Supporting Information for:

Slow Magnetization Dynamics in a Series of Two-Coordinate Iron(II) Complexes

Joseph M. Zadrozny,^a Mihail Atanasov,^{*b,c,d} Aimee M. Bryan,^e Chun-Yi Lin,^e Brian D. Rekken,^e Philip P. Power,^{*e} Frank Neese,^{*d} and Jeffrey R. Long^{*a}

^aDepartment of Chemistry, University of California, Berkeley, California 94720, USA. Email: jrlong@berkeley.edub ^bMax-Planck Institute for Bioinorganic Chemistry, Stifstr. 32-34, D-45470 Milheim an der Ruhr, Germany ^cInstitute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Acad. Giorgi Bontchev Str. 11, 113 Sofia, Bulgaria ^dDepartement de Chimie, Universite de Fribourg, Ch. du Musee, 9, CH-1700 Fribourg, Switzerland, 5 ^c Department of Chemistry, University of California, Davis, California, 95616, USA

Chem. Sci.

Table of Contents

Details regarding determination of Superimposability Index, R_{σ} .	S4
Table S1. Full Crystallographic Table for 1.	S5
Table S2. Full Crystallographic Table for 3.	S6
Figure S1: Thermal ellipsoids of L-Fe-L moieties for 1-6.	S7
Figure S2: Variable-temperature, variable-field magnetization data of 1.	S 8
Figure S3: Variable-temperature, variable-field magnetization data of 2.	S9
Figure S4: Variable-temperature, variable-field magnetization data of 3.	S10
Figure S5: Variable-temperature, variable-field magnetization data of 4.	S11
Figure S6: Variable-temperature, variable-field magnetization data of 5.	S12
Figure S7: Variable-temperature, variable-field magnetization data of 6.	S13
Figure S8: Cole-cole plots used for the determination of the field dependence	
of τ for 1 .	S14
Figure S9: Cole-cole plots used for the determination of the field dependence	
of τ for 2 .	S15
Figure S10: Cole-cole plots used for the determination of the field dependence	
of τ for 3 .	S16
Figure S11: Cole-cole plots used for the determination of the field dependence	
of $ au$ for 4.	S17
Figure S12: Cole-cole plots used for the determination of the field dependence	

of τ for 5.	S18
Figure S13 : Frequency dependence of χ_{M} " for 6 under various applied dc fields.	S19
Figure S14: Field dependences of τ for 1-5 with fits.	S20
Figure S15 : Frequency dependence of χ_M ' for 2 at temperatures from 2 to 17 K	S21
Figure S16: Frequency dependence of χ_M ' for 3 at temperatures from 2 to 12 K	S22
Figure S17: Frequency dependence of χ_M ' for 4 at temperatures from 2 to 14 K	S23
Figure S18: Frequency dependence of χ_M ' for 5 at temperatures from 2 to 8 K	S24
Figure S19: Frequency dependence of χ_M '' and χ_M '' for 6 at temperatures from	
1.8 to 3.7 K	S25
Figure S20: Cole-cole plots used for the determination of the <i>T</i> -dependence	
of τ for 1.	S26
Figure S21: Cole-cole plots used for the determination of the <i>T</i> -dependence	
of τ for 2 .	S27
Figure S22: Cole-cole plots used for the determination of the <i>T</i> -dependence	
of τ for 3 .	S28
Figure S23: Cole-cole plots used for the determination of the <i>T</i> -dependence	
of τ for 4.	S29
Figure S24: Cole-cole plots used for the determination of the <i>T</i> -dependence	
of τ for 5.	S30

Derivation of the superimposability index, R_{σ} .

Originally, we had planned to evaluate this index based on deviations from the Brillouin function. We tried, using $S = \frac{1}{2}$ and variable g for each data set, but in all cases the Brillouin function did not adequately represent a master function with which we could compare superimposability. Instead we used eq (S1) as a fitting equation, which would be weighted to fit the three highest-*T* data of the 1 T data set and the three lowest-*T* data of the 7 T set. The values of c_1 , c_2 , c_3 , c_4 , and the exponent *n*, determined from these fits, are given in Table 2.

$$M = \left(\frac{c_1 \left(\frac{H}{T}\right)^n}{c_2 \left(\frac{H}{T}\right)^n + c_3 \left(\frac{H}{T}\right)}\right) + c_4 \qquad (S1)$$

The experimental magnetizations were compared with these ideal, master functions, and the superimposability index, R_{σ} , was then defined according to eq (S2). The master functions for each complex are plotted as black lines in Figs. S1 – S6.

$$R_{\sigma} = \sum_{i} \frac{\left(M_{\exp,i} - M_{calc,i}\right)^2}{M_{\exp,i}} \quad (S2)$$

Fitted coefficients and exponents for derivation of R_{σ} , the superimposability index.						
Complex	c_1	c_2	C ₃	\mathcal{C}_4	n	R_{σ}
1	1.492	0.748	0.081	1.08	3.34	0.029
2	1.487	0.658	0.075	1.01	3.13	0.027
3	2.048	1.018	0.112	0.75	3.08	0.013
4	4.969	3.428	0.494	0.73	3.16	0.062
5	6.094	3.734	0.395	0.44	2.93	0.005
6	5.788	4.354	0.865	0.62	3.38	0.135

Fitted coefficients and exponents for derivation of R_{σ} , the superimposability index

Empirical formula	$C_{50}H_{52}FeN_2Si_2$
Formula weight	552.77
Т, К	95(1)
λ, Å	0.7107
Crystal system	Triclinic
Space group	<i>P</i> –1
Habit	Block
Color	Brown
<i>a</i> , Å	8.8101(5)
b, Å	9.1759(5)
<i>c</i> , Å	11.1624(6)
α , °	102.4670(10)
β, °	92.5030(10)
γ, °	113.9320(10)
V, Å ³	796.59(8)
Ź	1
$\rho_{calc}, g/cm^3$	1.152
μ , mm ⁻¹	0.568
F_{000}	300
Crystal dimensions	$0.368 \times 0.367 \times 0.358 \text{ mm}^3$
2θ range, °	3.78 - 55.02
Index ranges	-10 <= h <= 11
	-11 <= k <= 11
	-14 <= 1 <= 14
Reflections collected	8827
Independent reflections	$3654 [R_{int} = 0.0140]$
Completeness to $2\theta = 55.02$	99.6 %
Data / restraints / parameters	3654 / 167 / 0
Goodness-of-fit on F^2	1.002
Final <i>R</i> indices $[I > 2\sigma(I)]^b$	$R_1 = 0.0345, wR_2 = 0.1035$
<i>R</i> indices (all data)	$R_1 = 0.0376, wR_2 = 0.1065$
Largest diff. peak and hole	$0.484 \text{ and } -0.535 \text{ e}\text{\AA}^3$

Table S1.	Crystallographic	Data ^a	for 1 .
-----------	------------------	-------------------	----------------

^aObtained with graphite-monochromated Mo K α ($\lambda = 0.7107$ Å) radiation. ^b $R_1 = \Sigma ||F_o||F_c||/|F_o|$, $wR_2 = \{\Sigma [w(F_o^2 - F_c^2)^2]/\Sigma [w(F_o^2)^2]\}^{1/2}$.

Empirical formula	$C_{60}H_{76}Fe_{0.93}N_2^{\ c}$
Formula weight	877.17
Т, К	90(2)
λ, Å	0.7107
Crystal system	Monoclinic
Space group	$P2_1/n$
Habit	Block
Color	Red-orange
a, Å	10.8937(18)
b, Å	20.234(3)
<i>c</i> , Å	11.2231(19)
<i>α</i> , °	90
β,°	90.829(3)
γ.°	90
γ, ° <i>V</i> , Å ³	2473.5(7)
Ź	2
ρ_{calc} , g/cm ³	1.178
μ , mm ⁻¹	0.325
F_{000}	948
Crystal dimensions	$0.25 \times 0.17 \times 0.14 \text{ mm}^3$
2θ range, °	4.02 - 50.70
Index ranges	-13 <= h <= 13
-	-24 <= k <= 24
	-13 < =l < =13
Reflections collected	27437
Independent reflections	$4534 [R_{int} = 0.0416]$
Completeness to $2\theta = 50.70$	100.0 %
Data / restraints / parameters	4534 / 0 / 298
Goodness-of-fit on F^2	1.031
Final <i>R</i> indices $[I > 2\sigma(I)]^b$	$R_1 = 0.0338, wR_2 = 0.0800$
<i>R</i> indices (all data)	$R_1 = 0.0449, wR_2 = 0.0857$
Largest diff. peak and hole	$0.359 \text{ and } -0.212 \text{ e}\text{\AA}^3$

^aObtained with graphite-monochromated Mo K α ($\lambda = 0.7107$ Å) radiation. ^b $R_1 = \Sigma ||F_0||F_c||/|F_0|$, $wR_2 = \{\Sigma [w(F_0^2 - F_c^2)^2]/\Sigma [w(F_0^2)^2]\}^{1/2}$. ^cSubstitutional disorder between the complex and free ligand is observed, leading to a model with incomplete Feoccupancy.

Figure S1. Probability ellipsoids of the L-Fe-L moieties for complexes 1-6, depicted at the 80% level. Only the thermal parameters of the Fe ions and their immediate neighbors are depicted. Orange, blue, red, and gray ellipsoids correspond to Fe, N, O, and C atoms, respectively. Cyan, gray, and white spheres correspond to Si, C, and H atoms, respectively. Next-nearest structure around the donor atoms is given to assist in comparison of the principal axes of the ellipsoids with the overall molecular geometry.

Figure S2. Variable field, variable temperature magnetization data collected on 1 from 1 to 7 T at temperatures from 1.8 to 5 K. The black line represents the master equation used to determine the superimposability index, as discussed in the main text and above.

Figure S3. Variable field, variable temperature magnetization data collected on 2 from 1 to 7 T at temperatures from 1.8 to 5 K. The black line represents the master equation used to determine the superimposability index, as discussed in the main text and above.

Figure S4. Variable field, variable temperature magnetization data collected on 3 from 1 to 7 T at temperatures from 1.8 to 5 K. The black line represents the master equation used to determine the superimposability index, as discussed in the main text and above.

Figure S5. Variable field, variable temperature magnetization data collected on 4 from 1 to 7 T at temperatures from 1.8 to 5 K. The black line represents the master equation used to determine the superimposability index, as discussed in the main text and above.

Figure S6. Variable field, variable temperature magnetization data collected on 5 from 1 to 7 T at temperatures from 1.8 to 5 K. The black line represents the master equation used to determine the superimposability index, as discussed in the main text and above.

Figure S7. Variable field, variable temperature magnetization data collected on 6 from 1 to 7 T at temperatures from 1.8 to 5 K. The black line represents the master equation used to determine the superimposability index, as discussed in the main text and above.

Figure S8. Cole-cole plots fit for the determination of the field dependence of τ for 1 at 2 K. Black lines are the result of fits to a generalized Debye model as described in the main text.

Figure S9. Cole-cole plots fit for the determination of the field dependence of τ for **2** at 2 K. Black lines are the result of fits to a generalized Debye model as described in the main text.

Figure S10. Cole-cole plots fit for the determination of the field dependence of τ for **3** at 2 K. Black lines are the result of fits to a generalized Debye model as described in the main text.

Figure S11. Cole-cole plots fit for the determination of the field dependence of τ for 4 at 2 K. Black lines are the result of fits to a generalized Debye model as described in the main text.

Figure S12. Cole-cole plots fit for the determination of the field dependence of τ for 5 at 2 K. Black lines are the result of fits to a generalized Debye model as described in the main text.

Figure S13. Frequency dependence of the out-of-phase susceptibility of **6** as a function of applied field at 2K. Solid lines are a guide for the eye.

Figure S14. Field dependence of τ for 1-5 at 2 K. Black lines represent fits as discussed in the main body of the report.

Figure S15. Frequency dependence of the out-of-phase susceptibility of **2** as a function of temperature. Data were collected under an applied dc field of 500 Oe.

Figure S16. Frequency dependence of the out-of-phase susceptibility of **3** as a function of temperature. Data were collected under an applied dc field of 875 Oe.

Figure S17. Frequency dependence of the out-of-phase susceptibility of 4 as a function of temperature. Data were collected under an applied dc field of 875 Oe.

Figure S18. Frequency dependence of the out-of-phase susceptibility of **5** as a function of temperature. Data were collected under an applied dc field of 2500 Oe.

Figure S19. Frequency dependence of the in-phase (top) and out-of-phase (bottom) susceptibilities of 6 as a function of temperature. Data were collected under an applied dc field of 1000 Oe.

 χ_{M}' (cm³/mol) **Figure S20.** Cole-cole plots of the frequency dependence of χ_{M}' and χ_{M}'' used to evaluate the temperature dependence of τ for 1. Top: data collected from 2 to 9.5 K. Bottom: data collected from 10 to 17 K. Black lines are fits to the general Debye model as described in the main text.

 χ_{M}' (cm³/mol) **Figure S21.** Cole-cole plots of the frequency dependence of χ_{M}' and χ_{M}'' used to evaluate the temperature dependence of τ for **2**. Black lines are fits to the general Debye model as described in the main text.

Figure S22. Cole-cole plots of the frequency dependence of χ_M ' and χ_M '' used to evaluate the temperature dependence of τ for **3**. Black lines are fits to the general debye model as described in the main text.

Figure S23. Cole-cole plots of the frequency dependence of χ_M ' and χ_M '' used to evaluate the temperature dependence of τ for 4. Black lines are fits to the general debye model as described in the main text.

Figure S24. Cole-cole plots of the frequency dependence of χ_M ' and χ_M '' used to evaluate the temperature dependence of τ for 5. Black lines are fits to the general debye model as described in the main text.