H), 3.04 (s, 3H), 3.06 (s, 3H), 5.98 (s, 2H), 6.42 (s, 2H), 6.56–6.70 (bm, 8H). ¹³C NMR (C_7D_8 , 75.47 MHz): δ 17.42, 17.91, 18.45, 19.60, 19.69, 21.27, 28.11, 48.03, 54.41, 54.60, 61.42, 91.65, 113.38, 114.26, 114.61, 114.77, 117.89, 119.13, 131.69, 133.57, 134.87, 135.30, 135.79, 135.99, 136.29, 138.67, 139.48, 141.22, 148.33, 160.51, 170.77.

Synthesis of S-4-methoxyphenyl 3-(mesityl(mesitylimino)(4-methoxyphenylthio)methyl) amino)-2,2-dimethyl-3-oxopropanethioate (8c). An oven dried 8 mL vial was charged with **1** (57 mg, 0.15 mmol), 1 equiv. of bis(4-methoxyphenyl) disulfide (43 mg, 0.15 mmol) and benzene (5 mL). The vial was sealed and the resulting solution was stirred for 1 h, after which time the reaction mixture was poured into pentane (50 mL). The precipitate was isolated by filtration and dried under high vacuum to afford the desired product as an orange powder (75 mg, 0.11 mmol) in 75% yield. m.p. 171-174 °C. ¹H NMR (C₆D₆, 400.27 MHz): δ 1.84 (s, 6H), 2.05 (s, 3H), 2.10 (s, 3H), 2.12 (s, 6H), 2.48 (s, 6H), 3.14 (s, 3H), 3.16 (s, 3H), 6.56–6.60 (dt, *J* = 3 Hz, 2H), 6.77 (s, 2H), 6.99–7.03 (dt, *J* = 3 Hz, 2H), 7.23–7.30 (m, 4H), 7.52 (s, 2H). ¹³C NMR (C₆D₆, 75.47 MHz): δ 18.86, 19.87, 20.60, 21.07, 54.64, 54.73, 113.76, 114.55, 114.94, 118.56, 119.97, 128.65, 129.72, 131.96, 133.25, 136.40, 137.26, 137.94, 138.63, 160.51, 197.06. IR (ATR):2920.96, 1668.29, 1635.10, 1591.05, 1493.42, 1235.82, 1248.70, 1202.10, 1175.20, 1135.83, 1019.71, 1008.41, 974.00, 903.16, 877.26, 837.32, 824.76, 747.32. HRMS: [M]⁺ calcd. for C₃₈H₄₂N₂O₄S₂: 654.8811. Found: 654.8819. Anal. Calcd. for C₃₈H₄₂N₂O₄S₂: C, 69.69; H, 6.46; N, 4.28. Found: C, 69.75; H, 6.42; N, 4.36. Synthesis of S-4-nitrophenyl 3-(mesityl((mesitylimino)(4-nitrophenylthio)methyl)amino)-2,2-dimethyl-3-oxopropanethioate (8d). An oven dried 8 mL vial was charged with 1 (55 mg, 0.15 mmol), 1 equiv. of bis(4-nitrophenyl) disulfide (45 mg, 0.15 mmol) and benzene (5 mL). The vial was sealed and the resulting solution was stirred for 1 h, after which time the reaction mixture was filtered through a 2 μ m PTFE filter and then poured into pentane (50 mL). The resulting precipitate was isolated by filtration and dried under high vacuum yielding the desired product as a bright yellow-orange powder (84 mg, 0.13 mmol) in 84% yield. m.p. 131-135 °C. ¹H NMR (C₆D₆, 400.27 MHz): δ 1.69 (s, 3H), 1.75 (s, 6H), 1.81 (s, 6H), 1.90 (s, 3H), 2.34 (s, 6H), 6.00 (s, 2H), 6.53–6.60 (m, 4H), 6.77 (s, 2h), 7.30–7.32 (dt, *J* = 3 Hz, 2H), 7.62–7.66 (dt, *J* = 3 Hz, 2H). ¹³C NMR (C₆D₆, 75.47 MHz): δ 18.46, 19.62, 20.24, 21.04, 25.12, 61.53, 122.43, 123.15, 124.24, 126.12, 128.46, 128.53, 129.85, 134.05, 135.28, 135.48, 135.91, 137.51, 139.46, 147.55, 148.10, 171.95, 194.64. IR (ATR): 2918.57, 1687.68, 1636.41, 1518.37, 1475.03, 1340.22, 1213.07, 1177.67, 1137.92, 1092.25, HRMS: [M]⁺ calcd. for C₃₆H₃₆N₄O₆S₂: 684.8242. Found: 684.8345. Anal. Calcd. for C₃₆H₃₆N₄O₆S₂: C, 63.14; H, 5.30; N, 8.18. Found: C, 62.80; H, 5.30; N, 8.11.

Synthesis of 1,3-dimesityl-5,5-dimethyl-2,2-bis(butylthio)dihydropyrimidine-4,6(1H,5H)dione (7e). An oven dried 8 mL vial was charged with 1 (20 mg, 53 µmol), 1 equiv. of di-n-butyl disulfide (10 µL, 53 µmol) and benzene (1 mL). The vial was sealed and the resulting solution stirred for 1 h, after which time the reaction mixture was poured into pentane (10 mL). The precipitate was isolated by filtration and dried under high vacuum to afford the desired product as a pale yellow powder (20 mg, 37 µmol) in 70% yield. m.p. 110-112 °C. ¹H NMR (C₆D₆, 400.27 MHz): δ 0.59 (t, *J* = 7.2 Hz, 6H) 0.97–1.07 (m, 8H), 2.04 (s, 12 H), 2.08 (s, 6H), 2.13 (d, *J* = 7.2 Hz, 4H), 2.58 (s, 6H), 6.75 (s, 4H). ¹³C NMR (C₆D₆, 75.47 MHz): δ 13.41, 20.98, 21.05, 22.21, 22.52, 25.12, 34.52, 49.51, 99.23, 126.42, 129.34, 134.21, 136.56, 139.23, 171.79. IR (KBr): 2920.95, 1735.22, 1708.73, 1487.74, 1460.33, 1384.24, 1328.65, 1236.29, 1059.24, 858.32, 509.83. HRMS: [M]⁺ calcd. for C₃₂H₄₆N₂O₂S₂: 554.2995. Found: 554.2997. Anal. Calcd. for C₃₂H₄₆N₂O₂S₂: C, 69.27; H, 8.36; N, 5.05. Found: C, 69.57; H, 8.24; N, 5.09. Compound 7e was found to be air sensitive and decomposed to the urea **6** upon exposure to the ambient atmosphere.

Synthesis of S-butyl 4,6-dimesityl-2,2-dimethyl-3-oxo-5-(butylthio)hexanethioate (8e). An oven dried 8 mL vial was charged with **7e** (20 mg, 37 µmol) and benzene (0.5 mL), and stirred for 4 h at 25 °C. The resulting solution was layered with pentane (3 mL) and placed in a -20 °C freezer. After 24 h, clear crystals were formed which were isolated by filtration and dried under high vacuum to afford the desired product (17 mg, 31 µmol) in 85% yield. m.p. 126-128 °C. ¹H NMR (C₆D₆, 400.27 MHz): δ 0.59–0.63 (t, *J* = 5.6 Hz, 3H), 0.69–0.77 (m, 5H), 1.01–1.26 (m, 10H), 1.32 (d, *J* = 10.8 Hz, 3H), 1.64 (s, 6H), 2.12 (s, 3H), 2.30 (s, 9H), 2.45 (s, 6H), 6.75 (s, 4H). ¹³C NMR (C₆D₆, 75.47 MHz): δ 13.44, 13.66, 13.74, 17.50, 18.39, 18.74, 19.10, 19.37, 19.67, 20.70, 20.78, 20.82, 20.99, 21.61, 21.82, 22.08, 22.31, 26.00, 27.89, 28.91, 30.88, 31.17, 32.34, 47.51, 47.83, 59.72, 89.21, 127.16, 129.13, 129.67, 134.40, 135.47, 137.71, 138.71, 138.90, 170.75, 199.76. IR (ATR): 2922.33, 1688.03, 1645.95, 1484.50, 1429.56, 1377.57, 1221.65, 1200.29, 1167.30, 1136.80, 1105.03, 1037.98, 962.08, 941.50, 850.12, 766.41, 743.80. HRMS: [M]⁺ calcd. for C₃₂H₄6N₂O₂S₂: 554.2995. Found: 554.3000. Anal. Calcd. for C₃₂H₄6N₂O₂S₂: C, 69.27; H, 8.36; N, 5.05. Found: C, 68.89; H, 8.33; N, 5.13.

Synthesis of 1,3-dimesityl-5,5-dimethyl-2-(methylthio)-2-(phenylthio)dihydropyrimidine-4,6(1H,5H)-dione (7f). An oven dried 8 mL vial was charged with 1 (70.7 mg, 0.19 mmol), 1 equiv. of methyl phenyl disulfide (25.5 μ L, 0.19 mmol) and benzene (3 mL). The vial was sealed and the resulting solution was stirred for 1 h, after which time the reaction mixture was precipitated into pentane (50 mL). The resulting powder was isolated by filtration and dried under high vacuum to afford the desired product as a bright yellow powder (60 mg, 0.11 mmol) in 60% yield. m.p. 128 °C (decomp.) ¹H NMR (C₆D₆, 400.27 MHz): δ 1.70 (s, 6H), 2.08 (s, 6H), 2.14 (s, 3H), 2.18 (s, 6H), 2.33 (s, 6H), 6.70 (s, 2H), 6.74 (s, 2H), 6.99–7.05 (m, 3H), 7.09–7.11 (m, 2H). ¹³C NMR (C₆D₆, 75.47 MHz): δ 15.28, 17.73, 19.00, 24.93, 48.82, 124.98, 127.71, 129.00, 129.25, 129.81, 134.89, 138.41, 138.53, 170.31. IR (KBr): 2977.91, 2915.51, 1735.09, 1701.35, 1460.06, 1387.71, 1341.19, 1265.75, 1223.39, 1110.18, 1034.90, 857.68, 820.27, 510.90. HRMS: [M]⁺ calcd. for C₃₁H₃₆N₂O₂S₂: 532.2213. Found: 532.2215. Anal. Calcd. for C₃₁H₃₆N₂O₂S₂: C, 68.89; H, 6.81; N, 5.26. Found: C, 68.95; H, 7.01; N, 5.47. Compound **7f** was found to be air sensitive and decomposed to the urea **6** upon exposure to the ambient atmosphere.

Synthesis of S-methyl 4,6-dimesityl-2,2-dimethyl-3-oxo-5-(phenylthio)hexanethioate (8f). An oven dried 8 mL vial was charged with **7f** (50 mg, 94 µmol) and benzene (1 mL) and stirred for 4 h at 60 °C. The resulting solution was layered with pentane (5 mL) and placed in a -20 °C freezer. After 24 h, a white powder had formed which was isolated by filtration and dried under high vacuum to afford the desired product as a white solid (39 mg, 73 µmol) in 78% yield. m.p. 280-282 °C. ¹H NMR (C₆D₆, 400.27 MHz): δ 1.70 (s, 3H), 1.75 (s, 3H), 1.92 (s, 6H), 2.20 (s, 6H), 2.34 (s, 6H), 2.59 (s, 3H), 6.70 (s, 2H), 6.74 (s, 2H), 6.88–6.92 (m, 1H), 6.98–7.03 (m, 2H) 7.43–7.45 (m, 2H). ¹³C NMR (C₆D₆, 75.47 MHz): δ 15.99, 18.82, 18.87, 19.03, 20.80, 21.01, 25.79, 60.40, 126.89, 128.24, 128.84, 129.08, 129.24, 129.30, 129.74, 132.53, 136.52, 138.53, 138.67, 142.45, 173.26, 197.00. IR (KBr): 2915.86, 1732.39, 1702.20, 1476.51, 1438.33, 1385.57, 1333.52, 1307.66, 1265.39, 857.69, 819.97, 768.45, 739.62. HRMS: [M]⁺ calcd. for C₃₁H₃₆N₂O₂S₂: 532.2213. Found: 532.2208. Anal. Calcd. for C₃₁H₃₆N₂O₂S₂: C, 68.89; H, 6.81; N, 5.26. Found: C, 68.89; H, 6.96; N, 5.28.

Synthesis of 1'.3'-dimesityl-5'.5'-dimethyl-1'H-spiro[phenalene-2,2'-pyrimidine]-1,3,4'.6' (3'H.5'H)-tetraone (9a). An oven dried 8 mL vial was charged with 1 (67 mg, 0.18 mmol), 1 equiv. of acenaphthoquinone (33 mg, 0.18 mmol) and benzene (1 mL), and stirred at 60 °C. After 3 h, the mixture was exposed to the atmosphere, cooled to 25 °C, and filtered through a 0.2 um PTFE filter. The filtrate was concentrated under reduced pressure and the resulting residue was triturated with pentane and then dried under reduced pressure to afford the desired product as a vellow powder (90 mg, 0.16 mmol) in 90% vield. m.p. 67-73 °C. ¹H NMR (CDCl₃, 400.27 MHz): δ 1.68 (s, 6H), 1.93 (2, 6H), 2.07 (s, 3H), 2.26 (s, 3H), 2.44 (s, 6H), 6.42 (s, 2H), 6.62-6.64 (d, J = 8.4 Hz, 1H), 6.75–6.79 (t, J = 7.6 Hz, 1H), 6.94 (s, 2H), 7.44–7.45 (d, J = 7.2 Hz, 1H), 7.51–7.55 (t, J = 7.6 Hz, 1H), 7.90–7.93 (d, J = 9.2 Hz, 1H), 8.16–8.19 (d, J = 8.4 Hz, 1H). ¹³C NMR (CDCl₃, 75.47 MHz): δ. 20.03, 20.54, 27.21, 48.58, 80.48, 122.09, 126.55, 127.07, 128.45, 128.58, 129.45, 130.10, 132.23, 132.63, 133.83, 135.61, 137.79, 137.82, 174.55, 189.72. IR (ATR): 2980.5, 1735.01, 1710.57, 1690.91, 1659.00, 1388.43, 1290.84, 1243.58, 1156.95, 1131.14, 1039.76, 851.37, 822.17, 777.33.. HRMS: $[MH]^+$ calcd. for $C_{36}H_{35}N_2O_4$: 559.2591. Found: 559.2591. Anal. Calcd. for C₃₆H₃₄N₂O₄: C, 77.40; H, 6.13; N, 5.01. Found: C, 77.11; H, 6.53; N, 4.95.

Synthesis 6.10-dimesityl-2.3-dimethoxy-8.8-dimethyl-6.10-diazaspiro[4.5]dec-2-eneof **1,4,7,9-tetraone (9b).** An oven dried 8 mL vial was charged with **1** (73 mg, 0.19 mmol), 1 equiv. of 3,4-dimethoxycyclobut-3-ene-1,2-dione (27 mg, 0.19 mmol) and benzene (1 mL), and stirred at 25 °C. After 2 h, the reaction was exposed to the atmosphere and filtered through a 2 µm PTFE filter. The filtrate was concentrated under reduced pressure and the resulting residue triturated with pentane. Subsequent drying under high vacuum afforded the desired product as a white powder (83 mg, 0.16 mmol) in 83% yield. m.p. 193 °C (decomp.) ¹H NMR (CDCl₃, 400.27 MHz): δ 1.75 (s, 6H), 2.12 (s, 12 H), 2.32 (s, 6H), 3.27 (s, 3H), 3.40 (s, 3H), 6.72 (s, 4H). ¹³C NMR (CDCl₃, 75.47 MHz): δ.17.56, 17.72, 20.15, 20.96, 24.78, 27.31, 47.18, 59.33, 59.71, 76.80, 128.24, 129.36, 129.91, 130.01, 133.70, 135.79, 138.36, 139.01, 140.03, 168.97, 173.45. IR (ATR): 2922.64, 2854.55, 1709.23, 1732.46, 1669.88, 1643.28, 1608.14, 1481.17, 1464.89, 1392.14, 1381.64, 1344.14, 1212.19, 1194.28, 1032.37, 938.24, 859.77, 832.04, 796.70, 787.54. HRMS: $[MH]^+$ calcd. for C₃₀H₃₄N₂O₆: 518.6008. Found: 518.2418. Anal. Calcd. for C₃₀H₃₄N₂O₆: C, 69.48; H, 6.61; N, 5.40. Found: C, 69.70; H, 6.42; N, 5.14.

Synthesis of 2,2-dibenzoyl-1,3-dimesityl-5,5-dimethyldihydropyrimidine-4,6(1H,5H)-dione (9c). An oven dried 8 mL vial was charged with 1 (64 mg, 0.17 mmol), 1 equiv. of benzil (36 mg, 0.17 mmol) and benzene (1 mL), and stirred at 25 °C. After 1 h, the reaction was exposed to the atmosphere and volatiles were removed under reduced pressure. The resulting residue was triturated with pentane and dried under high vacuum to afford the desired product as a beige solid (75 mg, 0.13 mmol) in 75% yield. m.p. 270 °C (decomp.) ¹H NMR (CDCl₃, 400.27 MHz): δ 1.36 (s, 3H), 1.75 (s, 3H), 2.10 (s, 6H), 2.26 (s, 6H) 6.94 (s, 4H), 7.48–7.52 (t, *J* = 7.8 Hz, 4H), 7.63–7.67 (t, *J* = 8.8 Hz, 2H), 7.95–7.97 (d, *J* = 4.8 Hz, 4H). ¹³C NMR (CDCl₃, 75.47 MHz): δ 17.51, 18.25, 18.76, 20.92, 25.28, 47.06, 88.74, 129.01, 129.47, 129.89, 132.96, 133.05, 134.79, 134.88, 138.21, 138.98, 171.82, 194.55. IR (ATR): 2920.17, 1696.51, 1595.98, 1448.97, 1387.47, 1349.52, 1244,81, 1211.33, 861.01, 720.66. HRMS: [M]⁺ calcd. for C₃₈H₃₈N₂O₄: 586.2832. Found: 586.2829. Anal. Calcd. for C₃₈H₃₈N₂O₄: C, 77.79; H, 6.53; N, 4.77. Found: C, 77.56; H, 6.51; N, 5.01.

Synthesis of 5,9-dimesityl-7,7-dimethyl-2,3-diphenyl-5,9-diazaspiro[3.5]non-2-ene-1,6,8trione (9d). An oven dried 8 mL vial was charged with 1 (49 mg, 0.13 mmol), 1 equiv. of 2,3diphenylcycloprop-2-enone (27 mg, 0.13 mmol) and benzene (1 mL), and stirred at 25 °C. After 2 h, the reaction was exposed to the atmosphere and the volatiles removed under reduced pressure. The resulting residue was triturated with hexanes and dried under high vacuum to afford the desired product as a pale yellow solid (68 mg, 0.12 mmol) in 90% yield. m.p. 183 °C (decomp.) ¹H NMR (C₆D₆, 400.27 MHz): δ 1.93 (s, 6H), 2.05 (s, 6H), 2.06 (s, 3H), 2.30 (s, 6H), 2.42 (s, 3H), 6.21 (d, *J* = 7.6 Hz, 2H), 6.49 (s, 2H), 6.53 (s, 2H), 6.70–6.79 (m, 6H), 7.47–7.50 (m. 2H). ¹³C NMR (CDCl₃, 75.47 MHz): δ .20.06, 20.57, 20.65, 26.28, 27.87, 48.21, 97.79, 128.34, 128.61, 129.10, 129.63, 130.03, 130.60, 130.87, 131.20, 131.91, 134.64, 138.04, 139.01, 139.02, 172.84, 189.38. IR (ATR): 2940.98, 1767.80, 1689.14, 1660.86, 1456.70, 1392.28, 1361.46, 1217.63, 1169.55, 1102.12, 965.80, 941.72, 851.30, 773.79, 763.11. HRMS: [MH]⁺ calcd. for C₃₉H₃₉N₂O₃: 583.7306. Found: 583.2951. Anal. Calcd. for C₃₉H₃₈N₂O₃: C, 80.38; H, 6.57; N, 4.81. Found: C, 80.23; H, 6.71; N, 4.90.

Thiolate Trapping Experiment/Synthesis of S-methyl thiobenzoate. An oven dried vial was charged with 7a (60 mg, 0.13 mmol), 5 equiv. of benzoyl chloride (74 µL, 0.64 mmol) and toluene (1.0 mL), and stirred at 60 °C. After 15 h, the reaction was exposed to the atmosphere and the volatiles removed under reduced pressure. The resulting residue was triturated with pentane which caused the precipitation of the byproduct $7a^*$. The resulting white precipitate was isolated by filtration and dried under high vacuum to afford 7a* in 72% yield (43 mg, 0.09 mmol). m.p. 155–157 °C (decomp.) ¹H NMR (CDCl₃, 400.27 MHz): δ 1.76 (s, 6H), 2.11 (s, 12H), 2.27 (s, 3H) 2.30 (s, 6H), 6.95 (s, 4H). ¹³C NMR (CDCl₃, 100.49 MHz): δ17.54, 21.19, 25.05, 31.58, 48.56, 121.95, 129.612, 134.31, 134.43, 138.76, 170.34. IR (ATR): 2920.76, 1723.33, 1702.94, 1461.66, 1395.37, 1334.13, 1308.13, 1265.36, 1224.37, 963.70, 857.60, 819.92. HRMS: [M-Cl]⁺ calcd. for C₂₅H₃₁ClN₂O₂S: 423.5903. Found: 423.5941. Anal. Calcd. for C₂₅H₃₁ClN₂O₂S: C, 65.41; H, 6.81; N, 6.10. Found: C, 65.19; H, 6.58; N, 5.98. The filtrate was passed over a short column of neutral alumina and the solvent was removed under reduced pressure, to yield S-methyl thiobenzoate as a colorless oil in 67% yield (13 mg, 0.09 mmol). Spectral data were consistent with literature values.⁶ ¹H NMR (CDCl₃, 400.27 MHz): δ 2.53 (s, 3H), 7.35–7.39 (m, 2H), 7.51–7.55 (m, 3H). ¹³C NMR (CDCl₃, 100.49 MHz): δ 11.07, 124.24, 125.63, 127.76, 128.99, 183.06. HRMS: [M]⁺ calcd. for C₈H₈OS: 152.2135. Found: 152.2143.

Evaluation of the Reactions Involving 1 with Various Disulfides. A 0.106 M stock solution of 1 was prepared by dissolving 1 (0.20 g, 0.44 mmol) in C₇D₈ (5 mL). An oven dried NMR tube equipped with a screw-cap septum was charged inside of a glove box with the stock solution of 1 (0.5 mL, 0.053 mmol) and a sufficient quantity of C₇D₈ such that the total volume equaled 0.9 mL upon the addition of 10 equiv. of the disulfide analyzed. The sample was then equilibrated in an NMR probe cooled to -50 °C. Upon equilibration, the sample was ejected from the instrument and 0.53 mmol (10 equiv.) was added via syringe. For the solid disulfides, 0.53 mmol (10 equiv.) of the disulfide was dissolved in C_7D_8 (0.4 mL) and added via syringe. Liquid disulfides were added neat. All of the substrates were kept in a dry ice acetone bath at -78 °C until addition to the NMR tube. The NMR tube was then vigorously shaken to ensure proper mixing, and the sample reinserted into the NMR probe. After shimming, spectra (four scans each) were run every 30 sec for 1 h. The conversion to the diamidothioketal product (7a.e.f. Fig. S1) was measured by comparing the ratio of the ¹H NMR integrals assigned to the arvl protons of 1 ($\delta = 6.73$ ppm; s, 4H) with the corresponding aryl protons attributed to the respective product (7a: 6.71 ppm, s, 4H; 7e: 6.75 ppm, s, 4H; 7f: 6.70 ppm, s, 2H). To account for the differing number of hydrogen atoms, the integral for **7f** was doubled prior to calculating the integral ratio. Pseudo-first order rate constants were determined for these reactions by plotting the ln [1] versus time (Fig. S2–S4). Linear fits of all data points collected for conversions < 90% were used to calculate the observed rate constants from the corresponding slopes. For the aryl disulfides, the rate was too fast to be determined using ¹H NMR spectroscopy as the reactions had proceeded to > 99.9 % conversion in the < 2 min needed to shim the instrument. The lower limit of k' for these reactions was calculated in these cases using the following parameters: $[1]_0 = 0.059$ M, t = 120 s, and [1] = 5.9 $\times 10^{-5}$ M after 2 min, assuming 99.9% conversion. By inputting these values into the pseudo first order rate equation, a k_{obs} was calculated to be > 3.45 min⁻¹ for the aryl disulfides.

Figure S1. Plot of percent conversion versus time for the insertion of **1** into dimethyl disulfide (blue circles), di-n-butyl disulfide (black squares), or methyl phenyl disulfide (red triangles). Conditions: $[\mathbf{1}]_0 = 0.059$ M, [disulfide]_0 = 0.59 M (10 equiv.), C₇D₈, -50 °C. Every third data point was omitted to improve visual clarity.

Figure S2. Plot of ln [1] versus time. Conditions: $[1]_o = 0.059$ M, [dimethyl disulfide]_o = 0.59 M (10 equiv.), C₇D₈, -50 °C. The equation for the best fit line is as follows: y = mx + b, where $m = -0.01498 \pm 0.00004$ s⁻¹ and $b = -2.9400 \pm 0.0016$.

Figure S3. Plot of ln [1] versus time. Conditions: $[1]_o = 0.059$ M, [di-n-butyl disulfide]_o = 0.59 M (10 equiv.), C₇D₈, -50 °C. The equation for the best fit line is as follows: y = mx + b, where m = $-0.0153 \pm 0.0002 \text{ min}^{-1}$ and b = -2.9897 ± 0.0072 .

Figure S4. Plot of ln [1] versus time. Conditions: $[1]_o = 0.059$ M, [methyl phenyl disulfide]_o = 0.59 M (10 equiv.), C₇D₈, -50 °C. The equation for the best fit line is as follows: y = mx + b, where $m = -0.086 \pm 0.002$ s⁻¹ and $b = -4.233 \pm 0.017$.

Reaction of 1 with a Mixture of Diphenyl Disulfide and Dimethyl Disulfide. An oven dried vial was charged with **1** (100 mg, 0.26 mmol), dimethyl disulfide (12.5 μ L, 0.13 mmol), diphenyl disulfide (29 mg, 0.13 mmol) and C₆D₆ (1.5 mL). The resulting solution was stirred for 30 min at 25 °C and then analyzed by ¹H NMR spectroscopy, which revealed a 1:1 mixture of **7a** and **7b** (Fig. S5).

Figure S5. ¹H NMR spectrum showing the 1:1 mixture of **7a** (red) and **7b** (blue) observed from the treatment of **1** with a 1:1 mixture of diphenyl disulfide and dimethyl disulfide after 30 min at 25 °C in C_6D_6 .

X-Ray Crystallography. Colorless single crystals of **2** were obtained by slow vapor diffusion of pentane into a saturated chloroform solution; this compound co-crystallized with one molecule of chloroform in the monoclinic space group $P2_1/n$. Pale yellow single crystals of **3** were obtained by slow vapor diffusion of pentane into a saturated chloroform solution; this compound cocrystallized with one molecule of chloroform in the monoclinic space group P2/c. Colorless single crystals of 4 were obtained by slow vapor diffusion of pentane into a saturated chloroform solution; this compound co-crystallized with 1.5 molecules of chloroform in the orthorhombic space group *Pbca*. Colorless single crystals of **6** were obtained by the slow diffusion of pentane into a saturated benzene solution; this compound crystallized in the triclinic space group P-1. Colorless single crystals of 7a were obtained by slow diffusion of pentane into a saturated toluene solution at -20 °C; this compound crystallized in the monoclinic space group $P2_1/c$. Colorless single crystals of 8b were obtained by slow vapor diffusion of pentane into a saturated benzene solution; this compound crystallized in the triclinic space group P-1. Yellow single crystals of 9a were obtained by slow vapor diffusion of pentane into a saturated benzene solution; this compound crystallized in the monoclinic space group $P2_1/n$. Crystallographic measurements were carried out on a Rigaku Mini or Rigaku Saturn CCD area detector diffractometer using graphite-monochromated Mo-K_a radiation ($\lambda = 0.71073$ Å) at 150 or 120 K

using a Rigaku XStream low temperature device. A sample of suitable size and quality was selected and mounted onto a nylon loop. Data reductions were performed using CrystalClear. The structures were solved by direct methods which successfully located most of the non-hydrogen atoms. Subsequent refinements on F2 using the SHELXTL/PC package (version 5.1)⁷ allowed location of the remaining non-hydrogen atoms. Key details of the crystal and structure refinement data are summarized in Table S1. Further crystallographic details may be found in the respective CIFs which were deposited at the Cambridge Crystallographic Data Centre, Cambridge, UK. The CCDC reference numbers for **2**, **3**, **4**, **6**, **7a**, **8b** and **9a** were assigned as 882670, 882671, 882672, 882673, 882674, 882675 and 882676, respectively.

Fig. S6 ORTEP diagrams of **3** (left) and **4** (right) with thermal ellipsoids drawn at 50% probability and H-atoms omitted for clarity.

	$2 \cdot CHCl_3$	3-CHCl ₃	4 •1.5CHCl ₃	6
Formula	$C_{25}H_{29}Cl_3N_2O_2$	$C_{23}H_{29}Br_2Cl_3N_2$	$C_{22.5}H_{27.5}Br_2Cl_{4.5}N_2$	$C_{24}H_{28}N_2O_3$
$M_{ m r}$	655.67	599.65	645.31	392.48
crystal size (mm ³)	$0.31 \times 0.18 \times 0.03$	$0.16 \times 0.15 \times 0.04$	$0.18 \times 0.18 \times 0.04$	$0.18 \times 0.14 \times 0.09$
crystal system	Monoclinic	Monoclinic	Orthorhombic	Triclinic
space group	$P2_{1}/n$	<i>P</i> 2/c	Pbca	<i>P</i> -1
a (Å)	8.6872(8)	18.893(2)	28.784(3)	8.005(6)
b (Å)	24.892(2)	8.2648(9)	28.621(3)	8.772(6)
<i>c</i> (Å)	12.6503(12)	17.927(2)	13.8010(3)	16.048(11)
α(°)	90	90	90	91.431(9)
$\beta(^{\circ})$	92.440(2)	108/099(2)	90	103.924(9)
γ(°)	90	90	90	98.836(7)
$V(\text{\AA}^3)$	2733.0(4)	2660.8(5)	11369.5(19)	1078.6(13)
Ζ	4	4	16	2
$\rho_{\rm calc} ({\rm g}{\rm cm}^{-3})$	1.593	1.497	1.508	1.209
μ (mm ⁻¹)	3.285	3.361	3.288	0.080
<i>F</i> (000)	1320	1208	5168	420
<i>T</i> (K)	150(2)	150(2)	150(2)	150(2)
scan mode	ω	ω	ω	ω
	$-10 \rightarrow 10$	$-22 \rightarrow 22$	$-34 \rightarrow 34$	$-9 \rightarrow 9$
<i>hkl</i> range	$-29 \rightarrow 29$	$-9 \rightarrow 9$	$-33 \rightarrow 34$	$-10 \rightarrow 10$
	$-15 \rightarrow 15$	$-21 \rightarrow 21$	$-16 \rightarrow 16$	$-19 \rightarrow 19$
measd reflns	37485	36561	122939	15923
unique reflns $[R_{int}]$	4800 [0.0582]	4684[0.0639]	9902 [0.1031]	3779 [0.0380]
refinement reflns	4800	4694	9902	3779
refined parameters	315	277	571	270
GOF on F^2	1.006	1.006	1.006	1.006
R1 ^a (all data)	0.0380 (0.0468)	0.0528 (0.0630)	0.0577 (0.0885)	0.0528 (0.0776)
wR2 (all data)	0.0861 (0.0861)	0.1352 (0.1419)	0.1340 (0.1514)	0.1531 (0.1877)
$\rho_{\rm fm}$ (max/min)	0.771	1.846	1.590	0.563
$(e Å^{-3})$	-0.674	-0.917	-0.970	-0.675

 Table S1. Summary of crystal data, data collection, and structure refinement details for compounds 2–4 and 6.

 ${}^{a}\mathrm{R1} = \sum ||Fo| - |Fc|| / \sum |Fo|. {}^{b}\mathrm{wR2} = \{ \sum w(Fo^{2} - Fc^{2})^{2}] / [\sum w(Fo^{2})^{2}] \}^{1/2}.$

	7a	8b	9a
Formula	$C_{26}H_{34}N_2O_2S_2$	$C_{36}H_{38}N_2O_2S_2$	C ₃₆ H ₃₄ N ₂ O ₄
$M_{\rm r}$	470.67	594.80	558.65
crystal size (mm ³)	$0.20\times0.18\times0.06$	$0.19 \times 0.15 \times 0.08$	$0.25 \times 0.08 \times 0.05$
crystal system	Monoclinic	Triclinic	Monoclinic
space group	$P2_1/c$	<i>P</i> -1	$P2_{1}/n$
a (Å)	14.9337(12)	11.0307(15)	11.500(2)
b (Å)	11.8693(9)	12.1360(16)	17.626(4)
<i>c</i> (Å)	13.6108(11)	12.8498(17)	14.155(3)
α (°)	90	69.777(3)	90
$\beta(^{\circ})$	92.054(2)	79.796(3)	91.498(4)
$\gamma(^{\circ})$	90	85.828(3)	90
$V(\text{\AA}^3)$	2411.0(3)	1588.5(4)	2868.1(10)
Ζ	4	2	4
$\rho_{\rm calc} ({\rm g}{\rm cm}^{-3})$	1.297	1.244	1.294
μ (mm ⁻¹)	0.247	0.202	0.084
<i>F</i> (000)	1008	632	1184
<i>T</i> (K)	120(2)	150(2)	150(2)
scan mode	ω	ω	ω
	$-17 \rightarrow 16$	$-13 \rightarrow 13$	$-13 \rightarrow 13$
hkl range	$-14 \rightarrow 11$	$-14 \rightarrow 14$	$-20 \rightarrow 20$
	$-16 \rightarrow 16$	$-15 \rightarrow 15$	$-16 \rightarrow 16$
measd reflns	12521	14027	40760
unique reflns [R _{int}]	4239 [0.0589]	5586 [0.0928]	5041 [0.1188]
refinement reflns	4239	5586	5041
refined parameters	299	387	387
GOF on F^2	1.006	1.006	1,006
R1 ^a (all data)	0.0532 (0.1149)	0.0644 (0.1148)	0.0613 (0.1145)
wR2 (all data)	0.0635 (0.1542)	0.1335 (0.1587)	0.1312 (0.1579)
$ ho_{ m fin}$ (max/min)	0.411	0.296	0.191
(e Å ⁻³)	-0.551	-0.285	-0.185

Table S2. Summary of crystal data, data collection, and structure refinement details for compounds 7a, 8b and 9a.

 ${}^{a}\mathrm{R1} = \sum ||Fo| - |Fc|| / \sum |Fo|. {}^{b}\mathrm{wR2} = \{ [\sum w(Fo^{2} - Fc^{2})^{2}] / [\sum w(Fo^{2})^{2}] \}^{1/2}.$

¹H and ¹³C NMR Spectra

References

- (1) T. W. Hudnall, J. P. Moerdyk and C. W. Bielawski, Chem. Commun. 2010, 46, 4288.
- (2) M. Iglesias, D. J. Beestra, J. C. Knight, L.-L. Ooi, A. Stasch, S. Coles, L. Male, M. B. Hursthouse, K. J. Cavell, A. Dervisi and I. A. Fallis, *Organometallics* 2008, 27, 3279.
- (3) M. Scholl, S. Ding, C. W. Lee and R. H. Grubbs, Org. Lett. 1999, 1, 953.
- (4) J. P. Moerdyk and C. W. Bielawski, J. Am. Chem. Soc. 2012, 134, 6116.
- (5) I. Dhimitruka and J. SanaLucia Org. Lett. 2006, 8, 47.
- (6) V. Thiel, T. Brinkhoff, J. S. Dickschat, S. Wickel, J. Grunenberg, I. Wagner-Dobler, M. Simon and S. Schulz. Org. Biomol. Chem. 2010, 8, 234.
- (7) G. M. Sheldrick, SHELXL/PC package (version 5.1), program for the refinement of crystal structures, University of Gottingen, Germany, 2003.