Supporting Information

Copper-Catalyzed Decarboxylative Alkenylation of Sp³ C-H Bonds with

Cinnamic Acids via A Radical Process

Zili Cui, Xiaojie Shang, Xiang-Feng Shao and Zhong-Quan Liu*

State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China

E-mail: liuzhq@lzu.edu.cn

Context

General information	1
Typical procedure	1
Regiospecificity studies	2-3
Competing Kinetic Isotope Effect (KIE) Experiment	4
Physical data and references for the following products	5-13
Copies of the ¹ H NMR, ¹³ C NMR and GC-MS spectra	14-61

General Information

¹H and ¹³C NMR spectra were recorded on a Bruker advance III 400 spectrometer in CDCl₃ with TMS as internal standard. Mass spectra were determined on a Hewlett Packard 5988A spectrometer by direct inlet at 70 eV. High-resolution mass spectral analysis (HRMS) data were measured on a Bruker Apex II. Element analysis (EA) data were measured on a Vario EL. All products were identified by ¹H and ¹³C NMR, MS, HRMS, and Element Analysis. The starting materials were purchased from Aldrich, Acros Organics, J&K Chemicals or TCI and used without further purification.

Typical procedure

A mixture of cinnamic acid (1 equiv., 0.5 mmol), Cu (0.02 equiv., 0.01 mmol), TBHP (1.2 equiv., 0.6 mmol) and alcohol or ether (3 ml) was heated under reflux at 110 °C for 12 h. After the reaction finished, the mixture was evaporated under vacuum and purified by column chromatography to afford the desired product.

Competing Kinetic Isotope Effect (KIE) Experiment:

Figure ¹H NMR spectra of the mixture of compound **a** and **b**.

Note: The value of k_H/k_D was calculated from the ¹H NMR spectra above which should be the mixture of compound **a** and **b** (the KIE scheme). The sum of the integral of **a** and **b** at chemical shift 6.55-6.60 was integrated as 1.00 (both **a** and **b** keep the same double bond hydrogen). Compound **a** has 6 hydrogen atoms at chemical shift 1.41, while **b** has no H atoms. The amount of **a** could be defined as 0.77(4.63/6=0.77), on the other hand, the sum of **a** and **b** is 1.00, so the amount of **b** is 0.23 (1.00-0.77=0.23). As a result, $k_H/k_D=0.77/0.23=3.4$.

Physical data and references for the following products

All known compounds are determined by ¹H NMR and ¹³C NMR, MS analysis and compared with which were cited in the following references, and the new compounds were further confirmed by HRMS and/or element analysis.

References:

- 1. Fan, S. L.; Chen, F.; Zhang, X. G. Angew. Chem., Int. Ed. 2011, 50, 5918-5923.
- 2. Liu, Z.-Q.; Sun, L.; Wang, J.-G.; Han, J. Zhao, Y.-K; Zhou, B. Org. Lett. 2009, 11(6), 1437-1439.
- Huelgas, G.; LaRochelle L. K.; Rivasa, L.; Luchininac, Y.; Toscano, R. A.; Carroll, P. J.; Walsh, P. J.; de Parrodi, C. A. *Tetrahedron.* 2011, 67, 4467-4474.
- Hou, J.; Feng, C.; Li, Z.; Fang, Q.; Wang, H.; Gu, G.; Shi, Y.; Liu, P.; Xu, F.; Yin, Z.; Shen, J.; Wang, P. Eur. J. Org. Chem. 2011, 46, 3190-3200.
- 5. Werner, E. W.; Sigman, M. S. J. Am. Chem. Soc. 2011, 133, 9692-9695.
- 6. Luo, F.; Pan, C.; Wang, W.; Ye, Z.; Cheng, J. Tetrahedron. 2010, 66, 1399-1403.
- 7. Pandey, G.; Krishna, A. J. Org. Chem. 1988, 53, 2364-2365.
- 8. Shi, D.; Huang, H.; Chen, R. Phosphorus, Sulfur Silicon Relat. Elem. 2002, 177, 665-670.
- 9. Hernan, A. G.; Horton, P. N.; Hursthouse, M. B.; Kilburn, J. D. J. Org. Chem. 2006, 691, 1466-1475.
- 10. Berthiol, F.; Doucet, H.; Santelli, M. Appl. Organomet. Chem. 2006, 20, 855-868.
- 11. Lopez, F.; Harutyunyan, S. R.; Minnaard, A. J.; Feringa, B. L. J. Am. Chem. Soc. 2004, 126, 12784-12785.
- 12. Tian, Q.; Larock, R. C. Org Lett. 2000, 2, 3329-3332.
- 13. Dong, D.-J.; Li, H.-H.; Tian, S.-K. J. Am. Chem. Soc. 2010, 132, 5018-5020.
- 14. Jang, Y.-J.; Shih, Y.-K.; Liu, J.-Y.; Kuo, W.-Y.; Yao, C.-Fa. Chem.-Eur. J. 2003, 9, 2123-2128.
- 15. Kim, H. J.; Su, L.; Jung, H.; Koo, S. Org Lett. 2011, 13, 2682-2685.
- Li, J.; Peng, J.; Bai, Y.; Chen, L.; Lai, G. Phosphorus, Sulfur Silicon Relat. Elem. 2011, 186, 1621-1625.
- 17. Kabalka, G. W.; Dong, G.; Venkataiah, B. Org Lett. 2003, 5, 893-895.
- 18. Takashi, M.; K, Kajiwara.; Y, Shirae.; M, Sakamoto.; T, Fujita. Synlett. 2008, 2711-2715.
- 19. Jang, Y.-J.; Yan, M.-C.; Lin, Y.-F.; Yao, C.-F. J. Org. Chem. 2004, 69, 3961-3963.

Physical data for the following products:

1a: (*E*)-3-phenylprop-2-en-1-ol

¹H NMR (400MHz, CDCl₃): δ 7.40–7.38 (m, 2H), 7.34–7.30 (m, 2H), 7.26–7.22 (m, 1H), 6.64–6.60 (d, *J* = 16.0 Hz, 1H), 6.40–6.33 (m, 1H), 4.32–4.31 (m, 2H), 1.58 (s, 1H) ¹³C NMR (100 MHz, CDCl₃): δ 136.6, 131.1, 128.6, 128.5, 127.7, 126.4, 63.7. MS (EI): *m/z* (%): 134 (M+, 47), 117 (15), 105 (45), 91 (55), 77 (34), 57 (100).

1b: (*E*)-4-phenylbut-3-en-2-ol

¹H NMR (400 MHz, CDCl₃): δ 7.30–7.28 (m, 2H), 7.24–7.21 (m, 2H), 7.17–7.13 (m, 1H), 6.49–6.45 (d, *J* = 16.0 Hz, 1H), 6.20–6.15 (dd, *J* = 16.0 Hz, J=4.0Hz, 1H), 4.49–4.46 (m, 1H), 1.84 (s, 1H), 1.29 –1.28 (d, *J* = 4.0 Hz, 3H).

¹³C NMR (100MHz, CDCl₃): δ 136.7, 133.5, 129.3, 128.5, 127.6, 126.4, 68.8, 23.3.

MS (EI):*m*/*z* 148 (M+, 59), 131 (62), 105 (100), 91 (63), 77 (33), 43 (62).

1c: (*E*)-1-phenylpent-1-en-3-ol

¹H NMR (400 MHz, CDCl₃): δ 7.38–7.36 (m, 2H), 7.32–7.28 (m, 2H), 7.24–7.21 (m, 1H), 6.57–6.53 (d, *J* = 16.0 Hz, 1H), 6.23–6.17 (dd, *J* = 16.0 Hz, *J* = 8.0 Hz, 1H), 4.25–4.20 (m, 1H), 1.92 (s, 1H), 1.69 – 1.60 (m, 2H), 0.98–0.94 (t, *J* = 8.0Hz, 3H)

¹³C NMR (100 MHz, CDCl₃): δ 136.7, 132.2, 130.3, 128.5, 127.5, 126.4, 74.31, 30.2, 9.7.

MS (EI): *m*/*z* (%): 162 (M+, 29), 133 (100), 105 (61), 91 (37), 77 (30), 55 (33).

1d: (*E*)-1-phenylhex-1-en-3-ol

¹H NMR (400 MHz, CDCl₃): δ 7.38–7.36 (m, 2H), 7.32–7.29 (m, 2H), 7.24–7.23 (m, 1H), 6.57–6.53 (d, *J* = 16.0 Hz, 1H), 6.24–6.18 (dd, *J* = 16.0 Hz, *J* = 8.0 Hz, 1H), 4.30–4.25 (m, 1H), 1.78 (s, 1H), 1.63 – 1.53 (m, 2H), 1.44–1.38 (m, 2H), 0.97–0.93 (t, *J* = 8.0Hz, 3H)

¹³C NMR (100 MHz, CDCl₃):δ 136.7, 132.6, 130.1, 128.5, 127.6, 126.4, 72.8, 39.4, 18.6, 14.0.

MS (EI): *m*/*z* (%): 176 (M+, 26), 133 (100), 105 (47), 91 (32), 77 (18), 55 (27), 43 (15).

1e: (*E*)-1-phenylhept-1-en-3-ol

¹H NMR (400 MHz, CDCl₃): δ 7.41 – 7.39 (m, 2H), 7.34 – 7.31 (m, 2H), 7.26 – 7.25 (m, 1H), 6.60 – 6.56 (d, *J* = 16.0 Hz, 1H), 6.26 – 6.21 (dd, *J* = 16.0 Hz, *J* = 8.0 Hz, 1H), 4.31 – 4.26 (m, 1H), 1.69 – 0.91 (m, 10H)

¹³C NMR (100 MHz, CDCl₃): δ 136.8, 132.6, 130.2, 128.5, 127.6, 126.4, 73.1, 37.1, 27.6, 22.6, 14.0 MS (EI): *m/z* (%): 190 (M+, 16), 133 (100), 105 (59), 91 (43), 77 (20), 57 (20).

1f: (*E*)-5-methyl-1-phenylhex-1-en-3-ol

¹H NMR (400 MHz, CDCl₃): δ 7.39–7.37 (m, 2H), 7.33–7.29 (m, 2H), 7.25–7.21 (m, 1H), 6.59–6.55 (d, *J* = 16.0 Hz, 1H), 6.24–6.18 (dd, *J* = 16.0 Hz, *J* = 8.0 Hz, 1H), 4.36–4.34 (m, 1H), 1.79–0.88 (m, 10H).

¹³C NMR (100 MHz, CDCl₃):δ 136.7, 132.8, 130.0, 128.5, 127.6, 126.4, 71.31, 46.4, 24.6, 23.0, 22.6, 22.5.

MS (EI): *m/z* (%): 190 (M+, 12), 165 (100), 105 (31), 91 (25), 77 (16), 57 (19), 43 (40).

1g: (*E*)-1-phenyloct-1-en-3-ol

¹H NMR (400 MHz, CDCl₃): δ 7.39–7.37 (m, 2H), 7.31–7.29 (m, 2H), 7.25–7.23 (m, 1H), 6.58–6.54 (d, *J* = 16.0 Hz, 1H), 6.25–6.19 (dd, *J* = 16.0 Hz, *J* = 8.0 Hz, 1H), 4.31–4.26 (m, 1H), 1.71–0.87 (m, 12H)

¹³C NMR (100 MHz, CDCl₃): δ 136.8, 132.6, 130.2, 128.5, 127.6, 126.4, 73.1, 37.3, 31.8, 25.10, 22.6, 14.0

MS (EI): *m*/*z* (%): 204 (M+, 5), 133 (100), 105 (47), 91 (39), 77 (17), 55 (32).

1h: (*E*)-2-methyl-4-phenylbut-3-en-2-ol

¹H NMR (400 MHz, CDCl₃): δ 7.38-7.20 (m, 5H), 6.60-6.56 (d, *J* = 16.0 Hz, 1H) 6.37-6.33 (d, *J* = 16.0 Hz, 1H), 1.73 (s, 1H), 1.42 (s, 6H) ¹³C NMR (100 MHz, CDCl₃): δ 137.5, 136.9, 128.5, 127.4, 126.4, 126.3, 71.0, 29.8.

MS (EI): *m*/*z* (%): 162 (M+, 34), 147 (100), 129 (76), 91 (59), 77 (16), 43 (52).

1i: (*E*)-3-methyl-1-phenylpent-1-en-3-ol.

¹H NMR (400 MHz, CDCl₃): δ 7.38–7.36 (m, 2H), 7.29–7.27 (m, 2H), 7.23–7.21 (m, 1H), 6.60–6.55 (d, *J* = 16.0 Hz, 1H), 6.28–6.24 (d, *J* = 16.0 Hz, 1H), 1.74 (s, 1H), 1.68–1.62 (q, 2H), 1.36 (s, 3H), 0.94 –0.90 (t, 3H)

¹³C NMR (100 MHz, CDCl₃): δ 137.0, 136.5, 128.5, 127.2, 127.2, 126.3, 73.34, 35.3, 27.5, 8.3 MS (EI): *m/z* (%): 176 (M+, 6), 147 (100), 129 (39), 91 (16), 57 (8), 43 (19).

1j: (*E*)-1-styrylcyclopentanol

¹H NMR (400 MHz, CDCl₃): δ 7.39–7.37 (m, 2H), 7.32–7.28 (m, 2H), 7.23–7.19 (m, 1H), 6.67–6.63 (d, *J* = 16.0 Hz, 1H), 6.40–6.36 (d, *J* = 16.0 Hz, 1H), 1.94–1.90 (m, 2H), 1.80–1.73 (m, 7H). ¹³C NMR (100 MHz, CDCl₃): δ 137.0, 136.0, 128.5, 127.2, 126.7, 126.3, 82.1, 40.7, 23.7. Anal. Calcd. for C₁₃H₆O: C, 82.98; H, 8.51. Found: C, 83.12; H: 8.77

1k: (*E*)-1-styrylcyclohexanol

¹H NMR (400 MHz, CDCl₃): δ 7.39–7.37 (m, 2H), 7.32–7.28 (m, 2H), 7.24–7.21 (m, 1H), 6.65–6.61 (d, *J* = 10.0 Hz, 1H), 6.36–6.31 (d, *J* = 10.0 Hz, 1H), 1.68–0.86 (m, 11H). ¹³C NMR (100 MHz, CDCl₃): δ 137.5, 137.1, 128.5, 127.32, 127.0, 126.3, 71.7, 38.0, 25.5, 22.1. MS (EI): *m/z* (%): 202 (M+, 68), 159 (100), 145 (73), 91 (55), 77 (24), 55 (23).

1l: (E)-1,4-diphenylbut-3-en-2-ol

¹H NMR (400 MHz, CDCl₃): δ 7.37–7.23 (m, 10H), 6.60–6.56 (d, *J* = 16.0 Hz, 1H), 6.30–6.24 (dd, *J* = 16.0 Hz, *J* = 8.0 Hz, 1H), 4.54–4.51 (m, 1H), 2.98–2.85 (m, 2H). 1.81 (s, 1H)

¹³C NMR (100 MHz, CDCl₃): δ 137.6, 136.7, 131.5, 130.3, 129.6, 128.5, 128.5, 127.62, 126.6, 126.5, 73.4, 44.2

MS (EI): *m*/*z* (%): 224 (M+, 1), 133 (100), 115 (23), 91 (20), 77 (10), 55 (18).

2a: (*E*)-2-methyl-4-(m-tolyl)but-3-en-2-ol

¹H NM R(400 MHz,CDCl₃): δ 7.20–7.17 (m, 3H), 7.03–7.02 (m, 1H), 6.55–6.51 (d, *J* = 16.0 Hz,1H), 6.34–6.30 (d, *J* = 16.0 Hz, 1H), 2.32 (s, 3H), 1.96 (s, 1H), 1.40 (s, 6H).

¹³C NMR (100 MHz, CDCl₃): δ 138.0, 137.3, 136.8, 128.4, 128.1, 127.0, 126.3, 123.5, 70.9, 29.8, 21.3. Anal. Calcd. for C1₂H₁₆O: C, 81.82; H,9.09. Found: C, 81.53; H: 9.32

2b: (*E*)-4-(4-methoxyphenyl)-2-methylbut-3-en-2-ol

¹H NMR (400 MHz, CDCl₃): δ 7.32–7.30 (m, 2H), 6.86–6.84 (m, 2H),6.54–6.50 (d, *J* = 16.0 Hz, 1H), 6.24–6.20 (d, *J* = 16.0 Hz, 1H) ,3.80 (s, 3H), 1.62 (s, 1H), 1.41 (s, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 159.0, 135.4, 129.6, 127.5, 125.8, 114.0, 71.0, 55.3, 29.9. MS (FD): m/s (%): 102 (M+ 24) 177 (100) 121 (05) 01 (12) 42 (22)

MS (EI): *m*/*z* (%): 192 (M+, 34), 177 (100), 121 (95), 91 (13), 43 (33).

2c: (*E*)-4-(3,4-dimethoxyphenyl)-2-methylbut-3-en-2-ol

¹H NMR (400 MHz, CDCl₃): δ 6 .95–6.91 (m, 2H), 6.83–6.81 (d,J = 8.0 Hz, 1H), 6.54–6.50 (d, J = 16.0 Hz, 1H), 6.25–6.21 (d, J = 16.0 Hz, 1H), 3.91–3.88 (d, 6H), 1.57(s, 1H), 1.43 (s, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 149.0, 148.6, 135.5, 129.9, 126.1, 119.5, 111.1, 108.6, 71.0, 55.9, 55.8, 29.9.

MS (EI): *m/z* (%): 222 (M+, 52), 207 (92), 189 (24), 151 (100), 91 (10), 43 (24).

2d: (*E*)-4-(2,5-dimethoxyphenyl)-2-methylbut-3-en-2-ol

¹H NMR (400 MHz, CDCl₃): δ 7.0 (d, 1H), 6.91–6.98 (d, *J* = 16.0 Hz, 1H), 6.81–6.77 (m, 2H), 6.38–6.33 (d, *J* = 16.0 Hz, 1H), 3.80–3.78 (d, *J* = 8.0 Hz, 6H), 1.43 (s, 6H), 1.25 (s, 1H).

¹³C NMR (100 MHz, CDCl₃): δ 153.7, 151.2, 138.3, 126.7, 120.9, 113.5, 112.2, 112.0, 71.3, 56.1, 55.8, 29.8.

MS (EI): *m/z* (%): 222 (M+, 77), 207 (42), 151 (100), 91 (32), 77 (11), 43 (49).

2e: (*E*)-4-(benzo[d][1,3]dioxol-5-yl)but-3-en-2-ol

¹H NMR (400 MHz, CDCl₃): δ 6.91 (d, 2H), 6.81–6.74 (m, 2H), 6.48–6.45 (d, J = 12.0 Hz, 1H), 6.11 -6.06 (dd, J = 16.0 Hz, J = 8.0 Hz, 1H), 5.94 (s, 2H), 4.46–4.43 (m, 1H),1.36–1.34 (d, J=8.0Hz, 3H) ¹³C NMR (100 MHz, CDCl₃): δ 148.0, 147.2, 131.8, 131.1, 129.1, 121.1, 108.3, 105.7, 101.02, 68. 9, 23.4 Anal. Calcd. for C11H12O3: C, 68.75; H, 6.25. Found: C, 68.46; H: 6.44

2f: (*E*)-4-(4-chlorophenyl)-2-methylbut-3-en-2-ol

¹H NMR (400 MHz, CDCl₃): δ 7.29–7.24 (m, 4H), 6.54–6.50 (d, *J* = 16.0 Hz, 1H), 6.33–6.29 (d, *J* = 16.0 Hz, 1H), 1.95 (s, 1H), 1.41 (s, 6H).

¹³C NMR (100 MHz, CDCl₃): δ 138.1, 135.4, 132.9, 128.6, 127.5, 125.1, 70.9, 29.8. MS (EI): *m*/*z* (%): 196 (M+, 34), 183 (32), 181 (100), 128 (46), 91 (5), 43 (67).

2g: (*E*)-4-(4-bromophenyl)-2-methylbut-3-en-2-ol

¹H NMR (400 MHz, CDCl₃): δ 7.41-7.39 (m, 2H), 7.22-7.20 (m, 2H), 6.53-6.49 (d, *J* = 16.0 Hz, 1H), 6.34-6.30 (d, *J* = 16.0 Hz, 1H), 2.02 (s, 1H), 1.40 (s, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 138.2, 135.8, 131.5, 127.9, 125.2, 121.0, 70.9, 29.8. Anal. Calcd. for C11H13BrO: C, 54.77; H, 5.39. Found: C, 55.02; H: 5.36 **2h:** (*E*)-4-(furan-2-yl)-2-methylbut-3-en-2-ol

¹H NMR (400 MHz, CDCl₃): δ 7.34 (d, 1H), 6.45–6.41 (d, *J* = 16.0 Hz, 1H), 6.37–6.36 (m, 1H), 6.33 -6.29 (d, *J* = 16.0 Hz, 1H), 6.23–6.22 (d, *J* = 4.0 Hz, 1H), 1.68(s, 1H), 1.40(s, 6H) ¹³C NMR (100 MHz, CDCl₃): δ 152.6, 141.7, 136.2, 115.2, 111.2, 107.7, 70.83, 29.9. MS (EI): *m/z* (%): 152(M+, 45), 137 (42), 133 (81), 91 (46), 57 (85), 43 (100).

2i: (*E*)-2-methyl-4-(thiophen-2-yl)but-3-en-2-ol

¹H NMR (400 MHz, CDCl₃): 7.16-7.14 (m, 1H), 6.97-6.95 (m, 2H), 6.76-6.72 (d, *J* = 16.0 Hz, 1H), 6.23-6.19 (d, *J* = 16.0 Hz, 1H), 1.70 (s, 1H), 1.42 (s, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 142.1, 137.2, 127.3, 125.5, 123.9, 119.9, 70.9, 29.8 MS (EI): *m*/*z* (%): 168 (M+, 41), 153 (59), 125 (68), 97 (100), 57 (69), 43 (90).

2j: (E)-2-methyl-4-(pyridin-3-yl)but-3-en-2-ol

¹H NMR (400 MHz, CDCl₃): δ 8.56 (s, 1H), 8.42–8.41 (d, *J* = 4.0 Hz, 1H), 7.71–7.69 (m, 1H), 7.26–7.23 (m, 1H), 6.61–6.57 (d, 1H), 6.46–6.42 (d, 1H), 3.62 (s, 1H), 1.44 (s, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 147.7, 147.6, 140.5, 133.2, 132.9, 123.5, 122.4, 70.6, 29.7. MS (EI): *m/z* (%): 163 (M+, 19), 148 (100), 130 (22), 106 (40), 105 (35), 43 (20).

2k: 1-(9H-fluoren-9-ylidene)-2-methylpropan-2-ol

¹H NMR (400 MHz, CDCl₃): δ 8.62-8.60 (d, *J* = 8.0 Hz, 1H), 7.65-7.61 (m, 2H), 7.56-7.54 (d, 1H), 7.31-7.22 (m, 4H), 6.73 (s, 1H), 2.01 (s, 1H), 1.60 (s, 6H)

¹³C NMR (100 MHz, CDCl₃): 141.5, 139.8, 138.9, 136.3, 135.4, 135.2, 128.9, 128.2, 128.0, 126.8, 126.75, 119.8, 119.28, 119.27, 70.8, 30.5.

MS (EI): *m*/*z* (%):236 (M+, 39), 193 (38), 178 (40), 165 (100), 110 (47), 43 (26).

2l: (*3E*,5*E*)-2-methyl-6-phenylhexa-3,5-dien-2-ol

¹H NMR (400 MHz, CDCl₃): δ 7.39-7.37 (m, 2H), 7.32-7.28 (m, 2H), δ=7.23-7.21 (m, 1H), 6.79-6.72 (m, 1H), 6.57-6.53 (d, *J*=16.0 Hz, 1H), 6.42-6.36 (m, 1H), 5.97-5.93 (d, *J*=16.0 Hz, 1H), 1.64(s, 1H), 1.38 (s, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 141.7, 137.3, 132.3, 128.6, 128.5, 127.4, 127.0, 126.3, 70.9, 29.8.

¹⁵C NMR (100 MHz, CDCl₃): 8 141.7, 137.3, 132.3, 128.6, 128.5, 127.4, 127.0, 126.3, 70.9, 29 MS (EI): *m/z* (%): 188 (M+, 38), 173 (19), 117 (72), 104 (29), 91 (100), 43 (34).

3a: (*E*)-2-styryl-tetrahydrofuran.

¹H NMR (400 MHz, CDCl₃): δ 7.39-7.37 (m, 2H), 7.32-7.28 (m, 2H), 7.24-7.20 (m, 1H), 6.60-6.56 (d, *J* = 16.0 Hz, 1H), 6.24-6.18 (dd, *J* = 16.0 Hz, *J* = 8.0 Hz, 1H), 4.50-4.45 (m, 1H),4.0-3.95 (m, 1H),3.87-3.81 (m, 1H), 2.15-2.09 (m, 1H), 1.98-1.92 (m, 2H), 1.76-1.69 (m, 1H) ¹³C NMR (100 MHz, CDCl₃): δ 136.8, 130.5, 130.4, 128.5, 127.5, 126.4, 79.7, 68.2, 32.4, 25.9 MS (EI): *m/z* (%): 174 (M+, 69), 146 (42), 131 (100), 105 (15), 91 (23), 77 (34), 57 (29).

3b: (*E*)-2-styryl-1,4-dioxane

¹H NMR (400 MHz, CDCl₃): δ 7.38–7.36 (m, 2H), 7.32–7.28 (m, 2H), 7.25–7.23 (m, 1H), 6.70–6.66 (d, *J* = 16.0Hz, 1H), 6.10–6.05 (dd, *J* = 16.0 Hz, *J* = 8.0 Hz, 1H), 4.26–4.22 (m, 1H), 3.88–3.78 (m,

3H), 3.75-3.72 (m, 1H), 3.68-3.62 (m, 1H), 3.44-3.38 (m, 1H).

¹³C NMR (100 MHz, CDCl₃): δ 136.3, 132.6, 128.5, 127.9, 126.4, 125.1, 76.0, 70.9, 66.5, 66.2. MS (EI): *m/z* (%): 190 (M+, 30), 131 (78), 99 (24), 86 (100), 77 (12), 57 (9), 43 (6).

3c: (*E*)-(2-cyclohexylvinyl)benzene

¹H NMR (400 MHz, CDCl₃): δ 7.35–7.33 (m, 2H), 7.29–7.24 (m, 2H), 7.19–7.17 (m, 1H), 6.36–6.32(d, *J* = 16.0 Hz, 1H), 6.20–6.14 (dd, *J* = 16.0 Hz, *J* = 8.0Hz, 1H), 2.14–1.14 (m, 11H). ¹³C NMR (100 MHz, CDCl₃): δ 138.1, 136.8, 128.4, 127.2, 126.7, 125.9, 41.2, 33.0, 26.2, 26.1 MS (EI): *m/z* (%):186 (M+, 27), 129 (30), 115 (22), 104 (100), 91 (41), 55 (22).

3d: (*E*)-styrylcyclooctane

¹H NMR (400 MHz, CDCl₃): δ 7.34-7.32 (m, 2H), 7.29-7.23 (m, 2H), 7.18-7.16 (m, 1H), 6.33-6.29 (d, *J* = 16.0 Hz, 1H), 6.23-6.18 (dd, *J* = 16.0 Hz, *J* = 8.0 Hz, 1H), 2.38-0.85 (m, 15H). ¹³C NMR (100 MHz, CDCl₃): δ 138.1, 137.8, 128.4, 126.8, 126.6, 125.9, 41.3, 31.8, 27.4, 26.0, 25.1. MS (EI): *m/z* (%): 214 (M+, 29), 129 (58), 104 (100), 91 (36), 55(9).

3e: (*E*)-prop-1-ene-1,3-diyldibenzene

¹H NMR (400 MHz, CDCl₃): δ 7.36-7.19 (m, 10H), 6.47-6.43 (d, 1H), 6.39-6.33 (m, 1H), 3.55-3.53 (d, *J* = 8.0 Hz, 2H).

¹³C NMR (100 MHz, CDCl₃): δ 140.2, 137.5, 131.1, 129.2, 128.7, 128.5, 127.1, 126.2, 126.1, 39.3. MS (EI): *m/z* (%):194 (M+, 100), 193 (62), 179 (42), 178 (39), 116 (37), 115 (66).

3f: 1-cinnamyl-4-methylbenzene

¹H NMR (400 MHz, CDCl₃): δ 7.35–7.12 (m, 9H), 6.46–6.42 (d, 1H), 6.37–6.30 (m, 1H), 3.51–3.49 (d, *J* = 8.0 Hz, 2H), 2.32 (s, 1H).

¹³C NMR (100 MHz, CDCl₃): δ 137.6, 137.1, 135.7, 130.8, 129.5, 129.2, 128.5, 127.0, 126.1, 38.9, 21.0. MS (EI): *m/z* (%): 208 (M+, 100), 193 (96), 179 (12), 129 (16), 115 (83).

3g: 1-cinnamyl-3-methylbenzene

¹H NMR (400 MHz, CDCl₃):87.36-7.02 (m, 9H), 6.47-6.43 (d, 1H), 6.38-6.32 (m, 1H), 3.52-3.50 (d, *J* = 8.0 Hz, 2H), 2.33 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 140.1, 138.1, 137.5, 130.9, 129.4, 129.4, 128.5, 128.4, 127.1, 126.90, 126.1, 125.7, 39.3, 21.4.

MS (EI): *m*/*z* (%):208 (M+, 100), 194(23), 193 (91), 115 (81), 105 (40), 91 (29).

3h: 1-cinnamyl-3,5-dimethylbenzene.

¹H NMR (400 MHz, CDCl₃): δ 7.36–6.85 (m, 8H), 6.47–6.43 (d, 1H),6.37–6.31 (m, 1H), 3.47–3.46 (d, J = 4.0 Hz, 2H), 2.29 (s, 1H).

¹³C NMR (100 MHz, CDCl₃): δ 140.0, 138.0, 137.5, 130.8, 129.5, 128.5, 127.8, 127.0, 126.4, 126.1, 39.3, 21.3.

MS (EI): *m*/*z* (%): 222 (M+, 96), 207 (100), 192 (28), 179 (14), 91 (28), 44 (11).

4a: (1s,3s)-1-((*E*)-4-methoxystyryl)adamantane

¹H NM R(400 MHz,CDCl₃): δ 7.30-7.28 (m, 2H), 6.84-6.82 (m, 2H), 6.20-6.16 (d, *J* = 16.0 Hz,1H), 5.99-5.95 (d, *J* = 16.0 Hz, 1H), 3.79 (s, 3H), 2.02 (s, 3H), 1.76-1. 67 (m, 12H). ¹³C NMR (100 MHz, CDCl₃): δ 158.5, 140.1, 131.0, 127.0, 123.7, 113.9, 55.3, 42.3, 36.9, 35.0, 28.5. MS (EI): *m/z* (%):268 (M+, 100), 211(35), 134 (12), 121 (16), 91 (11), 77 (5).

4ca: (*E*)-1-(3,4-dimethoxybut-1-enyl)benzene

¹H NMR (400 MHz, CDCl₃): δ 7.42–7.39 (m, 2H), 7.34–7.30 (m, 2H), 7.27–7.23 (m, 1H), 6.66–6.62 (d, *J* = 16.0 Hz, 1H), 6.13–6.07 (dd, *J* = 16.0 Hz, *J* = 8.0 Hz, 1H), 3.98–3.94 (m, 1H), 3.55–3.46 (m, 2H), 3.41 (s, 3H), 3.38 (s, 3H) ¹³C NMR (101 MHz, CDCl₃): δ 136.3, 133.6, 128.5, 127.9, 126.5, 126.5, 81.3, 75.6, 59.3, 56.6.

HRMS (ESI, m/z): Calculated for $C_{12}H_{16}O_2$ (M+Na)⁺ 215.1048, found 215.1048.

4ea: (*E*)-4-methyl-3-styrylmorpholine

¹H NMR (400 MHz, CDCl₃): δ 7.38–7.36 (m, 2H), 7.33–7.30 (m, 2H), 7.26–7.22 (m, 1H), 6.64–6.60 (d, *J* = 16.0 Hz, 1H), 6.03–5.96 (dd, *J* = 16.0 Hz, *J* = 12.0 Hz, 1H), 3.88–3.84 (m, 1H), 3.75-3.67 (m, 2H), 3.42–3.37 (m, 1H), 3.78–3.76 (m, 2H), 2.37–2.31 (m, 1H), 2.29 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 136.5, 134.0, 128.6, 127.8, 127.4, 126.3, 71.1, 67.1, 66.6, 54.8, 43.8. HRMS (ESI, m/z): Calculated for $C_{13}H_{18}NO(M+H)^+$ 204.1388, found 204.1377.

4fa: (*E*)-1-methyl-5-styrylpyrrolidin-2-one

¹H NMR (400 MHz, CDCl₃): δ 7.41 – 7.40 (m, 2H), 7.36 – 7.34 (m, 2H), 7.32 – 7.27 (m, 1H), 6.59 – 6.55 (d, *J* = 16.0 Hz, 1H), 6.05 – 5.99 (dd, *J* = 16.0 Hz, *J* = 8.0 Hz, 1H), 4.13 – 4.09 (m, 1H), 2.79 (s, 3H), 2.51 – 2.27 (m, 3H), 1.87 – 1.82 (m, 1H).

¹³C NMR (100 MHz, CDCl₃): δ 175.0, 135.8, 132.9, 128.8, 128.7, 128.1, 126.5, 62.9, 30.0, 27.9, 25.7. HRMS (ESI, m/z): Calculated for $C_{13}H_{16}NO(M+H)^+$ 202.1232, found 202.1222.

Copies of the ¹H NMR and ¹³C NMR

1a-¹H NMR

1b-¹H NMR

(1, 28) (1, 28

4. 49 **4.** 47 **4.** 46 ---0.00

-1.82

 $<_{1.35}^{1.37}$

1c-¹H NMR

1c-¹³C NMR

-136.70 -132.24 -132.24 -132.28 -130.32 126.38 126.38	77.32 77.00 74.31 74.31	-30. 15	-9.70
---	----------------------------------	---------	-------

1d-¹H NMR

1d-¹³C NMR

1e-¹³C NMR

33 33 22 23 23 23 23 23 23 23 23 23 23 2	55 55 22 22 20 22 20 22 20 22	35 34	20	$ \begin{array}{c} 559\\ 57\\ 57\\ 57\\ 57\\ 57\\ 57\\ 57\\ 57\\ 57\\ 57$	96 94 94
	000000	4.4	-i-		0000

66 79 53	32 39	538	35 96 44
32.32.28	126.	71.	16.
TITA			1 SV

1g-¹H NMR

1g- ¹³C NMR

1i-¹H NMR

338 338 338 338 338 338 338 338 338 338	60	28	74 666 662 622	36	94 92 90
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<u>_6.</u>	-6.		<u> </u>	000





1j- ¹H NMR

$\begin{array}{c} 42\\ 42\\ 33\\ 22\\ 22\\ 22\\ 22\\ 22\\ 22\\ 22\\ 22\\ 2$	70	43
~~~~~~~~~~	.9.	.9

1. 95 1. 10 1. 10

1j- ¹³C NMR

135 125 115 105 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 f1 (ppm)

11-¹H NMR

> 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	09	0 8 9 4	40-0	2000000000	-
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	20	5000	5004	თ თ თ თ თ თ ∞ ∞ ∞	8
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		0.00.0	4 4 4 4	~~~~~~	
	5		X		

11-¹³C NMR

137.64 136.67 131.45 131.45 131.45 130.53 130.53 130.53 128.53 126.55 12	$\int_{-73}^{77} 68$	-44.17
		1

20 118 117 117 03 03	 .32	96.	.40
	-2	ī	ī

2a- ¹³C NMR

. 36	. 01	32 68	91	92	29
37 36 36	23	.17.	.0	.60	1.1
5	-511		Ĩ	Ĩ	Y

2b- ¹³C NMR

ò

2e-¹H NMR

91 91 779 881 74 45 00 00 00 94 94	46 45 43	74	34
	4.4.	i i	7

2e- ¹³C NMR

2f-¹H NMR

2f- ¹³C NMR

. 12 	94 94	78
-138 -135 -132 -127 -127	-70.	-29.

2i-¹H NMR

2i- ¹³C NMR

. 12	. 30 . 53 . 94 . 94 . 89	85 68 00 32	80
-142	-119	$\frac{77}{\sqrt{76}}$.	-29.

2j- ¹H NMR

2k-¹H NMR

2l-¹H NMR

2l- ¹³C NMR

L. 74 7. 26 2. 25 3. 55 3. 56 5. 98 5. 98 5. 27 5. 27	85 85	75
	-70	-29.

222 222 222 222 222 222 222 222 222 22	18 48 47	98 95 88 83 83	$\begin{array}{c} 11\\ 11\\ 11\\ 00\\ 99\\ 95\\ 94\\ 94\end{array}$	76 77 72 77 71 69
6.6. 27.7.7.7.7	L6.	n n n n n n n	~~~~~	

3a-¹³C NMR

3b-¹H NMR

22 23 25 23 23 23 23 23 23 23 23	70 66	10 05 05	224 223 223 223 223 223 224 23 223 224 23	44 41 38 38
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	.9.9	6.6.6	44444	n n n n





**3b-**¹³C NMR

33	57	50 06 06	8 0 8 0 5	4 00
36.	32.	28.25.25.	<b>7.</b> 3 <b>6.</b> 0 <b>0.</b> 8	6.5
ī	ī			16



135 125 115 105 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 fl (ppm)

3c-¹H NMR

$\begin{array}{c} 35\\ 33\\ 229\\ 228\\ 228\\ 119\\ 117\\ 117\\ 117\\ 117\\ 117\\ 117\\ 117$	36 32 32 18 18 14
	6.6.6.

113 66 66 66 66 66 66 66 66 66 66 66 66 72 88 66 72 88 72 88 72 88 72 72 72 72 72 72 72 72 72 72 72 72 72	$\begin{array}{c} 330\\ 228\\ 228\\ 228\\ 228\\ 228\\ 228\\ 228\\ 22$
1.1.1.1.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2	





### 3c-¹³C NMR







36	23 23 22 22 21 22 20 19	37 33 23 23 23 22 22 22
r7.	~~~~~~	







### 3d-¹³C NMR





3e-¹H NMR



135 125 115 105 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 fl (ppm)















4b- GC – MS













### 4ca-¹³C NMR





















### 4ea-¹H NMR













#### 4fa-¹H NMR











61