Electronic Supplementary Information

$Sc_2S@C_2(7892)-C_{70}$: Metallic Sulfide Cluster in a Non-IPR C₇₀ Cage

Ning Chen,^{a,c} Marc Mulet-Gas,^b Yu-Yang Li,^a Raine E. Stene,^a Curtis W. Atherton,^a Antonio Rodríguez-Fortea,*^b Josep M. Poblet*^b and Luis Echegoyen*^a

^a Department of Chemistry, University of Texas at El Paso, El Paso, Texas 79968, United States . Fax: (915) 747-8807; Tel: (915) 747-7573; E-mail : echegoyen@utep.edu.
^b Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, c/Marcel·lí Domingo s/n,

43007 Tarragona, Spain. Fax: +34 977-559-563; Tel: +34 977-559-569; E-mail:

josepmaria.poblet@urv.cat, antonio.rodriguezf@urv.cat

^c Current address : College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 212163, China. Email : chenning@suda.edu.cn

Experimental Details:

Figure S1. HPLC Chromatogram of the second-step separation of Sc₂S@C₇₀ obtained on a 10mm×250mm Buckyprep column using $\lambda = 320$ nm, a flow rate of 4 mL/min, and toluene as the eluent at 25°C.

Figure S2. HPLC Chromatogram of the third-step separation of $Sc_2S@C_{70}$ obtained on a 10mm×250mm Buckyprep column using $\lambda = 320$ nm, a flow rate of 4 mL/min, and toluene as the eluent at 25°C.

Table S1. Relative energies, in kcal mol ⁻¹ , for the lowest-energy isomers of C_{70}^{4-} and
Sc ₂ S@C ₇₀ , along with their number of adjacent pentagon pairs (APP), number of
pyracylenes and the IPSI values, in Å, for the tetraanionic cages.

Isomer	APP	C_{70}^{4-}	Sc ₂ S@C ₇₀	Pyra.	IPSI	Isomer	APP	C_{70}^{4-}	Sc ₂ S@C ₇₀	Pyra.	IPSI
8149	0	0.0	20.6	20	13.4820	7915	3	28.0		9	13.8322
7892	2	3.9	0.0	11	13.7102	7956	3	29.0		9	13.8272
7957	2	4.7	19.1	10	13.7031	7780	3	29.1		9	13.8287
7851	3	6.2	20.3	6	13.8262	8042	2	29.2		14	13.7251
7852	3	6.3	23.5	5	13.8250	7926	3	29.5		10	13.8280
7887	3	7.0	21.6	6	13.8217	8041	3	29.6		11	13.8400
7854	3	8.5	26.3	4	13.8173	8055	3	29.6		11	13.8299
7893	3	9.4	19.7	7	13.8265	8116	3	29.7		11	13.8362
7886	3	10.8	21.5	6	13.8209	8103	3	29.9		11	13.8328
7924	2	11.6	18.6	12	13.7088	8009	2	30.2		15	13.7248
7846	3	13.2	29.3	7	13.8318	7790	2	31.4		15	13.7229
7960	2	14.1	21.9	11	13.7054	7782	3	31.9		9	13.8349
7922	3	14.2	27.7	7	13.8146	7966	3	31.9		10	13.8302
7921	3	14.7	29.1	8	13.8260	8006	3	32.1		11	13.8338
7850	3	14.7	33.2	6	13.8285	7975	3	32.3		10	13.8312
7847	3	15.6	28.8	8	13.8277	7841	3	32.6		9	13.8293
8008	2	16.0		13	13.7150	7759	3	32.8		11	13.8351
7853	3	16.4		6	13.8357	7929	3	32.8		11	13.8269
8094	1	16.7	26.5	17	13.6052	8144	2	33.6		15	13.7239
8064	2	17.4		14	13.7153	7860	3	33.6		10	13.8231
8005	2	17.7		13	13.7140	7961	3	33.6		10	13.8310
7849	3	18.2		6	13.8259	7963	3	34.3		11	13.8456
7848	3	18.3		7	13.8315	7793	3	35.1		10	13.8360
7889	3	18.4		8	13.8251	8007	3	35.1		11	13.8331
7888	3	18.7		9	13.8275	8010	3	35.2		11	13.8328
7925	2	18.9		13	13.7150	8065	3	35.3		12	13.8350
7911	3	19.2		8	13.8236	8002	3	35.5		11	13.8360
8111	2	19.9		14	13.7106	8125	3	36.4		12	13.8379
7904	3	20.1		9	13.8299	7974	3	36.5		12	13.8343
8044	3	20.1		9	13.8375	7777	3	36.6		11	13.8361
7950	3	20.4		8	13.8261	8061	3	37.0		12	13.8381
8090	2	20.4		14	13.7175	7761	3	37.2		11	13.8349
7890	3	20.6		9	13.8290	7837	3	37.7		10	13.8395
8148	3	22.5		9	13.8238	7958	3	38.0		10	13.8306
8147	3	22.9		9	13.8354	8095	3	38.2		10	13.8309
7787	3	23.0		10	13.8309	7913	2	38.3		15	13.7244
7891	3	23.9		9	13.8342	8089	3	38.8		11	13.8265
7983	3	24.7		10	13.8344	7698	3	38.8		13	13.8569
7883	3	24.8		9	13.8266	7930	3	39.0		11	13.8320
7927	3	26.1		10	13.8376	7711	3	39.2		12	13.8539
7982	3	26.5		9	13.8316	7912	3	39.5		11	13.8328
8142	2	26.5		15	13.7255	8093	3	39.5		11	13.8325
8043	3	26.8		9	13.8381	7901	3	39.6		11	13.8414
7858	3	27.2		10	13.8322	8003	3	40.4		12	13.8401
7903	3	27.3		9	13.8324	8067	3	40.8		13	13.8371
8104	3	27.5		10	13.8381	7969	3	41.3		12	13.8430
7915	3	28.0		9	13.8322	8092	3	41.6		11	13.8249

Isomer	APP	C_{72}^{4-}	Sc ₂ S@C ₇₂	Pyra.	IPSI
8141	3	41.6		12	13.8437
8013	3	42.2		11	13.8256
8128	3	42.9		13	13.8419
8011	3	43.0		12	13.8447
8091	2	43.2		16	13.7262
7671	3	45.7		13	13.8584
7959	3	46.7		11	13.8392
7726	3	47.4		12	13.8540
8097	3	47.6		12	13.8245
7670	3	47.8		12	13.8523
7755	3	48.3		11	13.8393
8087	3	48.6		12	13.8404
7716	2	49.5		18	13.7536
7805	3	51.7		12	13.8357
7724	3	55.1		14	13.8625
7766	3	55.2		13	13.8501
7661	3	55.6		13	13.8627
7906	3	58.2		13	13.8365

Figure S3. Relative energies for all computed tetraanions, 1 IPR, 1 APP1, 18 APP2 and 91 APP3.

Figure S4. Optimized structures for different cages isomers of $Sc_2S@C_{70}$ with their relative energies (in parenthesis), in kcal mol⁻¹, with respect to the lowest-energy $Sc_2S@C_{70}$ isomer. The adjacent pentagon pairs are colored in black.

Figure S5. Schlegel diagrams showing the $C_2(7892)$ - C_{70} to $C_s(10528)$ - C_{72} conversion by means of single C₂ addition. The added C₂ unit which forms the new bond is highlighted in red.

Transitions with wavelength > 500 nm (highlighted region in the exp. spectrum)

Figure S6. Experimental (top) and predicted UV-Vis-NIR spectra (bottom) for $Sc_2S@C_2(7892)-C_{70}$ and $Sc_2S@D_{5h}(8149)-C_{70}$ (using TDDFT methodology, at BP86/TZP level).

Optimized cartesian coordinates of $Sc_2S@C_2(7892)-C_{70}$:

С	3.886362415	1.070823260	1.051745723
С	3.517697912	0.521061213	2.339359635
С	2.444339650	1.345539389	2.884129228
С	2.216663364	2.436807652	1.937364125
Ĉ	3 082641570	2 237373096	0 787824787
C	3 940011025	0.013782534	0.078311337
C	3.607048405	1 22/26/785	0.768307603
C	2 220421867	-1.234204783	0.708397093
C	3.33943180/	-0.905898419	2.104143942
C	2.196/19206	-1.5129/4050	2./664624//
C	1.224848768	-0.720535454	3.502012968
C	1.284940246	0.721925906	3.491/8/001
С	0.034702850	1.426405213	3.452918460
С	-0.143836875	2.583702947	2.609488649
С	0.922478755	3.053012017	1.780921929
С	0.598816506	3.581907189	0.508732082
С	1.463224097	3.362569150	-0.635278198
С	2.622885711	2.535599623	-0.546837173
С	2.919490421	1.571892690	-1.630399922
С	3.508609864	0.255101538	-1.280140407
Č	3 132390534	-0 901032244	-2.009759551
Ĉ	2 820779305	-2.166847258	-1 332605197
C	2.826779585	-2 293672643	0.078978162
C	1 831880640	-2.275072045	0.707116340
C	1.505801126	2 602006610	2 137007080
C	0.142926975	-2.002330010	2.13/90/080
C	0.1438308/3	-2.385/0294/	2.009488049
C	-0.034/02850	-1.426405213	3.452918460
C	-1.284940246	-0./21925906	3.491/8/001
C	-1.224848768	0.720535454	3.502012968
C	-2.196/19206	1.512974050	2.766462477
С	-1.505801126	2.602996610	2.137907080
С	-1.831880649	3.025470003	0.797116340
С	-0.777680531	3.605114474	0.039620100
С	-0.749217025	3.483996663	-1.388164549
С	0.628293247	3.335534695	-1.801811001
С	0.959076127	2.512085278	-2.876474855
С	2.106432511	1.630603115	-2.794319257
С	1.782027144	0.443118710	-3.550654749
С	2.271543704	-0.801010588	-3.153014383
С	1.419105731	-1.970499373	-3.200400426
Č	1 762638375	-2 799837800	-2 072305142
C	0 749217025	-3 483996663	-1 388164549
C	0.777680531	-3 605114474	0.039620100
C	-0 598816506	-3 581907189	0.508732082
C	-0.922478755	-3.053012017	1 780021020
C	-0.922478755	-3.033012017	1.780921929
C	-2.210003304	-2.430807032	2 99/120229
C	-2.444559050	-1.343339369	2.004129220
C	-3.51/09/912	-0.521061213	2.339339033
C	-3.339431867	0.905898419	2.164143942
C	-3.60/048495	1.234264/85	0.768397693
C	-2.895019088	2.2936/2643	0.078978162
C	-2.820779305	2.166847258	-1.332605197
С	-1.762638375	2.799837800	-2.072305142
С	-1.419105731	1.970499373	-3.200400426
С	-0.087093483	1.847229170	-3.619636132
С	0.419056774	0.560695237	-4.040598001
С	-0.419056774	-0.560695237	-4.040598001
С	0.087093483	-1.847229170	-3.619636132
С	-0.959076127	-2.512085278	-2.876474855
С	-0.628293247	-3.335534695	-1.801811001

С	-1.463224097	-3.362569150	-0.635278198
С	-2.622885711	-2.535599623	-0.546837173
С	-3.082641570	-2.237373096	0.787824787
С	-3.886362415	-1.070823260	1.051745723
С	-3.940011025	-0.013782534	0.078311337
С	-3.508609864	-0.255101538	-1.280140407
С	-3.132390534	0.901032244	-2.009759551
С	-2.271543704	0.801010588	-3.153014383
С	-1.782027144	-0.443118710	-3.550654749
С	-2.106432511	-1.630603115	-2.794319257
С	-2.919490421	-1.571892690	-1.630399922
S	0.000000000	0.000000000	-0.598201283
Sc	1.755620853	0.239092623	0.948150841
Sc	-1.755620853	-0.239092623	0.948150841

Optimized cartesian coordinates of $Sc_2S@C_{2v}(7854)$ -C₇₀:

С	4.184736000	-1.152410000	0.724194000
С	4.186405000	-1.154997000	-0.712857000
С	3.286388000	-2.191790000	-1.172753000
C	2 764651000	-2 876173000	0.007695000
Č	3 283793000	-2 187144000	1 186310000
C	3 997163000	0.232677000	1 167751000
C	2 871246000	1 100277000	0.001025000
C	2 000782000	1.100277000	1 161151000
C	3.999782000	0.228932000	-1.101131000
C	3.150863000	0.453205000	-2.253427000
C	2.413926000	-0.623018000	-2.882115000
C	2.393809000	-1.941792000	-2.293039000
С	1.166102000	-2.660064000	-2.331166000
С	0.720028000	-3.479975000	-1.216844000
С	1.455404000	-3.495307000	0.008270000
С	0.718265000	-3.475903000	1.232504000
С	1.162488000	-2.652084000	2.344493000
С	2.389891000	-1.933673000	2.304898000
Ċ	2,409427000	-0.613349000	2.890338000
Ĉ	3 146914000	0 460513000	2 258488000
č	2 371327000	1 681775000	2 349705000
C	2 335631000	2 618030000	1 260373000
C	2.000510000	2.010/00000	0.000122000
C	2.999319000	2.271320000	-0.000123000
C	2.33/481000	2.014891000	-1.202505000
C	2.3/5002000	1.6/411/000	-2.348/18000
C	1.2308/6000	1.390041000	-3.161493000
С	1.225998000	-0.032789000	-3.431511000
С	0.004822000	-0.774304000	-3.493355000
С	0.004275000	-2.110000000	-2.973680000
С	-1.158526000	-2.659598000	-2.332301000
С	-0.714371000	-3.479750000	-1.217570000
С	-1.451548000	-3.495152000	0.006721000
С	-0.716145000	-3.475919000	1.231816000
С	-1.162019000	-2.652220000	2.343448000
С	-0.000119000	-2.100268000	2.984167000
С	-0.000406000	-0.762907000	3.499678000
Ĉ	1 220867000	-0.021517000	3 436745000
Č	1 226129000	1 400436000	3 162278000
c	0.000243000	2 105083000	2 964098000
C	0.000243000	2.103003000	2.004000000
C	1 160012000	2 452770000	2.037389000
C	1.109912000	3.433779000	1.2218/0000
C	0./1/158000	4.008336000	-0.00418/000
C	1.1/1/18000	3.449//1000	-1.22/903000
C	0.004086000	3.166815000	-2.043849000
С	0.004725000	2.095290000	-2.966975000
С	-1.221296000	1.390291000	-3.162938000
С	-1.216286000	-0.032493000	-3.432834000
С	-2.405014000	-0.622395000	-2.884611000
С	-2.385933000	-1.940939000	-2.295068000
С	-3.280101000	-2.190770000	-1.175771000
С	-2.760908000	-2.875995000	0.005179000
С	-3.282156000	-2.187351000	1.183375000
Č	-2 389583000	-1 933851000	2 302991000
Č	-2 409544000	-0 613143000	2 888046000
č	-1 221470000	-0 021349000	3 435513000
\tilde{c}	_1 2214,0000	1 400701000	3 160805000
c	-1.220122000	1 687211000	2 2/70/000
C	-2.3/0103000	2 610622000	2.34/040000 1.257712000
C	-2.332333000	2.019022000	1.23//13000
C	-1.100489000	3.454083000	1.220448000
C	-0.711751000	4.008508000	-0.005089000
С	-1.164636000	3.450022000	-1.229349000

С	-2.330638000	2.615417000	-1.265292000
С	-2.366460000	1.674564000	-2.351473000
С	-3.142450000	0.453775000	-2.256542000
С	-3.992683000	0.229661000	-1.165119000
С	-4.180571000	-1.154011000	-0.717015000
С	-4.181796000	-1.151798000	0.720004000
С	-3.994694000	0.233429000	1.163699000
С	-3.146071000	0.461124000	2.255493000
С	-3.866467000	1.101054000	-0.002110000
С	-2.994642000	2.272253000	-0.003666000
S	0.002207000	0.452685000	0.000966000
Sc	-2.082346000	-0.551359000	0.002448000
Sc	2.086896000	-0.551082000	0.001915000

Figure S7. Optimized structures for $Sc_3N@C_{2v}(7854)$ - C_{70} (left) and $Sc_3N@C_2(7892)$ - C_{70} (right). The adjacent pentagon pairs are highlighted in black.

Table S2. Structural parameters of the Sc₃N unit encapsulated in $C_{2v}(7854)$ -C₇₀ and $C_{2v}(7854)$ -C₇₀.

		$C_{2v}(7854)$ -C ₇₀	$C_2(7892)$ - C_{70}
	Sc1-Sc2	105.6	119.8
Bond	Sc2-Sc3	149.0	120.4
Angle	Sc3-Sc1	105.4	119.8
	Sc1-N	1.977	1.979
^{a)} Bond	Sc2-N	2.038	1.991
Length	Sc3-N	2.037	1.989

a) Bond lengths in angstroms (Å).

Optimized cartesian coordinates of $Sc_3N@C_{2v}(7854)-C_{70}$:

С	1.161700000	4.156550000	-0.720470000
С	1.161700000	4.156550000	0.720470000
Ċ	-0 197459000	3 962725000	-1 162016000
C	-0 197459000	3 962725000	1 162016000
C	-1.057812000	3 827675000	0.000000000
C	2 211035000	3 272722000	1 18/031000
C	2.211935000	2 272722000	-1.184031000
C	2.211955000	3.273722000	1.184051000
C	-0.440560000	3.135376000	-2.273559000
C	-0.440560000	3.1353/6000	2.2/3559000
C	-2.226430000	2.967509000	0.000000000
С	2.903190000	2.762515000	0.000000000
С	1.956408000	2.387692000	-2.299559000
С	1.956408000	2.387692000	2.299559000
С	0.636957000	2.400704000	-2.895606000
С	0.636957000	2.400704000	2.895606000
С	-1.656012000	2.383299000	-2.375307000
С	-1.656012000	2.383299000	2.375307000
С	-2.586818000	2.324223000	-1.276606000
С	-2.586818000	2.324223000	1.276606000
Ċ	3 514317000	1 450049000	0 000000000
Č	0.056419000	1 219677000	-3 470333000
C	0.056419000	1.219677000	3 470333000
C	1 360863000	1.21/07/000	3 186663000
C	1 360863000	1.221495000	-3.186663000
C	-1.300803000	1.221493000	2.242482000
C	2.679855000	1.159225000	-2.342482000
C	2.679833000	1.159223000	2.342482000
C	-3.476244000	1.182402000	-1.251016000
С	-3.476244000	1.182402000	1.251016000
С	3.495147000	0.718162000	-1.228350000
С	3.495147000	0.718162000	1.228350000
С	-4.035832000	0.725848000	0.000000000
С	-3.161147000	0.000438000	-2.050473000
С	-2.062068000	-0.000179000	-2.985895000
С	0.796442000	-0.000318000	-3.522129000
С	-3.161147000	0.000438000	2.050473000
Ċ	-2.062068000	-0.000179000	2 985895000
Č	2 132055000	-0.000281000	-2.988949000
Ċ	0 796442000	-0.000318000	3 522129000
C	2 132055000	-0.000310000	2 988949000
C	2.132033000	-0.000281000	2.988949000
C	-4.034031000	-0.724423000	1 228246000
C	3.493173000	-0./1849/000	-1.228340000
C	3.4951/5000	-0./1849/000	1.228346000
C	-3.4/3630000	-1.180823000	-1.249900000
C	-3.473630000	-1.180823000	1.249900000
С	2.679832000	-1.159697000	-2.342421000
С	2.679832000	-1.159697000	2.342421000
С	-1.360655000	-1.222073000	-3.186092000
С	-1.360655000	-1.222073000	3.186092000
С	0.056591000	-1.220319000	-3.470179000
С	0.056591000	-1.220319000	3.470179000
С	3.514296000	-1.450459000	0.000000000
С	-2.585443000	-2.323857000	-1.275987000
Ċ	-2.585443000	-2.323857000	1.275987000
Č	-1 655534000	-2 383808000	-2 374945000
č	-1 655534000	-2 383808000	2.374945000
č	0 637221000	_2 401520000	2.377773000
C	0.037221000	2.401520000	2.035650000
C	0.03/221000	-2.401320000	2.093038000
C	1.930/03000	-2.308418000	-2.299540000
C	1.956/03000	-2.388418000	2.299540000
C	2.903526000	-2.763220000	0.0000000000

С	-2.225716000	-2.967953000	0.000000000
С	-0.440156000	-3.136293000	-2.273590000
С	-0.440156000	-3.136293000	2.273590000
С	2.212341000	-3.274588000	-1.184009000
С	2.212341000	-3.274588000	1.184009000
С	-1.057375000	-3.828661000	0.000000000
С	-0.196977000	-3.963538000	-1.162015000
С	-0.196977000	-3.963538000	1.162015000
С	1.162159000	-4.157447000	-0.720442000
С	1.162159000	-4.157447000	0.720442000
Sc	-1.865921000	0.004582000	0.000000000
Sc	0.655075000	1.963478000	0.000000000
Sc	0.655488000	-1.964517000	0.000000000
Ν	0.111266000	-0.000063000	0.000000000

Optimized cartesian coordinates of $Sc_3N@C_2(7892)-C_{70}$:

С	-1 152745000	3 961039000	-0 750479000
Ĉ	-2 431955000	3 537592000	-0 226549000
C	2.451555000	2 540474000	1 121500000
C	-2.978145000	2.340474000	-1.131399000
C	-2.044636000	2.409/6/000	-2.24440/000
C	-0.896028000	3.262654000	-1.9/82/8000
C	-0.174053000	3.935433000	0.302257000
С	-0.857257000	3.490053000	1.523225000
С	-2.247026000	3.241626000	1.175666000
С	-2.852761000	2.058090000	1.688026000
С	-3.598664000	1.159339000	0.824606000
С	-3.601504000	1.336754000	-0.609210000
Ċ	-3 559233000	0 156375000	-1 414248000
č	-2 716776000	0.074741000	-2 590897000
C	1 887313000	1 172617000	2.066701000
C	-1.66/515000	0.800641000	-2.900791000
C	-0.013048000	0.899641000	-3.529993000
C	0.525897000	1.734645000	-3.2343/0000
C	0.438179000	2.824943000	-2.312098000
С	1.506205000	3.036861000	-1.320110000
С	1.172959000	3.527867000	0.017700000
С	1.927552000	3.045904000	1.144578000
С	1.248974000	2.612502000	2.375223000
С	-0.164363000	2.682261000	2.510515000
Ĉ	-0 884039000	1 569422000	3 162323000
č	-2 228361000	1 280805000	2 721601000
C	2 714681000	0.060003000	2.721001000
C	-2.714081000	-0.009093000	2.004087000
C	-3.558212000	-0.150215000	1.42891/000
C	-3.602195000	-1.330/30000	0.62388/000
С	-3.600314000	-1.153223000	-0.809901000
С	-2.855808000	-2.052145000	-1.673891000
С	-2.231786000	-1.275424000	-2.708305000
С	-0.888261000	-1.564810000	-3.150324000
С	-0.132144000	-0.470930000	-3.661212000
С	1.295428000	-0.448620000	-3.564085000
Ċ	1 695423000	0 893914000	-3 285354000
Ĉ	2 763359000	1 156937000	-2 405420000
č	2 684505000	2 210782000	-1 445545000
C	2.004303000	1 807080000	0.3053/3000
C	2.064224000	2 2077(7000	-0.303343000
C	3.064224000	2.207767000	0.9/5455000
C	3.118044000	1.251433000	2.096012000
С	1.992523000	1.517278000	2.936211000
С	1.299060000	0.451496000	3.573203000
С	-0.128407000	0.474847000	3.672020000
С	-0.611400000	-0.895420000	3.541675000
С	-1.886011000	-1.167726000	2.979925000
С	-2.045593000	-2.405384000	2.258613000
Č	-2 979729000	-2 535107000	1 145992000
č	-2 434381000	-3 532329000	0.240200000
C	-2.454561000	-3 235001000	-1 16100000
C	-2.230728000	-3.2333991000	-1.101990000
C	-0.80100000	-3.483480000	-1.51094/000
C	-0.168982000	-2.6/8063000	-2.498902000
C	1.244525000	-2.009584000	-2.3655/2000
C	1.988471000	-1.514873000	-2.927292000
С	3.114999000	-1.249864000	-2.088398000
С	3.566374000	0.076069000	-1.836683000
С	4.109650000	0.497520000	-0.554480000
С	4.108416000	-0.496478000	0.560541000
С	3.566993000	-0.074798000	1.843251000
Ċ	2,764338000	-1.155426000	2.413298000
č	1 697509000	-0.891370000	3 294054000
č	0 527100000	_1 731080000	3 2/1632000
U	0.52/109000	1.75100000	5.244036000

С	0.437421000	-2.821337000	2.322570000
С	-0.897567000	-3.259184000	1.991162000
С	-1.155568000	-3.957358000	0.763224000
С	-0.177809000	-3.931951000	-0.290681000
С	1.169765000	-3.524646000	-0.008048000
С	1.923860000	-3.043808000	-1.135874000
С	3.061126000	-2.206243000	-0.967846000
С	3.504531000	-1.806179000	0.312158000
С	2.683755000	-2.209191000	1.453755000
С	1.504653000	-3.033653000	1.329367000
Sc	1.951740000	0.004094000	0.001697000
Sc	-1.017247000	1.725516000	-0.101282000
Sc	-1.014962000	-1.721673000	0.115497000
Ν	-0.026802000	0.001639000	0.006937000