Electronic Supplementary Information

Palladium-Catalyzed Selective Oxidative Olefination and Arylation of

2-Pyridones

Yuye Chen, Fen Wang, Aiqun Jia and Xingwei Li Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 China and School of Environmental and Biotechnology, Nanjing University of Science and Technology, Nanjing 210014, China Email: xwli@dicp.ac.cn

Content

I General Information	S2
II General Procedure of Catalysis	S2
III Product Characterization	S3
IV NMR Spectra	S21

I General Information.

All reagents were used as received unless otherwise noted. Reactions were monitored using thin-layer chromatography (TLC) on commercial silica gel plates. Visualization of the developed plates was performed under UV light (254 nm). Flash column chromatography was performed on silica gel. ¹H and ¹³C NMR spectra were recorded on a 400 or 500 MHz spectrometer. Chemical shifts (δ) were reported in ppm referenced to an internal tetramethylsilane standard. ¹⁹F NMR (470 MHz) spectra were recorded with CDC13 as a solvent using hexafluorobenzene as an external standard. The following abbreviations were used to describe multiplicity when appropriate: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, dd = doublets of doublet. Coupling constants *J* were reported in Hertz (Hz).

IIGeneral Procedure of Catalysis

1 General Procedure for Mono-Olefination of Pyridones.

Pyridone (0.3 mmol), Pd(OAc)₂ (0.03 mmol, 0.1 equiv) and Cu(OAc)₂ (0.6 mmol, 2 equiv) were added to a Schlenk tube, to which was added PivOH (2 g) under N₂. The alkene (1.5 equiv) was added via syringe and the reaction mixture was heated at 110 °C for 16 h. The reaction was monitored by TLC using EtOAc and petroleum ether (1:1 v/v) as the mobile phase. All the volatiles were then removed under reduced pressure. The reaction mixture was diluted with CH₂Cl₂ (30 mL) and saturated aq NaHCO₃ (3×20 mL) was slowly added to neutralize the PivOH. After stirred for 20 min, the organic layer was separated and was dried over anhydrous Na₂SO₄. The solvent was removed and the residue obtained was purified by flash chromatography on silica gel to give the desired product (PE:EA=1:1).

2 General Procedure for Diolefination of Pyridones.

Pyridone (0.3 mmol), Pd(OAc)₂ (0.03 mmol, 0.1 equiv) and AgOAc (1.5 mmol, 5 equiv) were added to a Schlenk tube, to which was added PivOH (2 g) under N₂. Alkene (3 equiv) was slowly added via syringe and the reaction mixture was heated at 130 °C for 16 h. The reaction was monitored by TLC using EtOAc and petroleum ether as the mobile phase. The reaction mixture was cooled to room temperature and was diluted with CH₂Cl₂ (30 mL) and NaHCO₃ (3×20 mL) was added to neutralize PivOH. After stirred for 20 min, the organic layer was separated and was dried over Na₂SO₄. After removal of solvent, the residue was purified by flash chromatography on silica gel to give desired product (PE:EA=10:1).

3 General Procedure for Cross-Coupling of Polyfluoroarenes with Pyridones

Pyridone (0.3 mmol), $Pd(OAc)_2$ (0.03 mmol, 0.1 equiv), AgOAc (0.9 mmol, 3 equiv), dioxane (2.0 mL), (*i*-Pr)₂S (1.5 mmol, 5.0 equiv) and polyfluoroarene (0.9 mmol, 3.0 equiv) were added to a pressure tube. The tube was sealed and heated to 130 °C (oil bath). After

stirred for 16 h, the reaction mixture was cooled to room temperature and diluted with ethyl acetate and then concentrated under vacuum. The residue was purified by silica gel chromatography to provide the pure product (PE:EA=4:1).

H/D Exchange Studies

Under air atmosphere, $Pd(OAc)_2$ (0.03 mmol, 6.7 mg) was added into a Schlenk tube. The tube was purged with N₂ and was sealed. Then CD₃COOD (2 mL) and *N*-methyl-2-pyridone (**1a**, 0.30 mmol, 30 µL) were added via syringe. The mixture was stirred under N₂ atmosphere at 75 °C for 24 h. The resulting solution was analyzed by ¹H NMR spectroscopy.

III Product Characterization

2aa, yellow solid (77% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.57 (dd, J = 9.5, 2.6 Hz, 1H), 7.42 (d, J = 2.4 Hz, 1H), 7.29 (d, J = 15.9 Hz, 1H), 6.60 (d, J = 9.5 Hz, 1H), 6.08 (d, J = 15.8 Hz, 1H), 3.57 (s, 3H), 1.52 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 160.0, 162.4, 140.1, 138.2, 136.1, 121.0, 117.4, 114.5, 80.4, 37.7, 28.1. **IR**: 831, 1146, 1659, 1693 cm⁻¹

HRMS calculated for $(C_{13}H_{17}NO_3 + Na)^+ 258.1106$; Found: 258.1104.

2ba. yellow solid (71% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.56 (d, *J* = 9.5 Hz, 1H), 7.44 (s, 1H), 7.31 (d, *J* = 15.4 Hz, 1H), 6.58 (d, *J* = 9.4 Hz, 1H), 6.08 (d, *J* = 15.8 Hz, 1H), 4.04 – 3.96 (m, 2H), 1.52 (s, 9H), 1.37 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 166.0, 161.8, 139.0, 138.4, 135.9, 121.4, 117.3, 114.7, 80.4, 45.0, 28.1, 14.6. **IR**: 833, 1148, 1666, 1694 cm⁻¹ **HRMS** calculated for (C₁₄H₁₉NO₃ + Na)⁺ 272.1263; Found: 272.1257.

(2ca)

2ca, yellow solid (65% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.55 (dd, J = 9.6, 2.4 Hz, 1H), 7.39 (d, J = 2.3 Hz, 1H), 7.38 – 7.27 (m, 5H), 7.23 (d, J = 15.8 Hz, 1H), 6.63 (d, J = 9.5 Hz, 1H), 6.05 (d, J = 15.8 Hz, 1H), 5.12 (s, 2H), 1.50 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 166.0, 162.1, 139.2, 138.4, 136.0, 135.6, 129.0, 128.4, 128.2, 121.6, 117.6, 114.8, 80.6, 52.1, 28.2. **IR**: 830, 1149, 1599, 1655, 1713 cm⁻¹

HRMS calculated for $(C_{19}H_{21}NO_3 + Na)^+$ 334.1419; Found: 334.1422.

(2da)

2da, yellow solid (**19% yield**). ¹H NMR (500 MHz, CDCl₃) δ 7.64 (dd, J = 9.6, 2.6 Hz, 1H), 7.53 – 7.48 (m, 3H), 7.45 (m, 1H), 7.37 (m, 2H), 7.31 (d, J = 15.8 Hz, 1H), 6.70 (d, J = 9.6 Hz, 1H), 6.13 (d, J = 15.8 Hz, 1H), 1.51 (s, 9H). ¹³C NMR (125 MHz, CDCl₃) δ 166.0, 161.8, 140.2, 139.8, 138.2, 136.5, 129.5, 128.9, 126.4, 122.2, 118.1, 114.7, 80.6, 28.2. **IR**: 1147, 1257, 1669, 1701 cm⁻¹

HRMS calculated for $(C_{18}H_{19}NO_3 + Na)^+$ 320.1263; Found: 320.1265.

2ea, yellow solid (65% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.65 (d, J = 9.5 Hz, 1H), 7.51 (s, 1H), 7.32 (m, 3H), 7.01 (d, J = 8.4 Hz, 2H), 6.69 (d, J = 9.5 Hz, 1H), 6.14 (d, J = 15.8 Hz, 1H), 3.86 (s, 3H), 1.53 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 165.9, 162.0, 159.6, 140.2, 138.2, 136.3, 132.9, 127.4, 122.0, 117.7, 114.6, 114.4, 80.5, 55.5, 28.1. **IR**: 979, 1144, 1243, 1283, 1665, 1699 cm⁻¹

HRMS calculated for $(C_{19}H_{21}NO_4 + Na)^+$ 350.1368; Found: 320.1362.

2fa, yellow solid (74% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.45 (s, 1H), 7.31 (s, 1H), 7.28 (d, *J* = 9.2 Hz, 1H), 6.08 (d, *J* = 15.8 Hz, 1H), 3.57 (s, 3H), 2.17 (s, 3H), 1.51 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 166.2, 163.0, 138.8, 138.0, 133.1, 130.1, 117.1, 114.1, 80.4, 37.9, 28.2, 17.3. **IR**: 1149, 1257, 1653, 1706 cm⁻¹

HRMS calculated for $(C_{14}H_{19}NO_3 + Na)^+ 272.1263$; Found: 272.1268.

2ga,yelow solid (**72% yield**) ¹H NMR (500 MHz, CDCl₃) δ 7.78 (d, *J* = 8.4 Hz, 2H), 7.67 (dd, *J* = 9.7, 2.6 Hz, 1H), 7.54 (d, *J* = 8.3 Hz, 2H), 7.49 (d, *J* = 2.4 Hz, 1H), 7.31 (d, *J* = 15.9 Hz, 1H), 6.69 (d, *J* = 9.7 Hz, 1H), 6.15 (d, *J* = 15.8 Hz, 1H), 1.51 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 165.74, 161.31, 142.97, 138.81, 137.72, 136.87, 130.97 (q, *J* = 32.94 Hz), 127.01, 126.63 (q, *J* = 3.51 Hz), 123.72 (q, *J* = 271.08 Hz), 122.35, 118.64, 115.17, 80.67, 28.09. **IR**: 828, 987, 1159, 1329, 1669, 1707 cm⁻¹

HRMS calculated for $(C_{19}H_{18}F_3NO_3 + Na)^+$ 388.1136; Found: 388.1135.

2ab, yellow solid (**78% yield**). ¹H NMR (500 MHz, CDCl₃) δ 7.59 (dd, J = 9.5, 2.6 Hz, 1H), 7.48 (d, J = 2.5 Hz, 1H), 7.41 (d, J = 15.9 Hz, 1H), 6.61 (d, J = 9.5 Hz, 1H), 6.15 (d, J = 15.8 Hz, 1H), 3.78 (s, 3H), 3.57 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.1, 162.4, 140.8, 139.6, 136.0, 121.0, 114.8, 114.2, 51.5, 37.7. **IR**: 846, 1183, 1668,1707 cm⁻¹ **HRMS** calculated for (C₁₀H₁₁NO₃ + Na)⁺ 216.0637; Found: 216.0636.

2ac, yellow solid (83% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.60 (d, J = 9.5 Hz, 1H), 7.51 (s, 1H), 7.40 (d, J = 15.8 Hz, 1H), 6.61 (d, J = 9.5 Hz, 1H), 6.15 (d, J = 15.8 Hz, 1H), 4.24 (q, J = 6.7 Hz, 2H), 3.58 (s, 3H), 1.32 (t, J = 6.7 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 166.7, 162.4, 140.7, 139.3, 136.0, 121.0, 115.3, 114.3, 60.4, 37.7, 14.2. **IR**: 840, 1171, 1639, 1698 cm⁻¹ **HRMS** calculated for (C₁₁H₁₃NO₃ + Na)⁺ 230.0793; Found: 230.0797.

2ad, yellow solid (80% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.59 (dd, J = 9.5, 2.6 Hz, 1H), 7.47 (d, J = 2.5 Hz, 1H), 7.39 (d, J = 15.9 Hz, 1H), 6.61 (d, J = 9.5 Hz, 1H), 6.15 (d, J = 15.8 Hz, 1H), 4.19 (t, J = 6.7 Hz, 2H), 3.57 (s, 3H), 1.73 – 1.62 (m, 2H), 1.48 – 1.36 (m, 2H), 0.96 (t, J = 7.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 166.8, 162.4, 140.6, 139.3, 136.0, 121.0, 115.4, 114.3, 64.3, 37.7, 30.7, 19.1, 13.6. **IR**: 837, 1185, 1668, 1695 cm⁻¹ **HRMS** calculated for (C₁₃H₁₇NO₃ + Na)⁺ 235.1106; Found: 258.1102.

(2ae)

2ae, yellow solid (64% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.56 (dd, J = 9.6, 2.6 Hz, 1H), 7.45 (d, J = 2.5 Hz, 1H), 7.43 (d, J = 15.9 Hz, 1H), 7.40 – 7.31 (m, 5H), 6.59 (d, J = 9.5 Hz, 1H), 6.18 (d, J = 15.8 Hz, 1H), 5.22 (s, 2H), 3.55 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 166.4, 162.3, 140.3, 139.9, 136.0, 128.5, 128.2, 128.1, 121.0, 121.0, 115.0, 114.2, 66.2, 37.7. **IR**: 835, 1171, 1669, 1699 cm⁻¹

HRMS calculated for $(C_{16}H_{15}NO_3 + Na)^+$ 292.0950; Found: 292.0952.

2af, yellow solid (83% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.69 (dd, J = 9.5, 2.5 Hz, 1H), 7.43 (d, J = 7.6 Hz, 2H), 7.37 – 7.33 (m, 3H), 7.27 (d, J = 3.0 Hz, 1H), 6.80 (s, 2H), 6.63 (d, J = 9.5 Hz, 1H), 3.58 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 162.42, 136.84, 136.71, 136.46, 128.68, 127.54, 126.60, 126.08, 123.13, 120.81, 117.18, 37.63. **IR**: 1444, 1599, 1655 cm⁻¹ **HRMS** calculated for (C₁₄H₁₃NO + Na)⁺ 234.0895; Found: 234.0891.

2ag, yellow soild (62% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.66 (dd, J = 9.5, 2.4 Hz, 1H), 7.31 (m, J = 8.6, 5.3 Hz, 3H), 7.15 (d, J = 7.9 Hz, 2H), 6.81 – 6.69 (m, 2H), 6.61 (d, J = 9.5 Hz, 1H), 3.56 (s, 3H), 2.35 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 162.4, 137.5, 136.5, 134.1, 129.4, 129.4, 126.6, 126.0, 122.2, 120.9, 117.3, 37.6, 21.2. **IR**: 837, 1601, 1677 cm⁻¹ **HRMS** calculated for (C₁₅H₁₅NO + Na)⁺ 248.1051; Found: 248.1057.

(2ah)

2ah, yellow solid (**74% yield**). ¹H NMR (400 MHz, CDCl₃) δ 7.66 (dd, *J* = 9.5, 2.3 Hz, 1H), 7.37 (d, *J* = 8.6 Hz, 2H), 7.29 (d, *J* = 2.1 Hz, 1H), 6.89 (d, *J* = 8.6 Hz, 2H), 6.75 (d, *J* = 16.3 Hz, 1H), 6.71 – 6.56 (m, 2H), 3.82 (s, 3H), 3.56 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 162.4, 137.5, 136.5, 136.4, 134.1, 129.4, 126.5, 126.0, 122.2, 120.9, 117.3, 37.6, 21.2. **IR**: 835, 962, 1154, 1649 cm⁻¹ **HRMS** calculated for (C₁₅H₁₅NO₂ + Na)⁺ 264.1000; Found: 264.1005.

4ga, yellow solid (70% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.52 (d, *J* = 15.9 Hz, 1H), 7.41 (d, *J* = 7.1 Hz, 1H), 6.95 (d, *J* = 15.9 Hz, 1H), 6.11 (d, *J* = 6.8 Hz, 1H), 3.57 (s, 3H), 2.40 (s, 3H), 1.50 (s, 9H). ¹³C NMR (125 MHz, CDCl₃) δ 167.2, 162.0, 147.9, 139.5, 139.3, 121.9, 121.4, 106.5, 79.9, 31.5, 28.2, 21.3. **IR**: 1146, 1303, 1654, 1697 cm⁻¹

HRMS calculated for $(C_{14}H_{19}NO_3 + Na)^+ 272.1263$; Found: 272.1259.

(4ha)

4ha, yellow solid (81% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.43 (d, J = 15.8 Hz, 1H), 7.32 (s, 1H), 7.10 (s, 1H), 6.94 (d, J = 15.7 Hz, 1H), 3.49 (s, 3H), 2.04 (s, 3H), 1.44 (s, 9H). ¹³C NMR (125 MHz, CDCl₃) δ 167.0, 160.6, 142.7, 138.8, 136.9, 124.8, 122.9, 114.5, 80.0, 37.8, 28.2, 16.9. **IR**: 844, 1149, 1665, 1687 cm⁻¹

HRMS calculated for $(C_{14}H_{19}NO_3 + Na)^+ 272.1263$; Found: 272.1266.

4ia. yellow solid (69% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.86 (s, 1H), 7.68 (d, *J* = 16.0 Hz, 1H), 7.59 (m, 2H), 7.35 (d, *J* = 8.8 Hz, 1H), 7.26 (d, *J* = 7.7 Hz, 1H), 6.99 (d, *J* = 16.0 Hz, 1H), 3.75 (s, 3H), 1.53 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 166.6, 160.9, 139.9, 138.7, 138.4, 129.4, 126.3, 124.1, 122.4, 120.1, 115.7, 114.1, 80.4, 29.7, 28.2.

HRMS calculated for $(C_{17}H_{19}NO_3 + Na)^+$ 308.1263; Found: 308.1260.

4ja, yellow soild (74% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.55 (d, *J* = 2.5 Hz, 1H), 7.46 (m, 2H), 6.98 (d, *J* = 21.4 Hz, 1H), 3.58 (s, 3H), 1.51 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 166.4, 159.9, 142.3, 138.5, 137.3, 126.8, 124.5, 97.2, 80.5, 38.0, 28.2. **IR**: 853, 987, 1154, 1659, 1686 cm⁻¹

HRMS calculated for $(C_{13}H_{16}BrNO_3 + Na)^+$ 336.0211; Found: 336.0215.

(4ka)

4ka, yellow soild (77% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.73 (d, *J* = 15.7 Hz, 1H), 7.41 (d, *J* = 15.7 Hz, 1H), 7.29 (d, *J* = 6.8 Hz, 1H), 6.17 (d, *J* = 6.9 Hz 1H), 3.62 (s, 3H), 2.43 (s, 3H), 1.58 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 167.9, 161.3, 151.2, 137.1, 135.5, 123.9, 122.1, 109.4, 79.8, 37.8, 28.1, 20.0. **IR**: 776, 982, 1143, 1292, 1650, 1687 cm⁻¹ **HRMS** calculated for (C₁₄H₁₉NO₃ + Na)⁺ 272.1263; Found: 272.1260.

4kc, yellow solid (71% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.74 (d, *J* = 15.7 Hz, 1H), 7.40 (d, *J* = 15.7 Hz, 1H), 7.25 (d, *J* = 6.8 Hz, 1H), 6.10 (d, *J* = 6.8 Hz, 1H), 4.24 (m, 2H), 3.55 (s, 3H), 2.37 (s, 3H), 1.31 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 168.5, 161.3, 151.6, 137.4, 136.6, 122.0, 121.9, 109.4, 60.1, 37.8, 20.1, 14.3. **IR**: 1165, 1285, 1649, 1709 cm⁻¹ **HRMS** calculated for (C₁₂H₁₅NO₃ + Na)⁺ 244.0950; Found: 244.047.

(4kd)

4kd, yellow soild (72% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.74 (d, *J* = 15.7 Hz, 1H), 7.42 (d, *J* = 15.7 Hz, 1H), 7.25 (d, *J* = 6.8 Hz, 1H), 6.11 (d, *J* = 6.8 Hz, 1H), 4.18 (t, *J* = 6.6 Hz, 2H), 3.56 (s, 3H), 2.37 (s, 3H), 1.73 – 1.55 (m, 2H), 1.49 – 1.33 (m, 2H), 0.94 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 168.6, 161.3, 151.6, 137.4, 137.3, 136.5, 122.0, 109.5, 64.0, 37.8, 30.7, 20.1, 19.1, 13.7. **IR**: 1273, 1358, 1633, 1706 cm⁻¹

HRMS calculated for $(C_{14}H_{19}NO_3 + Na)^+ 272.1263$; Found: 272.1259.

3, yellow oil (**78% yield**). ¹H NMR (400 MHz, CDCl₃) δ 7.54 (dd, *J* = 9.5, 2.5 Hz, 1H), 7.24 (d, *J* = 2.4 Hz, 1H), 6.58 (d, *J* = 9.5 Hz, 1H), 6.34 (d, *J* = 15.8 Hz, 1H), 5.99 (m, 1H), 4.66 (dd, *J* = 6.3, 1.0 Hz, 2H), 3.55 (s, 3H), 1.22 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 178.2, 162.5, 137.0, 136.5, 128.5, 121.4, 120.8, 116.0, 64.6, 38.8, 37.6, 27.2. **IR**: 1497, 1522, 1633, 1699 cm⁻¹ **HRMS** calculated for (C₁₄H₁₉NO₃ + Na)⁺ 272.1263; Found: 272.1266.

5aaa, yellow solid (70% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.73 (s, 1H), 7.51 (d, *J* = 16.7 Hz, 2H), 7.29 (d, *J* = 16.5 Hz, 1H), 7.01 (d, *J* = 15.1 Hz, 1H), 6.13 (d, *J* = 16.0 Hz, 1H), 3.62 (s, 3H), 1.52 (s, 18H). ¹³C NMR (100 MHz, CDCl₃) δ 166.4, 165.8, 160.8, 140.3, 137.9, 137.9, 136.4, 125.5, 124.0, 118.0, 114.1, 80.6, 80.3, 38.2, 28.0. **IR**: 851, 980, 1134, 1626, 1653, 1693 cm⁻¹ **HRMS** calculated for (C₂₀H₂₇NO₅ + Na)⁺ 384.1787; Found: 384.1794.

(5baa)

5baa, yellow soild (77% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.72 (d, J = 2.4 Hz, 1H), 7.52 (d, J = 15.9 Hz, 1H), 7.48 (d, J = 2.4 Hz, 1H), 7.31 (d, J = 15.8 Hz, 1H), 7.01 (d, J = 15.9 Hz, 1H), 6.13 (d, J = 15.8 Hz, 1H), 4.06 (m, 2H), 1.52 (d, J = 3.9 Hz, 18H), 1.40 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 166.5, 165.9, 160.2, 139.1, 138.1, 138.0, 136.3, 125.9, 124.1, 118.0, 114.4, 80.7, 80.4, 45.7, 28.2, 28.1, 14.6. **IR**: 1151, 1643, 1663,1709 cm⁻¹ **HRMS** calculated for (C₂₁H₂₉NO₅ + Na)⁺ 398.1943; Found: 398.1948.

5caa, yellow soild (62% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.72 (d, J = 2.4 Hz, 1H), 7.53 (d, J = 15.9 Hz, 1H), 7.47 (d, J = 2.4 Hz, 1H), 7.37 – 7.29 (m, 5H), 7.27 (d, J = 1.9 Hz, 1H), 7.03 (d, J = 15.9 Hz, 1H), 6.10 (d, J = 15.8 Hz, 1H), 5.19 (s, 2H), 1.51 (d, J = 1.9 Hz, 18H). ¹³C NMR (100 MHz, CDCl₃) δ 166.5, 165.8, 160.5, 139.2, 138.0, 138.0, 136.4, 135.3, 129.1, 128.5, 128.2, 126.2, 124.4, 118.2, 114.4, 80.7, 80.4, 52.7, 28.1, 28.0. **IR**: 1148, 1632, 1659, 1705 cm⁻¹

HRMS calculated for $(C_{16}H_{31}NO_5 + Na)^+ 460.2100$; Found: 460.2105.

5daa, yellow solid (51% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.81 (s, 1H), 7.59 – 7.44 (m, 5H), 7.37 (d, J = 7.7 Hz, 1H), 7.32 (d, J = 16.1 Hz, 1H), 6.18 (d, J = 17.1 Hz, 1H), 1.51 (d, J = 8.1 Hz, 18H). ¹³C NMR (100 MHz, CDCl₃) δ 166.5, 165.8, 160.3, 140.1, 139.7, 137.9, 137.8, 137.1, 129.51, 129.1, 126.7, 126.5, 124.7, 118.7, 114.4, 80.7, 80.4, 28.2, 28.1. **HRMS** calculated for (C₂₅H₂₉NO₅ + Na)⁺ 446.1943; Found: 446.1941.

5eaa, yellow solid (**53% yield**). ¹H NMR (500 MHz, CDCl₃) δ 7.79 (d, J = 2.5 Hz, 1H), 7.57 – 7.50 (m, 2H), 7.31 (d, J = 15.9 Hz, 1H), 7.29 – 7.26 (m, 2H), 7.06 – 6.99 (m, 3H), 6.17 (d, J = 15.8 Hz, 1H), 3.86 (s, 3H), 1.51 (d, J = 9.5 Hz, 18H). ¹³C NMR (100 MHz, CDCl₃) δ 166.6, 165.8, 160.6, 159.8, 140.1, 138.0, 137.9, 137.0, 132.8, 127.5, 126.5, 124.6, 118.5, 114.7, 114.2, 80.8, 80.4, 55.6, 28.2, 28.1.

HRMS calculated for $(C_{26}H_{31}NO_6 + Na)^+ 476.2049$; Found: 476.2042.

5abb, yellow solid (**72% yield**). ¹H NMR (500 MHz, CDCl₃) δ 7.76 (d, J = 2.5 Hz, 1H), 7.62 (d, J = 15.9 Hz, 1H), 7.54 (d, J = 2.5 Hz, 1H), 7.42 (d, J = 15.9 Hz, 1H), 7.15 (d, J = 15.9 Hz, 1H), 6.21 (d, J = 15.9 Hz, 1H), 3.80 (s, 6H), 3.64 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 167.8, 167.0, 160.8, 140.9, 139.4, 139.2, 137.1, 125.3, 121.8, 115.7, 113.9, 51.72, 51.67, 38.3. **IR**: 1167, 1268, 1632, 1659, 1711 cm⁻¹.

HRMS calculated for $(C_{14}H_{15}NO_5 + Na)^+$ 300.0848; Found: 300.0843.

5acc yellow solid (87% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.78 (s, 1H), 7.65 – 7.54 (m, 2H), 7.41 (d, *J* = 15.9 Hz, 1H), 7.12 (d, *J* = 15.9 Hz, 1H), 6.21 (d, *J* = 16.0 Hz, 1H), 4.25 (m, 4H), 3.64 (s, 3H), 1.33 (t, *J* = 6.8 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 167.3, 166.6, 160.8, 140.8, 139.1,

138.9, 136.9, 125.4, 122.2, 116.1, 114.0, 60.6, 60.5, 38.3, 14.2. **IR**: 1036, 1159, 1633, 1656, 1706 cm⁻¹

HRMS calculated for $(C_{16}H_{19}NO_5 + Na)^+$ 328.1161; Found: 328.1160.

5add, yellow solid (73% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.78 (d, J = 2.4 Hz, 1H), 7.60 (d, J = 15.9 Hz, 1H), 7.55 (d, J = 2.3 Hz, 1H), 7.40 (d, J = 15.9 Hz, 1H), 7.13 (d, J = 14.6 Hz, 1H), 6.21 (d, J = 15.9 Hz, 1H), 4.20 (t, J = 6.6 Hz, 4H), 3.63 (s, 3H), 1.73 – 1.62 (m, 4H), 1.49 – 1.38 (m, 4H), 0.96 (m, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 167.4, 166.7, 160.8, 140.7, 139.0, 138.8, 136.9, 125.5, 122.4, 116.3, 114.0, 64.5, 64.4, 38.3, 30.7, 19.2, 13.7.

HRMS calculated for $(C_{20}H_{27}NO_5 + Na)^+$ 384.1787; Found: 384.1783.

5aee, yellow solid (**52% yield**). ¹H NMR (500 MHz, CDCl₃) δ 7.75 (d, J = 2.5 Hz, 1H), 7.63 (d, J = 15.9 Hz, 1H), 7.52 (d, J = 2.5 Hz, 1H), 7.43 (d, J = 15.9 Hz, 1H), 7.41 – 7.30 (m, 10H), 7.19 (d, J = 15.9 Hz, 1H), 6.24 (d, J = 15.9 Hz, 1H), 5.24 (d, J = 4.2 Hz, 4H), 3.61 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 167.0, 166.3, 160.7, 141.0, 139.6, 139.4, 137.1, 136.1, 135.9, 128.6, 128.5, 128.3, 128.2, 128.1, 128.0, 125.4, 122.0, 115.9, 113.9, 66.4, 66.3, 38.3. **IR**: 1154, 1273, 1633, 1655, 1706 cm⁻¹

HRMS calculated for $(C_{26}H_{23}NO_5 + Na)^+ 452.1474$; Found: 452.1477.

5aab, yellow solid (76% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.75 (d, J = 2.5 Hz, 1H), 7.61 (d, J = 15.9 Hz, 1H), 7.52 (d, J = 2.5 Hz, 1H), 7.29 (d, J = 15.9 Hz, 1H), 7.12 (d, J = 15.9 Hz, 1H), 6.14 (d, J = 15.8 Hz, 1H), 3.79 (s, 3H), 3.62 (s, 3H), 1.52 (s, 9H). ¹³C NMR (125 MHz, CDCl₃) δ 167.8,

165.8, 160.77, 140.5, 139.4, 137.7, 137.2, 125.3, 121.7, 118.3, 114.2, 80.7, 51.6, 38.3, 28.2. **IR**: 1156, 1285, 1635, 1667, 1698 cm⁻¹ **HRMS** calculated for ($C_{17}H_{21}NO_5 + Na$) 342.1317; Found: 342,1315.

5aaf, yellow solid (66% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.76 (s, 1H), 7.61 – 7.53 (m, 3H), 7.39 – 7.34 (m, 4H), 7.24 (d, J = 22.2 Hz, 2H), 6.19 (d, J = 16.5 Hz, 1H), 3.62 (s, 3H), 1.53 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 166.1, 161.6, 138.6, 138.3, 132.3, 131.2, 128.7, 128.5 128.00, 126.9, 126.2, 123.2, 117.7, 114.5, 80.6, 38.2, 28.2. **IR**: 971, 1145, 1648, 1701 cm⁻¹ **HRMS** calculated for (C₂₁H₂₃NO₃ + Na)⁺ 360.1575; Found: 360.1573.

(6aa)

6aa, yellow solid (**72% yield**). ¹H NMR (400 MHz, CDCl₃) δ 7.50 (s, 1H), 7.41 (m, 1H), 6.68 (d, J = 9.5 Hz, 1H), 3.63 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 161.9, 144.1(dm, J = 247.4 Hz), 140.4(dm, J = 250.2 Hz), 140.4, 139.8, 137.9(dm, J = 248.9 Hz), 120.8, 111.4(m), 104.8, 38.0. ¹⁹F NMR (470 MHz, CDCl₃) δ -146.0 (dd, J = 22.7, 8.0 Hz, 2F), -157.9 (t, J = 20.8 Hz, 1F), -164.5(td, J = 22.0, 8.0 Hz, 2F). **IR**: 976, 1082, 1494, 1665 cm⁻¹

HRMS calculated for $(C_{12}H_6F_5NO + Na)^+$ 298.0267; Found: 298.0269.

6ba, yellow solid (**73% yield**). ¹H NMR (500 MHz, CDCl₃) δ 7.51 (s, 1H), 7.40 (m, 1H), 6.65 (d, J = 9.5 Hz, 1H), 4.07 (m, 2H), 1.42 (t, J = 7.2 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 161.1, 144.1 (dm, J = 243.1 Hz), 140.3 (dm, J = 254.9 Hz), 140.0, 138.6, 137.9 (dm, J = 251.8 Hz), 121.1, 111.6(m), 104.9, 45.2, 14.5. ¹⁹F NMR (470 MHz, CDCl₃) δ -146.4 (dd, J = 22.8, 7.9 Hz,

2F), -158.0 (t, J = 20.9 Hz, 1F), -164.6 (td, J = 22.2, 8.0 Hz, 2F). **IR**: 992, 1084, 1493, 1658 cm⁻¹ **HRMS** calculated for (C₁₃H₈F₅NO + Na)⁺ 312.0424; Found: 312.0422.

6ca, yellow solid (79% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.50 (s, 1H), 7.44 – 7.03 (m, 7H), 6.70 (d, J = 9.4 Hz, 1H), 5.19 (s, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 161.3, 144.1 (dm, J = 247.4 Hz), 140.3 (dm, J = 255.0 Hz,),140.1, 138.9, 137.9 (dm, J = 252.4 Hz). 135.6, 128.9, 128.8, 128.1, 121.2, 111.4(m), 105.0, 52.3. ¹⁹F NMR (470 MHz, CDCl₃) δ -146.1 (dd, J = 22.8, 7.9 Hz, 2F), -157.9 (t, J = 21.0 Hz, 1F), -164.5 (td, J = 22.1, 8.0 Hz, 2F). **IR**: 990, 1064, 1494, 1669 cm⁻¹ **HRMS** calculated for (C₁₈H₁₀F₅NO + Na)⁺ 374.0580; Found: 374.0589.

6da, yellow solid (68% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.55 (s, 1H), 7.46 (d, J = 9.4 Hz, 1H), 7.33 (d, J = 8.9 Hz, 2H), 7.01 (d, J = 8.9 Hz, 2H), 6.75 (d, J = 9.6 Hz, 1H), 3.85 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 161.4, 159.7, 144.2 (dm, J = 246.3 Hz), 140.6, 140.5 (dm, J = 253.2 Hz), 139.9, 138.0 (dm, J = 258.9 Hz), 133.1, 127.5, 121.9, 114.7, 111.4(m) 104.9, 55.6. ¹⁹F NMR (470 MHz, CDCl₃) δ 183.9 (dd, J = 22.8, 7.9 Hz, 2F), 172.1 (t, J = 21.0 Hz, 1F), 165.4 (td, J = 22.3, 8.0 Hz, 2F). **IR**: 845, 985, 1265, 1509, 1690 cm⁻¹

HRMS calculated for $(C_{18}H_{10}F_5NO_2 + Na)^+$ 390.0529; Found: 390.0523.

6ja, yellow solid (60% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.70 (d, J = 9.5 Hz, 1H), 7.63 (m, 2H), 7.49 (d, J = 8.7 Hz, 1H), 6.77 (d, J = 9.5 Hz, 1H), 3.76 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 162.1, 144.3 (dm, J = 247.8 Hz), 140.6 (dm, J = 268.8 Hz), 140.5, , 138.6, 137.9 (dm, J = 238.8 Hz), 132.0, 130.4, 122.7, 120.8, 120.1, 114.6, 114.5(m), 29.5. ¹⁹F NMR (470 MHz, CDCl₃) δ -146.48 (dd, J = 22.9, 8.0 Hz, 2F), -157.97 (t, J = 21.0 Hz, 1F), -164.83 (dd, J = 21.9, 7.8 Hz, 2F). **IR**: 976, 1084, 1156, 1473, 1659 cm⁻¹

HRMS calculated for $(C_{16}H_8F_5NO + Na)^+$ 348.0424; Found: 348.0420.

6fa, yellow solid (82% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.38 (s, 1H), 7.27 (s, 1H), 3.63 (s, 3H), 2.21 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 162.4, 144.2 (dm, J = 243.1 Hz), 140.4 (dm, J = 232.9 Hz), 137.8 (dm, J = 235.7 Hz).137.4, 137.1, 130.1, 111.9 (m), 104.3, 37.8, 17.2. ¹⁹F NMR (470 MHz, CDCl₃) δ -146.0 (dd, J = 22.9, 8.1 Hz, 2F), -158.2 (t, J = 20.8 Hz, 1F), -164.7 (td, J = 22.4, 7.9 Hz, 2F). **IR**: 992, 1159, 1493, 1658 cm⁻¹

HRMS calculated for $(C_{13}H_8F_5NO + Na)^+ 312.0424$; Found: 312.0418.

6ga, yellow solid (48% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.32 (d, J = 6.8 Hz, 1H), 6.19 (d, J = 7.0 Hz, 1H), 3.61 (s, 3H), 2.44 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 160.9, 148.7, 144.7 (dm, J = 247.5 Hz), 140.7 (dm, J = 253.1 Hz), 140.9, 137.6 (dm, J = 251.8 Hz), 114.7, 112.0(m), 105.9, 31.7, 21.7. ¹⁹F NMR (470 MHz, CDCl₃) δ -139.7 (dd, J = 22.9, 7.7 Hz, 2F), -155.8 (t, J = 20.8 Hz, 1F), -163.0 (dt, J = 22.5, 7.6 Hz, 2F). **IR**: 991, 1494, 1523, 1643 cm⁻¹ **HRMS** calculated for (C₁₃H₈F₅NO + Na)⁺ 312.0424; Found: 312.0420.

6ha, yellow solid (**75% yield**). ¹H NMR (400 MHz, CDCl₃) δ 7.31 (s, 1H), 7.24 (s, 1H), 3.60 (s, 3H), 2.15 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 159.5, 144.7 (dm, J = 244.2 Hz), 144.3, 140.9 (dm, J = 263.9 Hz, 0H), 137.7, 137.7 (dm, J = 252.2 Hz), 118.0, 114.2, 111.5(m), 38.0, 16.9. ¹⁹F NMR (470 MHz, CDCl₃) δ -142.65 (dd, J = 22.8, 7.6 Hz, 2F), -158.31 (t, J = 20.8 Hz, 1F), -165.84 (dt, J = 22.1, 7.5 Hz, 2F). **IR**: 999, 1105, 1496, 1523, 1664 cm⁻¹ **HRMS** calculated for (C₁₃H₈F₅NO + Na)⁺ 312.0424; Found: 312.0428.

(6hb)

6hb, yellow solid (75% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.30 (s, 1H), 7.21 (s, 1H), 4.09 (s, 3H), 3.59 (s, 3H), 2.14 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 159.8, 144.8 (dm, *J* = 246.4 Hz), 144.2, 141.0 (dm, *J* = 242.7 Hz), 138.1(m), 137.3, 118.9, 114.2, 109.8 (t, *J* = 18.6 Hz), 62.1 (t, *J* = 3.4 Hz), 38.0, 17.0. ¹⁹F NMR (470 MHz, CDCl₃) δ -144.4 (dd, *J* = 21.4, 7.9 Hz, 2F), -161.5 (dd, *J* = 21.8, 8.4 Hz, 2F). **IR**: 724, 984, 1488, 1667 cm⁻¹

HRMS calculated for $(C_{14}H_{11}F_5NO_2 + Na)^+$ 324.0624; Found: 324.0620.

6ab, yellow solid (86% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.48 (s, 1H), 7.41 (m, 1H), 6.65 (d, J = 9.5 Hz, 1H), 4.12 (t, J = 1.3 Hz, 3H), 3.62 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 161.9, 144.3 (dm, J = 245.1 Hz), 141.2 (dm, J = 247.7 Hz), 140.7, 139.6, 137.6(m), 120.5, 109.4 (t, J = 16.6 Hz), 105.7, 62.1 (t, J = 3.6 Hz), 37.9. ¹⁹F NMR (470 MHz, CDCl₃) δ -148.1 (dd, J = 21.8, 8.4 Hz, 2F), -160.6 (dd, J = 21.8, 8.3 Hz, 2F). **IR**: 989, 1153, 1271, 1338, 1669 cm⁻¹

HRMS calculated for $(C_{13}H_9F_5NO_2 + Na)^+$ 310.0467; Found: 310.0468.

(6ac)

6ac, yellow solid (69% yield). ¹H NMR (500 MHz, acetone-d₆) δ 10.53 – 10.13 (m, 1H), 8.12 – 7.85 (m, 1H), 7.72 – 7.43 (m, 1H), 6.54 (d, J = 9.5 Hz, 1H), 3.61 (s, 3H). ¹³C NMR (125 MHz, acetone-d₆) δ 183.5, 162.2, 148.0 (dm, J = 259.0 Hz), 144.9 (dm, J = 255.8 Hz), 143.0, 141.0, 123.4(m), 120.7, 115.0(t, J = 10.1 Hz), 104.9, 38.0. ¹⁹F NMR (470 MHz, acetone-d₆) δ -145.1 (dd, J = 20.7, 13.0 Hz, 2F), -148.2 (dd, J = 20.0, 12.4 Hz, 2F). **IR**: 631, 1016, 1199, 1677, 1703 cm⁻¹ **HRMS** calculated for (C₁₃H₇F₅NO₂ + Na)⁺ 308.0311; Found: 308.0301.

6ad, yellow solid (77% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.63 (s, 1H), 7.48 (d, J = 9.4 Hz, 1H), 6.70 (d, J = 9.1 Hz, 1H), 3.65 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 161.8, 144.5 (dm, J = 259.77Hz), 144.0 (dm, J = 251.74Hz), 140.5, 139.8, 120.9 ,120.7(dm, J = 251.74Hz), 120.4(m), 105.1, 104.6, 38.2. ¹⁹F NMR (470 MHz, CDCl₃) δ -59.3 (t, J = 21.7 Hz, 3F), -143.0 – -143.2 (m, 2F), -144.6 (m, 2F). **IR**: 989, 1153, 1271, 1338, 1669 cm⁻¹ **HRMS** calculated for (C₁₃H₆F₇NO + Na)⁺ 348.0235; Found: 348.0231.

(6ae)

6ae, yellow soild (84% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.73 (d, J = 1.9 Hz, 1H), 7.56 (m,

1H), 6.73 (d, J = 9.6 Hz, 1H), 3.66 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 161.7, 144.1 (dm, J = 249.1 Hz), 141.1 (t, J = 3.8 Hz), 139.4, 138.9 (dm, J = 261.5 Hz), 128.8(m), 120.8, 104.9, 38.2. ¹⁹F NMR (470 MHz, CDCl₃) δ -93.2 (m, 2F), -148.1 (m, 2F). **IR**: 969, 1184, 1462, 1662 cm⁻¹ **HRMS** calculated for (C₁₁H₆F₄N₂O + Na)⁺ 281.0314; Found: 281.0317.

(6af)

6af, yellow solid (62% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.42 (d, J = 12.9 Hz, 2H), 6.77 (t, J = 8.2 Hz, 2H), 6.65 (d, J = 9.3 Hz, 1H), 3.61 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 162.1, 161.8 (dm, J = 250.9 Hz), 160.2 b(dm, J = 244.8 Hz,). 162.1, 141.2, 139.3, 120.4, 106.7, 100.8 (m), 38.0. ¹⁹F NMR (470 MHz, CDCl₃) δ -111.0 – -111.2 (m, 1F), -114.3 (t, J = 6.8 Hz, 2F). **IR**: 826, 1021, 1126, 1674 cm⁻¹

HRMS calculated for $(C_{12}H_8F_3NO + Na)^+$ 262.0456; Found: 262.0451.

(6ag)

6ag, yellow solid (76% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.37 (d, J = 2.6 Hz, 1H), 7.23 (m, 1H), 6.64 (d, J = 9.5 Hz, 1H), 3.58 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 161.8, 145.0 (dm, J = 251.1 Hz), 143.6 (m), 141.9 (m), 141.4 (m), 139.9 (m), 139.2, 135.5 (m), 121.4, 116.2 (dd, J = 18.1, 4.2 Hz), 104.7, 38.1. ¹⁹F NMR (377 MHz, CDCl₃) δ -137.29 (dd, J = 22.6, 10.5 Hz, 1F), -146.54 - -147.07 (m, 1F), -148.92 (t, J = 21.5 Hz, 1F), -151.26 (t, J = 21.0 Hz, 1F). **IR**: 840, 1074, 1359, 1546, 1663 cm⁻¹

HRMS calculated for $(C_{13}H_6F_4N_2O_3 + Na)^+$ 325.0212; Found: 325.0216.

Electronic Supplementary Material (ESI) for Chemical Science This journal is O The Royal Society of Chemistry 2012

6ah, yellow solid (68% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.52 (s, 1H), 7.45 (d, *J* = 9.3 Hz, 1H), 6.67 (d, *J* = 9.5 Hz, 1H), 3.63 (s, 3H), 2.31 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 161.9, 145.2 (dm, *J* = 248.7 Hz), 143.5 (dm, *J* = 255.1 Hz),140.7, 139.6, 120.5, 115.4 (t, *J* = 19.3 Hz), 113.2 (t, *J* = 15.5 Hz),106.2, 38.0, 7.6. ¹⁹F NMR (470 MHz, CDCl₃) δ -146.4 (dd, *J* = 22.0, 12.4 Hz, 2F), -148.5 (dd, *J* = 22.0, 12.5 Hz, 2F). **IR**: 826, 1486, 1677 cm⁻¹ **HRMS** calculated for (C₁₃H₉F₄NO + Na)⁺ 294.0518; Found: 294.0512.

IVNMR Spectra

Electronic Supplementary Material (ESI) for Chemical Science This journal is O The Royal Society of Chemistry 2012

-1(110 100 f1 (ppm) 210 200 140 130 120

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

Electronic Supplementary Material (ESI) for Chemical Science This journal is O The Royal Society of Chemistry 2012

Electronic Supplementary Material (ESI) for Chemical Science This journal is O The Royal Society of Chemistry 2012

