Electric Supplementary Information (ESI)

Supramolecular Polymers with Alternating Pillar[5]arene and

Pillar[6]arene Units from Highly Selective Multiple Host-Guest

Complexation System and Monofunctionalized Pillar[6]arene

Tomoki Ogoshi,* Hitoshi Kayama, Daiki Yamafuji, Takamichi Aoki, and Tada-aki Yamagishi

Table of Contents

Experimental Section	S1-S6
Figs. S1-S6 ¹ H and ¹³ C NMR spectra	S7-S12
Fig. S7 Job plot for 1-3 complex	S 13
Fig. S8 ESI mass spectra of 1-3 complex	S 14
Fig. S9 Job plot for 2-3 complex	S15
Fig. S10 ¹ H NMR spectra of a mixture of 1 and 3 in acetone- d_6	S 16
Fig. S11 Job plot for 2-4 complex	S17
Fig. S12 ESI mass spectra of 2-4 complex	S 18
Fig. S13 ¹ H NMR spectrum of a mixture of 1, 2, 3 and 4 in $CDCl_3$	S19
Fig. S14 Variable concentration ¹ H NMR spectra of 5 in CDCl ₃	S20
Fig. S15 Variable concentration ¹ H NMR spectra of 6 in CDCl ₃	S21
Fig. S16 Variable concentration ¹ H NMR spectra of a mixture of 5 and 6 in	S22
CDCl ₃	
Fig. S17 ¹ H NMR spectra of a mixture of 5 and 6 in acetone- d_6	S23
Fig. S18 TM-AFM images of 5 and 6	S24
References	S25

Experimental Section

Determination of association constants. ¹H NMR titrations were done with solutions which had a constant concentration of guest (1 mM) and varying concentrations of host. By the non-linear curve-fitting methods, the association constants for **1-3**, **1-4**, and **2-4** complexes in CDCl₃ were determined to be $1350 \pm 75 \text{ M}^{-1}$, $90.3 \pm 11 \text{ M}^{-1}$ and $552 \pm 65 \text{ M}^{-1}$, respectively, for 1:1 stoichiometry. The non-linear curve-fitting was based on the equation:^{S1}

$$\Delta \delta_{\text{obs}} = \frac{\Delta \delta_{11}}{2\text{K}[\text{G}]_0} \left[1 + \text{K}[\text{H}]_0 + \text{K}[\text{G}]_0 - \{(1 + \text{K}[\text{H}]_0 + \text{K}[\text{G}]_0)^2 - 4\text{K}^2[\text{H}]_0[\text{G}]_0\}^{1/2}\right]$$

Where $\Delta \delta_{obs}$ is the chemical shift change of proton signal of guest at [H]₀, $\Delta \delta_{11}$ is the chemical shift change of the guest proton resonance when the host is completely complexed, [G]₀ is the fixed initial concentration of the guest, and [H]₀ is the initial concentration of the host.

Electronic Supplementary Material (ESI) for Chemical Science This journal is © The Royal Society of Chemistry 2012

Model Compounds

3. To a solution of pyridine (10 mL), 11^{S2} (200 mg, 0.401 mmol) was added. The mixture was heated at 80 °C for 12h under nitrogen. The resulting solution was concentrated under *vacuo*. The residue was poured into diethyl ether and the precipitate was collected by filtration (light pink solid, **3**, 223 mg, 0.386 mmol, Yield: 96%). ¹H NMR (CDCl₃, 500 MHz, ppm): δ 9.44 (d, J = 6.3 Hz, 2H, pyridyl), 8.38 (t, J = 7.7 Hz, 1H, pyridyl), 8.01 (t, J = 6.5 Hz, 2H, pyridyl), 7.15-7.26 (m, 15 H, phenyl), 7.10 (d, J = 6.9 Hz, 2H, phenyl), 6.73 (d, J = 6.9 Hz, 2H, phenyl), 5.06 (t, J = 7.5 Hz, 2H, methylene), 3.90 (t, J = 5.7 Hz, 2H, methylene), 2.09 (m, 2H, methylene), 1.76 (m, 2H, methylene), 1.54 (m, 2H, methylene), 1.48 (m, 2H, methylene). ¹³C NMR (CDCl₃, 125 MHz, ppm): δ 156.9, 147.1, 145.1, 139.0, 132.2, 131.1, 128.4, 127.5, 125.9, 113.3 (C of

phenyl and pyridyl), 67.4 (C of methylene), 64.3 (sp3 carbon of triryl), 61.9, 31.8, 28.9, 25.7, 25.6 (C of methylene). LRFABMS: m/z Calcd for C₃₆H₃₆NO [M–Br]⁺: 498.2797, found 498. HRFABMS: m/z Calcd for C₃₆H₃₆NO [M–Br]⁺: 498.2797, found 498.2796. Melting point (T_m): 193 °C.

4. To a solution of **11** (303 mg, 0.608 mmol) in acetone (20 mL), 1,4-dizazbicyclo[2.2.2]octane (DABCO, 0.670 g, 2.74 mmol) was added. The mixture was refluxed for 12h under nitrogen. The resulting solution was concentrated under *vacuo*. The residue was poured into diethyl ether and the precipitate was collected by filtration (white solid, **4**, 361 mg, 0.591 mmol, Yield: 97%). ¹H NMR (CDCl₃, 500 MHz, ppm): δ 7.15-7.29 (m, 15 H, phenyl), 7.10 (d, J = 8.6 Hz, 2H, phenyl), 6.75 (d, J = 8.0 Hz, 2H, phenyl), 3.93 (t, J = 6.0 Hz, 2H, methylene), 3.66 (t, J = 7.4 Hz, 6H, DABCO), 3.60 (t, J = 8.3 Hz, 2H, methylene), 3.25 (t, J = 8.3 Hz, 6H, DABCO), 1.78 (m, 4H, methylene), 1.44-1.60 (m, 4H, methylene). ¹³C NMR (CDCl₃, 125 MHz, ppm): δ 156.9, 147.0, 139.0, 132.2, 131.1, 127.4, 125.8, 113.2 (C of phenyl), 67.4, 64.4 (C of methylene), 64.3 (sp3 carbon of triryl), 52.5, 45.4 (C of DABCO), 29.1, 26.2, 25.8, 22.1 (C of methylene). LRFABMS: *m*/*z* Calcd for C₃₇H₄₃N₂O [M–Br]⁺: 531.3375, found 531.3376. Melting point (T_m): 217 °C.

8. Monofunctionalized pillar[5]arene **8** can be prepared by two different approaches. **8** was already prepared by co-cyclization approach. ^{S3} In this study, we synthesized **8** from mono-deprotected pillar[5]arene **7**. Under a nitrogen atmosphere **7** (434 mg, 0.589 mmol) was dissolved in acetone (5 mL). Potassium carbonate (162 mg, 1.17 mmol) was added and the reaction mixture was stirred. Then, 1,6-dibromohexane (719 mg, 2.95 mmol) was added and the reaction mixture was refluxed for 48h. After filtration, the filtrate was evaporated to give a solid. Column chromatography (silica gel; ethyl acetate: hexane = 1 : 6) afforded a white solid (**8**, 296 mg, 0.330 mmol, 56%).

5. To a solution of **8** (200 mg, 0.224 mmol) in acetone (20 mL), DABCO (124 mg, 1.11 mmol) was added. The mixture was refluxed for 12h under nitrogen. The resulting solution was concentrated under *vacuo*. The residue was poured into diethyl ether and the precipitate was collected by filtration (light pink solid, **5**, 143 mg, 0.141 mmol, Yield: 63%). ¹H NMR (CDCl₃, 500 MHz, ppm): δ 6.83-6.88 (m, 10H, phenyl), 3.90 (t, 2H, J = 6.3 Hz, methylene), 3.65-3.76 (m, 43 H, methyl, methylene bridge and DABCO), 3.54 (m, 2H, methylene), 3.25 (t, J = 7.5 Hz, 6H, DABCO), 1.85-1.93 (m, 4H,

methylene), 1.68 (m, 2H, methylene), 1.51 (m, 2H, methylene). ¹³C NMR (acetone- d_6 , 125 MHz, ppm): δ 151.1, 150.8, 150.4, 150.0, 128.7, 128.6, 128.3, 115.3, 115.0, 114.8, 114.6, 114.3, 114.0 (C of phenyl), 67.6, 64.1 (C of methylene), 58.9, 56.6, 56.5, 56.3, 56.1, 55.9, 55.9, 55.7 (C of methyl), 52.3, 45.4 (C of DABCO), 30.2, 29.7, 29.5, 29.4 (C of methylene bridge), 28.9, 25.8, 25.1, 21.0 (C of methylene). LRFABMS: m/z Calcd for C₅₆H₇₁N₂O₁₀ [M–Br]⁺: 931.5109, found 931. HRFABMS: m/z Calcd for C₅₆H₇₁N₂O₁₀ [M–Br]⁺: 931.5109, found 931.5107. Melting point (T_m): 111 °C.

9. To a solution of 2 (500 g, 0.468 mmol) in anhydrous dichloromethane (50 mL), boron tribromide (0.0395 mL, 0.421 mmol) was added. The mixture was stirred at 25 °C for 1 min under nitrogen. Then, water was added into the mixture. The organic layer was dried over anhydrous Na₂SO₄. After filtration, the filtrate was concentrated. Column chromatography (silica gel; hexane : ethyl acetate = 4 : 1) afforded a white solid (9, 224) mg, 0.215 mmol, Yield: 46%). ¹H NMR (CDCl₃, 500 MHz, ppm): δ 6.80 (s, 1H, phenyl), 6.75 (s, 1H, phenol), 6.74 (s, 1H, phenyl), 6.72 (s, 1H, phenyl), 6.67 (s, 1H, phenyl), 6.65 (s, 1H, phenyl), 6.64 (s, 2H, phenyl), 6.63 (s, 2H, phenyl), 6.61 (s, 1H, phenyl), 6.56 (s, 2H, phenyl), 3.69-4.01 (m, 34H, methylene adjacent to O atom and methylene bridge), 1.17-1.42 (m, 33H, methyl). ¹³C NMR (CDCl₃, 125 MHz, ppm): δ 151.3, 150.5, 150.4, 150.3, 148.1, 147.8, 130.1, 129.3, 128.4, 128.2, 128.1, 127.9, 127.7, 127.6, 127.3, 126.5, 124.4, 118.6, 115.4, 115.3, 115.1, 115.0, 114.8, 114.4, 114.1 (C of phenyl), 64.8, 64.2, 64.1, 64.0, 63.8 (C of methylene adjacent O atom), 31.3, 31.0, 30.7, 30.4, 30.3, 29.6 (C of methylene bridge), 15.1, 15.0, 14.9, 14.6 (C of methyl). LRFABMS: m/z Calcd for $C_{64}H_{80}O_{12}$ [M]⁺: 1040.5650, found 1040. HRFABMS: m/z Calcd for C₆₄H₈₀O₁₂ [M]⁺: 1040.5650, found 1040.5666. Melting point (T_m): 75 °C.

6. Under a nitrogen atmosphere **9** (100 mg, 0.0959 mmol) was dissolved in acetone (1 mL). Potassium carbonate (394 mg, 2.90 mmol) was added and the reaction mixture was stirred. Then, 1,6-dibromohexane (0.234 mg, 0.959 mmol) was added and the reaction mixture was refluxed for 24h. After filtration, the filtrate was evaporated to give a solid. Column chromatography (silica gel; ethyl acetate: hexane = 1 : 6) afforded a white solid (**10**, 81.0 mg, 0.0673 mmol, Yield: 54%). ¹H NMR (CDCl₃, 500 MHz, ppm): δ 6.62-6.71 (s, 12H, phenyl), 3.78-3.82 (m, 34H, methylene adjacent to O atom and methylene bridge), 3.30 (t, 2H, J = 6.6 Hz, methylene adjacent to O atom), 1.76 (br, 2H, methylene), 1.66 (br, 2H, methylene), 1.36 (br, 4H, methylene), 1.25-1.30 (m, 33H, methyl). ¹³C NMR (CDCl₃, 125 MHz, ppm): δ 150.5, 150.4, 150.3, 127.9, 127.8, 115.4, 115.3, 115.2, 115.0 (C of phenyl), 68.2 (C of methylene linker), 64.0 (C of methylene

adjacent to O atom), 33.8, 32.6 (C of methylene), 31.2, 31.0, 30.9, 30.8, 30.7 (C of methylene bridge) 29.4, 27.9, 25.3 (C of methylene), 15.2 (C of methyl). To a solution of pyridine (10 mL), 10 (100 mg, 0.0829 mmol) was added. The mixture was heated at 80 °C for 24h under nitrogen. The resulting solution was concentrated under vacuo (light brown solid, **6**, 72.0 mg, 0.0561 mmol, Yield: 68%). ¹H NMR (acetone- d_6 , 500 MHz, ppm): δ 7.37 (br, 1H, pyridyl), 6.56-7.07 (m, 14H, pyridyl and phenyl), 6.35 (br, 2H, pyridyl), 3.59-4.10 (m, 34H, methylene adjacent to O atom and methylene bridge), 2.95 (br, 2H, methylene), 1.75 (br, 2H, methylene), 1.56 (br, 2H, methylene), 1.22-1.46 (m, 35H, methylene and methyl), 0.86 (br, 2H, methylene). ¹³C NMR (CDCl₃, 125 MHz, ppm): δ 151.0, 150.7, 150.5, 150.3, 150.2, 150.0, 144.3, 142.7, 129.2, 129.1, 129.0, 127.7, 127.0, 126.9, 117.2, 116.9, 116.2, 116.1, 115.9, 115.7, 114.3, 113.8 (C of phenyl and pyridyl), 65.5, 65.1, 64.8, 64.5, 64.1, 63.8 (C of methylene adjacent to O atom), 58.6 (C of methylene adjacent to N atom), 32.5 (C of methylene bridge), 31.9 (C of methylene), 30.6, 30.2, 29.8, 29.7, 29.1 (C of methylene bridge), 27.5, 22.6, 21.5 (C of methylene), 15.3 (C of methyl). LRFABMS: m/z Calcd for $C_{75}H_{96}NO_{12}$ [M-Br]⁺: 1202.6933, found 1202. HRFABMS: *m*/*z* Calcd for C₇₅H₉₆NO₁₂ [M-Br]⁺: 1202.6933, found 1202.6925. Melting point (T_m): 109 °C.

Fig. S1 1 H and 13 C NMR spectra of 3 in CDCl₃ at 25 $^{\circ}$ C.

Electronic Supplementary Material (ESI) for Chemical Science This journal is O The Royal Society of Chemistry 2012

¹H and ¹³C NMR spectra of 4

Fig. S2 1 H and 13 C NMR spectra of 4 in CDCl₃ at 25 $^{\circ}$ C.

Fig. S3 ¹H NMR spectrum of **5** in acetone- d_6 and ¹³C NMR spectrum of **5** in CDCl₃ at 25 °C.

Fig. S4 ¹H and ¹³C NMR spectra of 9 in CDCl₃ at 25 °C

Fig. S5 ¹H and ¹³C NMR spectra of 10 in CDCl₃ at 25 °C.

Fig. S6 ¹H NMR spectrum of **6** in acetone- d_6 and ¹³C NMR spectrum of **6** in CDCl₃ at 25 °C.

Job Plot for 1-3 Complex

Fig. S7 Job plot between **1** (host) and **3** (guest) was collected by plotting the $\Delta\delta$ in chemical shift of the proton signal of pyridinium moiety (**Fig. 2b**, peak b) of **3** observed by ¹H NMR spectroscopy against the change in the mole fraction of the guest ($X_{guest 3}$). Concentration: [**1**] + [**3**] = 10 mM. The plot indicates a 1:1 binding between the host and guest.

ESIMS for a mixture of 1 and 3

Fig. S8 ESI mass spectra of a mixture of 1 and 3. Detection of the peak corresponding to $[1 + 3 - Br]^+$ indicates formation of the 1:1 complex.

Job Plot for 2-3 Complex

Fig. S9 Job plot between **2** (host) and **3** (guest) was collected by plotting the $\Delta\delta$ in chemical shift of the proton signal of pyridinium moiety (**Fig. 2c**, peak b) of **3** observed by ¹H NMR spectroscopy against the change in the mole fraction of the guest (X_{guest 3}). Concentration: [**2**] + [**3**] = 10 mM. The plot indicates a 1:1 binding between the host and guest.

¹H NMR spectra of a mixture of 1 and 3 in acetone-*d*₆

Fig. S10 ¹H NMR spectra of (a) **1**, (b) **3**, (c) a mixture of **1** and **3** at 1 mM in acetone- d_6 at 25 °C. Only small shifts were observed for the proton signals of the pyridinium and methylene of **3** upon addition of **1**. This observation suggests very weak binding between host **1** and guest **3**. Due to the weak binding, an association constant could not be calculated for this complex.

Job Plot for 2-4 Complex

Fig. S11 Job plot between 2 (host) and 4 (guest) was collected by plotting the $\Delta\delta$ in chemical shift of the proton signal of DABCO moiety (**Fig. 2g**, peak b) of 4 observed by ¹H NMR spectroscopy against the change in the mole fraction of the guest (X_{guest 4}). Concentration: [2] + [4] = 10 mM. The plot indicates a 1:1 binding between the host and guest.

ESIMS for a mixture of 2 and 4

Fig. S12 ESI mass spectra of a mixture of 2 and 4. Detection of the peak corresponding to $[2 + 4 - Br]^+$ indicates formation of the 1:1 complex.

¹H NMR spectrum of a mixture of 1, 2, 3 and 4 in CDCl₃

Fig. S13 ¹H NMR spectra of an equimolar mixture of (a) 1 and 3, (b) 1, 2, 3 and 4 and (c) 2 and 4 at 1 mM in CDCl₃ at 25 $^{\circ}$ C. Resonances are labeled in **Fig. 1**. The peak shifts of 3 and 4 in (b) were same in those of the mixture of 1 and 3 in (a), and 2 and 4 in (c), respectively, indicating the self-sorting organization.

Variable concentration ¹H NMR spectra of 5

Fig. S14 Variable concentration ¹H NMR spectra of **5** in $CDCl_3$ at 25 °C. The proton resonances of **5** were independent of the concentration. These data indicate no formation of intra-/inter-molecular complex of **5** in $CDCl_3$.

Variable concentration ¹H NMR spectra of 6

Fig. S15 Variable concentration ¹H NMR spectra of **6** in CDCl₃ at 25 °C. Proton resonances of **6** in CDCl₃ did not change in high and diluted concentrations. The supramolecular structure of **6** was independent of the concentration. Considering the weak association constant between pyridinium guest **2** and pillar[6]arene **3** (90.3 \pm 11 M⁻¹), a self-inclusion complex or oligomers should be formed.

Variable concentration ¹H NMR spectra of a mixture of 5 and 6

Fig. S16 Variable concentration ¹H NMR spectra of a 1:1 mixture of **5** and **6** in CDCl₃ at 25 $^{\circ}$ C. The broadening of the peaks did not change in high and diluted concentrations. The supramolecular polymer consisting of **5** and **6** was formed even in the diluted concentration investigated.

¹H NMR spectra of a mixture of 5 and 6 in acetone-*d*₆

Fig. S17 ¹H NMR spectra of (a) **5**, (b) **6** and (c) a mixture of **5** and **6** at 1 mM in acetone- d_6 at 25 °C. The broadening was not observed in the 1:1 mixture of **5** and **6** in acetone- d_6 . Since the pyridinium derivative **3** hardly formed the host-guest complex with pillar[5]arene **1** in acetone- d_6 (**Fig. S10**), formation of the supramolecular polymer did not take place in acetone- d_6 .

TM-AFM images

Fig. S18 TM-AFM images of (a,b) **5** and (c,d) **6**, (a,c) height images, (b,d) phase images. Spherical-shaped assemblies were observed.

References

(S1) P. R. Ashton, R. Ballardini, V. Balzani, M. Bělohradský, M. T. Gandolfi, D. Philp, L. Prodi, F. M. Raymo, M. V. Reddington, N. Spencer, J. F. Stoddart, M. Venturi and D. J. Williams, *J. Am. Chem. Soc.*, 1996, **118**, 4931.

(S2) W. Zhou, H. Zheng, Y. Li, H. Liu and Y. Li, Org. Lett., 2010, 12, 4078.

(S3) L. Liu, D. Cao, Y. Jin, H. Tao, Y. Kou and H. Meier, Org. Biomol. Chem., 2011, 9, 7007.