Supporting Information for:

Crossed Intermolecular [2+2] Cycloaddition of Styrenes by Visible Light Photocatalysis

Michael A. Ischay, Michael S. Ament, and Tehshik P. Yoon

Department of Chemistry, University of Wisconsin–Madison, 1101 University Ave., Madison, WI 53706

I. General Information	S-1
II. Synthesis of the Photocatalyst	S-2
III. Synthesis of Substrates	S-2
IV. [2+2] Cycloaddition Reactions	S-5
V. Typical Experimental Setup	S-17
VI. Representative nOe Relationships	S-18
VII. References	S-19
VIII. NMR spectra	S-20

I. General Information

MeCN, THF, and CH₂Cl₂ were purified by elution through alumina as described by Grubbs.¹ A 20 W (1200 lumens) compact fluorescent light bulb (CFL) was used for all photochemical reactions. Constant reaction temperature was maintained by a cryocooled iPrOH bath. Flash-column chromatography was performed with Silicycle 40-63Å silica (230-400 mesh) using the method of Still.² Ru(bpm)₃(BArF)₂ was purified on Al₂O₃ (Sigma-Aldrich, 11028). Diastereomer ratios were determined by ¹H NMR analysis of the unpurified reaction mixture. ¹H and ¹³C NMR data for all previously uncharacterized compounds were obtained using Varian Inova-500 and Varian Unity-500 spectrometers and are referenced to TMS (0.0 ppm) and CDCl₃ (77.0 ppm), respectively. IR spectral data were obtained using a Bruker Vector 22 spectrometer (thin film on NaCl). Melting points were obtained using a Mel-Temp II (Laboratory Devices, Inc., USA) melting point apparatus. Mass spectrometry was performed with a Waters (Micromass) AutoSpec[®] (electron impact) or with a Waters (Micromass) LCT[®] (electrospray ionization). These facilities are funded by the NSF (CHE-9974839, CHE-9304546) and the University of Wisconsin.

II. Synthesis of the Catalyst

Tris(bipyrimidine)ruthenium(II) bis(tetrakis[(3,5-trifluoromethyl)phenyl]borate) [Ru(bpm)₃(BArF)₂]: The 2,2'-bipyrimidine ligand was synthesized according to a procedure described by Michl and coworkers.³ Ru(bpm)₃Cl₂ was prepared using a procedure reported by Rillema.⁴ Ru(bpm)₃(BArF)₂ was prepared from Ru(bpm)₃Cl₂ via anion metathesis^{5,6} as follows: A solution of Ru(bpm)₃Cl₂ (239 mg, 0.37 mmol) in 1 mL deionized water was placed in 12 mL reaction vial. A separate vial was charged with NaBArF⁷ (2.1 equiv, 688 mg, 0.77 mmol), which was transferred to the vial containing Ru(bpm)₃Cl₂ using 2 mL of a 3:1 mixture of MeOH/H₂O. The resulting bright orange precipitate was collected by vacuum filtration and purified by gravity elution through Al₂O₃ using CH₂Cl₂. The resulting solution was concentrated by rotary evaporation, and the residue was precipitated from CH₂Cl₂ by addition of hexanes. Isolated 617 mg (0.27 mmol, 72% yield) of Ru(bpm)₃(BArF)₂ as bright orange needles. IR(neat, ATR) 2160, 1579, 1547, 1408, 1356, 1274, 1113 cm⁻¹. ¹H NMR: (500 MHz, DMSO) δ 9.21 (dd, J = 4.8, 1.9 Hz, 6H), 8.35 (dd, J = 5.8, 1.9 Hz, 6H), 7.71 (dd, J = 5.8, 4.8 Hz, 6H), 7.67 (m, 8H), 7.61 (m, 16H). ¹³C NMR: (125 MHz, DMSO) δ 162.3, 160.9 (q, J = 50.0 Hz), 160.5, 158.4, 134.1, 128.5 (q, J = 31.1 Hz), 124.4, 124.2 (q, J = 273.5 Hz.), 117.6.

III. Synthesis of Substrates

(*E*)-1-Methoxy-2-(1-propenyl)benzene: A solution of 2-methoxybenzaldehyde (2.02 g, 14.7 mmol) and ethyltriphenylphosphonium iodide (6.75 g, 16.2 mmol) in 74 mL of anhydrous Et₂O was placed in a 200 mL round-bottomed flask and cooled to 0 °C. KO¹Bu (2.01 g, 17.9 mmol) was added in one portion, and the reaction was warmed to room temperature and stirred overnight. The reaction was quenched with H₂O and extracted with anhydrous Et₂O (3 x 75 mL). The combined organics were washed with brine (1 x 75 mL), dried over MgSO₄, and concentrated *in vacuo*. The residue was purified by flash-column chromatography (15:1 Hexanes/EtOAc) to afford 1.80 g (12.1 mmol, 83% yield) of the desired product as a colorless oil (E/Z = 1:3). To improve the isomer ratio, the mixture of E/Z isomers was dissolved in benzene (48 mL), AIBN (296 mg, 1.80 mmol) and PhSH (672 mg, 6.10 mmol) were added, and the reaction was heated at reflux for 1 h. Upon cooling to room temperature, the mixture was washed with 1 M NaOH (3 × 25 mL) and brine, dried over MgSO₄, and concentrated *in vacuo*. The residue may have be the desired product as a single isomer (1.56 g, 10.5 mmol, 87% yield). IR(neat) 2958, 1597, 1489, 1243 cm⁻¹. ¹H NMR: (500

MHz, CDCl₃) δ 7.39 (dd, J = 7.6, 1.6 Hz, 1H), 7.18 (td, J = 8.2, 1.7 Hz, 1H), 6.90 (t, J = 7.5 Hz, 1H), 6.85 (d, J = 8.2 Hz, 1H), 6.72 (dq, J = 15.9, 1.7 Hz, 1H), 6.22 (dq, J = 15.9, 6.6 Hz, 1H), 3.84 (s, 3H), 1.90 (dd, J = 6.6, 1.7 Hz, 3H). ¹³C NMR: (125 MHz, CDCl₃) δ 156.2, 127.7, 127.1, 126.5, 126.4, 125.6, 120.6, 110.7, 55.4, 18.9. HRMS (EI) calculated for [C₁₀H₁₂O]⁺ requires *m/z* 148.0883, found *m/z* 148.0882.

(E)-1-Methoxy-2-methyl-4-(1-propenyl)benzene: A solution of 4-methoxy-3-methylbenzaledehyde (1.26 g, 8.4 mmol) and ethyltriphenylphosphonium iodide (3.8 g, 9.2 mmol) in 42 mL of anhydrous Et₂O was placed in a 100 mL round-bottomed flask and cooled to 0 °C. KO^tBu (1.13 g, 10.1 mmol) was added in one portion, and the reaction was warmed to room temperature and stirred overnight. The crude reaction mixture was passed through a short column of SiO₂ with Et₂O, and the eluent was concentrated in vacuo. The residue was purified by flash-column chromatography (6:1 hexane/CH₂Cl₂) to afford the product as a mixture of isomers (1.1 g, 6.8 mmol, 81% yield, E/Z = 1:2.9). To the mixture of E/Z isomers in benzene (27 mL) was added AIBN (167 mg, 1.02 mmol) and PhSH (350 µL, 3.4 mmol), and the reaction was heated at reflux for 1 h. Upon cooling to room temperature, the mixture was washed with 1 M NaOH (3 × 25 mL) and brine, dried over $MgSO_4$, and concentrated in vacuo. The residue was purified by flash-column chromatography (5:1 hexanes/CH₂Cl₂) to afford the desired product as a single isomer (743 mg, 4.6 mmol, 68% yield). IR(neat) 2915, 1507, 1253, 1154 cm⁻¹. ¹H NMR: (500 MHz, CDCl₃) δ 7.12 (s, 1H), 7.09 (d, J = 8.6 Hz, 1H), 6.72 (d, J = 8.6 Hz, 1H), 7.8 1H), 6.30 (dq, J = 15.7, 1.6 Hz, 1H), 6.06 (dq, J = 15.7, 6.6 Hz, 1H), 3.78 (s, 3H), 2.19 (s, 3H), 1.83 (dd, J = 6.7, 1.6 Hz, 1H), 6.74 (dd, J = 6.74 (dd, J Hz, 3H). ¹³C NMR: (125 MHz, CDCl₃) δ 156.8, 130.5, 130.3, 128.0, 126.5, 124.3, 123.1, 109.8, 77.3, 77.0, 76.7, 55.3, 18.4, 16.2. HRMS (EI) calculated for $[C_{11}H_{14}O]^+$ requires m/z 162.1040, found m/z 162.1036.

Me (*E*)-1-Benzyloxy-4-(1-propenyl)benzene: A flame-dried 25 mL round-bottomed flask was charged with 187 mg (7.8 mmol) of NaH (washed previously with hexanes). The flask was evacuated and backfilled with dry N₂ three times. Anhydrous DMF (3 mL) was added, and the mixture was cooled to 0 °C. A solution of (*E*)-4-(propenyl)-1-phenol⁸ (521 mg, 3.9 mmol) in 4.8 mL of anhydrous DMF was added dropwise, and the mixture was warmed to room temperature. After 10 min, 700 µL (5.9 mmol) of benzyl bromide was added and the mixture was stirred for an additional 30 min. The reaction was quenched with saturated NH₄Cl and diluted with Et₂O. The layers were separated, and the aqueous phase was extracted an additional time with 25 mL of Et₂O. The combined organics were washed with water (3 × 25 mL), brine, dried over MgSO₄, and concentrated *in vacuo*. The crude oil was purified by flash-column chromatography (5:1 hexanes/CH₂Cl₂) to afford 649 mg (2.89 mmol, 74% yield) of the desired product as a colorless solid (mp = 76–78 °C). IR(neat) 2924, 1472, 1038, 974 cm⁻¹. ¹H NMR: (500 MHz, CDCl₃) δ 7.41 (m, 2H), 7.36 (t, J = 7.7 Hz, 2H), 7.30 (m, 1H), 7.24 (AA' of AA'BB', J = 8.6 Hz, 2H), 6.89 (BB' of AA'BB', J = 8.6 Hz, 2H), 6.33 (d, J = 15.6 Hz, 1H), 6.08 (dq, J = 15.8, 6.5 Hz, 1H), 5.03 (s, 2H), 1.84 (d, J = 6.5 Hz, 3H). ¹³C NMR: (125 MHz, CDCl₃) δ 157.8, 137.1, 131.1, 130.3, 128.6, 127.9, 127.4, 126.9, 123.6, 114.9, 70.0, 18.4. HRMS (EI) calculated for [C₁₆H₁₆O]⁺ requires *m/z* 224.1196, found *m/z* 224.1201.

Net Net Net

IV. [2+2] Cycloaddition Reactions

A. Homodimerization of anethole (1)

(**Table 1, entry 6, 2**). An oven-dried 25 mL borosilicate test tube equipped with a magnetic stir bar was charged with anethole (204.5 mg, 1.38 mmol) and $Ru(bpm)_3(BArF)_2$

(6.9 mg, 0.003 mmol) and cooled to 0 °C. Anhydrous CH₂Cl₂ (6.7 mL) was added, and the test tube was sealed with a septum. The reaction mixture was vigorously stirred in front of a 20 W CFL. Upon >95% consumption of starting material as judged by gas chromatography (2 h), the reaction was filtered through short pad of SiO₂ with 100 mL of Et₂O and concentrated *in vacuo*. The crude oil was purified by flash-column chromatography (13:1 to 10:1 hexanes/EtOAc) to afford 165 mg (0.56 mmol, 81% yield) of the title compound as a colorless oil. Spectral properties matched those previously reported:¹⁰ ¹H NMR: (500 MHz, CDCl₃) δ 7.12 (AA' of AA'BB', J = 8.6 Hz, 4H), 6.82 (BB' of AA'BB', J = 8.6 Hz, 4H), 3.76 (s, 6H), 2.80 (inverted d, 2H), 1.82 (m, 2H), 1.18 (d, J = 6.1 Hz, 6H). ¹³C NMR: (125 MHz, CDCl₃) δ 157.9, 135.9, 127.7, 113.7, 55.2, 52.5, 43.2, 18.9.

B. Crossed-[2+2] cycloaddition reactions

General Procedure A: An oven-dried 25 mL borosilicate test tube was charged with 0.67 mmol of 1, 1.34 mmol of 7a, and 0.25 mol% Ru(bpm)₃(BArF)₂. The test tube was cooled to -15 °C using a controlled-temperature cooling bath and 6.7 mL of anhydrous CH₂Cl₂ was added. The reaction mixture was vigorously stirred under air in front of a 20 W CFL. Upon consumption of 1, the reaction was passed through a short pad of silica using EtOAc or Et₂O. The solvent was removed by rotary evaporation, and the residue was purified by flash-column chromatography to afford the cycloadduct.

General Procedure B: An oven-dried 25 mL borosilicate test tube was was charged with 1.34 mmol of **7b**, 0.25 mol% Ru(bpm)₃(BArF)₂, and 1.7 mL of anhydrous CH_2Cl_2 . The test tube was cooled to -15 °C using a controlled-temperature cooling bath. The solution was vigorously stirred under air infront of a 20 W CFL. 5 mL of a 0.135 M solution of **1** in anhydrous CH_2Cl_2 was added dropwise over 1 h. Upon consumption of **1**, the reaction was passed through a short pad of silica using EtOAc or Et₂O. The solvent was removed by rotary evaporation, and the residue was purified by flash-column chromatography to afford the cycloadduct.

(**Table 3, entry 1, 8a**). Experiment 1: Set up according to General Procedure A with anethole (99.2 mg, 0.67 mmol), 4-methyl styrene (158 mg, 1.34 mmol), $Ru(bpm)_3(BArF)_2$ (4 mg, 0.0017 mmol), and 6.7 mL of anhydrous CH_2Cl_2 (1 h reaction time, >10:1

crossed/homodimer). Purification by flash-column chromatography (gradient, 6:1 to 2:1 hexanes/CH₂Cl₂) afforded

153 mg (0.57 mmol, 86% yield) of the cycloadduct as a colorless oil. Experiment 2: 98 mg (0.66 mmol) of anethole, 158 mg (1.34 mmol) of 4-methyl styrene, 4 mg (0.0017 mmol) of Ru(bpm)₃(BArF)₂, and 6.7 mL of CH₂Cl₂. Isolated 151 mg (0.57 mmol 86% yield). IR (neat) 2951, 1611, 1513, 1249, 1038 cm⁻¹. ¹H NMR: (500 MHz, CDCl₃) δ 7.15 (AA' of AA'BB', J = 8.4 Hz, 2H), 7.08 (s, 4H), 6.83 (BB' of AA'BB', J = 8.8 Hz, 2H), 3.77 (s, 3H), 3.33 (td, J = 10.0, 8.1 Hz, 1H), 2.91 (t, J = 9.4 Hz, 1H), 2.48 (dt, J = 10.2, 7.9 Hz, 1H), 2.31 (m, 1H), 2.30 (s, 3H), 1.66 (q, J = 10.2 Hz, 1H), 1.17 (d, J = 6.6 Hz, 3H). ¹³C NMR: (125 MHz, CDCl₃) δ 158.0, 141.6, 135.9, 135.4, 128.9, 127.7, 126.5, 113.7, 55.6, 55.2, 43.8, 35.4, 34.1, 21.0, 20.5. HRMS (EI) calculated for $[C_{19}H_{22}O - H]^+$ requires *m/z* 265.1587, found *m/z* 265.1582.

(Table 3, entry 2). Experiment 1: Set up according to General Procedure B with 3-methyl styrene (158 mg, 1.34 mmol), Ru(bpm)₃(BArF)₂ (4 mg, 0.0017 mmol), 1.67 mL of dry CH_2Cl_2 with a 2 h addition time of anethole (5 mL of a 0.135 M stock solution in CH_2Cl_2)

and a total irradiation time of 2.5 h (>10:1 crossed/homodimer). Purification of the crude mixture by flash-column chromatography (gradient, 6:1 to 2:1 hexanes/CH₂Cl₂) afforded 157 mg (0.59 mmol, 88% yield) of the cycloadduct as a colorless oil. Experiment 2: 100 mg (0.67 mmol) of anethole, 158 mg (1.34 mmol) of 3-methyl styrene, 4 mg (0.0017 mmol) of Ru(bpm)₃(BArF)₂, and 6.7 mmol of CH₂Cl₂. Isolated 150 mg (0.56 mmol, 84% yield). IR(neat) 2951, 1653, 1513, 1291 cm⁻¹. ¹H NMR: (500 MHz, CDCl₃) δ 7.15 (m, 3H), 6.98 (m, 3H), 6.83 (BB' of AA'BB', J = 8.7 Hz, 2H), 3.76 (s, 3H), 3.34 (q, J = 9.4 Hz, 1H), 2.94 (t, J = 9.4 Hz, 1H), 2.48 (dt, J = 10.1, 7.8 Hz, 1H), 2.31 (m, 1H), 2.30 (s, 3H), 1.68 (q, J = 10.0 Hz, 1H), 1.17 (d, J = 6.5 Hz, 3H). ¹³C NMR: (125 MHz, CDCl₃) δ 158.0, 144.6, 137.7, 135.9, 128.1, 127.7, 127.4, 126.7, 123.7, 113.7, 55.4, 55.2, 44.0, 35.5, 34.1, 21.4, 20.5. HRMS (EI) calculated for $[C_{19}H_{22}O - \text{propene}]^+$ requires m/z 224.1196, found m/z 224.1189.

(Table 3, entry 3). Experiment 1: Set up according to General Procedure A with anethole (100.3 mg, 0.68 mmol), 2-methyl styrene (158 mg, 1.34 mmol), Ru(bpm)₃(BArF)₂ (4 mg, 0.0017 mmol), and 6.7 mL anhydrous CH₂Cl₂ (1 h irradiation time, >10:1 crossed/homodimer). Purification by flash-column chromatography (gradient, 6:1 to 2:1 hexanes/CH₂Cl₂) afforded

140 mg (0.53 mmol, 79% yield) of the cycloadduct as a colorless oil. Experiment 2: 105.9 mg (0.71 mmol) of anethole, 159 mg (1.34 mmol) of 2-methyl styrene, 4 mg (0.0017 mmol) of Ru(bpm)₃(BArF)₂, and 6.7 mmol of CH₂Cl₂. Isolated 155 mg (0.58 mmol, 82% yield). IR(neat) 2950, 1611, 1513, 1249, 1038 cm⁻¹. ¹H NMR: (500 MHz, CDCl₃) δ 7.30 (d, J = 7.9 Hz, 1H), 7.18 (AA' of AA'BB', J = 8.7 Hz, 2H), 7.15 (m, 1H), 7.08 (m, 2H), 6.83 (BB' of AA'BB', J = 8.7 Hz, 2H), 3.77 (s, 3H), 3.52 (td, J = 10.1, 8.2 Hz, 1H), 3.12 (t, J = 9.5 Hz, 1H), 2.59 (dt, J = 10.1, 7.9 Hz, 1H), 2.33 (m, 1H), 2.18 (s, 3H), 1.54 (q, J = 10.1 Hz, 1H), 1.19 (d, J = 6.4 Hz, 3H). ¹³C NMR: (125 MHz, CDCl₃) δ 158.0, 142.3, 136.0, 135.9, 129.9, 127.7, 125.9, 125.8, 125.7, 113.7, 77.3, 77.0, 76.7, 55.2, 53.3, 41.7, 35.7, 34.7, 20.6, 19.8. HRMS (EI) calculated for [C₁₉H₂₂O]⁺ requires *m/z* 266.1666, found *m/z* 266.1652.

(Table 3, entry 4, 8b). Experiment 1: Set up according to General Procedure B with styrene (140 mg, 1.34 mmol), Ru(bpm)₃(BArF)₂ (4 mg, 0.0017 mmol), 1.67 mL of dry CH₂Cl₂ with a 1 h addition time of anethole (5 mL of a 0.135 M stock solution in CH₂Cl₂) and a total irradiation time of 1.5 h (>10:1 crossed/homodimer). Purification of the crude mixture by flash-column chromatography (gradient, 6:1 to 2:1 hexanes/CH₂Cl₂) afforded 130.8 mg (0.52 mmol, 78% yield) of the cycloadduct as a colorless oil. Experiment 2: 100 mg (0.67 mmol) of anethole, 140 mg (1.34 mmol) of styrene, 4 mg (0.0017 mmol) of Ru(bpm)₃(BArF)₂, and 6.7 mmol of CH₂Cl₂. Isolated 133 mg (0.53 mmol, 79% yield). IR(neat) 2951, 1611, 1513, 1249, 1038 cm⁻¹. ¹H NMR: (500 MHz, CDCl₃) δ 7.26 (m, 2H), 7.18 (m, 5H), 6.85 (BB' of AA'BB', J = 8.2 Hz, 2H), 3.79 (s, 3H), 3.39 (td, J = 10.1, 8.4 Hz, 1H), 2.94 (t, J = 9.2 Hz, 1H), 2.51 (dt, J = 10.2, 7.9 Hz, 1H), 2.33 (m, 1H), 1.75 (q, J = 9.8 Hz, 1H), 1.18 (d, J = 6.8 Hz, 3H). ¹³C NMR: (125 MHz, CDCl₃) δ 158.0, 144.6, 135.8, 128.2, 127.8, 126.6, 125.9, 113.7, 55.5, 55.2, 44.1, 35.5, 33.9, 20.4. HRMS (EI) calculated for [C-18H₂₀O]⁺ requires *m/z* 252.1509, found *m/z* 252.1517.

(Table 3, entry 5). Experiment 1: Set up according to General Procedure B using 4fluorostyrene (164 mg, 1.34 mmol) and $Ru(bpm)_3(BArF)_2$ (4 mg, 0.0017 mmol) and 1.67 mL of dry CH_2Cl_2 with a 2 h addition time of anethole (5 mL of a 0.135 M stock solution in

CH₂Cl₂) and a total irradiation time of 2 h (>10:1 crossed/homodimer). Purification by flash-column chromatography (gradient, 6:1 to 2:1 hexanes/CH₂Cl₂) afforded 141.5 mg (0.52 mmol, 78% yield) of the cycloadduct as a white solid (mp = 56–58 °C). Experiment 2: 100 mg (0.67 mmol) of anethole, 164 mg (1.34 mmol) of 4-fluorostyrene, 4 mg (0.0017 mmol) of Ru(bpm)₃(BArF)₂, and 6.7 mmol of CH₂Cl₂. Isolated 141 mg (0.52 mmol, 78% yield). IR (neat) 2952, 1610, 1511, 1250 cm⁻¹. ¹H NMR: (500 MHz, CDCl₃) δ 7.13 (m, 4H), 6.93 (t, J =

8.6 Hz, 3H), 6.84 (BB' of AA'BB', J = 8.7 Hz, 2H), 3.77 (s, 3H), 3.33 (td, J = 10.1, 8.2 Hz, 1H), 2.87 (t, J = 9.4 Hz, 1H), 2.49 (dt, J = 10.2, 8.0 Hz, 1H), 2.31 (m, 1H), 1.64 (q, J = 10.0 Hz, 1H), 1.17 (d, J = 6.4 Hz, 3H). ¹³C NMR: (125 MHz, CDCl₃) δ 161.3 (¹J_{CF} = 243.2 Hz), 158.1, 140.3 (¹J_{CF} = 2.8 Hz), 135.5, 128 (³J_{CF} = 7.7 Hz), 127.7, 114.9 (²J_{CF} = 22.2 Hz), 113.8, 55.9, 55.2, 43.5, 35.4, 34.0, 20.4. HRMS (EI) calculated for [C₁₈H₁₉FO]⁺ requires *m/z* 270.1415, found *m/z* 270.1412.

Meo, OAc

(**Table 3, entry 6**). Experiment 1: Set up according to General Procedure B using 4acetoxystyrene (217 mg, 1.34 mmol), Ru(bpm)₃(BArF)₂ (4 mg, 0.0017 mmol), 1.67 mL of dry CH₂Cl₂ with a 2 h addition time of anethole (5 mL of a 0.135 M stock solution in

CH₂Cl₂) and a total irradiation time of 3 h (>10:1 crossed/homodimer). Purification of the crude mixture by flashcolumn chromatography (gradient, 10:1 to 5:1 hexanes/Et₂O) afforded 162 mg (0.52 mmol, 78% yield) of the title cycloadduct as a colorless oil. Experiment 2: 100 mg (0.67 mmol) of anethole, 217 mg (1.34 mmol) of 4acetoxystyrene, 4 mg (0.0017 mmol) of Ru(bpm)₃(BArF)₂, and 6.7 mmol of CH₂Cl₂. Isolated 161 mg (0.52 mmol, 78% yield) of the cycloadduct as a colorless oil. IR(neat) 2952, 1757, 1512, 1197 cm⁻¹. ¹H NMR: (500 MHz, CDCl₃) δ 7.17 (AA' of AA'BB', J = 8.6 Hz, 2H), 7.15 (AA' of AA'BB', J = 8.4 Hz, 2H), 6.96 (BB' of AA'BB', J = 8.5 Hz, 2H), 6.84 (BB' of AA'BB', J = 8.6 Hz, 2H), 3.76 (s, 3H), 3.37 (td, J = 9.9, 8.2 Hz, 1H), 2.90 (t, J = 9.4 Hz, 1H), 2.49 (dt, J = 10.1, 7.8 Hz, 1H), 2.31 (m, 1H), 2.25 (s, 3H), 1.66 (q, J = 10.2 Hz, 1H), 1.17 (d, J = 6.9 Hz, 3H). ¹³C NMR: (125 MHz, CDCl₃) δ 169.6, 158.1, 148.8, 142.2, 135.5, 127.8, 127.5, 121.2, 113.8, 77.3, 77.1, 76.8, 55.6, 55.2, 43.5, 35.5, 33.9, 21.1, 20.4. HRMS (EI) calculated for [C₂₀H₂₂O₃]⁺ required *m/z* 310.1564, found *m/z* 310.1553.

(**Table 3, entry 7**). Experiment 1: Set up according to General Procedure B using 4-vinyl benzylalcohol¹¹ (180 mg, 1.34 mmol), Ru(bpm)₃(BArF)₂ (4 mg, 0.0017 mmol), and 1.67 mL of dry CH₂Cl₂ with a 2 h addition time of anethole (5 mL of a 0.135 M stock solution

in CH_2Cl_2) and a total irradiation time of 2.5 h (>10:1 crossed/homodimer). Upon filtering the reaction mixture through SiO₂ with EtOAc, the crude residue was then dissolved in 4 mL of CH_2Cl_2 and cooled 0 °C. Excess unreacted alkene was consumed by addition of 99% *m*-CPBA (284 mg, 1.65 mmol) and the reaction warmed to room temperature. After 3 h, the mixture was poured onto saturated NaHSO₃ and extracted with CH_2Cl_2 (3 × 20

mL). The combined organic extracts were washed with NaHCO₃, brine, and dried over NaSO₄. The solvent was removed *in vacuo* and the crude oil was purified by flash-column chromatography (3:1 hexanes/EtOAc) to afford 108 mg (0.38 mmol, 57% yield) of the title compound as a colorless oil. Experiment 2: 100 mg (0.67 mmol) of anethole, 186 mg (1.34 mmol) of 4-vinyl benzylalcohol, 4 mg (0.0017 mmol) of Ru(bpm)₃(BArF)₂, and 6.7 mmol of CH₂Cl₂. Isolated 104 mg (0.37 mmol, 55% yield) of the cycloadduct as a colorless oil. IR(neat) 3355(br), 2951, 1611, 1513, 1249, 1037 cm⁻¹. ¹H NMR: (500 MHz, CDCl₃) δ 7.25 (AA' of AA'BB', J = 7.9 Hz, 2H), 7.17 (BB' of AA'BB', J = 8.0 Hz, 2H), 7.15 (AA' of AA'BB', J = 8.6 Hz, 2H), 6.83 (BB' of AA'BB', J = 8.7 Hz, 2H), 4.61 (s, 2H), 3.77 (s, 3H), 3.41 (td, J = 9.5, 8.0 Hz, 1H), 2.92 (t, J = 9.5 Hz, 1H), 2.50 (dt, J = 10.4, 7.8 Hz, 1H), 2.33 (m, 1H), 1.80 (br s, 1H), 1.68 (q, J = 10.6 Hz, 1H), 1.18 (d, J = 7.2 Hz, 3H). ¹³C NMR: (125 MHz, CDCl₃) δ 158.1, 144.2, 138.5, 135.7, 127.7, 127.1, 126.8, 113.8, 65.2, 55.6, 55.2, 43.9, 35.4, 34.0, 20.5. HRMS (EI) calculated for [C₁₉H₂₂O₂]⁺ requires *m/z* 282.1615, found *m/z* 282.1605.

(**Table 3, entry 8**). Experiment 1: Set up according to General Procedure B using methyl 4-vinylbenzoate¹² (217 mg, 1.34 mmol), Ru(bpm)₃(BArF)₂ (4 mg, 0.0017 mmol), 1.67 mL of dry CH₂Cl₂ with a 4 h addition time of anethole (5 mL of a 0.135 M stock solution

in CH₂Cl₂) and a total irradiation time of 4.5 h (1:1.6 crossed/homodimer). Purification by flash-column chromatography (gradient, 6:1 to 2:1 hexanes/CH₂Cl₂) afforded to afford 64 mg (0.21 mmol, 31% yield) of the title compound as a colorless oil. Experiment 2: 100 mg (0.67 mmol) of anethole, 219 mg (1.34 mmol) of methyl 4-vinylbenzoate, 4 mg (0.0017 mmol) of Ru(bpm)₃(BArF)₂, and 6.7 mmol of CH₂Cl₂. Isolated 65 mg (0.21 mmol, 31% yield). IR(neat) 2951, 1722, 1610, 1513, 1279, 1250 cm⁻¹. ¹H NMR (500 MHz, CDCl₃) δ 7.93 (AA' of AA'BB', 8.6 Hz, 2H), 7.23 (BB' of AA'BB', 8.6 Hz, 2H), 7.15 (AA' of AA'BB', 8.8 Hz, 2H), 6.85 (BB' of AA'BB', 8.8 Hz, 2H), 3.89 (s, 3H), 3.79 (s, 3H), 3.42 (dt, 10, 8.2 Hz, 1H), 2.94 (t, 9.4 Hz, 1 H), 2.53 (dt, 10.1, 7.9 Hz, 1H) 2.37 (m, 1H), 1.71 (q, 10.1 Hz, 1H), 1.18 (d, 6.5 Hz, 3H). ¹³C NMR: (125 MHz, CDCl₃) δ 167.1, 158.2, 150.0, 135.3, 129.6, 127.8, 126.6, 113.8, 55.6, 55.2, 51.9, 44.2, 35.5, 33.6, 20.4. HRMS (EI) calculated for [C₁₉H₂₂O₃ – propene]⁺ requires *m/z* 268.1094, found *m/z* 268.1102.

Electronic Supplementary Material (ESI) for Chemical Science This journal is O The Royal Society of Chemistry 2012

(Table 3, entry 9). Set up according to General Procedure A using anethole (102.1 mg, 0.69 mmol), 1-methylene-2,3-dihydro-1*H*-indene¹³ (174 mg, 1.34 mmol), $Ru(bpm)_3(BArF)_2$ (4

meg 0.0017 mmol), and 6.7 mL of anhydrous CH₂Cl₂ (2 h irradiation time, >10:1 crossed/homodimer). Purification by flash-column chromatography (gradient, 6:1 to 2:1 hexanes/CH₂Cl₂) afforded 167 mg (0.60 mmol, dr = 8.6:1, 87% yield) of the title compound as a colorless oil. Experiment 2: 102 mg (0.69 mmol) of anethole, 178 mg (1.34 mmol) of 1-methylene-2,3-dihydro-1*H*-indene, 4 mg (0.0017 mmol) of Ru(bpm)₃(BArF)₂, and 6.7 mmol of CH₂Cl₂. Isolated 163 mg (0.59 mmol, dr = 8.6:1, 86% yield) of the cycloadduct as a colorless oil. IR(neat) 2951, 1581, 1281, 1251, 1054 cm⁻¹. ¹H NMR: (500 MHz, CDCl₃) δ 7.43 (d, J = 7.5 Hz, 1H), 7.26 (t, J = 7.2 Hz, 1H), 7.16 (t, J = 7.2 Hz, 1H), 7.13 (t, J = 6.9 Hz, 1H), 6.88 (AA', J = 8.4 Hz, 2H), 6.76 (BB', J = 8.4 Hz, 2H), 3.75 (s, 3H), 3.24 (d, J = 10.6 Hz, 1H), 2.68 (m, 2H), 2.36 (dd, J = 15.4, 7.2 Hz, 1H), 2.16 (dd, J = 10.3, 7.8 Hz, 1H), 2.00 (ddd, J = 13.1, 8.3, 5.7 Hz, 1H), 1.86 (m, 2H), 1.22 (d, J = 6.5 Hz, 3H). ¹³C NMR: (125 MHz, CDCl₃) δ 158.0, 149.3, 144.0, 132.7, 128.1, 126.5, 126.5, 124.2, 122.4, 113.5, 57.3, 55.2, 53.2, 40.5, 33.7, 30.3, 29.1, 20.4. HRMS (EI) calculated for [C₂₀H₂₂O]⁺ requires *m/z* 278.1666, found *m/z* 278.1662.

(Table 3, entry 11). Experiment 1: Set up according to General Procedure A with anethole (103 mg, 0.70 mmol), *n*-butyl vinyl ether (134 mg, 1.34 mmol), Ru(bpm)₃(BArF)₂ (4 mg, 0.0017 mmol), and 6.7 mL of anhydrous CH₂Cl₂ (3.5 h reaction time, >10:1 crossed/homodimer). Purification by flash-column chromatography (gradient, 15:1 to 10:1 hexanes/EtOAc) afforded 116 mg (0.47 mmol, 67% yield) of the cycloadduct as a colorless oil. Experiment 2: 105 mg (0.71 mmol) of anethole, 135 mg (1.34 mmol) of n-butyl vinyl ether, 4 mg (0.0017 mmol) of Ru(bpm)₃(BArF)₂, and 6.7 mmol of CH₂Cl₂. Isolated 116 mg (0.47 mmol, 66% yield) of the cycloadduct as a colorless oil. IR(neat) 2956, 2933, 2867, 1513, 1248 cm⁻¹.¹H NMR: (500 MHz, CDCl₃) δ 7.16 (AA' of AA'BB', J = 8.7 Hz, 2H), 6.85 (BB' of AA'BB', J = 8.7 Hz, 2H), 3.79 (s, 3H), 3.78 (m, 1H), 3.30 (m, 2H), 2.75 (dd, J = 8.9, 7.9 Hz, 1H), 2.41 (dt, J = 10.4, 7.2 Hz, 1H), 1.81 (m, 1H), 1.47 (m, 3H), 1.32 (m, 2H), 1.15 (d, J = 6.6 Hz, 3H), 0.87 (t, J = 7.3 Hz, 3H). ¹³C NMR: (125 MHz, CDCl₃) δ 158.1, 135.1, 127.8, 113.7, 76.4, 68.2, 56.4, 55.2, 35.0, 31.9, 29.4, 20.4, 19.3, 13.9. HRMS (ESI) calculated for [C₁₆H₂₄O₂ + Na]⁺ requires *m*/z 271.1669, found *m*/z 271.1663.

Electronic Supplementary Material (ESI) for Chemical Science This journal is O The Royal Society of Chemistry 2012

(**Table 3, entry 12**). Experiment 1: Set up according to General Procedure B using (2methyl-allyl)-triphenylsilane¹⁴ (421 mg, 1.34 mmol), Ru(bpm)₃(BArF)₂ (4 mg, 0.0017 mmol), 1.67 mL of dry CH₂Cl₂ with a 2 h addition time of anethole (5 mL of a 0.135 M stock

solution in CH₂Cl₂) and a total irradiation time of 2.5 h (8.2:1 crossed/homodimer). Purification by flash-column chromatography (gradient, 6:1 to 2:1 hexanes/CH₂Cl₂) afforded to afford 145 mg (0.31 mmol, dr = 3:1, 47% yield) of the title compound as a colorless oil. Experiment 2: 100 mg (0.67 mmol) of anethole, 421 mg (1.34 mmol) of (2-methyl-allyl)-triphenylsilane, 4 mg (0.0017 mmol) of Ru(bpm)₃(BArF)₂, and 6.7 mmol of CH₂Cl₂. Isolated 151 mg (0.33 mmol, dr = 3:1, 49% yield). Major diastereomer: IR(neat) 2954, 1511, 1428, 1251, 1108 cm⁻¹. ¹H NMR: (500 MHz, CDCl₃) d 7.57 (m, 6H), 7.33 (m, 9H), 7.06 (AA' of AA'BB', J = 8.7 Hz, 2H), 6.84 (BB' of AA'BB', J = 8.7 Hz, 2H), 3.78 (s, 3H), 2.73 (d, J = 10.0 Hz, 1H), 2.40 (m, 1H), 2.00 (AB q, J = 14.9 Hz, 1H), 1.80 (AB q, J = 14.9 Hz, 1H), 1.37 (dd, J = 10.8, 8.1 Hz, 1H), 1.21 (dd, J = 10.8, 9.6 Hz, 1H), 0.93 (d, J = 6.8 Hz, 3H), 0.72 (s, 3H). ¹³C NMR: (125 MHz, CDCl₃) d 158.0, 135.9, 135.8, 132.7, 129.2, 128.3, 127.7, 113.4, 61.0, 55.2, 41.4, 39.6, 29.9, 28.8, 24.1, 20.3. HRMS (EI) calculated for [C₃yH₄GSi]⁺ requires m/z 462.2374, found m/z 462.2381.

(**Table 4, entry 1**). Experiment 1: Set up according to General Procedure A with (*E*)-1-(*tert*-butyldimethylsilyloxy)-3-(4-methoxyphenyl)-2-propene¹⁵ (186 mg, 0.67 mmol), 4methyl styrene (158 mg, 1.34 mmol), Ru(bpm)₃(BArF)₂ (4 mg, 0.0017 mmol), and 6.7 mL of

anhydrous CH₂Cl₂ (2.5 h irradiation time, >10:1 crossed/homodimer). Purification by flash-column chromatography (gradient, 6:1 to 1:1 hexanes/CH₂Cl₂) afforded 171 mg (0.43 mmol, 64% yield) of the cycloadduct as a colorless oil. Experiment 2: 187 mg (0.67 mmol) of (*E*)-1-(*tert*-butyldimethylsilyloxy)-3-(4-methoxyphenyl)-2-propene, 158 mg (1.34 mmol) of 4-methyl styrene, 4 mg (0.0017 mmol) of Ru(bpm)₃(BArF)₂, and 6.7 mmol of CH₂Cl₂. Isolated 162 mg (0.41 mmol, 61% yield) of the cycloadduct as a colorless oil. IR(neat) 2954, 2929, 1513, 1249 cm⁻¹. ¹H NMR: (500 MHz, CDCl₃) δ 7.17 (AA' of AA'BB', J = 8.6 Hz, 2H), 7.13 (AA' of AA'BB', J = 8.1 Hz, 2H), 7.08 (BB' of AA'BB', J = 8.1 Hz, 2H), 6.81 (BB' of AA'BB', J = 8.6 Hz, 2H), 3.77 (s, 3H), 3.69 (m, 2H), 3.34 (td, J = 9.6, 7.9 Hz, 1H), 3.30 (q, J = 9.1 Hz, 1H), 2.48 (m, 1H), 2.34 (dt, J = 10.6, 7.1 Hz, 1H), 2.31 (s, 3H), 1.94 (q, J = 9.7 Hz, 1H), 0.90 (s, 9H), 0.05 (s, 3H), 0.04 (s, 3H). ¹³C NMR: (125 MHz, CDCl₃) δ 157.9, 141.7, 136.0, 135.5, 128.9, 127.9, 126.7, 113.6, 65.3, 55.2, 49.4, 43.9, 41.5, 28.5, 25.9, 21.0, 18.3, -5.3. HRMS (EI) calculated for [C₂₃H₃₆O₂Si – C₄H₉]⁺ required *m/z* 339.1775, found *m/z* 339.1768.

(Table 4, entry 2). Experiment 1: Set up according to General Procedure A with (*E*)-3-(4methoxyphenyl) allyl acetate¹⁶ (138 mg, 0.67 mmol), 4-methyl styrene (158 mg, 1.34 methoxyphenyl), Ru(bpm)₃(BArF)₂ (4 mg, 0.0017 mmol), and 6.7 mL of anhydrous CH_2Cl_2 (4 h irradiation time, >10:1 crossed/homodimer). Purification by flash-column chromatography (5:1 hexanes/EtOAc) afforded 197 mg (0.61 mmol, 91% yield) of the cycloadduct as a colorless oil. Experiment 2: 136 mg (0.66 mmol) of (*E*)-3-(4methoxyphenyl) allyl acetate, 158 mg (1.34 mmol) of 4-methyl styrene, 4 mg (0.0017 mmol) of Ru(bpm)₃(BArF)₂, and 6.7 mmol of CH_2Cl_2 . Isolated 195 mg (0.60 mmol, 91% yield) of the cycloadduct as a colorless oil. IR(neat) 2939, 1740, 1513, 1247, 1034 cm⁻¹. ¹H NMR: (500 MHz, CDCl₃) δ 7.16 (AA', J = 8.4 Hz, 2H), 7.09 (s, 4H), 6.83 (BB', J = 8.6 Hz, 2H), 4.21 (dd, J = 11.4, 5.9 Hz, 1H), 4.17 (dd, J = 11.2, 5.9 Hz, 1H), 3.78 (s, 3H), 3.41 (td, J = 10.0, 8.3 Hz, 1H), 3.21 (t, J = 9.7 Hz, 1H), 2.63 (m, 1H), 2.44 (dt, J = 10.3, 7.8 Hz, 1H), 2.31 (s, 3H), 2.01 (s, 3H), 1.89 (q, J = 10.2 Hz, 1H). ¹³C NMR: (125 MHz, CDCl₃) δ 171.2, 158.2, 140.9, 135.7, 134.9, 129.0, 127.8, 126.5, 113.8, 67.0, 55.2, 50.6, 43.9, 38.4, 29.0, 21.0, 20.9. HRMS (EI) calculated for [C₂₁H₂₄O₃]⁺ requires *m/z* 324.1720, found *m/z* 324.1712.

(Table 4, entry 3). Experiment 1: Set up according to General Procedure A using (E)-1-(3-chloroprop-1-en-1-yl)-4-methoxybenzene¹⁷ (125 mg, 0.68 mmol), 4-methyl styrene (154

mg, 1.34 mmol), Ru(bpm)₃(BArF)₂ (4 mg, 0.0017 mmol), and 6.7 mL of CH₂Cl₂ (3 h irradiation time, >10:1 crossed/homodimer). Purification by flash-column chromatography (gradient, 6:1 to 1:1 hexanes/CH₂Cl₂) afforded 74 mg (0.25 mmol, 37% yield) of the cycloadduct as a colorless oil. Experiment 2: (*E*)-1-(3-chloroprop-1-en-1-yl)-4-methoxybenzene (122 mg, 0.67 mmol), 4-methyl styrene (154 mg, 1.34 mmol), Ru(bpm)₃(BArF)₂ (4 mg, 0.0017 mmol), and 6.7 mL of CH₂Cl₂. Isolated 72 mg (0.24 mmol, 36% yield). IR(neat) 2941, 1612, 1513, 1249, 1037 cm⁻¹. ¹H NMR: (500 MHz, CDCl₃) δ 7.16 (AA', J = 8.4 Hz, 2H), 7.09 (s, 4H), 6.84 (BB', J = 8.7 Hz, 2H), 3.78 (s, 3H), 3.71 (dd, J = 11.4, 5.0 Hz, 1H), 3.62 (dd, J = 11.1, 7.1 Hz, 1H), 3.39 (td, J = 9.9, 8.1 Hz, 1H), 3.22 (t, J = 9.6 Hz, 1H), 2.69 (m, 1H), 2.51 (dt, J = 10.7, 8.1 Hz, 1H), 2.31 (s, 3H), 1.96 (q, J = 10.3 Hz, 1H). ¹³C NMR: (125 MHz, CDCl₃) δ 158.3, 140.7, 135.8, 134.5, 129.0, 127.9, 126.5, 113.8, 77.3, 77.0, 76.8, 55.2, 51.5, 48.3, 43.3, 41.3, 29.9, 21.0. HRMS (EI) calculated for [C₁₉H₂₁ClO]⁺ requires *m/z* 300.1276, found *m/z* 300.1266.

(Table 4, entry 4). Experiment 1: Set up according to General Procedure A with (E)-3-(4-methoxyphenyl)prop-2-en-1-ol (109 mg, 0.66 mmol), 4-methyl styrene (158 mg, 1.34 mmol), Ru(bpm)₃(BArF)₂ (4 mg, 0.0017 mmol), and 6.7 mL of anhydrous CH₂Cl₂ (3 h

irradiation time, >10:1 crossed/homodimer). Purification by flash-column chromatography (2:1 hexanes/EtOAc) afforded 137 mg (0.74 mmol, 74% yield) of the cycloadduct as a colorless oil. Experiment 2: 115.5 mg (0.70 mmol) of (*E*)-3-(4-methoxyphenyl)prop-2-en-1-ol, 158 mg (1.34 mmol) of 4-methyl styrene, 4 mg (0.0017 mmol) of Ru(bpm)₃(BArF)₂, and 6.7 mmol of CH₂Cl₂. Isolated 143 mg (0.51 mmol, 73% yield) of the cycloadduct as a colorless oil. IR(neat) 3356(br), 2933, 1611, 1513, 1248, 1036 cm⁻¹. ¹H NMR: (500 MHz, CDCl₃) δ 7.17 (AA', J = 8.3 Hz, 2H), 7.09 (m, 4H), 6.82 (BB', J = 8.3 Hz, 2H), 3.76 (s, 3H), 3.74 (dd, J = 11.2, 5.5 Hz, 1H), 3.69 (dd, J = 11.0, 6.1 Hz, 1H), 3.38 (td, J = 9.9, 8.2 Hz, 1H), 3.20 (t, J = 9.6 Hz, 1H), 2.53 (m, 1H), 2.42 (dt, J = 10.4, 8.1 Hz, 1H), 2.30 (s, 3H), 1.87 (q, J = 10.2 Hz, 1H), 1.58 (br s, 1H). ¹³C NMR: (125 MHz, CDCl₃) δ 158.1, 141.2, 135.6, 135.5, 129.0, 127.9, 126.5, 113.8, 66.0, 55.2, 50.1, 43.9, 41.6, 28.6, 21.0. HRMS (EI) calculated for [C₁₉H₂₂O₂ – allyl alcohol]⁺ requires *m/z* 224.1196, found *m/z* 224.1191.

TSHN "1,1

(**Table 4, entry 5**). Experiment 1: Set up according to General Procedure A with *N*-(*E*)-3- (4-methoxyphenyl)-2-propen-1-(4-methyl-benzenesulfonamide) (212 mg, 0.67 mmol), 4- methyl styrene (158 mg, 1.34 mmol), Ru(bpm)₃(BArF)₂ (4 mg, 0.0017 mmol), and 6.7 mL of

anhydrous CH₂Cl₂ (24 h irradiation time, >10:1 crossed/homodimer). Purification by flash-column chromatography (5:1 hexanes/EtOAc) afforded 215 mg (0.49 mmol, 73% yield) of the cycloadduct as a colorless oil. Experiment 2: 212 mg (0.67 mmol) of *N*-(*E*)-3-(4-methoxyphenyl)-2-propen-1-(4-methyl-benzenesulfonamide), 158 mg (1.34 mmol) of 4-methyl styrene, 4 mg (0.0017 mmol) of Ru(bpm)₃(BArF)₂, and 6.7 mmol of CH₂Cl₂. Isolated 217 mg (0.50 mmol, 75% yield) of the cycloadduct as a colorless oil. IR(neat) 3279, 2923, 1513, 1305, 1160 cm⁻¹. ¹H NMR: (500 MHz, CDCl₃) δ 7.70 (AA' of AA'BB', J = 8.3 Hz, 2H), 7.26 (BB' of AA'BB', J = 8.3 Hz, 2H), 7.07 (AA' of AA'BB', J = 8.7 Hz, 2H), 7.04 (AA' of AA'BB', J = 8.0 Hz, 2H), 6.99 (BB' of AA'BB', J = 8.0 Hz, 2H), 6.80 (BB' of AA'BB', J = 8.7 Hz, 2H), 4.73 (t, J = 6.1 Hz, 1H), 3.76 (s, 3H), 3.30 (m, 1H), 3.07 (m, 2H), 2.98 (t, J = 9.2 Hz, 1H), 2.40 (s, 3H), 2.37 (m, 2H), 2.28 (s, 3H), 1.71 (m, 1H). ¹³C NMR: (125 MHz, CDCl₃) δ 158.3, 143.4, 140.6,

136.9, 135.7, 134.4, 129.7, 129.0, 127.9, 127.1, 126.4, 113.9, 77.3, 77.1, 76.8, 55.2, 51.7, 47.5, 44.0, 39.0, 29.6, 21.5, 21.0. HRMS (ESI) calculated for [C₂₆H₂₉NO₃S]⁺ required *m/z* 324.1720, found *m/z* 324.1724.

(Table 4, entry 6). Experiment 1: Set up according to General Procedure A with 2-[2-(4-methoxyphenyl)ethenyl]-1,3-dioxolane¹⁸ (140 mg, 0.68 mmol), 4-methyl styrene (158 mg, 1.34 mmol), Ru(bpm)₃(BArF)₂ (4 mg, 0.0017 mmol), and 6.7 mL of anhydrous CH₂Cl₂ (24 h irradiation time, >10:1 crossed/homodimer). Purification by flash-column chromatography (8:1 hexanes/EtOAc) afforded 169 mg (0.52 mmol, 76% yield) of the cycloadduct as a colorless oil. Experiment 2: 142 mg (0.69 mmol) of 2-[2-(4-methoxyphenyl)ethenyl]-1,3-dioxolane, 158 mg (1.34 mmol) of 4-methyl styrene, 4 mg (0.0017 mmol) of Ru(bpm)₃(BArF)₂, and 6.7 mmol of CH₂Cl₂. Isolated 181 mg (0.56 mmol, 81% yield) of the cycloadduct as a colorless oil. IR(neat) 2945, 1513, 1248, 1035 cm⁻¹. ¹H NMR: (500 MHz, CDCl₃) δ 7.19 (J = 8.8 Hz, 2H), 7.15 (J = 8.0 Hz, 2H), 7.09 (J = 8.0 Hz, 2H), 6.82 (J = 8.8 Hz, 2H), 4.98 (d, J = 4.0 Hz, 1H), 3.97 (m, 2H), 3.87 (m, 2H), 3.76 (s, 3H), 3.48 (t, J = 9.6 Hz, 1H), 3.36 (q, J = 9.6 Hz, 1H), 2.67 (qd, J = 9.6, 4.0 Hz, 1H), 2.37 (dt, J = 10.6, 8.5 Hz, 1H), 2.31 (s, 3H), 2.08 (q, 1H). ¹³C NMR: (125 MHz, CDCl₃) δ 158.0, 141.3, 135.7, 135.6, 129.0, 127.8, 126.7, 113.7, 105.2, 65.2, 65.0, 55.2, 47.9, 44.1, 41.2, 26.4, 21.0. HRMS (EI) calculated for [C₂₁H₂₄O₃]⁺ required *m/z* 324.1720, found *m/z* 324.1724.

(**Table 4, entry 7**). Experiment 1: Set up according to General Procedure A using (*E*)-4methoxy-3-methyl-propenyl benzene (106.4 mg, 0.66 mmol), 4-methyl styrene (158 mg, 1.34 mmol), Ru(bpm)₃(BArF)₂ (4 mg, 0.0017 mmol), and 6.7 mL of anhydrous CH₂Cl₂ (1.5

 $_{Me}$ $^{1.34}$ minor), Ru(opin)₃(BAP)₂ (4 mg, 0.0017 minor), and 0.7 mE of antiyutous CH₂Cl₂ (1.3 h irradiation time, 8:1 crossed/homodimer). Purification by flash-column chromatography (6:1 hexanes/CH₂Cl₂) afforded 110 mg (0.39 mmol, 59% yield) of the cycloadduct as a colorless oil. Experiment 2: 112.5 mg (0.69 mmol) of (*E*)-4-methoxy-3-methyl-propenyl benzene, 158 mg (1.34 mmol) of 4-methyl styrene, 4 mg (0.0017 mmol) of Ru(bpm)₃(BArF)₂, and 6.7 mL of CH₂Cl₂. Isolated 116 mg (0.41 mmol 59% yield). IR(neat) 2949, 1505, 1254, 1161 cm⁻¹. ¹H NMR: (500 MHz, CDCl₃) δ 7.11 (m, 4H), 7.06 (m, 2H), 6.78 (d, J = 8.8 Hz, 1H), 3.83 (s, 3H), 3.38 (td, J = 9.9, 8.2 Hz, 1H), 2.91 (t, J = 9.5 Hz, 1H), 2.51 (dt, J = 9.9, 7.8 Hz, 1H), 2.34 (m, 1H), 2.33 (s, 3H), 2.23 (s, 3H), 1.68 (q, J = 10.0 Hz, 1H), 1.20 (d, J = 6.5 Hz, 3H). ¹³C NMR: (125 MHz, CDCl₃) δ 156.2, 141.8, 135.5, 135.3,

129.2, 128.9, 126.5, 126.3, 125.0, 109.8, 55.6, 55.3, 43.7, 35.5, 34.1, 21.0, 20.5, 16.3. HRMS (EI) calculated for $[C_{20}H_{24}O]^+$ requires *m/z* 280.1822, found *m/z* 280.1828.

(Table 4, entry 8). Experiment 1: Set up according to General Procedure A with methoxyisoeugenol (122 mg, 0.68 mmol), 4-methyl styrene (158 mg, 1.34 mmol), Ru(bpm)₃(BArF)₂ (4 mg, 0.0017 mmol), and 6.7 mL of anhydrous CH₂Cl₂ (24 h irradiation time, >10:1 crossed/homodimer). Purification by flash-column chromatography (8:1 hexanes/EtOAc) afforded 57 mg (0.19 mmol, 28% yield) of the cycloadduct as a colorless oil. Experiment 2: 123.5 mg (0.69 mmol) of methylisoeugenol, 158 mg (1.34 mmol) of 4-methyl styrene, 4 mg (0.0017 mmol) of Ru(bpm)₃(BArF)₂, and 6.7 mmol of CH₂Cl₂. Isolated 56 mg (0.19 mmol, 28% yield) of the cycloadduct as a colorless oil. IR(neat) 2950, 1516, 1464, 1243 cm⁻¹. ¹H NMR: (500 MHz, CDCl₃) δ 7.09 (m, 4H), 6.80 (m, 2H), 6.75 (m, 1H), 3.85 (s, 3H), 3.8

3H), 3.35 (q, J = 9.4 Hz, 1, H), 2.90 (t, J = 9.4 Hz, 1H), 2.49 (dt, J = 10.4, 7.9 Hz, 1H), 2.33 (m, 1H), 2.31 (s, 3H), 1.69 (q, J = 10.1 Hz, 1H), 1.19 (d, J = 6.5 Hz, 3H). ¹³C NMR: (125 MHz, CDCl₃) δ 148.8, 147.4, 141.6, 136.5, 135.4, 128.9, 126.5, 118.6, 111.1, 110.2, 77.3, 77.0, 76.8, 56.1, 55.9, 55.8, 43.8, 35.4, 33.8, 21.0, 20.5. HRMS (EI) calculated for [C₂₀H₂₄O₂]⁺ required *m/z* 296.1771, found *m/z* 296.1757.

(**Table 4, entry 10**). Set up according to General Procedure A with 165.6 mg (0.667 mmol) (*E*)-*tert*-butyldimethyl(4-(prop-1-enyl)phenoxy)silane⁸, 161.4 mg (1.36 mmol) 4-methyl styrene, and 4.1 mg (0.0018 mmol) Ru(bpm)₃(BArF)₂, and 6.7 mL of anhydrous CH₂Cl₂

(2.5 h irradiation time, >10:1 crossed/homodimer). Purification by flash-column chromatography (15:1 to 10:1 Hexanes:CH₂Cl₂) led to 214.8 mg (0.586 mmol, 88% yield) of the desired cyclobutane as a colorless oil. Experiment 2: 169 mg (0.68 mmol) of (*E*)-*tert*-butyldimethyl(4-(prop-1-enyl)phenoxy)silane, 158 mg (1.34 mmol) of 4-methyl styrene, 4 mg (0.0017 mmol) of Ru(bpm)₃(BArF)₂, and 6.7 mL of CH₂Cl₂. Isolated 217 mg (0.59 mmol, 87% yield). IR(neat) 2956, 2929, 2859, 1510, 1262 cm⁻¹. ¹H NMR: (500 MHz, CDCl₃) δ 7.08 (m, 6H), 6.75 (BB' of AA'BB', J = 8.5 Hz, 2H), 3.32 (q, J = 9.0 Hz, 1H), 2.91 (t, J = 9.0 Hz, 1H), 2.48 (dt, J = 9.3, 7.5 Hz, 1H), 2.31 (m, 1H), 2.30 (s, 3H), 1.65 (q, J = 10.2 Hz, 1H), 1.17 (d, J = 6.5 Hz, 3H), 0.97 (s, 9H), 0.18 (s, 6H). ¹³C NMR: (125 MHz, CDCl₃) δ 153.9, 141.7, 136.5, 135.3, 128.9, 127.6, 126.6, 119.7, 55.5, 43.8, 35.3, 34.2, 25.7, 21.0, 20.5, 18.1, -4.4. HRMS (EI) calculated for [C₂₄H₃₄OSi]⁺ requires *m/z* 366.2374, found *m/z* 366.2370.

Electronic Supplementary Material (ESI) for Chemical Science This journal is © The Royal Society of Chemistry 2012

(Table 4, entry 11). Experiment 1: Set up according to General Procedure A using (*E*)-1benzyloxy-4-(1-propenyl)benzene (149 mg, 0.66 mmol), 4-methyl styrene (158 mg, 1.34 mmol), Ru(bpm)₃(BArF)₂ (4 mg, 0.0017 mmol), and 6.7 mL of anhydrous CH₂Cl₂ (1.5 h irradiation time, >10:1 crossed/homodimer). Purification by flash-column chromatography (3:1 hexanes/CH₂Cl₂) afforded 177 mg (0.52 mmol, 79% yield) of the cycloadduct as a white solid (39–40 °C). Experiment 2: 152.4 mg (0.68 mmol) of (*E*)-1-benzyloxy-4-(1-propenyl)benzene, 154 mg (1.34 mmol) of 4-methyl styrene, 4 mg (0.0017 mmol) of Ru(bpm)₃(BArF)₂, and 6.7 mL of CH₂Cl₂. Isolated 182 mg (0.53 mmol 78% yield). IR(neat) 2949, 1627 cm⁻¹. ¹H NMR: (500 MHz, CDCl₃) δ 7.41 (d, J = 7.3 Hz, 2H), 7.35 (t, J = 7.3 Hz, 2H), 7.29 (t, J = 7.3 Hz, 1H), 7.14 (AA' of AA'BB', J = 8.6 Hz, 2H), 7.07 (m, 4H), 6.90 (BB' of AA'BB', J = 8.6 Hz, 2H), 5.01 (s, 2H), 3.32 (td, J = 9.8, 8.2 Hz, 1H), 2.91 (t, J = 9.4 Hz, 1H), 2.47 (dt, J = 10.2, 7.9 Hz, 1H), 2.31 (m, 1H), 2.29 (s, 3H), 1.66 (q, J = 10.2 Hz, 1H), 1.17 (d, J = 6.5 Hz, 3H). ¹³C NMR: (125 MHz, CDCl₃) δ 157.3, 141.6, 137.2, 136.2, 135.4, 128.9, 128.5, 127.9, 127.7, 127.5, 126.5, 114.6, 77.3, 77.0, 76.8, 70.0, 55.5, 43.8, 35.3, 34.1, 21.0, 20.5. HRMS (EI) calculated for [C₂₅H₃₆O]⁺ requires *m*/z 342.1979, found *m*/z 342.1980.

C. Large-scale synthesis of 8a (eq 1). A 250 mL round-bottomed flask was charged with 1.0 g 1 (6.7 mmol), 1.6 g 7a (13.4 mmol) and 4 mg Ru(bpm)₃(BArF)₂ (1.7 μ mol) The flask was cooled to -15 °C using a controlled-temperature cooling bath and 67 mL of anhydrous CH₂Cl₂ was added. The reaction mixture was vigorously stirred under air in front of a 20 W CFL. After 2 h, the reaction was passed through a short pad of silica using 250 mL Et₂O. The solvent was removed by rotary evaporation, and the residue was purified by flash-column chromatography (2.5:1 hexanes:CH₂Cl₂) to afford 1.45 g (5.4 mmol, 81% yield) of the pure cycloadduct as a colorless oil.

V. Typical Experimental Setup

A photograph of the experimental setup for a typical cycloaddition is shown below. The reaction vessel is a standard borosilicate test tube immersed in an acetone bath cooled to -15 °C using a Neslab immersion cooler. The light source is a 20 W GE Reveal CFL bulb installed in a clamp light.

VI. Representative nOe Relationships

Me

H

ÓTBS

1.7%

VII. References

- 1 Pangborn, A. B.; Giardello, M. A.; Grubbs, R. H.; Rosen, R. K.; Timmers, F. J. Organometallics 1996, 15, 1518-1520.
- 2 Still, W. C.; Kahn, M.; Mitra, A. J. Org. Chem. 1978, 43, 2923-2925.
- 3 Schwab, P. F. H. Fleischer, F.; Michl, J. J. Org. Chem. 2002, 67, 443-449.
- 4 Ross, H. B.; Boldaji, M.; Rillema, D. P.; Blanton, C. B.; White, R. P. Inorg. Chem. 1989, 28, 1013-1021.
- 5 McGee, K. A.; Marquardt, B. J.; Mann, K. R. *Inorg. Chem.* **2008**, *47*, 9143-9145.
- 6 Damrauer, N. H.; McCusker, J. K. Inorg. Chem. 1999, 38, 4268-4277.
- 7 Yakelis, N. A.; Bergman, R. G. Organometallics 2005, 24, 3579-3581.
- 8 Lin, S.; Ischay, M. A.; Fry, C. G.; Yoon, T. P. J. Am. Chem. Soc. 2011, 133, 19350-19353.
- 9 Ischay, M. A. Lu, Z.; Yoon, T. P. J. Am. Chem. Soc. 2010, 132, 8572-8574.
- 10 Ohara, H.; Itoh, T.; Nakamura, M.; Chem. Lett. 2001, 30, 624-625.
- 11 Shimomura, O. Se Lee, B. Meth, S. Suzuki, H. Mahajan, S. Nomura, R.; Janda, K. D. *Tetrahedron* **2005**, *61*, 12160-12167.
- Simoni, D. Roberti, M. Invidiata, F. P. Rondanin, R. Baruchello, R. Malagutti, C. Mazzali, A. Rossi, M. Grimaudo, S. Capone, F. Dusonchet, L. Meli, M. Raimondi, M. V. Landino, M. D'Alessandro, N. Tolomeo, M. Arindam, D. Lu, S.; Benbrook, D. M. J. Med. Chem. 2001, 44, 2308-2318.
- 13 Palmer, A. M. Chrismann, S. Münch, G. Brehm, C. Zimmermann, P. J. Buhr, W. Senn-Bilfinger, J. Feth, M. P.; Simon, W. A. *Bioorg. Med. Chem.* 2009, 17, 368-384.
- 14 Yamashita, T. Yasuda, M. Isami, T. Nakano, S. Tanabe, K.; Shima, K. *Tet. Lett.* **1993**, *34*, 5131-5134.
- 15 Seki, M.; Mori, K. Eur. J. Org. Chem. 1999, 1999, 2965-2967.
- 16 Ueno, S.; Hartwig, J. F. Angew. Chem. Int. Ed. 2008, 47, 1928-1931.
- 17 Wu, Z. Minhas, G. S. Wen, D. Jiang, H. Chen, K. Zimniak, P.; Zheng, J. J. Med. Chem. 2004, 47, 3282-3294.
- 18 Xu, W.; Chen, Q.-Y. Org. Biomol. Chem. 2003, 1, 1151-1156.

Electronic Supplementary Material (ESI) for Chemical Science This journal is © The Royal Society of Chemistry 2012

Electronic Supplementary Material (ESI) for Chemical Science This journal is © The Royal Society of Chemistry 2012

Electronic Supplementary Material (ESI) for Chemical Science This journal is © The Royal Society of Chemistry 2012

Electronic Supplementary Material (ESI) for Chemical Science This journal is © The Royal Society of Chemistry 2012

