Electronic Supplementary Information

Allenoate-Derived 1,5-, 1,7-, and 1,9-Zwitterion as Highly Versatile Coupling Partners for Phosphine-Triggered Cycloaddition Reactions

Wei Meng,^a Hai-Tao Zhao,^a Jing Nie,^a Yan Zheng,^a Aiping Fu,^c Jun-An Ma^{a,b}*

^aDepartment of Chemistry, Tianjin University, Tianjin 30072, China ^bKey Laboratory of Organofluorine Chemistry, CAS, Shanghai 200032, China ^cLaboratory of New Fiber Materials and Modern Textile, Growing Base for State Key Laboratory, Qingdao University, Qingdao 266071, China

Email: majun_an68@tju.edu.cn

Table of Contents

1.	General information	S2
2.	Experimental Details and Spectroscopic Data	S2-S11
3.	ORTEP Representations of Products	S12
4.	Copies of ¹ H, ¹³ C NMR Spectra	S13-S39
5.	Computational Details	S40-S126

1. General information:

All reactions were performed under an Ar atmosphere in oven-dried glassware with magnetic stirring. Reactions were monitored through thin-layer chromatography (TLC). Chromatograms were visualized by fluorescence quenching under UV light at 254 nm. ¹H and ¹³C NMR were recorded on Varian Mercury Plus 400 and 500 instruments at 400 / 500 MHz (¹H NMR) and 100 /125 MHz (¹³C NMR). Chemical shifts were reported in ppm down field from internal Me₄Si. Multiplicity was indicated as follows: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), dd (doublet of doublet), br (broad). Coupling constants were reported in Hertz (Hz). HRMS were recorded on an IonSpec FT-ICR mass spectrometer with MALDI resource. IR spectra were recorded on an AVATAR 360 FT-IR spectrometer. Crystal data were collected on a Bruker Nonius Kappa CCD with a Morotating anode generator, standard procedures were followed.

Materials:

Unless otherwise stated, all solvents and reagents were purchased from commercial suppliers and used without further purification. Dichloromethane employed in the reactions was freshly distilled from CaH₂. Analytical thin layer chromatography was performed on 0.20 mm Qingdao Haiyang silica gel plates. Silica gel (200-300 mesh) (from Qingdao Haiyang Chem. Company, Ltd.) was used for flash chromatography. Ethyl 2,3–butadienoate (1),¹ *N*,*N*'-cyclic azomethine imines² were prepared according to literature procedures. All reactions were performed under argon.

2. Experimental Details and Spectroscopic Data

General procedure for the self-cycloaddition reaction of ethyl allenoate

Into an oven-dried Schlenk was added ethyl 2,3-butadienoate (1), nucleophilic phosphine and dichloromethane (4 ml CH₂Cl₂) under an argon atmosphere. The mixture was stirred at -10 °C for 0.5 h. After recovering to room temperature, the reaction tube was sealed and the reaction mixture was stirred at 40 °C for stated time. Then, the reaction mixture was concentrated, and the residue purified through flash column chromatography (pre-treated with 0.1% NEt₃ in hexane, Hexane/EtOAc = 80/1 to 20/1 as eluent) to afford the corresponding product. The results are listed in Table-SI-1.

$= \underbrace{PR_3}_{CO_2Et} \underbrace{PR_3}_{EtO_2C} \underbrace{CO_2Et}_{EtO_2C} \underbrace{CO_2Et}_{CO_2Et} \underbrace{EtO_2C}_{CO_2Et} \underbrace{EtO_2C}_{CO_2E} Et$											
1		CO ₂ Et 2	2	-	4	Et	O₂Ć \\ 5				
ontru	1	PR ₃	Temp	Time	yield $(\%)^a$						
enti y	(equiv.)	(mol%)	(°C)	(h)	2	3	4	5			
1	2.0	PPh ₃ (10)	25	2	18	-	-	-			
2	2.0	PPh ₃ (100)	25	2	14	-	-	-			
3	2.2	PPh ₃ (100)	40	12	20	-	-	-			
4	2.2	P(<i>n</i> -Bu) ₃ (100)	40	12	15	-	-	-			
5	2.2	P(NMe ₂) ₃ (100)	40	12	22	8	-	-			
6	2.2	P(NEt ₂) ₃ (100)	40	48	36	10	5	-			
7^b	3.0	P(NEt ₂) ₃ (100)	40	240	-	73	8	-			
8^b	4.0	P(NEt ₂) ₃ (100)	40	240	-	52	5	30			
9^b	5.0	P(NEt ₂) ₃ (100)	40	240	-	44	10	28			
10^{b}	6.0	P(NEt ₂) ₃ (100)	40	240	-	48	12	25			

 Table-SI-1. Phosphine-mediated self-cycloaddition of ethyl allenoate (1).

^{*a*} Isolated yield. ^{*b*} The reaction tube was sealed.

Diethyl 2-methylenecyclopent-3-ene-1,3-dicarboxylate (2):³ colorless oil, ¹**H** NMR (CDC1₃, 400 MHz) δ (ppm): 7.06 (t, J = 1.2 Hz, 1H), 5.87 (d, J = 2.4 Hz, 1H), 5.31 (s, 1H), 4.13-4.26 (m, 4H), 3.71-3.75 (m, 1H), 2.98 (dt, J = 3.2, 19.6 Hz, 1H), 2.72 (ddd, J = 2.4, 8.4, 19.6 Hz, 1H), 1.26-1.33 (m, 6H); **IR** (film) v: 1718, 1624, 1259, 1225, 1042, 765 cm⁻¹.

Triethyl 2-methyl-4-methylenecyclohepta-2,7-diene-1,3,5-tricarboxylate (**3**): colorless viscous liquid; ¹**H NMR** (400 MHz, CDCl₃) δ (ppm): 1.23-1.31 (m, 9H), 2.13 (s, 3H), 2.33-2.37 (m, 1H), 2.62-2.65 (m, 1H), 3.75 (dd, J = 4.0, 9.6 Hz, 1H), 4.11-4.24 (m, 6H), 5.08 (s, 1H), 5.22 (s, 1H), 7.18 (t, J = 6.0 Hz, 1H); ¹³**C NMR** (100 MHz, CDCl₃) δ (ppm): 14.0, 14.1, 19.2, 27.6, 29.9, 60.6, 60.8, 60.9, 118.2, 132.4, 137.8, 140.4, 140.9, 142.3, 164.8, 166.9, 171.2; **IR** (film) v: 2981, 1718, 1624, 1446, 1367, 1302, 1259, 1225, 1042, 916, 893, 765 cm⁻¹; **HRMS** (**MALDI**): calcd for $C_{18}H_{24}O_6Na^+$ [M+Na]⁺. 359.1471, found 359.1465.

Tetraethyl 2,5-dimethyl-8,8a-dihydroazulene-1,3,4,6-tetracarboxylate (**4**): colorless viscous liquid; ¹**H NMR** (400 MHz, CDCl₃) δ (ppm): 1.27-1.33 (m, 12H), 1.99 (d, J = 3.2 Hz, 1H), 2.05 (s, 1H), 2.08 (s, 3H), 2.18 (s, 3H), 3.34 (d, J = 7.6 Hz, 1H), 4.16-4.35 (m, 8H), 6.85 (t, J = 6.4 Hz, 1H); ¹³**C NMR** (100 MHz, CDCl₃) δ (ppm): 14.1, 14.2, 17.8, 20.7, 28.7, 60.7, 60.8, 61.1, 125.8, 132.5, 138.8, 139.2, 140.2, 165.6, 166.4, 168.2; **IR** (film) v: 2981, 1718, 1624, 1446, 1367, 1302, 1259, 1225, 1195, 1042, 916, 893, 765 cm⁻¹; **HRMS (MALDI**): calcd for C₂₄H₃₀O₈Na⁺ [M+Na]⁺. 469.1838, found 469.1835.

(2*E*,5*E*,7*E*)-Tetraethyl 2,6-dimethyl-4-methylenecyclonona-2,5,7-triene-1,3,5,7- tetracarboxylate (5): colorless viscous liquid; ¹H NMR (400 MHz, CDCl₃) δ (ppm): 1.24-1.35 (m, 12H), 1.56 (s, 3H), 2.14 (s, 3H), 2.32-2.37 (m, 1H), 2.61-2.68 (m, 1H), 3.76 (dd, *J* = 5.2, 11.6 Hz, 1H), 4.10-4.33 (m, 8H), 5.09 (s, 1H), 5.23 (s, 1H), 7.20 (t, *J* = 7.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 14.3, 14.4, 14.5, 19.5, 27.9, 29.9, 60.8, 61.1, 61.2, 118.5, 132.6, 138.0, 140.6, 141.2, 142.5, 165.4, 167.3, 171.7; IR (film) v: 2981, 1718, 1624, 1446, 1367, 1302, 1259, 1225, 1042, 916, 893, 766 cm⁻¹; HRMS (MALDI): calcd for C₂₄H₃₃O₈⁺ [M+H]⁺. 449.2175, found 449.2174.

³¹P NMR Control Experiments (CD₂Cl₂):

Bottom to top: A) $P(NEt_2)_3$; B) $P(NEt_2)_3$ + ethyl allenoate (1.0 equiv); C) $P(NEt_2)_3$ + ethyl allenoate (2.0 equiv); D₁) $P(NEt_2)_3$ + ethyl allenoate (3.0 equiv); D₂) $P(NEt_2)_3$ + ethyl allenoate (3.0 equiv): at 40 °C for 1 h; D₃) $P(NEt_2)_3$ + ethyl allenoate (3.0 equiv): at 40 °C for 2 h; D₄) $P(NEt_2)_3$ + ethyl allenoate (3.0 equiv): at 40 °C for 2 h; D₄) $P(NEt_2)_3$ + ethyl allenoate (3.0 equiv): at 40 °C for 2 h; D₄) $P(NEt_2)_3$ + ethyl allenoate (3.0 equiv): at 40 °C for 4 h.

General Procedure for the Intermolecular Cycloaddition of Ethyl Allenoate with Electrophiliccoupling Reagents.

Into an oven-dried Schlenk was added ethyl 2,3-butadienoate (1) (247 mg, 2.2 mmol) and P(NEt₂)₃ (247 mg, 1.0 mmol) in dichloromethane (1.0 mL) under an argon atmosphere. After the mixture was stirred at -10 °C for 0.5 h, a solution of electrophilic-coupling reagent (1.0 mmol) in dichloromethane (2.0 mL) was transferred slowly into the Schlenk during 2 h. After recovering to room temperature, the reaction tube was sealed and the reaction mixture was stirred at 40 °C for the stated time. The reaction mixture was concentrated and the residue purified through flash column chromatography (pre-treated with 1% NEt₃ in hexane, Hexane/EtOAc = 20/1 to 4/1 as eluent) to afford the corresponding cycloadduct.

(7E,9Z)-Diethyl 7-methyl-5-(4-nitrophenyl)-1-oxo-2,3,5,6-tetrahydro-1H-pyraa][1,2]diazocine-6,8-dicarboxylate (7a): 80%; yellow solid; ¹H NMR (400 MHz, CDCl₃) δ (ppm): 1.21 (t, *J* = 5.6 Hz, 3H), 1.37 (t, *J* = 6.0 Hz, 3H), 1.39 (s, 3H), 2.29-2.35 (m, 1H), 2.83-2.94 (m, 2H), 3.37-3.44 (m, 1H), 4.09-4.19 (m, 3H), 4.27-4.31 (m, 2H), 4.52 (d, *J* = 2.8 Hz, 1H), 5.49 (dd, *J* = 0.8, 8.4 Hz, 1H), 6.90 (d, *J* = 8.4 Hz, 1H), 7.61-7.63 (m, 1H), 7.88-7.90 (m, 1H), 8.16-8.18 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 14.4, 14.5, 21.4, 28.2, 48.9, 53.9, 60.3, 61.3, 61.6, 105.1, 122.5, 123.1, 123.6, 130.2, 131.2, 132.3, 137.6, 145.0, 148.1, 167.6, 170.2, 172.5; **IR** (film) v: 2981, 2351, 2340, 1710, 1649, 1603, 1526, 1413, 1336, 1290, 1208, 1096, 1065, 1034, 855, 722, 666 cm⁻¹; **HRMS (MALDI**): calcd for C₂₂H₂₅N₃O₇⁺ [M+Na]⁺. 466.1590, found 466.1585.

(7E,9Z)-Diethyl 7-methyl-1-oxo-5-(4-(trifluoromethyl)phenyl)-2,3,5,6-tetrahydro- 1H-pyrazolo[1,2-a][1,2]diazocine-6,8-dicarboxylate (7b): 62%; yellow viscous liquid; ¹H NMR (400 MHz, CDCl₃) δ (ppm): 1.22 (t, *J* = 7.2 Hz, 3H), 1.37 (t, *J* = 6.8 Hz, 3H), 1.42 (s, 3H), 2.27-2.33 (m, 1H), 2.82-3.00 (m, 2H), 3.35-3.44 (m, 1H), 4.12-4.20 (m, 3H), 4.27-4.33 (m, 2H), 4.49 (d, *J* = 3.2 Hz, 1H), 5.49 (d, *J* = 10.4 Hz, 1H), 6.91 (d, *J* = 10.4 Hz, 1H), 7.55-7.59 (m, 2H), 7.63-7.68 (m, 1H), 7.80 (d, *J* = 7.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 14.1, 14.3, 21.2, 22.7, 29.7, 31.9, 48.6, 53.7, 60.3, 61.0, 61.2, 104.8, 122.3, 124.7, 125.2, 129.3, 130.7, 131.4, 138.2, 141.4, 167.4, 170.0, 172.5; IR (film) v: 2919, 2853, 1721, 1649, 1454, 1418, 1321, 1290, 1203, 1116, 1059 cm⁻¹; HRMS (MALDI): calcd for C₂₃H₂₅F₃N₂O₅⁺ [M+Na]⁺. 489.1613, found 489.1608.

(7E,9Z)-Diethyl 5-(4-chlorophenyl)-7-methyl-1-oxo-2,3,5,6-tetrahydro-1H-pyraa][1,2]diazocine-6,8-dicarboxylate (7c): 50%; yellow viscous liquid; ¹H NMR (400 MHz, CDCl₃) δ (ppm): 1.21 (t, J = 7.2 Hz, 3H), 1.36 (t, J = 6.8 Hz, 3H), 1.45 (s, 3H), 2.25-2.31 (m, 1H), 2.80-2.90 (m, 1H), 2.99-3.04 (m, 1H), 3.32-3.41 (m, 1H), 4.08 (d, J = 3.6 Hz, 1H), 4.10-4.18 (m, 2H), 4.25-4.30 (m, 2H), 4.40 (d, J = 3.6 Hz, 1H), 5.46 (dd, J = 0.8, 10.4 Hz, 1H), 6.89 (d, J = 10.4 Hz, 1H), 7.27 (s, 1H), 7.29 (s, 1H), 7.33-7.36 (m, 1H), 7.57-7.59 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 14.1, 14.2, 21.3, 28.1, 29.7, 48.4, 53.6 (d, J = 4.7 Hz), 60.0 (d, J = 3.7 Hz), 60.9, 61.1, 104.8, 122.2 (d, J = 10.4 Hz), 127.9, 128.6, 130.2, 130.5, 132.2, 134.2, 135.8, 138.6, 167.5, 170.1, 172.6; IR (film) v: 2924, 2847, 1721, 1644, 1418, 1336, 1280, 1214, 1091, 1075, 1024, 1019 cm⁻¹; HRMS (MALDI): calcd for C₂₂H₂₆ClN₂O₅⁺ [M+H]⁺. 433.1530, found 433.1525.

(7E,9Z)-Diethyl 5-(4-bromophenyl)-7-methyl-1-oxo-2,3,5,6-tetrahydro-1H-pyra- zolo[1,2-a][1,2]diazocine-6,8-dicarboxylate (7d): 53%; yellow viscous liquid; ¹H NMR (400 MHz, CDCl₃) δ (ppm): 1.21 (t, *J* = 7.2 Hz, 3H), 1.36 (t, *J* = 7.2 Hz, 3H), 1.46 (s, 3H), 2.25-2.31 (m, 1H), 2.75-2.90 (m, 1H), 2.99-3.04 (m, 1H), 3.32-3.41 (m, 1H), 4.08 (d, *J* = 3.6 Hz, 1H), 4.10-4.18 (m, 2H), 4.25-4.31 (m, 2H), 4.39 (d, *J* = 3.2 Hz, 1H), 5.46 (d, *J* = 10.4 Hz, 1H), 6.89 (d, *J* = 10.4 Hz, 1H), 7.28-7.30 (m, 1H), 7.43-7.45 (m, 2H), 7.51-7.53 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 14.1, 14.3, 21.3, 28.1, 48.4, 53.6, 60.1, 60.9, 61.1, 104.8, 122.2, 122.4, 130.5, 130.6, 130.9, 131.6, 132.6, 136.3, 138.5, 167.5, 170.0, 172.5; **IR** (film) v: 2975, 2924, 2842, 1716, 1644, 1495, 1413, 1331, 1290, 1214, 1070, 1034, 1014, 814, 747 cm⁻¹; **HRMS (MALDI**): calcd for C₂₂H₂₆BrN₂O₅⁺ [M+H]⁺. 477.1025, found 477.1020.

(7E,9Z)-Diethyl 7-methyl-1-oxo-5-phenyl-2,3,5,6-tetrahydro-1H-pyrazolo[1,2-a]- [1,2]diazocine-6,8dicarboxylate (7e): 30%; light yellow viscous liquid; ¹H NMR (400 MHz, CDCl₃) δ (ppm): 1.22 (t, *J* = 7.2 Hz, 3H), 1.36 (t, *J* = 7.2 Hz, 3H), 1.46 (s, 3H), 2.24-2.30 (m, 1H), 2.80-2.92 (m, 1H), 3.04-3.09 (m, 1H), 3.33-3.41 (m, 1H), 4.11-4.18 (m, 3H), 4.24-4.34 (m, 2H), 4.45 (d, *J* = 3.6 Hz, 1H), 5.47 (dd, *J* = 0.8, 10.4 Hz, 1H), 6.90 (d, *J* = 10.4 Hz, 1H), 7.29-7.33 (m, 3H), 7.38-7.39 (m, 1H), 7.59-7.61 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 14.1, 14.3, 21.4, 29.7, 30.0, 48.4, 53.4, 60.8, 61.0, 104.8, 122.2, 127.7, 128.3, 128.4, 128.8, 130.2, 130.8, 137.2, 139.4, 167.6, 170.1, 172.7; IR (film) v: 2940, 2858, 1721, 1669, 1613, 1598, 1459, 1418, 1116, 671, 609, 548 cm⁻¹; HRMS (MALDI): calcd for C₂₂H₂₆N₂O₅Na⁺ [M+Na]⁺, 421.1739, found 421.1734.

(7E,9Z)-Diethyl 7-methyl-1-oxo-5-p-tolyl-2,3,5,6-tetrahydro-1H-pyrazolo[1,2-a] -[1,2]diazocine-6,8dicarboxylate (7f): 26%; light yellow viscous liquid; ¹H NMR (400 MHz, CDCl₃) δ (ppm): 1.22 (t, J =7.2 Hz, 3H), 1.36 (t, J = 6.8 Hz, 3H), 1.49 (s, 3H), 2.22-2.28 (m, 1H), 2.33 (s, 3H), 2.74-2.91 (m, 1H), 3.05-3.10 (m, 1H), 3.31-3.40 (m, 1H), 4.09-4.19 (m, 3H), 4.25-4.33 (m, 2H), 4.40 (d, J = 3.6 Hz, 1H), 5.46 (dd, J = 0.8, 10.4 Hz, 1H), 6.89 (d, J = 10.4 Hz, 1H), 7.10 (d, J = 8 Hz, 2H), 7.24-7.27 (m, 1H), 7.45-7.47 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm):14.2, 14.3, 21.5, 29.7, 48.3, 53.8, 60.6, 60.8, 60.9, 104.8, 122.2, 128.3, 128.6, 129.1, 130.0, 130.7, 134.2, 138.0, 139.7, 167.6, 170.1, 172.8; **IR** (film) v: 2919, 2858, 1721, 1644, 1424, 1331, 1290, 1219, 1060, 824, 742 cm⁻¹; **HRMS (MALDI**): calcd for C₂₃H₂₈N₂O₅⁺ [M+Na]⁺. 435.1896, found 435.1890.

Diethyl 4-(anthracen-9-yl)-2-methylcyclohepta-4,6-diene-1,3-dicarboxylate (9): 77%; colorless solid; ¹H NMR (400 MHz, CDCl₃) δ (ppm): 0.18 (t, J = 7.2 Hz, 3H), 1.44 (t, J = 7.2 Hz, 3H), 2.07 (s, 3H), 3.25-3.45 (m, 2H), 2.18 (s, 3H), 4.36-4.48 (m, 2H), 6.02-6.06 (m, 1H), 6.55 (dd, J = 5.6, 8.8 Hz, 1H), 6.84 (d, J = 5.6 Hz, 1H), 7.43-7.49 (m, 4H), 7.86 (d, J = 8 Hz, 1H), 7.98-8.0 (m, 2H), 8.35-8.38 (m, 1H), 8.44 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 12.8, 14.4, 17.9, 49.6, 60.4, 61.4, 121.1, 125.0, 125.4, 125.7, 125.9, 126.0, 127.3, 127.5, 128.2, 128.4, 129.9, 130.3, 131.0, 131.6, 132.2, 135.2, 135.5, 137.3, 167.9, 171.6; **IR** (film) v: 3051, 2982, 2034, 1731, 1600, 1445, 1369, 1316, 1261, 1224, 1170, 1055, 1026, 736 cm⁻¹; **HRMS (MALDI**): calcd for C₂₈H₂₇O₄⁺ [M+H]⁺. 427.1909, found 427.1904.

(4S,5S)-Pentaethyl 2-methyl-4,5,8,8a-tetrahydroazulene-1,3,4,5,6-pentacarboxyl- ate (11): 63%; colorless viscous liquid; ¹H NMR (400 MHz, CDCl₃) δ (ppm): 1.18 (t, *J* = 7.2 Hz, 3H), 1.25-1.26 (m, 3H), 1.29-1.37 (m, 9H), 2.18 (s, 3H), 2.35 (t, *J* = 6.8 Hz, 2H), 3.84 (dd, *J* = 6.8, 13.2 Hz, 1H), 3.96-4.03 (m, 2H), 4.04-4.13 (m, 2H), 4.15-4.27 (m, 8H), 7.22 (t, *J* = 7.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 14.2, 14.4, 19.7, 27.9, 29.9, 46.9, 55.0, 61.0, 61.1, 61.2, 61.3, 61.5, 129.8, 137.9, 142.7, 145.0, 164.6, 167.1, 171.9, 173.4; **IR** (film) v: 2981, 1718, 1624, 1446, 1367, 1302, 1259, 1225, 1195 cm⁻¹; **IR** (film) v: 2981, 1718, 1624, 1446, 1367, 1302, 1259, 1225, 1195 cm⁻¹; **IR** (film) v: 2981, 1718, 1624, 1446, 1367, 1302, 1259, 1225, 1195 cm⁻¹; **IR** (film) v: 2981, 1718, 1624, 1446, 1367, 1302, 1259, 1225, 1195 cm⁻¹; **IR** (film) v: 2981, 1718, 1624, 1446, 1367, 1302, 1259, 1225, 1195 cm⁻¹; **IR** (film) v: 2981, 1718, 1624, 1446, 1367, 1302, 1259, 1225, 1195 cm⁻¹; **IR** (film) v: 2981, 1718, 1624, 1446, 1367, 1302, 1259, 1225, 1195 cm⁻¹; **IR** (film) v: 2981, 1718, 1624, 1446, 1367, 1302, 1259, 1225, 1195 cm⁻¹; **IR** (film) v: 2981, 1718, 1624, 1446, 1367, 1302, 1259, 1225, 1195 cm⁻¹; **IR** (film) v: 2981, 1718, 1624, 1446, 1367, 1302, 1259, 1225, 1195 cm⁻¹; **IR** (film) v: 2981, 1718, 1624, 1446, 1367, 1302, 1259, 1225, 1195 cm⁻¹; **IR** (film) v: 2981, 1718, 1624, 1446, 1367, 1302, 1259, 1225, 1195 cm⁻¹; **IR** (film) v: 2981, 1718, 1624, 1446, 1367, 1302, 1259, 1225, 1195 cm⁻¹; **IR** (film) v: 2981, 1718, 1624, 1446, 1367, 1302, 1259, 1225, 1195 cm⁻¹; **IR** (film) v: 2981, 1718, 1624, 1446, 1367, 1302, 1259, 1225, 1195 cm⁻¹; **IR** (film) v: 2981, 1718, 1624, 1446, 1367, 1302, 1259, 1225, 1195 cm⁻¹; **IR** (film) v: 2981, 1718, 1624, 1446, 1367, 1302, 1259, 1255, 1195 cm⁻¹; **IR** (film) v: 2981, 1718, 1624, 1446, 1367, 1302, 1259, 1255, 1195 cm⁻¹; **IR** (film) v: 2981, 1718, 1624, 146, 1367, 1302, 1259, 1255, 1195 cm⁻¹; **IR** (film) v: 2981, 1718, 1624, 1466, 1367, 1

General procedure for the isotopic labeling experiments of the self-cycloaddition reaction of ethyl allenoate.

Into an oven-dried Schlenk was added ethyl 2,3-butadienoate **1** (336 mg, 3.0 equiv), $P(NEt_2)_3$ (247 mg, 1.0 equiv), D_2O (5 mg, 0.25 equiv), and dichloromethane (4 ml CH₂Cl₂) under an argon atmosphere. The mixture was stirred at -10 °C for 0.5 h. After recovering to room temperature, the reaction tube was sealed and the reaction mixture was stirred at 40 °C for 240 h. Then, the reaction mixture was concentrated, and the residue purified through flash column chromatography (pre-treated with 0.1% NEt₃ in hexane, Hexane/EtOAc = 80/1 to 20/1 as eluent) to afford the corresponding product (111 mg, 33%). The ratio of D over H in the product was measured based on the integrations of olefinic protons and methylic protons on the seven-member-ring versus the methylic protons in ethoxyl groups.

A control experiment was performed with D-labeled cycloadduct **3** in D_2O (1.0 equiv). The analysis of ¹H NMR spectra indicated no deuterium and hydrogen exchange occurred.

General procedure for the isotopic labeling experiments of the Intermolecular Cycloaddition of Ethyl Allenoate with Azomethine Imines 6.

Into an oven-dried Schlenk was added ethyl 2,3-butadienoate **1** (247 mg, 2.2 mmol), D₂O (5 mg, 0.25 equiv), and P(NEt₂)₃ (247 mg, 1.0 mmol) in dichloromethane (1.0 mL) under an argon atmosphere. After the mixture was stirred at -10 °C for 0.5 h, a solution of Azomethine Imines **6** (219 mg, 1.0 mmol) in dichloromethane (6.0 mL) was transferred slowly into the Schlenk during 2 h. After recovering to room temperature, the reaction tube was sealed and the reaction mixture was stirred at 40 °C for 48 h. The reaction mixture was concentrated and the residue purified through flash column chromatography (pre-treated with 1% NEt₃ in hexane, Hexane/EtOAc = 20/1 to 4/1 as eluent) to afford the corresponding cycloadduct **7a** (128 mg, 29%). The ratio of D or H in the product was measured based on the integrations

of olefinic protons and methylic protons on the eight-member-ring versus the methylic protons in ethoxyl groups.

Two control experiments were performed with ethyl allenoate and cycloadduct **7a** in D_2O (1.0 equiv). The analysis of ¹H NMR spectra indicated no deuterium and hydrogen exchange occurred.

3. Crystallographic Data for 7a and 9

Crystallographic data for **7a** and **9** have been deposited with the Cambridge Crystallographic Data Centre as supplementary numbers CCDC 839605 and 839553, respectively. These data can be obtained free of charge via www.ccdc.cam.ac.uk/ data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

ORTEP Representations of 7a and 9

References:

- [1] R. W. Lang, H. Hansen, Org. Synth. 1990, 7, 232.
- [2] a) R. Shintani, G. C. Fu, J. Am. Chem. Soc. 2003, 125, 10778; b) A. Suárez, C. W. Downey, G. C. Fu, J. Am. Chem. Soc. 2005, 127, 11244; c) R. Shintani, T. Hayashi, J. Am. Chem. Soc. 2006, 128, 6330.
 [2] G. Zhang, Y. Lu, J. O., Ch., 1005, 60, 2006.
- [3] C. Zhang, X. Lu, J. Org. Chem. 1995, 60, 2906.

4. Copies of ¹H, ¹³C NMR Spectra

2D NMR HMBC

2D NMR COSY

2D NMR NOESY

2D NMR HMQC

ò

90 80 f1 (ppm)

2D NMR HMBC

2D NMR NOESY

2D NMR HMQC

7b

S29

7c

7d

7f

11

2D NMR HMBC

2D NMR COSY

2D NMR NOESY

S38

2D NMR HMQC

MHz

5. Computational Details

All of the DFT calculations were performed with the Gaussian 03 program package.⁴ The geometry optimization of all the minima and transition states involved were performed at the B3LYP⁵ levels of theory with the hybrid 6-31G* basis set⁶ used. The vibrational frequencies were computed at the same level of theory to check whether the optimized geometrical structure is at an energy minimum or a transition state and to evaluate the zero-point vibration energy (ZPE). IRC calculations⁷ were used to confirm that each transition state is connected with its related reactant(s) and product(s). Solvent effects were computed by the CPCM⁸ method at the B3LYP/6-31G* level using the gas phase optimized structures. These methods have been shown to give very good solvation energies that are comparable with the experimentally measured ones.^{8e,9} This solvation method has also been widely applied in studying organic and organometallic reaction mechanisms.¹⁰ Even though the calculated relative free energies for bi- and tri-molecular reactions in solution are somehow overestimated, it is still important to carry out such calculations in order to know how solvent affects reactions like the phosphine-triggered cycloaddition reactions.¹⁰ E₀ is the ZPE corrected relative electronic energy in the gas phase. The G_{sol} values in dichloromethane were calculated by adding the solvation energies to the computed gas phase relative free energies (G₂₉₈).

- 4 Gaussian 03, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Wallingford CT, 2004.
- 5 (a) R. Ditchfield, W. J. Hehre and J. A. Pople, J. Chem. Phys., 1971, 54, 724; (b) W. J. Hehre, R. Ditchfield and J. A. Pople, J. Chem. Phys., 1972, 56, 2257; (c) P. C. Hariharan and J. A. Pople, Theor. Chim. Acta, 1973, 28, 213; (d) A. D. Becke, J. Chem. Phys., 1993, 98, 5648; (e) C. Lee, W. Yang and R. G. Parr, Phys. Rev. B, 1988, 37, 785.
- 6 W. J. Hehre, L. Radom, P. v. R. Schleyer and J. A. Pople, *Ab Initio Molecular Orbital Theory*; Wiley: New York, 1986.

- 7 (a) K. Fukui, J. Phys. Chem., 1970, 74, 4161; (b) C. Gonzalez and H. B. Schlegel, J. Chem. Phys., 1989, 90, 2154; (c) C. Gonzalez and H. B. Schlegel, J. Phys. Chem., 1990, 94, 5523.
- 8 (a) A. Klamt and G. Schuurmann, J. Chem. Soc. Perkin Trans. II, 1993, 799; (b) J. Andzelm, C. Kolmel and A. Klamt, J. Chem. Phys., 1995, 103, 9312; (c) V. Barone and M. Cossi, J. Phys. Chem. A, 1998, 102, 1995; (d) M. Cossi, N. Rega, G. Scalmani and V. Barone, J. Comput. Chem., 2003, 24, 669; (e) Y. Takana and K. N. Houk, J. Chem. Theory Comput., 2005, 1, 70; (f) T. Dudding, O. Kwon and E. Mercier, Org. Lett., 2006, 8, 3643; (g) Y. Xia, Y. Liang, Y. Chen, M. Wang, L. Jiao, F. Huang, S. Liu, Y. Li and Z.-X. Yu, J. Am. Chem. Soc., 2007, 129, 3470.
- 9 (a) S. Bahmanyar and K. N. Houk, J. Am. Soc. Chem., 2001, 123, 12911; (b) F. R. Clemente and K. N. Houk, Angew. Chem. Int. Ed. 2004, 43, 5766; (c) J. Oxgaard and W. A. Goddard, III J. Am. Soc. Chem., 2004, 126, 442; (d) A. Dehestani, W. H. Lam, D. A. Hrovat, E. R. Davidson, W. T. Borden and J. M. Mayer, J. Am. Soc. Chem., 2005, 127, 3423.
- 10 (a) Z.-X. Yu and K. N. Houk, J. Am. Chem. Soc., 2003, 125, 13825; (b) Z.-X. Yu, P. Caramella and K. N. Houk, J. Am. Chem. Soc., 2003, 125, 15420; (c) Z.-X. Yu, P. A. Wender and K. N. Houk, J. Am. Chem. Soc., 2004, 126, 9154.

Coordinates and Geometries of All Stationary Points (Distances are in angstrom) **Standard coordinate and geometry of 1:**

8	-0.001207	1.158705	-0. 502862
6	2.307817	-0.236571	-0. 469875
1	2. 918921	-1.070164	-0.825409
1	2.168659	0.483768	-1.279857
6	2.925968	0.425506	0.753350
1	3. 924224	0.805207	0.506184
1	2. 311391	1.266647	1.086123
1	3. 024012	-0.290411	1.576173

Standard coordinate and geometry of phosphine P(CH₃)₃:

Standard coordinate and geometry of $TS_{1,3-zwitterion}$:

P - C1	= 2.076		
6	-0.618256	-0.674962	2.276219
1	-1. 419257	-1.403440	2.378937
1	0.135543	-0.646538	3.060372
6	-0.515926	0.153844	1.238089
6	0.365460	1.144598	0.786020
6	1.585602	0.905479	0.071364
8	1.772342	-0. 439931	-0.241662
8	2. 404769	1.756019	-0.260915
6	3. 025368	-0.763232	-0.861272
1	2.836926	-1.692820	-1.408977
1	3. 293196	0.025111	-1.570283
6	4.132469	-0.952488	0.169164
1	5.060256	-1.271258	-0.321936
1	4. 323590	-0.010204	0.690124
1	3.852264	-1.713620	0.905791
15	-2.061645	-0.132161	-0.118749
1	0.134584	2.191041	0.964759
6	-2.604359	1.570934	-0. 584955
1	-3.270755	1.970528	0. 185595
1	-1.716606	2.204569	-0.656808
1	-3.126596	1.565015	-1.546325

6	-3.672953	-1.082358	0.005767
1	-3. 457565	-2.137958	0.195424
1	-4.263156	-0.691026	0.839663
1	-4. 259222	-0.999207	-0.917130
6	-1.256908	-0.813100	-1.636312
1	-0.243729	-0.410400	-1.698601
1	-1.189328	-1.901376	-1.547163
1	-1.825335	-0. 556995	-2.536095

Standard coordinate and geometry of IN_{1,3-zwitterion}:

6	3. 285301	-0.767764	0.134526
1	3. 749849	-0.546891	-0.828452
1	3. 736439	-0.139565	0.905869
1	3. 457126	-1.821344	0.377090
6	0. 921170	-1.601685	-1.290108
1	1.454618	-1.311354	-2. 200053
1	1. 165131	-2.638971	-1.039774
1	-0. 151187	-1.481474	-1.434208
6	0.856916	-1.046941	1.714223
1	0. 281554	-0.229266	2. 150783
1	0. 211388	-1.920430	1.611006
1	1.710381	-1.289112	2.353793

Standard coordinate and geometry of TS_{1,5-zwitterion}:

6	0. 212258	0.709996	2.591297
1	-0.740324	1.212559	2.456836
1	0.671543	0.801803	3. 575201
6	-1.257264	1.283718	-0.008794
8	-2. 447132	0.957464	0.148726
8	-0.862719	2.578661	0.043520
6	-1.876231	3.569067	0. 300393
1	-1.337350	4.393474	0.775070
1	-2. 607690	3.163572	1.004189
6	-0. 410337	-0.975326	-0.663928
6	0. 576713	-1.750706	-1.189038
1	0. 470457	-2.802097	-1. 423587
1	1.532660	-1.303382	-1. 436657
15	-1.977349	-1.819513	-0.270627
6	-2. 552149	4.021899	-0.987245
1	-3. 108983	3.195408	-1. 438497
1	-3. 254505	4.837308	-0. 777137
1	-1.810853	4. 382715	-1.707931
6	4. 329331	0.494766	-2. 027191
1	3. 449817	0.798681	-2.606721
1	5. 223027	0.867711	-2.542841
1	4. 378813	-0. 597393	-1.998412
6	-2. 490966	-1.685471	1. 489238
1	-1.604249	-1.812238	2. 115671
1	-2.907132	-0.693015	1.654821
1	-3. 226939	-2.463484	1.714096
6	-3. 380949	-1.397664	-1.382408
1	-4. 245975	-2.018610	-1.128548
1	-3. 616815	-0.342062	-1.254805
1	-3. 081019	-1.598488	-2. 415097
6	-1.748118	-3.632714	-0.530624
1	-0.946403	-4.007076	0. 110129
1	-2.683111	-4.138687	-0. 271779
1	-1. 508110	-3.850404	-1. 573788

Standard coordinate and geometry of $IN_{1,5\text{-zwitterion}}$:

	C3 C1	P-C1 = 1.853 C2-C3 = 1.546	
6	-1. 215075	0.026232	1. 417253
1	-1.534557	0.537153	2. 325682
6	-2.324087	-0.753912	0.887622
8	-1.934921	-1.865090	0.175857
8	-3. 512384	-0.463107	1.015316
6	-2.991046	-2.667479	-0.380634
1	-2.555565	-3.666690	-0. 477604
1	-3.821407	-2.704297	0. 329073
6	0. 153283	-0.522607	1. 451216
6	0.774044	-0.625833	0. 039439
1	0.658238	-1.651470	-0.324702
6	0.864481	-0.766660	2.562213
1	1.909734	-1.061529	2.537945
1	0. 403892	-0.689472	3. 543390
6	2. 255328	-0.268418	0.043234
8	2.697406	0.864169	-0.025444
8	3. 027443	-1.367413	0. 148073
6	4. 461360	-1.155887	0. 204173
1	4.840174	-2.033843	0.732617
1	4.661169	-0.259401	0. 795911
6	0.039166	0.317939	-0. 896145
6	-0.228849	0.018565	-2. 170040
1	-0.754655	0.690310	-2.842231

0.058493	-0.944294	-2. 588613
-0.674481	1.843214	-0.122501
5.057788	-1.041436	-1.190728
4.678718	-0.150403	-1.698815
6.148831	-0.960769	-1.122138
4.815621	-1.924139	-1.791706
-3.464724	-2.142238	-1.730154
-2.631477	-2.073103	-2. 438016
-4. 220366	-2.815903	-2.152408
-3.913207	-1.151973	-1.612607
0.196886	2.628625	1. 313782
-0.197863	2.292814	2.269961
1.253834	2.364251	1.233252
0.089738	3.713033	1.216065
-2. 477706	2.256302	-0.250901
-2.804657	2.065559	-1.278149
-3.085596	1.666121	0. 435491
-2.583352	3.328340	-0.054123
-0.057353	3.096000	-1. 415939
-0. 451642	2.875780	-2. 412296
-0.363350	4. 112801	-1.146926
1.035156	3.049268	-1.458300
	0.058493 - 0.674481 5.057788 4.678718 6.148831 4.815621 - 3.464724 - 2.631477 - 4.220366 - 3.913207 0.196886 - 0.197863 1.253834 0.089738 - 2.477706 - 2.804657 - 3.085596 - 2.583352 - 0.057353 - 0.451642 - 0.363350 1.035156	0.058493 -0.944294 -0.674481 1.843214 5.057788 -1.041436 4.678718 -0.150403 6.148831 -0.960769 4.815621 -1.924139 -3.464724 -2.142238 -2.631477 -2.073103 -4.220366 -2.815903 -3.913207 -1.151973 0.196886 2.628625 -0.197863 2.292814 1.253834 2.364251 0.089738 3.713033 -2.477706 2.256302 -2.804657 2.065559 -3.085596 1.666121 -2.583352 3.328340 -0.057353 3.096000 -0.451642 2.875780 -0.363350 4.112801 1.035156 3.049268

Standard coordinate and geometry of $TS_{1,7\text{-zwitterion}}$:

1	-1.349615	-0.011372	-0. 165783
6	-0. 593107	1.889309	0.381702
8	0.389261	2.806062	0.032026
8	-1.412834	2.147804	1.269900
6	0.255771	4.117264	0.604372
1	0.713339	4. 790181	-0.127967
1	-0.806580	4.356557	0.696346
6	0.615382	0.144180	-1.088750
6	1.923944	0.231832	-0.269256
1	2.339712	1.238177	-0.384900
6	0.565425	-0.534794	-2.246609
1	1.430904	-1.036797	-2.669688
1	-0.362816	-0.607834	-2. 799499
6	2.967498	-0.789224	-0. 695958
8	3.063190	-1.909569	-0.218041
8	3. 761862	-0.319813	-1.668926
6	4. 767614	-1.221875	-2. 199498
1	4. 930885	-0.867398	-3.219648
1	4.354118	-2.232650	-2.226235
6	1.635221	0.029512	1.212075
6	2. 189198	0.793081	2.163053
1	2.010241	0.657107	3. 226503
1	2.832603	1.625894	1.894084
15	0. 526776	-1.314608	1.790252
6	6.044860	-1.165830	-1.375404
1	5.867426	-1.537961	-0.362279
1	6.814307	-1.791840	-1.841657
1	6. 425490	-0.140963	-1.316149
6	0.942148	4.242365	1.959183
1	2.009761	4.004877	1.884985
1	0.849538	5.269100	2.334545
1	0. 474492	3.566944	2.680571
6	-2.101430	1.386954	-1.947950
6	-1.391371	2.085808	-2.816728

1	-0.394936	2.456355	-2.604248
1	-1.799792	2.284205	-3.807903
6	-3.335886	0.963982	-1.558907
1	-4.119412	1.698325	-1.392995
6	-3.634585	-0.398166	-1.209056
8	-2.848705	-1.351660	-1.156338
8	-4.965117	-0.552487	-0.901196
6	-5.390117	-1.870738	-0. 534924
1	-6.448843	-1.911519	-0.809476
1	-4.837360	-2.607941	-1.123822
6	-5.206231	-2.126556	0.956940
1	-5.610672	-3.109590	1.228368
1	-4. 142696	-2.106038	1.213324
1	-5.723533	-1.363632	1. 548397
6	-0.832763	-0.624564	2.815990
1	-0. 430387	-0.309185	3. 783380
1	-1.279008	0.242789	2. 311220
1	-1.584212	-1.403144	2.979569
6	1.554238	-2.375587	2.897265
1	2.364146	-2.798217	2. 297147
1	1.979813	-1.781126	3. 709490
1	0.941815	-3.177816	3. 320068
6	-0.142889	-2.482673	0.546696
1	0.676197	-2.800912	-0.099642
1	-0.517814	-3.342560	1. 113399
1	-0.953830	-2.053062	-0.046860

Standard coordinate and geometry of IN_{1,7-zwitterion}:

1	0.785126	0.025031	2.790278
15	-0.660380	-2.568783	0.500025
6	5. 324427	-2.278640	-0. 438131
1	4.689194	-3.078887	-0.047140
1	6. 154564	-2.737669	-0.986842
1	5. 739454	-1.712534	0. 401913
6	3. 634192	3.024060	1.695550
1	4. 170323	2.283028	1.092206
1	4. 369876	3.703430	2.142092
1	3. 108048	2.511020	2. 506114
6	-1.193618	2.448607	-1.011177
6	-0.723523	3. 565450	-1.629804
1	0.292986	3.916606	-1. 506374
1	-1.373390	4.148789	-2.277132
6	-2.545225	1.978395	-1.161188
1	-3. 211120	2.611055	-1.740338
6	-3.109880	0.813264	-0.665540
8	-2.582801	-0.138336	-0.000773
8	-4.468261	0.709729	-1.005593
6	-5.213426	-0.344173	-0. 421003
1	-6.065655	-0.502836	-1.092467
1	-4.619315	-1.265297	-0. 396772
6	-5.704888	0.006150	0.983065
1	-6.333612	-0.797236	1. 389648
1	-4.853888	0.159033	1.654049
1	-6.294215	0.929182	0.962536
6	0. 233755	-4.146293	0.824674
1	1.138056	-4.182008	0.216798
1	0. 496487	-4.201653	1.885011
1	-0. 422356	-4.985659	0. 573429
6	-2.204313	-2.642324	1. 480619
1	-1.994313	-2.812242	2.539222
1	-2.722597	-1.691252	1. 306799
1	-2.804914	-3. 475990	1. 103119

6	-1.134115	-2.502303	-1.260468
1	-0.242143	-2.488323	-1.885054
1	-1.733554	-3.393258	-1.475487
1	-1.733765	-1.593935	-1.371725

Standard coordinate and geometry of $TS_{1,9-zwitterion}$:

6	0.638116	1.190280	-0.280859
1	0.342021	0.572659	0.568245
6	0.901503	2.594131	0.266307
8	0.064809	2.866851	1.287217
8	1.752674	3.362165	-0.140954
6	0.061430	4.220284	1.798140
1	-0.242183	4.115132	2.842919
1	1.077404	4.620781	1.750623
6	1.916731	0.599861	-0.867869
6	3. 025908	0.378127	0.178585
1	3. 132784	1.329803	0.711396
6	2.091529	0.330291	-2.162125
1	3. 014007	-0.089711	-2.553310
1	1.303740	0.539013	-2.877082
6	4. 380242	0.093954	-0.454373
8	4.820359	-1.028577	-0.659415
8	5. 020598	1.218921	-0.763663
6	6.305125	1.104633	-1.435377
1	6.378612	2.025438	-2.017004
1	6.271917	0.246666	-2.110582
6	2.660828	-0.671244	1.228039

6	2.350146	-0.305653	2.477859
1	2.038186	-1.000231	3.251221
1	2.373662	0.741816	2.769045
15	2.613245	-2.479323	0.862625
6	7.438156	0.982077	-0.428903
1	7.358457	0.048168	0.135309
1	8. 399419	0.983251	-0.954961
1	7.429179	1.823069	0.271616
6	-0.918404	5.085129	1.019497
1	-1.918693	4.642144	1.034873
1	-0. 969793	6.085308	1.465651
1	-0. 599044	5. 188185	-0.021784
6	-0. 553525	1.217630	-1.249592
6	-0. 669170	2.237542	-2. 129338
1	0.052096	3.047591	-2.169582
1	-1. 502396	2.283256	-2.825118
6	-1.561255	0.160048	-1.160938
1	-2. 318053	0.214748	-1.934031
6	-1. 291365	-1.183823	-0. 747149
8	-0. 344930	-1.593197	-0. 029800
8	-2. 267359	-2.040050	-1.161875
6	-2. 451861	-3.249536	-0. 415373
1	-1.676254	-3.978133	-0. 691830
1	-2.347049	-3.031369	0.653199
6	-3.849362	-3.758791	-0. 725967
1	-4. 035693	-4.697965	-0. 190705
1	-4. 587127	-3.015296	-0. 408466
1	-3.966446	-3.944813	-1.799423
8	-5. 449945	-0.905936	0. 596913
6	-5. 316713	0.144578	-0. 030998
6	-4. 147352	0.970020	-0.168848
8	-6.380854	0.701454	-0. 729080
6	-2.948711	0.605242	0. 389783
1	-4. 210388	1.810144	-0.854803

6	-7.622527	-0.000718	-0.640222
6	-2.370386	0.362776	1.557972
1	-8.171969	0.277927	-1.546262
1	-7. 434903	-1.078473	-0.651624
6	-8.405760	0.386754	0.610349
1	-2.858193	0.702180	2. 470424
1	-1. 437923	-0.180460	1.667021
1	-9.386858	-0.105238	0.616668
1	-7.856680	0.078049	1.504329
1	-8.562668	1.470601	0.649331
6	1.284364	-3.266502	1.847915
1	1. 426873	-3.104387	2. 918452
1	0. 337759	-2.841503	1. 497867
1	1.311018	-4.342738	1.649278
6	4. 196766	-3.237414	1. 412637
1	5.011714	-2.832717	0.812131
1	4. 361551	-3.006642	2.468868
1	4. 136640	-4.322875	1.286406
6	2. 304349	-2.931646	-0.878702
1	3. 092041	-2.528000	-1.512549
1	2. 297606	-4.025365	-0.934236
1	1.321304	-2.531397	-1.138351

Standard coordinate and geometry of $IN_{1,9-zwitterion}$:

6	-0.777889	1.491499	0.279727
1	-0.051198	0.995227	-0.371305
6	-1.591573	2.332188	-0.720456
8	-1.988575	3.526170	-0.260392
8	-1.877453	1.915370	-1.831264
6	-2.754483	4.353434	-1.170812
1	-2.565136	5.373015	-0.826935
1	-2.353529	4.228388	-2.178930
6	-1.700314	0.379498	0.809872
6	-2.002918	-0.690040	-0.257430
1	-2.272060	-0.138804	-1.165096
6	-2.183043	0.321445	2.053064
1	-2.837504	-0.482446	2.379233
1	-1.923362	1.067415	2.795040
6	-3.206516	-1.552347	0.078851
8	-3. 155393	-2.698777	0.499209
8	-4.350909	-0.897555	-0.150003
6	-5. 591483	-1.592538	0.140250
1	-6.300164	-0.790122	0.356269
1	-5. 450990	-2.205086	1.033957
6	-0.747733	-1.487400	-0.614956
6	0.009973	-1.098157	-1.664995
1	0.955710	-1.544371	-1.949228
1	-0.339275	-0.295216	-2.309736
15	-0.097241	-2.848851	0.400681
6	-6. 039965	-2.432469	-1.045881
1	-5.326952	-3.238581	-1.240962
1	-7.016631	-2.881736	-0.832672
1	-6.133577	-1.816389	-1.945808
6	-4.235486	4.008811	-1.115263
1	-4.618577	4.097935	-0.093133
1	-4.800888	4.695615	-1.755887
1	-4. 404961	2.988258	-1.469749
6	0.040014	2.265620	1.301637

6	-0.477412	3.126901	2.185382
1	-1.538356	3.346230	2.232370
1	0. 162443	3.673688	2.874548
6	1.560723	2.074899	1.236487
1	2.018729	2.965084	1.674526
6	2.026937	0.910341	2.095588
8	1.444843	-0.154139	2.247476
8	3. 204817	1.199082	2.683519
6	3.881828	0.150777	3. 410871
1	4. 302453	0.641993	4.292736
1	3. 147241	-0.592256	3.728962
6	4.972619	-0.460632	2.542750
1	5. 512130	-1.233038	3.103803
1	4.546313	-0.914195	1.642264
1	5.689035	0.303688	2.226702
8	3.207302	1.121150	-2.923782
6	2.908291	0.366446	-1.998533
6	2.335307	0.642852	-0.736291
8	3. 126057	-1.046218	-2.156406
6	2.103518	1.968395	-0.216403
1	2.260389	-0.193642	-0.059858
6	3.823026	-1.420101	-3.347710
6	2.247832	3.149252	-0.871678
1	3. 522474	-2.455288	-3.551434
1	3. 495311	-0.783422	-4.174327
6	5.335421	-1.320077	-3.175435
1	2. 581011	3.172409	-1.901539
1	2.041489	4.092958	-0.373286
1	5.850475	-1.676273	-4.076731
1	5.620209	-0.278267	-3.003555
1	5.672991	-1.922415	-2.323880
6	-0.647278	-4. 466595	-0.285360
1	-1.736781	-4.507234	-0.252979
1	-0.304225	-4.546424	-1.320931

1	-0.220602	-5.285537	0.302378
6	1.740534	-2.875071	0.389115
1	2.167717	-2.632885	-0.587296
1	2.075235	-2.123804	1.108643
1	2.070112	-3.869265	0.707977
6	-0.543621	-2.791804	2.177049
1	-1.621487	-2.890537	2.294805
1	-0.032673	-3.621769	2.676099
1	-0.187300	-1.841536	2.581218

Standard coordinate and geometry of TS_{RC} -1:

6	-0.088016	0.300131	2.567200
1	-1.044121	0.818209	2.587354
1	0.336098	0.040737	3.533545
6	-1.208009	1.370825	0.128443
8	-2.398631	1.085198	0.182557
8	-0.755585	2.631164	0.163512
6	-1.730397	3.690493	0.319517
1	-1.181091	4.486507	0.827416
1	-2.537698	3.336468	0.964938
6	-0. 418221	-0.964769	-0.587072
6	0.728070	-1.712219	-0.802376
1	0.725593	-2.789053	-0.939782
1	1.618659	-1.211729	-1.157791
15	-1.965854	-1.805990	-0.364262
6	-2.260906	4.151960	-1.029824
1	-2.822881	3.351121	-1.519424
1	-2.931625	5.008006	-0.892506
1	-1.440201	4. 459741	-1.685758
6	4. 506566	0.207407	-1.949112
1	3.698246	0.281834	-2.686343
1	5. 425633	0.591248	-2.409604
1	4.660067	-0.844562	-1.693453
6	-1.721716	-3.594626	-0.741062
1	-1.308942	-3.723235	-1.744176
1	-1.043052	-4.043334	-0.011379
1	-2.690576	-4.099357	-0.685635
6	-2.760016	-1.801530	1.304567
1	-2.036597	-2.159550	2.040577
1	-3.047852	-0.779622	1.549575
1	-3.641959	-2.451278	1.294591
6	-3.273251	-1.279443	-1.556292
1	-3. 514044	-0.232583	-1.371875
1	-2.889654	-1.396990	-2.573629
1	-4.167714	-1.897899	-1.427898

Standard coordinate and geometry of $\ensuremath{\text{IN}_{\text{RC}}}\xspace$ -1:

C8 - C9 = 1.552 1. 581794 -0. 549743 0. 111796

6	1.581794	-0.549743	0.111796
1	1.539945	-0.892070	1.153111
6	3. 039994	-0. 416306	-0.285373
8	3.819985	-0.161163	0.797065
8	3. 475793	-0.524423	-1.412622
6	5.236892	-0.006795	0.549228
1	5. 708155	-0.268860	1.500195
1	5. 539768	-0.725360	-0.216578
6	0.826287	0.777325	0.005305
6	-0.554227	0. 490343	-0.650383
1	-0. 502780	0.905617	-1.671612
6	1.279592	1.964815	0.407787
1	0.689617	2.868960	0.294372
1	2.260766	2.070277	0.862439
6	-1.650650	1.266321	0.053367
8	-2.394174	0.834347	0.916886
8	-1.707096	2.541374	-0.389673
6	-2.672880	3. 418127	0.238981
1	-2.231008	4. 413877	0.151821
1	-2.760714	3.150467	1.294419
6	-0. 665643	-1.027865	-0.684424
6	0.770940	-1.515078	-0.793555

1	0.933087	-2.558952	-0.505057
1	1.160217	-1.411803	-1.817831
15	-1.865854	-2.000296	0.056317
6	-4.019762	3.346108	-0. 465169
1	-4. 460793	2.351097	-0.355300
1	-4. 709173	4.076950	-0.026657
1	-3.913792	3.569438	-1.531786
6	5. 582090	1.415255	0.130718
1	5. 252119	2.135837	0.886716
1	6.667396	1.515823	0.011674
1	5. 107174	1.659727	-0.823404
6	-1.555252	-3.757410	-0. 436300
1	-1.460360	-3.825661	-1.522184
1	-0.635517	-4.126519	0.025330
1	-2.386704	-4.382635	-0.097009
6	-2.128637	-2.190678	1.914597
1	-1.195005	-2.540004	2.368055
1	-2.377095	-1.210161	2.324275
1	-2.927875	-2.904861	2.146796
6	-3. 586361	-1.653554	-0.535921
1	-3.911167	-0.684883	-0.153364
1	-3. 591520	-1.638904	-1.628789
1	-4.268055	-2.429223	-0.171555

Standard coordinate and geometry of TS_{RC} -2:

6	0.995125	-1.040266	0.083618
1	1.316119	-0.532651	0.997492
6	1.901740	-2.255549	-0.077028
8	3.064615	-2.037352	0.575844
8	1.678043	-3.268521	-0.712984
6	4.093842	-3.040287	0. 427591
1	4.701210	-2.939268	1.330636
1	3.627414	-4.028479	0.411509
6	-0. 496778	-1.342524	0.212155
6	-1.325340	-0.109164	0.633696
1	-0.792966	0.337929	1.482055
6	-1.055445	-2.547054	0.047641
1	-2.120980	-2.704098	0.191204
1	-0.466381	-3.405914	-0.246379
6	-2.699093	-0.505266	1.150235
8	-3.703770	-0. 599079	0.460052
8	-2.680176	-0.753435	2.466766
6	-3.916905	-1.191191	3.083993
1	-3.591309	-1.795532	3.933691
1	-4. 460495	-1.820977	2.375903
6	-1.387768	0.984371	-0.434325
6	-0. 530419	2.055920	-0.300713
1	-0. 493181	2.870084	-1.016201
1	-0.135616	2.283639	0.682877
15	-2.355876	0.849665	-1.919257
6	-4.756977	-0.004568	3.531569
1	-5.089137	0.581997	2.669984
1	-5.644447	-0.359865	4.067824
1	-4.186183	0.644886	4.203007
6	4. 918843	-2.798681	-0.828602
1	5.349413	-1.792174	-0.821428
1	5.737320	-3.526253	-0.884591
1	4.298008	-2.908259	-1.722390
6	1.312231	-0.071111	-1.088692

6	1.120998	-0.531918	-2.353350
1	0.833487	-1.560716	-2.544575
1	1.382657	0.077585	-3.216170
6	1.703586	1.282395	-0.811291
1	1.993454	1.871946	-1.677840
6	2.199436	1.786980	0.437308
8	2.013596	1.346016	1.578753
8	2.872287	2.979602	0.248472
6	3.355564	3.630701	1.431091
1	3. 420320	4. 690025	1.161071
1	2.627756	3. 508490	2.238347
6	4.716674	3.091442	1.855719
1	5.099950	3.657826	2.713605
1	4.630034	2.040352	2.144746
1	5. 439477	3.174309	1.036576
6	-4.033349	1.616139	-1.758615
1	-4.592781	1.064403	-1.001885
1	-3.917492	2.655990	-1.439334
1	-4.564100	1.586679	-2.716084
6	-2.654173	-0.840878	-2.572913
1	-1.694558	-1.330247	-2.744235
1	-3.235791	-1.404939	-1.843767
1	-3.212982	-0.756589	-3.510656
6	-1.567483	1.796733	-3.288308
1	-2.174160	1.685955	-4. 192337
1	-1.502369	2.858335	-3.037451
1	-0. 566155	1.395353	-3.456232

Standard coordinate and geometry of IN_{RC} -2:

6	0.922942	0.947757	0.309656
1	1.102405	0.904632	-0.768114
6	1.811201	2.074665	0.824400
8	2. 321047	2.772921	-0.213019
8	2.031544	2.351852	1.987605
6	3. 170735	3.897451	0.112731
1	3.079269	4.562258	-0.749864
1	2.773657	4.395574	1.000672
6	-0. 569903	1.261725	0.521942
6	-1.455684	0.490428	-0. 469584
1	-1.061170	0.721450	-1.469246
6	-1.022520	2.075548	1.480687
1	-2.084317	2.260033	1.611521
1	-0.352365	2.560206	2.182625
6	-2.878105	1.017565	-0. 473949
8	-3.734338	0.751227	0.355374
8	-3.098040	1.844245	-1.514462
6	-4. 413523	2. 439158	-1.622500
1	-4. 238216	3. 390999	-2.130013
1	-4.800159	2.627922	-0.618301

6	-1.364036	-1.029553	-0.306070
6	-0.128843	-1.639643	-0.931779
1	-0.272926	-2.684454	-1.235759
1	0.079551	-1.097677	-1.864515
15	-2.318929	-1.931627	0.804313
6	-5.355126	1.549312	-2.420625
1	-5.534309	0.606256	-1.895969
1	-6.318473	2.054265	-2.557598
1	-4.937998	1.328591	-3.408547
6	4.611363	3.455420	0.325583
1	4.984664	2.916299	-0. 551271
1	5.249896	4.331121	0. 491156
1	4.687151	2.803844	1.200698
6	1.287764	-0. 428741	0.885019
6	1.657445	-0.616994	2.156273
1	1.742278	0.207767	2.854553
1	1.904524	-1.611081	2.522435
6	1.200147	-1.610576	-0.075183
1	1.255704	-2.521293	0. 526994
6	2.407386	-1.612076	-1.001463
8	2.629026	-0. 770799	-1.852009
8	3. 205881	-2.683860	-0.784835
6	4. 388757	-2.787848	-1.612809
1	4.610438	-3.858055	-1.634502
1	4.144021	-2.446130	-2.621585
6	5. 545599	-1.990705	-1.027861
1	6.448452	-2.147116	-1.629825
1	5. 313189	-0.922097	-1.027830
1	5.756769	-2.306928	-0.001007
6	-4.076677	-2.341049	0.320588
1	-4.063268	-2.853904	-0.645913
1	-4.549442	-2.984610	1.071344
1	-4.642407	-1.412976	0.229331
6	-2.529414	-1.301733	2.542004

1	-1.541326	-1.153156	2.985411
1	-3.051090	-0.344504	2.499236
1	-3.110258	-2.010184	3.142755
6	-1.589914	-3.615919	1.025379
1	-1.499411	-4.123642	0.061955
1	-0.603310	-3.543494	1.488160
1	-2.246116	-4.205351	1.672447

Standard coordinate and geometry of TS_{RC} -3:

6	0.212613	-1.721629	-0.184515
1	0.002444	-1.380046	-1.199735
6	0.965814	-3.040095	-0. 422239
8	1.604629	-3. 486487	0.680061
8	0.960714	-3.626537	-1.484350
6	2.240671	-4.782793	0.574530
1	2.240314	-5.168022	1.597251
1	1.624589	-5. 426771	-0.057395
6	1.101426	-0.673612	0. 495897
6	2.032322	0.097456	-0. 480748
1	2.146074	-0. 519699	-1.378460
6	1.104825	-0. 417039	1.803753
1	1.778453	0.313180	2.240181
1	0.420613	-0.915236	2.479471
6	3.408270	0.209744	0.138786

8	3.773638	1. 131874	0.853387
8	4.169449	-0.851389	-0.155160
6	5.485951	-0. 919485	0.454358
1	5.682642	-1.989880	0.542585
1	5. 434983	-0. 474363	1.450279
6	1.392363	1.424340	-0.922812
6	0.243612	1.355733	-1.637426
1	-0.356357	2.204878	-1.935506
1	-0.112885	0. 419107	-2.051820
15	1.798799	3.076707	-0.309572
6	6.527061	-0.231649	-0. 414925
1	6.332522	0.843030	-0. 480329
1	7.522951	-0.372169	0.020327
1	6.531044	-0.652642	-1.425376
6	3.654094	-4.664522	0.024269
1	4.256461	-3.994908	0.647152
1	4.133236	-5.650486	0.014020
1	3.636287	-4.277800	-0.998232
6	-1.149020	-2.009946	0.469835
6	-1.245446	-2.658299	1.636383
1	-0.363365	-3.016660	2.156502
1	-2.204295	-2.844349	2.104665
6	-2.348650	-1.634567	-0.403068
1	-2.317973	-2.307455	-1.268400
6	-3.699009	-1.862962	0.271641
8	-4.016112	-1. 500587	1.385644
8	-4.541135	-2.503722	-0.574270
6	-5.907806	-2.656396	-0.130253
1	-6.276897	-3. 523959	-0.683798
1	-5.910161	-2.880394	0.939695
6	-6.726606	-1. 409830	-0.434255
1	-7.775704	-1. 575611	-0.161431
1	-6.350980	-0. 556659	0.137364
1	-6.678486	-1.164991	-1.500081

8	-2.462877	2.882503	-1.235084
6	-2.156147	2. 227558	-0.222964
6	-1.995695	0.843107	-0.035862
8	-1.805990	2.942370	0.965260
6	-2.367249	-0. 191531	-0.967219
1	-1.757942	0.536129	0.975173
6	-2.403753	4. 233525	1.101089
6	-2.750429	-0.042470	-2.262725
1	-1.757394	4. 787547	1.792941
1	-2.407872	4.744567	0.132657
6	-3.823285	4. 138370	1.651752
1	-2.856521	0.944777	-2.697692
1	-3.032077	-0.900545	-2.866351
1	-4.242248	5.139824	1.812368
1	-4.466915	3. 606583	0.944039
1	-3.835084	3. 597390	2.603911
6	0.721371	4. 299335	-1.162272
1	0.933010	4. 293323	-2.234900
1	-0.338909	4.085222	-1.002581
1	0.963312	5.286786	-0.756869
6	1.506838	3. 316306	1.486301
1	1.690642	4. 364697	1.743052
1	0.458644	3. 060037	1.675920
1	2.179045	2.671776	2.052504
6	3.500454	3.655808	-0.722587
1	4.238500	3. 093541	-0.153134
1	3.671410	3. 517197	-1.794244
1	3.576826	4.721492	-0.484384

Standard coordinate and geometry of IN_{RC} -3:

6	0.747918	-1.738270	-0.655911
1	0.498575	-1.234391	-1.594405
6	1.946206	-2.606915	-1.063610
8	2.533744	-3. 225741	-0.015779
8	2.324911	-2.721068	-2.210235
6	3.653455	-4.090639	-0.323862
1	3.643048	-4.842018	0.469926
1	3. 471246	-4. 573728	-1.286667
6	1.151880	-0.658423	0.355219
6	1.809930	0.599645	-0.283019
1	2.178571	0.264287	-1.265331
6	0.950676	-0.786387	1.667421
1	1.255002	-0.006503	2.359471
1	0.459000	-1.655696	2.089324
6	3.053177	0.910808	0.525966
8	3.098780	1.630726	1.510200
8	4.132445	0.255346	0.049032
6	5.376745	0. 424109	0.769321
1	5.911510	-0. 515257	0.612165
1	5.157210	0.545185	1.832450

6	0.858631	1.772557	-0. 507685
6	-0.315088	1.447014	-1.406999
1	-0.719500	2.339651	-1.889088
1	0.039419	0.817411	-2.236895
15	0.934497	3. 303572	0.264952
6	6.167750	1.605496	0.226809
1	5.635850	2. 544881	0.404096
1	7.141161	1.663686	0.727746
1	6.339724	1.497156	-0.849031
6	4.960835	-3.313723	-0.336640
1	5.129623	-2.827838	0.629640
1	5.796707	-3.995431	-0.533327
1	4.942993	-2.549226	-1.118146
6	-0.478569	-2. 550063	-0.262281
6	-0. 431505	-3.775819	0.270610
1	0.505307	-4.271283	0. 494072
1	-1.344262	-4.317605	0.507799
6	-1.874896	-1.932376	-0.550577
1	-2.423027	-2.680279	-1.128742
6	-2.624971	-1.800455	0.781147
8	-2.324649	-1.075038	1.704230
8	-3.666442	-2.665659	0.816995
6	-4. 431443	-2.703077	2.046097
1	-4.877143	-3. 700971	2.054154
1	-3.744038	-2.604416	2.890061
6	-5.495009	-1.615829	2.075474
1	-6.099956	-1.711741	2.984746
1	-5.026496	-0.628361	2.071281
1	-6.159892	-1.698373	1.209080
8	-2.935573	2.602114	-1.455389
6	-2.808742	1.575600	-0.813760
6	-1.551945	0.703396	-0.748576
8	-3.806276	1.062526	-0.058277
6	-1.901370	-0.647923	-1.381082

1	-1.346999	0.543577	0.311697
6	-5.070451	1.766198	-0.084176
6	-2.233581	-0.725765	-2.676811
1	-5.544873	1.503509	0.864426
1	-4.876689	2.841181	-0.107144
6	-5.921207	1.334214	-1.269612
1	-2.263778	0.157522	-3.310048
1	-2.480210	-1.671538	-3.152369
1	-6.902487	1.820749	-1.221166
1	-5.442804	1.618985	-2.210851
1	-6.072466	0.249746	-1.264762
6	2.521300	4.280922	0.139797
1	2.845790	4. 294899	-0.904686
1	2.347486	5.307304	0. 481445
1	3.294136	3.824358	0.757976
6	-0.270820	4. 460995	-0. 525001
1	0.002482	4. 620311	-1.571458
1	-1.291576	4.078559	-0. 488737
1	-0.221296	5. 416713	0.005451
6	0.541047	3. 488320	2.088124
1	-0. 473190	3. 120006	2.270474
1	1.249585	2.880824	2.654187
1	0.613549	4. 533277	2.412395

Standard coordinate and geometry of phosphine P(NEt₂)₃:

15	0.000438	-0.001934	-0.719925
7	0.408284	1.533099	0.049407
7	-1.534772	-0. 414723	0.042752
7	1.125388	-1.123303	0.048633
6	-0.294824	2.025068	1.225622
1	-0. 427951	1.235500	1.967910
1	0.297252	2.824884	1.692136
1	-1.292280	2. 432727	0.991973
6	0.735548	2.605025	-0.886705
1	1.452454	3. 299479	-0.426351
1	1.199330	2.190973	-1.786812
1	-0.147100	3. 192271	-1.197973
6	-1.614044	-1.260858	1.224908
1	-2.600587	-1.136919	1.693263
1	-1.476876	-2.331147	0.997970
1	-0.859649	-0.981436	1.962913
6	1.906661	-1.924970	-0.889579
1	2.165605	-2.890370	-0.432304
1	1.322388	-2.126263	-1.792213
1	2.849058	-1.436455	-1.196236
6	1.889690	-0. 765772	1.235469
1	2.735734	-0.093198	1.017399
1	1.260498	-0.272380	1.978951
1	2.292036	-1.679931	1.693926
6	-2.623276	-0.672675	-0.895196
1	-3.584360	-0.391721	-0. 441712
1	-2.490868	-0.073762	-1.800994
1	-2.692084	-1.733664	-1.195628
Standard coordinate and geometry of Azomethine imines:

6	0.184212	-0.549805	-0.030875
6	1.149948	-1.589712	0.016052
6	2.509555	-1.327776	0.032433
6	2.938269	-0.000195	-0.001266
6	2.027554	1.053495	-0.053555
6	0.665612	0.782840	-0.068827
1	0.810533	-2.620997	0.042188
1	3.240472	-2.125988	0.070626
1	2.396032	2.071540	-0.083871
1	-0.009514	1.624575	-0.118102
7	4.373934	0.292757	0.015861
8	4.715394	1.475900	-0.013947
8	5.149547	-0.662644	0.059258
6	-1.189197	-1.001513	-0.041248
7	-2.323605	-0.325880	-0.024690
6	-2.450511	1.179861	0.020956
6	-3.951988	1.386771	0.090739
1	-1.990862	1.581388	-0.884636
6	-4.517095	-0.047736	0.009946
1	-4.344611	1.983175	-0.736462
7	-3.490015	-0.973850	-0.044834
8	-5.700630	-0.325750	0.002085

1	-4.277315	1.851791	1.025330
1	-1.903185	1.538350	0.894821
1	-1.356373	-2.072439	-0.059554

Standard coordinate and geometry of H₂O:

Standard coordinate and geometry of 1,5-zwitterion:

1	-2. 703963	-4.378304	-0. 119382
6	0.368654	-1.191560	1.562891
6	0. 920572	-1.071488	0.134787
1	0.818770	-2.060586	-0.321530
6	1. 185896	-1.008155	2.631863
1	2.235089	-0.744908	2. 543293
1	0.806361	-1.140329	3. 641479
6	2. 390715	-0.688850	0.077943
8	2.817856	0.449199	-0.046534
8	3. 182805	-1.768079	0. 180635
6	4. 612939	-1.542329	0. 209167
1	5.007374	-2.396265	0.764722
1	4.814504	-0.623112	0.764485
6	0. 107827	-0.122094	-0.743267
6	-0.139468	-0. 428761	-2.028532
1	-0.653194	0.241624	-2. 710353
1	0.161834	-1.393995	-2. 427473
15	-0. 520352	1.512899	-0.182421
7	-0.062718	2.540561	-1.467411
7	0.012513	2.218812	1.251028
7	-2. 197455	1.536013	-0.062140
6	-0. 519242	1.844982	2. 568593
1	-1. 390158	1.201550	2. 457199
1	0. 232689	1.287133	3. 134567
1	-0. 796301	2.758146	3. 111965
6	1.297459	2.919127	1.325635
1	2. 093598	2.256503	1.680152
1	1. 584674	3. 311354	0.350649
1	1. 189999	3.763051	2.018321
6	-2.923351	2.578238	0.664986
1	-3. 677587	3.034469	0.009056
1	-3. 443221	2.148846	1. 531411
1	-2.246453	3.357828	1.015007
6	-3. 069219	0.454401	-0. 539051

1	-2.502694	-0.288527	-1.093376
1	-3.544135	-0.060928	0.301511
1	-3.837632	0.879159	-1.198963
6	1.258696	2.509287	-2. 103592
1	1.854428	1.678670	-1.729299
1	1.144895	2.415202	-3. 192001
1	1.808346	3. 439886	-1.900071
6	-0.801951	3.772027	-1.729182
1	-0.366873	4.643996	-1.216881
1	-0. 783680	3.970863	-2.808027
1	-1.844637	3.667695	-1. 428924
6	5. 190279	-1. 475779	-1. 197081
1	4. 799299	-0.606131	-1.732858
1	6.281798	-1.387458	-1.147282
1	4.944294	-2.380944	-1.761964
6	-2.958123	-3.293079	-1.966986
1	-2.356473	-2.734222	-2.694138
1	-3. 475553	-4.100050	-2. 501597
1	-3.709477	-2.625391	-1.537284

Standard coordinate and geometry of TS-1:

8	-1.066016	-0.381000	4. 028413
8	-1.886763	-1.526260	-2. 556609
8	-1.482609	-3.129757	-1.011308
8	3. 503998	-3.088441	0. 283318
8	3.662142	-1.966793	-1.691199
8	2.270797	5.780453	-1.088567
8	3. 589348	4.863795	-2. 563639
7	0.619509	0.055494	2. 515805
7	1.956690	-0.350997	2. 409616
7	2.902920	4.821532	-1.540522
6	0.107700	-0.508165	3. 623234
6	1.162631	-1.368260	4. 354150
1	0.734241	-2.323316	4.666734
1	1.500667	-0.840003	5. 253975
6	2.259257	-1.495487	3. 303520
1	3.280965	-1.403802	3. 683280
1	2. 183708	-2.431649	2.734446
6	2.655851	-0.154426	1. 282758
1	3. 602887	-0.684470	1. 287048
6	1.778650	-1.612755	-0. 227740
1	1.315626	-2.150689	0. 592591
6	0.842996	-1.002171	-1.163194
6	-0.604905	-0.899255	-0. 619432
6	-1.276106	0.472698	-0.651584
6	-0. 793962	1.576426	-1.233612
1	-1.331484	2.520251	-1.215673
6	-1.385745	-1.977689	-1.377505
6	-2.255643	-2.534989	-3. 534192
1	-1.547550	-3.362955	-3. 453224
1	-2.113026	-2.033182	-4. 494442
6	-3.686212	-3.024860	-3.374617
1	-3.803251	-3.579493	-2. 440337
1	-3.935941	-3.696161	-4.204622
1	-4. 395677	-2.190216	-3. 390387

6	1.124241	-0.632791	-2. 436663
1	2. 119602	-0.772112	-2.837251
1	0.355321	-0.252580	-3.100226
6	3. 021835	-2.209119	-0.668642
6	4. 747387	-3.742635	-0.023371
1	5.176070	-3.996487	0.951151
1	5. 408363	-3.038759	-0.536474
6	4. 530285	-4.991189	-0.868877
1	3. 833870	-5.677841	-0.375603
1	5. 481834	-5.514602	-1.022335
1	4. 124026	-4.719624	-1.847261
6	2.658783	1.124733	0.551801
6	3. 405148	1.228536	-0.639927
1	3. 901127	0.350923	-1.041712
6	3. 488205	2.433132	-1.328000
1	4. 052553	2.518943	-2.248365
6	2.826713	3. 551517	-0.818116
6	2.089750	3.484029	0.366009
1	1.605906	4.377381	0.742101
6	2.004111	2.272880	1.041766
1	1. 432779	2.195658	1.957971
1	0.164008	1.559376	-1.743482
1	-2.081896	3. 425240	2.097282
6	-1.635975	2.429876	1.966118
7	-2.685988	1.441134	1.697501
1	-0. 911638	2.463046	1.156247
1	-1.108239	2.129360	2.874455
15	-2.871016	0.630264	0.255650
6	-3. 564716	1.213838	2.857833
7	-3.560483	-0.847942	0.659626
7	-3.889690	1.490245	-0.789524
1	-2.960332	0.796900	3. 669298
1	-4. 010815	2.168669	3. 166529
1	-4.369123	0.521993	2.605656

6	-4. 700260	-1.428475	-0.045305
6	-2.987561	-1.714915	1.707845
6	-4. 985259	2.301451	-0. 259969
6	-3.966259	1.238052	-2.231804
1	-4. 416438	-2.371380	-0. 525693
1	-5. 509906	-1.635269	0.667679
1	-5.079557	-0.747702	-0.807547
1	-2. 525764	-2.598736	1.253504
1	-2.252136	-1.179867	2.315957
1	-3. 796747	-2.038791	2.374786
1	-5.050464	3.233570	-0.834382
1	-5.953404	1.784878	-0.332346
1	-4. 798744	2.557986	0. 783735
1	-3. 181099	0.551807	-2. 548155
1	-4. 939687	0.803747	-2. 501912
1	-3.852889	2.183077	-2.778202
1	-0.576041	-1.219242	0. 424764

Standard coordinate and geometry of IN-1:

8	1. 339413	0.359124	3. 789845
8	1.938464	1.416085	-2. 400889
8	1.801868	2.964291	-0.756724

8	-2.280707	3.947060	0. 313901
8	-3.604517	2.559490	-0. 879897
8	-3.451555	-5.375258	-1.141135
8	-4.548597	-4.218456	-2.627066
7	-0. 452050	0.064724	2.354746
7	-1.878153	0.299903	2.466236
7	-3.868738	-4.310480	-1.602878
6	0.118681	0.456959	3. 492904
6	-0.932460	1.052618	4. 453385
1	-0. 544514	1.926087	4. 983190
1	-1.215438	0.296369	5. 197945
6	-2.070849	1.351872	3. 485505
1	-3.078502	1.284861	3. 911548
1	-1.941385	2.365389	3. 060629
6	-2. 491243	0.566004	1. 181708
1	-3.457135	1.035220	1. 410685
6	-1.675114	1.660920	0. 320399
1	-1.018167	2.137529	1.050782
6	-0.779131	1.168785	-0. 815921
6	0.678906	0.839057	-0. 426077
6	1.111251	-0.610491	-0. 631556
6	0. 413822	-1.549377	-1.279361
1	0.782054	-2.564165	-1.393220
6	1.550608	1.854503	-1.173444
6	2.462809	2.421221	-3. 308635
1	1.896949	3.344093	-3. 160497
1	2.244324	2.018779	-4. 300975
6	3.952670	2.663018	-3. 126104
1	4.153624	3.103717	-2. 146375
1	4. 306841	3.359618	-3. 894936
1	4.519156	1.731083	-3. 226569
6	-1.166927	1.123538	-2.098806
1	-2.169951	1.401229	-2. 400249
1	-0. 482250	0.820461	-2.884259

6	-2.629985	2.737249	-0. 168906
6	-3.112543	5.071118	-0.064041
1	-2.978824	5.788192	0.749446
1	-4.154513	4.743572	-0.094730
6	-2.675510	5.653789	-1. 399790
1	-1.617660	5.934649	-1.373039
1	-3.265784	6.549370	-1.626146
1	-2.829609	4.929049	-2.204401
6	-2.831912	-0.721548	0. 433909
6	-3.615648	-0.682435	-0.732114
1	-3.958473	0.275996	-1.108336
6	-3.963810	-1.851693	-1. 401997
1	-4.567718	-1.832207	-2.301009
6	-3.525463	-3.074780	-0.893436
6	-2.771300	-3.147901	0.277496
1	-2.467813	-4.116715	0.655617
6	-2.434692	-1.968865	0.937616
1	-1.866818	-1.995721	1.858090
1	-0.557718	-1.331144	-1.709851
1	1.409772	-3.542062	2.487075
6	1.203703	-2.741413	1.769916
7	2. 472158	-2.026729	1.524966
1	0.833485	-3.204212	0.853928
1	0.452260	-2.049045	2. 165987
15	2.706454	-1.134423	0.135963
6	3. 293723	-1.842904	2.737712
7	3.720693	0.153246	0.500918
7	3. 426376	-2.134152	-1.027585
1	2.735282	-1.246783	3. 468654
1	3. 534435	-2.833925	3. 141542
1	4.229085	-1.339766	2. 489390
6	4.984806	0.397947	-0.188820
6	3. 427883	1.111841	1. 587983
6	4.334047	-3.210249	-0.631287

6	3. 473766	-1.796211	-2. 452576
1	4.985979	1.396223	-0.641281
1	5.817632	0.346428	0. 525987
1	5.158593	-0.338733	-0.972996
1	3. 213681	2.100080	1.166808
1	2. 587633	0.787510	2.217003
1	4. 311315	1.184791	2. 235342
1	4. 126519	-4.099075	-1.239898
1	5. 388081	-2.932272	-0.777898
1	4.174585	-3.465842	0. 416999
1	2.839931	-0.936379	-2.668872
1	4. 501197	-1.562618	-2.767527
1	3. 123539	-2.649772	-3.047163
1	0.772036	1.056775	0.641065

Standard coordinate and geometry of TS-2a:

8	6.929474	-0.410074	2.899098
7	0. 595992	-1.869800	-1. 590510
7	1.829469	-1.395557	-2. 199506
7	6. 087712	-1.270077	2.633495
6	-0. 081662	-2.596122	-2. 482911
6	0. 656870	-2.565851	-3.835386
1	-0. 042589	-2. 486329	-4.671196
1	1. 229930	-3.494993	-3. 950952
6	1. 565781	-1.357281	-3.650468
1	2. 512622	-1.396159	-4. 199725
1	1.026282	-0. 437683	-3. 951212
6	2. 358367	-0.152308	-1.643662
1	2.998417	0.252541	-2. 436336
6	1.242084	0.950782	-1. 426932
1	0. 428767	0.642267	-2. 088267
6	0.617026	1.170173	-0. 038522
6	-0. 909830	0.975931	0. 014730
6	-1.289571	-0. 494137	0.271796
6	-0.303514	-1.462069	0. 298370
1	-0. 553549	-2.509427	0. 412561
6	-1.557283	2.058466	0.884446
6	-1.938159	2.869764	3. 095215
1	-1.574167	3.818167	2.692655
1	-1.425860	2.654852	4. 036071
6	-3. 447479	2.902217	3. 280413
1	-3.945582	3.143756	2. 338386
1	-3. 709392	3.671456	4. 016215
1	-3. 820269	1.940054	3. 647131
6	1. 325759	1.593265	1.014508
1	2. 390754	1.778837	0. 949240
1	0.860861	1.758771	1.979975
6	1.683058	2.326476	-1.915983
6	0. 798179	4. 429365	-2. 641469
1	0.031674	4.649979	-3. 388398

1	1.787663	4.564284	-3.084245
6	0.616724	5.270966	-1.387160
1	-0.343336	5.045995	-0. 911731
1	0.645257	6.336423	-1.643199
1	1.418567	5.069657	-0.669924
6	3. 308892	-0.438574	-0. 479971
6	4. 301922	0.495387	-0.137154
1	4.350400	1.436678	-0. 676297
6	5.215257	0.231588	0.878958
1	5.985920	0.943213	1.148973
6	5. 135130	-0.985951	1.554705
6	4. 178597	-1.943236	1. 221382
1	4. 158941	-2.885605	1.755044
6	3.277400	-1.667572	0. 195638
1	2.553892	-2. 415973	-0. 106556
1	0.689303	-1.195144	0.629927
1	-3.827899	-4. 467136	0.110247
6	-3. 020562	-3.723226	0.128633
7	-3. 565095	-2.429442	-0. 321351
1	-2.658979	-3.642957	1.157330
1	-2.206708	-4. 038395	-0. 531675
15	-2.992938	-0.994128	0. 382667
6	-4.044826	-2.473417	-1.710602
7	-3.909402	0.305367	-0. 218202
7	-3. 405427	-1.267846	2.008022
1	-3. 220017	-2.642553	-2. 410331
1	-4. 756799	-3.304898	-1.787492
1	-4. 585579	-1.558001	-1.953922
6	-5.144992	0.762188	0. 407936
6	-3. 705120	0.826959	-1. 573589
6	-4.647982	-1.942436	2. 387130
6	-2.512524	-1.028598	3. 139395
1	-5.200383	1.854188	0. 320794
1	-6.040204	0.334259	-0.068601

1	-5.150241	0.509804	1. 468359
1	-3. 493122	1.901973	-1. 528219
1	-2.869672	0.321192	-2.062559
1	-4. 599085	0.666910	-2. 192235
1	-4. 432485	-2.912657	2.856474
1	-5.205421	-1.333174	3. 111935
1	-5.275259	-2.119356	1.513746
1	-1.589549	-0.561098	2.806226
1	-2.993207	-0.369293	3.874443
1	-2.277785	-1.979944	3. 638547
1	-1.255512	1.261802	-0. 982280

Standard coordinate and geometry of TS-2b:

8	-1.187334	3.858633	0.241655
8	-2.486639	-2.725051	-1.244622
8	-2.406897	-3.026565	0.991034
8	2.506489	-0. 458957	2.326955
8	1.992647	-2.471946	1.434512
8	8.356041	0.711293	-1.572126
8	8.098478	-1.431957	-1.266568
7	0.270620	2.221282	-0. 488997
7	1.688308	1.954035	-0.305128
7	7.666064	-0.280347	-1.332266

6	-0. 073074	3.296239	0.228092
6	1.145788	3.774725	1.037832
1	0.854427	4.104741	2.038145
1	1. 614453	4.621035	0. 518413
6	2. 025227	2.529355	1.018050
1	3. 099677	2.719020	1.090415
1	1.742425	1.855601	1.841967
6	1. 987430	0.547701	-0. 536458
6	1. 126929	-0. 422191	0. 409536
1	0. 553947	0.286513	1.016861
6	0. 120317	-1.265754	-0.365153
6	-1. 333705	-1.059113	0. 083669
6	-1.950096	0.207618	-0. 555243
6	-1.204858	1.026006	-1.393101
1	-1.645052	1.914476	-1.827161
6	-2.140564	-2.359064	0.011786
6	-3. 059493	-4.051264	-1.394718
1	-2. 520696	-4.734740	-0.734035
1	-2.849251	-4.311785	-2. 434887
6	-4.552955	-4.085463	-1.107212
1	-4.749898	-3.837975	-0.061545
1	-4. 937091	-5.093918	-1.300538
1	-5. 097011	-3.386649	-1.750906
6	0. 486767	-2.085194	-1.354536
1	1. 529823	-2.200834	-1.634196
1	-0.231464	-2.670603	-1.916173
6	1. 908151	-1.261227	1.416838
6	3. 317811	-1.107303	3. 337117
1	4. 041810	-0.343208	3. 629928
1	3. 842310	-1.948273	2.877800
6	2. 473612	-1.561508	4. 518526
1	1.916288	-0.720746	4. 945093
1	3. 121154	-1.975932	5. 299935
1	1.767116	-2.337429	4. 210714

6	3. 495669	0.314431	-0.658257
6	4. 058185	-0.973347	-0.621865
1	3. 442342	-1.840827	-0. 417710
6	5. 419083	-1.174909	-0.839046
1	5.853844	-2.166288	-0.805078
6	6. 229958	-0.075556	-1.108183
6	5. 703347	1.212457	-1.180298
1	6.356614	2.045503	-1.409654
6	4.341406	1.395772	-0.964145
1	3. 908008	2.384460	-1.052635
1	-0. 413088	0.589273	-1.985172
1	-4. 762747	3.962641	-1.030328
6	-3. 928725	3.249867	-1.077118
7	-4.046044	2.316874	0.057518
1	-4.002432	2.706603	-2.023180
1	-2.976342	3.786522	-1.025800
15	-3. 612534	0.687669	-0.151302
6	-3. 926557	2.994349	1.356647
7	-4. 043879	-0.167185	1.249480
7	-4.672769	0.238539	-1.402964
1	-2.928738	3. 424510	1. 491398
1	-4.668844	3.802472	1.377868
1	-4.170448	2.306660	2.167096
6	-5. 290157	-0.909212	1.398678
6	-3.265422	-0.065886	2.485624
6	-6.045801	0.742773	-1.457763
6	-4.257352	-0. 438078	-2.629078
1	-5. 070878	-1.876627	1.867358
1	-6. 016492	-0.374421	2.028981
1	-5.738324	-1.101248	0. 424002
1	-2.930665	-1.063780	2.794128
1	-2. 392583	0.575491	2.342698
1	-3. 870735	0.369137	3. 293473
1	-6.173332	1.435327	-2. 301909

1	-6.748816	-0.090288	-1.594175
1	-6.298940	1.275666	-0. 541472
1	-3.238722	-0.806790	-2. 537840
1	-4. 919244	-1.290265	-2.831184
1	-4. 320583	0.249493	-3. 485833
1	-1.269695	-0.905151	1.165054
1	1.601983	0.344256	-1. 541933

Standard coordinate and geometry of IN-2:

6	0.665970	-0.441062	3. 419945
6	-0.694542	-0. 491452	4. 120459
1	-1.045404	0.522061	4. 348848
1	-0.603381	-1.034688	5.063635
6	-1.542446	-1.201905	3.060250
1	-1. 437688	-2.289054	3. 152339
1	-2.605256	-0.956822	3. 082964
6	-1.594982	0.460153	1.256861
1	-1.710740	1.190021	2.071094
6	-0. 684699	1.177876	0. 208907
1	0. 297821	1.265662	0. 699415
6	-0. 439451	0.431724	-1. 093537
6	0.906740	-0.315922	-1.279263
6	1.839318	-0.384639	-0.069341
6	1. 445363	-1.181986	1.151714
1	2. 306991	-1.367627	1.794715
6	0. 694549	-1.696035	-1.912872
6	-0. 434468	-3.795054	-1.775427
1	-0. 396336	-3.749565	-2.866146
1	-1. 451993	-4.036254	-1.457145
6	0. 567560	-4.803664	-1.233465
1	1.579202	-4. 561594	-1. 570904
1	0. 316653	-5.807486	-1. 595967
1	0. 552452	-4.821093	-0. 138580
6	-1. 323979	0.461477	-2. 095377
1	-2.257627	1.012529	-2.032631
1	-1.143715	-0.064237	-3.030884
6	-1.150106	2.624568	0.037912
6	-0.774448	4.660155	-1.143851
1	0. 135868	5.071976	-1.586376
1	-0.955242	5.133394	-0. 175785
6	-1.968438	4.824831	-2.072075
1	-1. 798949	4.303402	-3. 019637
1	-2. 127635	5.887950	-2.286451

1	-2.876047	4. 429921	-1.607003
6	-2.987090	0.101418	0.752710
6	-4.075799	0.947856	1.016389
1	-3.910333	1.873503	1.555927
6	-5.357232	0.625657	0.576282
1	-6.204992	1.269897	0.773977
6	-5.543886	-0.562284	-0. 127895
6	-4. 484959	-1.426617	-0. 402280
1	-4.672383	-2.340573	-0.952470
6	-3.208708	-1.089004	0.039442
1	-2.370089	-1.744929	-0. 159067
1	1.020787	-2.154574	0.874650
1	5.652327	-0.026990	2.697450
6	4.703060	-0.387289	2.275356
7	4. 209094	0.581323	1.287602
1	4.884550	-1.353282	1.802382
1	3.982775	-0.519317	3. 091054
15	3. 483224	0.094960	-0. 196338
6	3. 761097	1.823030	1.917712
7	3. 589484	1.355989	-1.354130
7	4.676236	-1.049738	-0. 681285
1	2.917759	1.659741	2.601617
1	4. 593284	2.243868	2. 497981
1	3. 479582	2.562438	1.166699
6	4. 706965	1.496340	-2. 279919
6	2.741078	2.541508	-1. 309195
6	6. 113580	-0.853976	-0. 517872
6	4. 333258	-2.217244	-1.481263
1	4. 329947	1.888318	-3. 233673
1	5.476780	2.192840	-1.911121
1	5.170145	0.531567	-2. 478866
1	2.308947	2.734547	-2. 300679
1	1.917412	2.400028	-0. 613154
1	3. 310566	3. 436150	-1.009696

1	6.553274	-1.682795	0.056288
1	6.624576	-0.820154	-1. 492313
1	6.313905	0.077239	0.013276
1	3.254496	-2.301455	-1. 595928
1	4.771141	-2.156103	-2. 489319
1	4.714998	-3.131850	-1.003480
1	1.450278	0.222200	-2.061463

Standard coordinate and geometry of IN-3:

8	1.571969	-0.654517	3.924790
8	1.107603	-2.299554	-2.011471
8	2. 126184	-0.785159	-3.347188
8	-0.879005	2.892786	-1. 305019
8	-1.953382	3.037831	0.675183
8	-7.477021	-1.648265	-1.007429
8	-8.014693	0.247008	-0.073664
7	0.331175	-0.807316	1.978082
7	-1.037212	-1.035454	1. 591297
7	-7. 199739	-0.620507	-0.389496
6	0. 499928	-0.754640	3. 342376

6	-0.878708	-0.911783	3.984107
1	-1.274840	0.066043	4. 282733
1	-0.798840	-1.529067	4. 881429
6	-1.664799	-1.563157	2.845992
1	-1.525587	-2.649628	2.854240
1	-2.734161	-1.352776	2.844817
6	-1.692416	0.245934	1. 164470
1	-1.739947	0.936124	2.018038
6	-0. 785920	0.981018	0. 125798
1	0.150526	1.155656	0.679923
6	-0.374972	0.197361	-1.112837
6	1.142905	0.001566	-1.269303
6	1.915756	-0.201988	0. 039833
6	1.440746	-1.211646	1.054972
1	2.243897	-1.490642	1.739909
6	1.499526	-1.034634	-2.338144
6	1.461145	-3.371338	-2. 926665
1	2.388106	-3.100788	-3. 435872
1	0.667881	-3. 438065	-3. 679974
6	1.584604	-4.655904	-2.124632
1	2. 430041	-4.602032	-1. 430258
1	1.753188	-5. 498463	-2.804681
1	0.679030	-4.848778	-1.542228
6	-1.243253	-0.172932	-2. 059196
1	-2.299386	0.063564	-1.998011
1	-0.929014	-0.706562	-2.952025
6	-1.305786	2.395087	-0. 129778
6	-1.268660	4.254894	-1. 617659
1	-0. 491296	4.603304	-2. 301860
1	-1.242712	4.848679	-0. 700865
6	-2.643254	4.296907	-2.267476
1	-2.670217	3.667114	-3. 162469
1	-2.882714	5.325177	-2. 561926
1	-3. 411089	3.952915	-1. 568793

6	-3. 132339	-0.018406	0. 728139
6	-4. 119974	0.925149	1.064567
1	-3.836035	1.821467	1.603992
6	-5. 449842	0.740676	0.698156
1	-6.213904	1.465084	0.951807
6	-5. 796388	-0.412518	-0.002504
6	-4.848090	-1.376225	-0.336337
1	-5.154283	-2.266426	-0.872016
6	-3. 517937	-1.176626	0.029495
1	-2. 790303	-1.939212	-0.225675
1	1.086374	-2.131400	0. 577057
1	5. 512043	-0.054937	3.109613
6	4. 621815	-0.398425	2. 563390
7	4.085192	0.709544	1.764492
1	4.918630	-1.223956	1.914110
1	3. 882781	-0.758767	3. 287668
15	3. 493697	0.457926	0.171266
6	3. 549833	1.786566	2. 596854
7	3. 537721	1.938814	-0.692258
7	4.815832	-0.442858	-0. 459009
1	2.672688	1.469127	3. 174122
1	4. 329151	2.099928	3. 304235
1	3. 295667	2.655685	1.989785
6	4. 494737	2.252624	-1.746052
6	2. 588482	3.015188	-0. 439168
6	6.207620	-0.053424	-0.259968
6	4.636453	-1.680661	-1.201946
1	3. 957798	2.658670	-2.614382
1	5.235485	3.001179	-1.424585
1	5.015840	1.354700	-2.072877
1	2.050885	3.280769	-1.360607
1	1.849809	2.705972	0. 300791
1	3. 096444	3.919648	-0. 070596
1	6. 751318	-0.823691	0. 307129

1	6.724574	0.081306	-1.221551
1	6.262575	0.881953	0.299373
1	5.276419	-2.467741	-0.776408
1	3. 599849	-2.010445	-1.128879
1	4.892943	-1.566425	-2.264871
1	1.508689	0.931768	-1.718392
1	-1.037038	-2.655122	0. 420284
8	-1.024144	-3.359758	-0.259677
1	-0.524864	-2.930329	-0. 975089

Standard coordinate and geometry of TS-3a:

8	1.580901	-4. 038529	-0.048350
8	1.123917	3. 323280	-0.890188
8	2.344960	1.815996	-2.039518
8	-1.467502	1.841520	2. 338986
8	-2.253116	-0.162700	3. 012079
8	-7.409537	0.294930	-2. 445886
8	-8.114258	-0.054940	-0. 412794
7	0. 222818	-2.223998	-0. 498608
7	-1.161484	-1.943960	-0.738326
7	-7.226622	-0.000437	-1.264435

6	0. 470439	-3.541797	-0.176321
6	-0.882774	-4.243612	-0.101147
1	-1.219574	-4.309950	0.940320
1	-0.797998	-5.258880	-0. 494255
6	-1.741531	-3.304031	-0.953292
1	-1.638758	-3.551744	-2.016133
1	-2.801948	-3.304230	-0.701848
6	-1.832633	-1.257855	0.409847
1	-1.931290	-1.939270	1.267110
6	-0.972686	-0.067659	0.962040
1	-0. 103766	-0.528671	1. 441931
6	-0. 456154	0.940276	-0.065501
6	1.056650	1.075057	-0. 136749
6	1.793965	-0.290167	-0. 178930
6	1.252742	-1.391478	-1.126823
1	2.036129	-2.092325	-1. 427893
6	1.555129	2.059515	-1. 130299
6	1. 586793	4.358679	-1.782280
1	2.637333	4.180689	-2.025382
1	1.503934	5.275455	-1. 192637
6	0.746813	4.442876	-3. 050170
1	0.838903	3. 522683	-3. 633919
1	1.091088	5.279157	-3.670268
1	-0. 308911	4.608338	-2.810680
6	-1. 320773	1.689878	-0.764627
1	-2.386874	1.639315	-0. 579482
1	-1.001106	2.426744	-1. 490389
6	-1.657588	0.522650	2. 199578
6	-2.003411	2.454476	3. 537137
1	-1.358089	3. 320158	3. 704542
1	-1.899693	1.754010	4. 369093
6	-3. 453192	2.871068	3. 338648
1	-3. 550802	3.539918	2.477402
1	-3.813745	3.399668	4. 228778

1	-4.088166	1.994986	3.179013
6	-3.248451	-0.900985	-0.041984
6	-4.311015	-0.959228	0.875476
1	-4.109066	-1.230427	1.905609
6	-5.613762	-0.657959	0. 485795
1	-6.438827	-0.698986	1.186198
6	-5.853440	-0.309335	-0.841695
6	-4.825365	-0.256771	-1.781604
1	-5.051657	0.012187	-2.806095
6	-3. 527864	-0.554814	-1.375434
1	-2.715056	-0.525272	-2.090762
1	0.809110	-0.943538	-2.019408
1	5. 520882	-3.144374	1.008913
6	4.690809	-2.873730	0.341053
7	3.961425	-1.726309	0.878497
1	5. 102415	-2.645522	-0.642393
1	4.014456	-3.729827	0.243234
15	3.671731	-0.312160	-0.001351
6	3.253874	-2.004124	2.140596
7	4. 458144	0.923509	0.845054
7	4. 501010	-0.365958	-1.466619
1	2.559354	-2.840282	1.995635
1	3.985525	-2.289214	2.909230
1	2.706096	-1.121822	2. 496310
6	4. 344314	2.310147	0.379649
6	4.712625	0.834223	2. 294448
6	5.962263	-0.263516	-1.485320
6	3.904718	-0.634698	-2.773846
1	3.504022	2.823377	0.863141
1	5.273167	2.834049	0.636719
1	4. 215851	2.340703	-0. 702369
1	3. 790519	1.065551	2.843029
1	5.069971	-0.163847	2. 550588
1	5.511943	1.548214	2. 525245

1	6. 419095	-1.191564	-1.856415
1	6.266056	0.557255	-2.148030
1	6. 342020	-0.057435	-0. 484578
1	2.869784	-0.306069	-2.798264
1	4. 439460	-0.038204	-3. 521571
1	3. 985340	-1.694748	-3.054589
1	1.364814	1.333220	1.038804
8	1.733514	0.872038	2.369077
1	1.627650	-0.669906	0.832223
1	1.273388	1.447613	2.998916

Standard coordinate and geometry of TS-3b:

8	1.322227	4.228003	-0.594116
8	2.092045	-1.082362	2.769655
8	1.036424	-2. 903991	2.001352
8	-0.870193	-2.062210	-2.228123
8	-2.146938	-0.349682	-2.949653
8	-7.352961	-0. 309638	2.467665
8	-8.057087	-0.269805	0.405035
7	0.144357	2.362489	0.111575
7	-1.201162	2.018511	0.469308
7	-7.175202	-0.162414	1.258011

6	0.268650	3.655874	-0.346570
6	-1.139442	4.247556	-0. 422191
1	-1.525156	4. 185283	-1.447196
1	-1.115690	5. 300974	-0.135079
6	-1.886735	3. 343350	0.559165
1	-1.768061	3.713275	1.584216
1	-2.952177	3. 234341	0.356919
6	-1.840832	1.140848	-0.553143
1	-1.950080	1.670497	-1.511599
6	-0.912250	-0.078213	-0.871838
1	0.031728	0.374483	-1.215985
6	-0.520100	-0.964984	0.307018
6	0.950157	-0. 912697	0.660741
6	1.711974	0.329832	0.298613
6	1.264446	1.679131	0.820677
1	2.067865	2. 419229	0.778186
6	1.325237	-1.664395	1.838274
6	2.562552	-1.905473	3.866087
1	3.358425	-2. 560862	3. 494327
1	1.743596	-2. 538311	4.214246
6	3.057160	-0.976654	4.960020
1	3.883336	-0.349925	4.611487
1	3. 409785	-1.568402	5.812057
1	2.250299	-0.322633	5.306023
6	-1.454210	-1.758900	0.871067
1	-2.472761	-1.775727	0.502067
1	-1.237824	-2. 410899	1.710019
6	-1.416610	-0.822020	-2.101285
6	-1.203963	-2. 797646	-3. 436211
1	-0.356269	-3. 472764	-3. 578351
1	-1.252827	-2.093884	-4.269617
6	-2.509642	-3. 561558	-3.278392
1	-2.468032	-4.241882	-2. 421078
1	-2.699698	-4. 157593	-4. 178387

1	-3.346122	-2.871134	-3.140638
6	-3.241292	0.781494	-0.065839
6	-4.297014	0.663990	-0.984200
1	-4.100424	0.807896	-2.040683
6	-5.585871	0.348002	-0.560581
1	-6.406491	0.253195	-1.260955
6	-5.817095	0.162698	0.800824
6	-4.794995	0.286096	1.741129
1	-5.015034	0.139896	2.791478
6	-3.510957	0.593211	1.301141
1	-2.702792	0.697244	2.014527
1	0.927363	1.591309	1.863036
1	5.273097	2.199554	-2.434581
6	4.650268	2. 418445	-1.552379
7	3.465711	1.572306	-1.485180
1	5.259281	2.303146	-0.658158
1	4.332700	3. 467399	-1.609986
15	3.263615	0.245747	-0.421330
6	2.484133	1.903591	-2.514697
7	3.644209	-1.225565	-1.225132
7	4.648112	0.324095	0.618662
1	2.188226	2.953577	-2.419529
1	2.894327	1.739473	-3.524237
1	1.593712	1.285932	-2.394387
6	4.096778	-2. 422562	-0.516796
6	3.147048	-1.487753	-2.568962
6	6.009686	0.029026	0.189120
6	4.562693	0.991723	1.907302
1	3.332584	-3.208072	-0.524623
1	5.004393	-2.822262	-0.994694
1	4.337261	-2.175205	0.518222
1	2.206357	-2.057958	-2.569830
1	2.989727	-0. 553592	-3.109436
1	3.895345	-2.070177	-3.124518

1	6.652035	0.923165	0.208209
1	6.467370	-0.719206	0.853655
1	6.007743	-0.369532	-0.826770
1	4.971182	2.015459	1.879136
1	3.524174	1.029564	2.237381
1	5.136135	0. 426167	2.655806
1	1.177115	-2.219459	-0.216320
1	0.096012	-3. 296271	-0. 751759
8	0.987245	-3. 345619	-0.352972
1	0.877123	-3. 357099	0.817329

Standard coordinate and geometry of TS-3c:

8	1.464463	-1.133693	3. 982599
8	1.174978	-2. 413038	-1.758105
8	-0. 679125	-1.264742	-2.315474
8	-2. 572751	2.259536	-1.082301
8	-2.164528	3.013177	1.007645
8	-7.166259	-1.737687	-1. 479785
8	-7.869373	-0.672671	0. 287687
7	0. 520757	-0.906451	1.878401
7	-0. 735165	-1.196909	1.239422
7	-6. 975759	-1.093364	-0.448114
6	0. 500168	-1.189628	3. 237601
6	-0. 911193	-1.673641	3. 582081
1	-1.518047	-0.859671	3. 996163

1	-0.853632	-2.465314	4. 332371
6	-1.387240	-2.138277	2. 202813
1	-0.999865	-3.140455	1. 986709
1	-2. 467333	-2.153881	2.066815
6	-1.516166	0.058391	1. 086190
1	-1.603292	0.558599	2.063433
6	-0.853425	1.150208	0. 190660
1	0.018069	1.832031	0.858923
6	0.078143	1.043787	-0. 915680
6	1.102961	-0.083712	-1.167090
6	2.071506	-0.302707	-0. 023056
6	1.720463	-1.250540	1. 083128
1	2. 532763	-1.310039	1.809715
6	0. 408664	-1.306167	-1.772854
6	0.610725	-3.572136	-2. 418524
1	0.387124	-3.309858	-3. 457347
1	-0.335314	-3.825101	-1.930052
6	1.621307	-4.699367	-2. 319616
1	2.563757	-4. 426223	-2.805253
1	1.226416	-5.593228	-2.814924
1	1.830498	-4.950642	-1.274704
6	0. 435658	2.306158	-1. 480706
1	1.202208	2.299965	-2. 252549
6	-1.905835	2.259469	0. 087050
6	-3.665086	3.204840	-1.215458
1	-4. 191189	3.266045	-0. 260127
1	-4. 317981	2.746962	-1.961895
6	-3. 175623	4.573106	-1.666054
1	-2. 532790	5.025134	-0. 905273
1	-4.033084	5.236720	-1.827044
1	-2.620083	4.500203	-2.607065
6	-2.949117	-0.264842	0. 649713
6	-4.016028	0.177837	1. 447946
1	-3.810548	0.743886	2. 352177

6	-5.338605	-0.084357	1.097254
1	-6.167842	0.253183	1.706619
6	-5.585302	-0.805692	-0.068078
6	-4.548095	-1.257785	-0.883920
1	-4. 781153	-1.809003	-1.786726
6	-3.232425	-0.981206	-0. 523930
1	-2. 423629	-1.307775	-1.165764
1	1.529911	-2.267869	0.704555
1	6.232501	1.003124	2.048951
6	5. 523545	0.162050	1.992900
7	4. 223228	0.565607	1.474640
1	5.961811	-0.627161	1. 383533
1	5. 393677	-0.232894	3. 008977
15	3.678781	0.266491	-0. 109209
6	3. 428341	1.339122	2. 437775
7	3.900396	1.628761	-1.129052
7	4.847987	-0.797321	-0.812857
1	3. 192711	0.717337	3. 310430
1	3.995039	2.220766	2.772224
1	2. 491914	1.680908	1.994509
6	4. 204953	1.547797	-2.550042
6	3.822685	2.989807	-0. 605299
6	6.212824	-0. 407135	-1.144018
6	4.600705	-2.229896	-0.880137
1	3. 438967	2.069810	-3. 143349
1	5. 175136	2.015194	-2. 781669
1	4. 242830	0.506678	-2.874111
1	3. 231736	3.616289	-1.285903
1	3. 321552	3.019025	0. 361849
1	4.823248	3.440670	-0. 513158
1	6.951850	-0.945757	-0. 531511
1	6. 434112	-0.628229	-2. 198935
1	6.355088	0.663357	-0. 981981
1	5.150665	-2.787573	-0.104645

1	3. 532705	-2.423857	-0.773443
1	4.920678	-2.616736	-1.858852
1	1.683876	0.281240	-2.024113
1	0. 283683	3.600117	1.333114
8	0.921532	2.923189	1.048767
1	0.848093	2.795470	-0.339461
1	-0.371185	3.003444	-1.702307

Standard coordinate and geometry of TS-3d:

8	-1.036061	-2.946254	2.517994
8	-0.836923	-2.229931	-1.889601
8	0.994348	-3.352980	-1.201703
8	-0.697841	3. 628135	-0.248186
8	0.925929	3. 148487	-1.735124
8	-6.937400	-1.341655	-0.456126
8	-7.474009	0.618135	0.336709
7	-0.192711	-1.011314	1.557968
7	-0.316694	0.399067	1.737067
7	-6.651900	-0.235632	0.004053
6	-1.012390	-1.731391	2. 426412
6	-1.799708	-0.726168	3.271341
1	-1.829835	-1.075915	4.306451
1	-2.830353	-0.645969	2.911531
6	-0.982161	0.553319	3.064122

1	-1.571732	1. 471998	3. 089090
1	-0.198403	0.632963	3.827576
6	-1.040711	1.107670	0.640418
1	-1.089781	2. 114657	1.045443
6	-0.331435	1. 320453	-0.727276
6	0.362219	0.349472	-1.583583
6	1.115174	-0.943933	-1.175788
6	1.851885	-0. 919323	0.136644
6	1.188255	-1. 520391	1.333662
1	1.782728	-1.350376	2.241390
6	0.423810	-2.300086	-1.396150
6	-1.451980	-3. 509332	-2.216599
1	-0.688260	-4.146753	-2.666946
1	-2.203295	-3.257718	-2.969899
6	-2.073642	-4.182178	-1.000857
1	-1.332510	-4.333760	-0.212354
1	-2.474705	-5.159458	-1.294056
1	-2.898672	-3. 592577	-0. 589197
6	0.396853	0.595834	-2.960410
1	0.314293	1.613159	-3.337772
1	0.970196	-0.070487	-3.600467
6	0.064738	2.734810	-0.970818
6	-0.399597	5.025342	-0.435604
1	-1.335852	5. 536532	-0.192760
1	-0.155086	5. 197825	-1.486149
6	0.732548	5. 492848	0.468573
1	0.504758	5.287467	1.520351
1	0.882365	6.573163	0.354803
1	1.664436	4.986529	0.201843
6	-2.511835	0.700132	0.465976
6	-3.510351	1.637120	0.787946
1	-3.218724	2.622582	1.140241
6	-4.864590	1.343927	0.644906
1	-5.633498	2.066355	0.890554

6	-5.228545	0.087992	0.165846
6	-4.269902	-0.867090	-0.174345
1	-4.592178	-1.834155	-0.542207
6	-2.919860	-0. 555882	-0.024577
1	-2.173423	-1.291177	-0.293930
1	1.042631	-2.603268	1.239242
1	4.842268	2.901483	0.140551
6	5.035896	1.930600	0.620007
7	3.787641	1.205990	0.817497
1	5.711718	1.360699	-0.019839
1	5.545512	2. 128768	1.576185
15	3.458504	-0.363863	0. 199526
6	2.847108	1.859478	1.716876
7	4.222007	-0.224180	-1.330775
7	4.335816	-1. 439414	1.207202
1	3.231783	1.899269	2.749160
1	2.671903	2.892720	1.384425
1	1.888093	1.334540	1.709908
6	4.798665	-1.391873	-1.983770
6	3.954468	0.894942	-2.235753
6	5.471381	-1.053860	2.032784
6	4.154399	-2.886904	1.095256
1	4.104429	-1.871031	-2.692340
1	5.694059	-1.089150	-2.543813
1	5.102230	-2. 135763	-1.245959
1	3.391823	0.565175	-3. 120213
1	3.363076	1.667568	-1.742100
1	4.900602	1.336377	-2.582488
1	5.424446	-1. 591135	2.989746
1	6.437222	-1.295641	1.561082
1	5.443200	0.013544	2.247183
1	3.335270	-3.110662	0.409386
1	5.069765	-3.376996	0.728247
1	3.917533	-3. 317007	2.078572

1	-1.588098	1.306058	-1.759716
1	1.886739	-1.007185	-1.952293
8	-2.144586	0.997286	-2.691004
1	-2.701305	0.257098	-2.380956
1	-1.125843	0.543024	-3.036590

Standard coordinate and geometry of IN-4:

8	1.656506	1.143718	4.016847
8	-0. 450398	-2.319918	-1.897871
8	1. 489201	-2.723079	-0. 780655
8	-0.353377	3. 484437	-1.122258
8	-2. 509598	3.122854	-0. 546292
8	-6.767488	-2.531467	-0.752242
8	-7.801827	-0.720045	-0.120603
7	0.324260	0.272662	2. 339141
7	-1.055732	-0.018354	2.095921
7	-6.781498	-1.387865	-0.295382
6	0.554122	0.879748	3. 560574
6	-0.812629	1.066581	4. 221801

1	-1.168492	2.094372	4. 081730
1	-0. 731137	0.884367	5. 295622
6	-1.650945	0.027669	3. 462114
1	-1.537166	-0.962187	3. 918371
1	-2. 716137	0.254277	3. 397961
6	-1.734529	0.981241	1.201044
1	-1.965388	1.894098	1.773574
6	-0.804311	1.464093	0.041160
1	0.116537	1.778953	0. 538431
6	-0. 463382	0.420072	-1.043625
6	0.616300	-0.535188	-0. 744465
6	1.666179	-0.175000	0.279643
6	1. 327831	-0. 599275	1.731868
1	2. 189730	-0.554461	2. 405448
6	0.601924	-1.898466	-1.114633
6	-0. 471574	-3.710192	-2.251888
1	0. 546413	-4.048882	-2. 461222
1	-1.061186	-3.750516	-3.173280
6	-1.104165	-4. 571048	-1.164774
1	-0.501759	-4.528850	-0.253061
1	-1.162995	-5.615857	-1. 493880
1	-2.119841	-4.229133	-0. 935918
6	-1.228672	0.414640	-2.161471
1	-2.091777	1.065139	-2.263242
1	-1.059334	-0.297368	-2.958518
6	-1.357818	2.749746	-0. 563787
6	-0.725614	4.672190	-1.873379
1	0.092897	5.374588	-1.696342
1	-1.648336	5.072753	-1.450326
6	-0.870635	4.336509	-3.349864
1	0.040645	3.863063	-3. 729561
1	-1.055070	5.251869	-3. 923661
1	-1.709883	3.653399	-3. 511322
6	-3. 058275	0.364232	0.771784
			C10

6	-4.255534	1.074743	0.938558
1	-4. 227015	2.086878	1.328685
6	-5. 480219	0.512684	0. 589111
1	-6. 411145	1.051389	0.714036
6	-5.494328	-0.779609	0.068165
6	-4.321871	-1.511733	-0.112621
1	-4.374089	-2.511778	-0. 525085
6	-3. 105792	-0.935248	0.242741
1	-2. 188516	-1.494308	0.109677
1	0.925341	-1.614396	1.721030
1	5.743448	1.211103	2.251986
6	4.852756	0.584746	2. 115699
7	4. 320999	0.807016	0.765389
1	5.145884	-0.456654	2.249518
1	4. 119247	0.850623	2.889848
15	3. 515499	-0. 457571	-0.069225
6	3.879032	2.196391	0. 569489
7	3.967065	-0.241950	-1.674223
7	4. 203501	-1.895867	0. 471016
1	3. 191483	2.506004	1.370820
1	4.753124	2.859811	0. 599937
1	3. 379601	2.324424	-0.394855
6	3. 456149	-1.151751	-2. 705782
6	4.848279	0.813272	-2.179698
6	5.612278	-2.149866	0.163436
6	3.564355	-2.915241	1.304081
1	2.811638	-0.616050	-3. 413737
1	4.304318	-1.574963	-3.261632
1	2.891049	-1.966763	-2. 250579
1	4.273681	1.570648	-2.723377
1	5. 388923	1.285766	-1.360338
1	5.583402	0.357768	-2.856335
1	6.223468	-2.169320	1.076677
1	5.710626	-3.120893	-0. 338335
1	6.009065	-1.379050	-0. 499139
---	-----------	-----------	------------
1	2. 494371	-2.933106	1.115892
1	3.954374	-3.893219	1.000082
1	3.784622	-2.772771	2.371828
1	1.579979	1.235318	-2.248564
8	1.948843	2.136112	-2.261828
1	1.755716	0.915729	0.300172
1	1.208632	2.665719	-1.916150

Standard coordinate and geometry of TS-4a:

1	1.099130	4.345502	1. 486516
1	0. 586948	5.354287	0. 125685
6	1.657800	3.505022	-0. 481090
1	1. 537850	3.831926	-1.520166
1	2.719462	3.539103	-0.231756
6	1.891404	1.351204	0. 684439
1	2.157654	2.016307	1.519479
6	0.972160	0.286264	1.372569
1	0. 126515	0.874549	1.748184
6	0. 420955	-0.901676	0. 581400
6	-0.932480	-0.966256	0. 284537
6	-1. 789086	0.305668	0. 222204
6	-1. 170190	1.373607	-0.747686
1	-1.944896	1.998934	-1.194708
6	-1.563613	-2.134707	-0. 305459
6	-1.328826	-4.345530	-1.176437
1	-2.379888	-4.187464	-1.422648
1	-1.231850	-5.275264	-0. 608501
6	-0. 440909	-4.329069	-2. 415338
1	-0.364031	-3.303784	-2. 794778
1	-0.854234	-4.988009	-3. 188299
1	0. 571636	-4.671075	-2.176237
6	1. 406406	-1.818942	0. 031078
1	2. 422972	-1.635787	0.378426
1	1.161184	-2.874248	0.076299
6	1.643036	-0.201142	2.668743
6	1. 481079	-1.785634	4. 440266
1	0.607445	-2.253041	4. 901056
1	1.829358	-0.963391	5.070038
6	2.587039	-2.798269	4. 184651
1	2.241874	-3.586115	3. 507850
1	2.891594	-3.261149	5. 130480
1	3. 461539	-2.312249	3. 743048
6	3. 201959	0.890739	0.048316

6	4. 404674	1.014143	0.760717
1	4. 383779	1.369654	1. 785181
6	5.621273	0.669101	0.176691
1	6.557148	0.760406	0.713780
6	5.620799	0.206154	-1.137127
6	4. 440608	0.073018	-1.869038
1	4. 483042	-0.300925	-2.884765
6	3. 229445	0.419907	-1.276635
1	2.294887	0.282605	-1.820481
1	-0. 608859	0.846482	-1. 529179
1	-5. 431071	3.177862	-0. 933720
6	-4. 411657	2.766113	-0. 930797
7	-4. 332153	1.672282	0.045211
1	-4. 180136	2.407690	-1.932231
1	-3. 710617	3.564968	-0.666435
15	-3. 603705	0.145289	-0.250214
6	-4. 474897	2.180266	1. 415558
7	-4. 454069	-0.732764	0.942512
7	-3.873879	0.055707	-1.926893
1	-3.699845	2.925867	1.628515
1	-5.458408	2.656841	1. 529354
1	-4.407467	1.366246	2. 137375
6	-5. 915454	-0.786061	0.899967
6	-3.872686	-1.791617	1.767884
6	-5. 256648	0.034390	-2. 412410
6	-2.945016	-0.535663	-2.905478
1	-6.279456	-1.685884	0.382628
1	-6. 301920	-0.804070	1.926884
1	-6. 318771	0.098798	0. 406748
1	-4. 034227	-2.788714	1.342915
1	-2.802121	-1.640935	1.906168
1	-4. 350680	-1.743345	2.755108
1	-5.298921	0.538259	-3. 385894
1	-5.621983	-0.994444	-2. 545171
			011

1	-5.925424	0.563490	-1.732467
1	-1.901895	-0.551682	-2. 581751
1	-3.234282	-1.564575	-3.147625
1	-3. 011550	0.074871	-3.816118
1	-1.902415	0.783112	1.206036
8	0. 440024	-0.963288	-2.329014
1	1. 189988	-1.515944	-1.158522
1	0. 920642	-1.243723	-3. 125570

Standard coordinate and geometry of IN-5:

8	2.056450	-2.901896	-2.638246
8	-0.087846	2.584283	1.679681
8	2.072657	2.305874	1.110354
8	-0.622513	-2.430006	2.712846
8	-2.343705	-3.235808	1. 486593
8	-6.335571	2.912391	-1.054003
8	-7.533726	1.189638	-0. 467947
7	0. 433584	-1.428018	-1.903069
7	-0.976667	-1.242579	-1.993091
7	-6.460892	1.723894	-0.756938
6	0.882300	-2.565151	-2. 528693

6	-0.351343	-3.268502	-3. 102076
1	-0.652421	-4.093374	-2. 443816
1	-0.119508	-3.689979	-4. 082804
6	-1.365532	-2.115582	-3.128821
1	-1.264130	-1.539542	-4. 055666
1	-2.409840	-2.417065	-3. 027060
6	-1.737237	-1.588957	-0.747864
1	-2.078895	-2.631875	-0. 793063
6	-0.841577	-1.547129	0. 532707
1	0.093994	-2.032720	0. 236711
6	-0.542527	-0.157750	1.082859
6	0.605151	0.486385	0.754411
6	1.679595	-0.173915	-0. 116887
6	1.260277	-0.264203	-1.623603
1	2. 134009	-0.336551	-2.273254
6	0.916936	1.884275	1.162805
6	0.042719	4.032526	1.733628
1	1.091860	4.290209	1.582292
1	-0.251011	4.315588	2.749108
6	-0.859630	4.621762	0.659483
1	-0.671407	4.069543	-0.272564
1	-0.651358	5.691552	0. 535445
1	-1.915574	4.505113	0. 927503
6	-1.632576	0.426974	1.962737
1	-2. 423243	-0.305487	2.143424
1	-1.237739	0.752078	2. 929336
6	-1.396108	-2.487572	1.608361
6	-0.980024	-3.309954	3.809822
1	-0.041607	-3. 453718	4. 350922
1	-1.311837	-4.265927	3. 397697
6	-2.047782	-2.690273	4. 698363
1	-1.727247	-1.711825	5. 070383
1	-2.234443	-3.341907	5. 559728
1	-2.986582	-2.570782	4. 150481

6	-2.972235	-0.693059	-0.727412
6	-4.221440	-1.245116	-0. 406575
1	-4.289621	-2.295939	-0.140908
6	-5.372127	-0.460324	-0. 411175
1	-6.344932	-0.870905	-0.170919
6	-5.252508	0.887435	-0.744285
6	-4. 020678	1.461397	-1.062035
1	-3.968604	2.515793	-1.305488
6	-2.871900	0.671756	-1.060437
1	-1.900823	1.140369	-1.282919
1	0.667926	0.665148	-1.816915
1	5. 756181	-1.076396	-2.381557
6	4.696916	-0.825591	-2.231805
7	4. 407344	-0.799520	-0. 790879
1	4.503426	0.147452	-2.680853
1	4.079974	-1.579472	-2.733023
15	3. 459202	0.409307	-0.034100
6	4. 495897	-2.143416	-0.206351
7	4.038567	0.212111	1.561342
7	3.849220	1.737118	-0.999719
1	3.805460	-2.830339	-0.712205
1	5. 517391	-2.527536	-0.328864
1	4.270184	-2.112244	0.860007
6	5.463892	0.409019	1.833990
6	3.216847	0.321026	2.767501
6	5.251192	2.157495	-1.089335
6	2.920479	2.803780	-1.416478
1	5.684648	1.436703	2. 157162
1	5.768306	-0.273468	2.637214
1	6.061443	0.174120	0.952842
1	3. 186801	1.342347	3. 163146
1	2. 196498	-0.012839	2.581032
1	3.651817	-0.343111	3. 525381
1	5. 439045	2.539783	-2. 099939

1	5. 474787	2.962176	-0.374380
1	5. 933300	1.324455	-0.914781
1	1.854950	2.523046	-1.343770
1	3. 082716	3.705064	-0.813536
1	3. 155679	3.035455	-2.464845
1	1.851782	-1.197479	0.241623
8	-0.118072	2.208504	-1.316004
1	-2. 086529	1.298269	1. 489870
1	-0. 124191	2.687710	-2.163400

Standard coordinate and geometry of TS-5:

8	2.024645	-2.676726	-2.808609
8	-0.140967	2.643810	1.577606
8	2.072617	2.351003	1.269479
8	-0. 590097	-2.425921	2.609701
8	-2.251911	-3.273400	1.332137
8	-6.571687	2.738797	-0. 833353
8	-7.638061	0.949733	-0. 192449
7	0.447338	-1.189881	-1.983614
7	-0. 975399	-1.006930	-2.037308
7	-6.615704	1.543087	-0. 540945

6	0.861929	-2.295545	-2.681853
6	-0.375979	-2.921800	-3.333906
1	-0.687738	-3.812297	-2.773417
1	-0. 142556	-3.237166	-4.354047
6	-1. 380973	-1.765507	-3.244508
1	-1.281410	-1.104498	-4. 113310
1	-2.427676	-2.069511	-3. 166335
6	-1.712230	-1. 492705	-0.830061
1	-1. 990803	-2.550610	-0. 942544
6	-0.820813	-1.485365	0. 454801
1	0. 117552	-1.942596	0.126039
6	-0. 528792	-0.116056	1.059612
6	0.632169	0.529951	0. 777877
6	1.694029	-0.111928	-0. 129969
6	1.276320	-0.046689	-1.634108
1	2. 153539	-0.090132	-2.283494
6	0.924787	1.920254	1.226320
6	0.016256	4.078930	1.727708
1	1.080299	4.317438	1.702681
1	-0.381839	4.321595	2.717851
6	-0.757192	4.760496	0. 608791
1	-0. 437411	4.353566	-0.355622
1	-0. 582011	5.842610	0. 638233
1	-1.832616	4.582492	0.712697
6	-1.625420	0.441062	1.949631
1	-2.364307	-0.328209	2.186909
1	-1.224970	0.832289	2.888342
6	-1.345309	-2.482218	1. 491572
6	-0.914618	-3.365050	3. 666898
1	0.021715	-3.476312	4. 219132
1	-1.184983	-4.322039	3. 214235
6	-2. 029798	-2.841066	4. 558886
1	-1.771546	-1.861021	4. 972954
1	-2. 192174	-3.534588	5. 391998

1	-2.965307	-2.754562	3. 999257
6	-3.002025	-0.680761	-0.740257
6	-4. 198490	-1.301433	-0.350246
1	-4. 192752	-2.355191	-0.089833
6	-5.387973	-0.580160	-0.280092
1	-6.320285	-1.045383	0.015248
6	-5.365981	0.773652	-0.609612
6	-4. 191047	1.415896	-1.002470
1	-4.216404	2.470625	-1.248288
6	-3.006333	0.686434	-1.073134
1	-2.079672	1.179429	-1.370942
1	0.492727	1.227982	-1.750728
1	5.752609	-1.209791	-2.353460
6	4. 723903	-0.853547	-2.205812
7	4. 411201	-0.899509	-0.768674
1	4.652329	0.167041	-2. 579268
1	4.034438	-1.491699	-2.767547
15	3. 501533	0.309616	0.017848
6	4. 356621	-2.283324	-0.277560
7	4.027249	0.034853	1.620631
7	4.006805	1.687571	-0.817156
1	3. 620279	-2.863192	-0.847667
1	5.342334	-2.750192	-0. 404140
1	4. 104685	-2.302054	0. 783793
6	5.455909	0.073108	1.939085
6	3. 181831	0.170456	2.806753
6	5. 423440	2.058411	-0. 789515
6	3. 149430	2.793004	-1.265970
1	5.775894	1.062907	2. 296117
1	5.661627	-0.656544	2.732251
1	6.049827	-0.205085	1.068356
1	3. 216217	1.179382	3. 233826
1	2.146406	-0.080607	2. 580172
1	3. 541317	-0. 545597	3. 556894

1	5.698802	2.476702	-1.765567
1	5.627056	2.819973	-0.022831
1	6.060016	1.191686	-0.608653
1	2.096400	2.517256	-1.347686
1	3. 234985	3.651103	-0. 589090
1	3. 501091	3.092755	-2.262812
1	1.804843	-1.162553	0. 188873
8	-0.051990	2.237736	-1.654880
1	-2.149981	1.261318	1.456293
1	-0.136257	2.543456	-2. 573374

Standard coordinate and geometry of IN-6:

8	1.772573	-3.746741	-1.668567
8	0.043338	3. 199154	0.219225
8	2. 237445	2.716656	0.385095
8	-0.784872	-0.843736	3. 266536
8	-2. 314124	-2.273755	2. 416531
8	-6. 783543	2.106189	-1.960574
8	-7. 757769	0.741431	-0. 567264
7	0.465711	-1.835483	-1. 422201

7	-0.964152	-1.502413	-1.567723
7	-6. 770639	1.156051	-1.176387
6	0.695506	-3.162607	-1.711316
6	-0. 635081	-3.797334	-2.129846
1	-1.059802	-4.382684	-1.304804
1	-0. 467276	-4. 480346	-2.966139
6	-1.467684	-2.561036	-2. 480079
1	-1.268056	-2.244847	-3. 510305
1	-2. 547177	-2.686306	-2.364569
6	-1.729271	-1.534618	-0. 284523
1	-1.964223	-2.566808	0.016754
6	-0. 876858	-0.990290	0.904548
1	0.044098	-1.576685	0.835335
6	-0. 538106	0. 498559	0.869379
6	0.683346	0.903374	0. 422123
6	1.695119	-0.143035	-0. 095576
6	1.451788	-0.791126	-1.448356
1	1.146402	-0.058074	-2.200107
6	1.074488	2.338151	0.348536
6	0.352791	4.613665	0. 188122
1	1.241665	4.795540	0.795663
1	-0. 513279	5.089677	0.655400
6	0. 545384	5.101100	-1.240005
1	1. 425805	4.637338	-1.694276
1	0.689103	6.187791	-1.244585
1	-0. 331297	4.867850	-1.852810
6	-1.639572	1.421294	1.361240
1	-2. 442414	0.850318	1.833585
1	-1.268777	2.148017	2.089298
6	-1.449110	-1.437307	2.252223
6	-1.152551	-1.244144	4.611643
1	-0. 258449	-1.034973	5. 203846
1	-1.347838	-2.319092	4.615455
6	-2.354437	-0.462004	5.119212

1	-2.167482	0.615774	5.072673
1	-2.556554	-0.731045	6.162364
1	-3. 244519	-0.693862	4. 527705
6	-3.057680	-0.815163	-0. 515456
6	-4.222864	-1.245960	0.140025
1	-4. 166933	-2.082932	0.827391
6	-5. 441389	-0.604748	-0.068601
1	-6.346069	-0.927979	0. 431571
6	-5. 490307	0.473559	-0.950318
6	-4.354765	0.917104	-1.627803
1	-4. 434901	1.752256	-2. 312909
6	-3.144458	0.266566	-1. 407825
1	-2.250842	0.576043	-1.937807
1	5. 494379	-2.352022	-1.925036
6	4. 526441	-1.835724	-1.853691
7	4. 373723	-1.353259	-0. 469839
1	4. 520890	-0.996911	-2. 547976
1	3. 709574	-2.513013	-2.114078
15	3. 540916	0.091234	-0.151477
6	4. 219328	-2.475837	0.467071
7	4. 150251	0.398019	1. 425935
7	4.088001	1.115951	-1.381985
1	3. 378230	-3.112737	0.166132
1	5. 135854	-3.079338	0. 451954
1	4.070023	-2.107519	1. 483794
6	5. 584997	0. 418450	1. 704996
6	3. 361049	1.027706	2. 481419
6	5. 508278	1.415334	-1.524880
6	3. 233333	1.927416	-2.236804
1	6.000956	1.437370	1.678369
1	5.762019	0.009597	2. 708831
1	6. 120074	-0.207405	0.990427
1	3. 511399	2.113415	2. 529731
1	2.297148	0.834768	2. 346112
			~

1	3.660825	0. 587733	3. 442391
1	5.776717	1.407309	-2. 589946
1	5. 759191	2.405592	-1.115977
1	6.119156	0.661992	-1.027178
1	2. 187567	1.656758	-2.119989
1	3. 347607	2.995036	-2.008463
1	3. 507238	1.756149	-3.287175
1	1.728354	-0.961695	0.637303
1	-2.083067	1.987728	0. 538999

Standard coordinate and geometry of TS-6:

6	0.673760	-3.199750	-1. 793389
6	-0.621409	-3.981044	-2.040218
1	-0.897250	-4.552587	-1.144724
1	-0. 476093	-4.691687	-2.857013
6	-1.604315	-2.850231	-2.358366
1	-1.548770	-2.586032	-3. 420915
1	-2.647999	-3.064686	-2.116446
6	-1.841681	-1.595385	-0.257121
1	-2.114668	-2.596454	0.105732
6	-0.968929	-1.020867	0.908256
1	-0.047673	-1.605200	0.843940
6	-0. 618050	0.475609	0.900762
6	0. 587771	0.880781	0. 414073
6	1. 470535	-0.208449	-0. 186924
6	1.106808	-0.716736	-1.456936
1	0.755360	-0.004657	-2. 202506
6	1.006541	2.307555	0.398560
6	0.290635	4.583369	0.174537
1	1.147602	4.757815	0.828239
1	-0.599770	5.047974	0.606852
6	0.550240	5.097044	-1.233536
1	1.454149	4.645066	-1.652546
1	0. 688683	6.184242	-1.212345
1	-0.293856	4.870777	-1.892951
6	-1.672683	1.403795	1. 475771
1	-2. 423890	0.846102	2.040061
1	-1.242189	2.156712	2.140680
6	-1.527071	-1.469141	2.265239
6	-1.140549	-1.344818	4. 616615
1	-0.215092	-1.200316	5.179019
1	-1.397621	-2.406647	4. 605898
6	-2. 275785	-0.506317	5. 183917
1	-2.027735	0.559601	5. 152879
1	-2. 455612	-0.786829	6. 228108

1	-3.198840	-0.673159	4.621606
6	-3.139489	-0.828447	-0. 507344
6	-4.320458	-1.187446	0. 161670
1	-4.303320	-2.011269	0.866743
6	-5.506753	-0.490670	-0.056373
1	-6.424630	-0.758696	0.452260
6	-5.504827	0.571723	-0.958040
6	-4.351478	0.946310	-1.646838
1	-4.392122	1.772614	-2.345985
6	-3.174780	0.238864	-1. 419734
1	-2.269787	0.493763	-1.959077
1	5.499502	-2.198132	-2.120027
6	4. 521731	-1.711611	-1.982845
7	4. 382317	-1.312515	-0.575423
1	4. 477235	-0.834212	-2.627210
1	3.726794	-2.405917	-2.268726
15	3.653472	0.173761	-0.109147
6	4.245762	-2.472847	0.310310
7	4. 426957	0.374096	1.425442
7	4.236030	1.195374	-1.358843
1	3. 424517	-3.122259	-0.017732
1	5.175341	-3.059409	0.292032
1	4.074320	-2.146947	1.338727
6	5.864874	0.234067	1.635319
6	3. 740468	1.058594	2.515368
6	5.657692	1.455902	-1.544530
6	3.364449	2.096603	-2.096534
1	6.381936	1.206550	1.643269
1	6.049566	-0.252391	2.603636
1	6.297471	-0.393531	0.854618
1	4.013905	2.120853	2. 588901
1	2.659994	1.000308	2. 384793
1	4. 001183	0.567549	3. 463677
1	5.888026	1.507078	-2.618248

1	5.967937	2.407693	-1.085634
1	6.254853	0.649116	-1.117359
1	2. 329054	1.762622	-2. 037697
1	3. 422897	3.130135	-1.727931
1	3.655495	2.085983	-3. 156542
1	1.602986	-1.019158	0. 535287
1	-2.194981	1.938061	0.677040

Standard coordinate and geometry of 7a:

-2.052199	4.848357	-0.569879
-4.073395	-1.611928	-1.201428
-2.059527	-2.531524	-1.635504
-0.871806	-0.290635	3. 290940
1.046103	0.863521	2.975622
4.969698	-2.421051	-2.390462
6.124708	-1.583158	-0.741829
-1.347629	2.644475	-0. 676556
-0.172423	1.894054	-0. 982319
5.091386	-1.699917	-1. 400635
-1.172606	4.029684	-0. 752189
0.280274	4.254051	-1.152906
0.870795	4. 529445	-0.270113
0.349159	5.074350	-1.870476
	-2.052199 -4.073395 -2.059527 -0.871806 1.046103 4.969698 6.124708 -1.347629 -0.172423 5.091386 -1.172606 0.280274 0.870795 0.349159	-2.052199 4.848357 -4.073395 -1.611928 -2.059527 -2.531524 -0.871806 -0.290635 1.046103 0.863521 4.969698 -2.421051 6.124708 -1.583158 -1.347629 2.644475 -0.172423 1.894054 5.091386 -1.699917 -1.172606 4.029684 0.280274 4.254051 0.870795 4.529445 0.349159 5.074350

6	0.659001	2.883743	-1.726371
1	0. 383668	2.821665	-2. 784689
1	1.713806	2.629086	-1.627665
6	0. 502389	1.396965	0. 252887
1	0.862730	2.229575	0.873264
6	-0.538182	0.626716	1.134362
1	-1.371276	1.320732	1.299058
6	-1.096126	-0.608376	0. 446627
6	-2.176261	-0.464159	-0.369853
6	-2.967924	0.770524	-0. 526872
6	-2.613043	2.067843	-0. 610153
1	-3.377846	2.837578	-0. 637449
6	-2.722948	-1.650075	-1.122752
6	-4. 713833	-2.674476	-1.948033
1	-4. 094490	-2.916826	-2.814748
1	-5.655693	-2.234097	-2.284554
6	-4. 951011	-3.900751	-1.078942
1	-4. 000351	-4.342339	-0. 767465
1	-5.510179	-4.653758	-1.646266
1	-5. 531580	-3.640727	-0. 187671
6	-0. 414990	-1.925023	0.745870
1	0.654928	-1.781268	0.924700
1	-0.835096	-2.352919	1.665218
6	0.007008	0.404075	2.545229
6	-0. 535834	-0.486943	4. 689873
1	-1.504722	-0.615255	5. 177808
1	-0.057340	0.421398	5.063362
6	0.355946	-1.703183	4.886741
1	-0. 114587	-2.604741	4. 481104
1	0. 531649	-1.860827	5.957092
1	1.324046	-1.557927	4. 399297
6	1.703860	0.562693	-0. 175347
6	2.915520	0.656821	0. 526125
1	2.979121	1.300440	1.396279

6	4.027213	-0.085257	0. 134728
1	4.968097	-0.022132	0.667246
6	3.918288	-0.920842	-0.974798
6	2.730389	-1.034924	-1.694948
1	2.684155	-1.696750	-2. 550980
6	1.626736	-0.288784	-1.291020
1	0.695571	-0.363861	-1.841235
1	-0.538323	-2.642790	-0.061798
1	-4.037421	0.601090	-0. 591963