(NHC^{Me})SiCl₄: A Versatile Carbene Transfer Reagent – Synthesis From Silicochloroform

Supporting Information

Tobias Böttcher, Bassem S. Bassil, Lyuben Zhechkov, Thomas Heine and Gerd-Volker Röschenthaler *

School of Engineering and Science, Jacobs University Bremen, Campus Ring 1, D-28759 Bremen, Germany

Contents

1.	Experimental Part	2
2.	X-Ray Crystallography	6
3.	NMR Spectra	12
4.	Computational Results	18
5.	Thermogravimetric Analysis	30
6.	References	33

1. Experimental Part

All reactions were carried out under an atmosphere of dry nitrogen or argon with common Schlenk techniques in flame-dried glassware, as long as not stated otherwise. Acetonitrile and dichloromethane were distilled from CaH₂ under argon and were stored under 3 Å molecular sieves. Tetrahydrofuran, methyl tert-butyl ether and diethyl ether were distilled from sodium wire under argon and were stored under sodium wire. The deuterated solvents acetonitrile-d₃ and chloroform-d₁ were purchased from Eurisotop and were stored under 3 Å molecular sieves. ¹H, ¹³C, ¹⁹F, ³¹P and ²⁹Si NMR spectra were recorded on a JEOL ECX 400 MHz spectrometer at room temperature using 5 mm tubes. The solvent signals were used as references and the chemical shifts converted to the TMS scale. For ²⁹Si, Si(CH₃)₄ was used as internal standard (δ Si = 0.00). Operating frequency: ¹H 400.53 MHz, ¹³C 100.71 MHz, ¹⁹F 376.88 MHz, ²⁹Si 79.57 MHz and ³¹P 162.14 MHz. Mass spectrometric data was collected on a Bruker micrOTOF, fitted with an ESI source. Melting points were measured using a Jürgens Electrothermal Melting Point Apparatus. Thermogravimetric analysis was carried out on a TA Instruments SDT Q600 thermobalance. Elemental analysis was performed at Beller-Matthies laboratory in Sandersbeek 19, D-37085 Göttingen, Germany. 2-chloroimidazolinium chloride (1) was prepared according to the literature.^{13b} All other chemicals were purchased from available commercial sources.

 $(NHC^{Me})SiCl_4$ (2). Method A: A solution of 1 (4.19 g, 24.79 mmol) in dichloromethane (30 ml) was placed into a Schlenk flask equipped with a septum. At -70 °C a solution of hexachlorodisilane (7.33 g, 27.27 mmol) in dichloromethane (15 ml) was slowly added through the septum using a syringe. After 1 h, the cooling bath was removed. The reaction mixture was stirred for another 3 h and was allowed to reach room temperature. All volatile components were removed under reduced pressure and the solid residue was washed with small amounts of cold acetonitrile and methyl *tert*-butyl ether. Drying *in vacuo* gave 2 (5.64 g, 85% based on 1).

<u>Method B</u>: A suspension of **1** (7.26 g, 42.95 mmol) in tetrahydrofuran (120 ml) was placed in a 2-neck 500 ml flask equipped with a septum. Triethylamine (4.13 g, 40.81 mmol) was directly added through the septum using a syringe. After cooling to 0 °C, a solution of trichlorosilane (5.52 g, 40.75 mmol) in tetrahydrofuran (15 ml) was slowly added within 0.5 h through the septum using a syringe. After another 0.5 h, the ice bath was removed and the reaction mixture was stirred for 1 h and was allowed to reach room temperature. The suspension was filtered through a glass frit. All volatile components of the filtrate were removed under reduced pressure and the solid residue was washed with methyl *tert*-butyl ether followed by diethyl ether. Drying *in vacuo* gave **2** (9.61 g, 88% based on HSiCl₃). Colorless solid. M.p. 95 °C (dec). ¹H NMR (CD₃CN) δ = 3.39 (s, 6H, -CH₃), 3.76 (s, 4H, -CH₂-). ¹³C{¹H} NMR (CD₃CN) δ = 35.9 (s, -CH₃), 52.4 (s, -CH₂-), 173.1 (s, carbene-C). ²⁹Si NMR (CD₃CN) δ = -103.9 (s). Elemental analysis (%) calcd for C₅H₁₀N₂SiCl₄ (268.04): C, 22.40; H, 3.76; N, 10.45. Found: C, 22.53; H, 3.85; N, 10.40.

(NHC^{Me})PCl₃ (3a): A solution of 2 (1.32 g, 4.92 mmol) in tetrahydrofuran (40 ml) was placed into a 2-neck 100 ml Schlenk flask equipped with a septum. At 0 °C a solution of PCl₃ (0.74 g, 5.39 mmol) in tetrahydrofuran (15 ml) was added through the septum using a syringe. The mixture was stirred for additional 12 h and was allowed to reach room temperature. All volatile components were removed under reduced pressure. The residue was washed three times with diethyl ether. Drying *in vacuo* gave **3a** (1.14 g). Yield: 1.14 g (98% based on **2**). Colorless solid. ¹H NMR (CD₃CN) δ = 3.37 (s, 6H, -CH₃), 3.79 (d, 4H, -CH₂-, ⁴J_{HP} = 1 Hz). ¹³C{¹H} NMR (CD₃CN) δ = 36.0 (d, -CH₃, ³J_{CP} = 15 Hz), 52.6 (s, -CH₂-), 172.9 (d, carbene-C, ¹J_{CP} = 109 Hz). ³¹P{¹H} NMR (CD₃CN) δ = 24.6 (s). Elemental analysis (%) calcd for C₅H₁₀N₂PCl₃ (235.48): C, 25.50; H, 4.28; N, 11.90. Found: C, 25.72; H, 4.47; N, 11.99.

(NHC^{Me})PCl₂Ph (3b): 3b was prepared following the procedure for 3a. Quantities used: 2 (2.02 g, 7.54 mmol), PhPCl₂ (1.48 g, 8.27 mmol). 3b was obtained. Yield: 2.05 g (98% based on 2). Colorless solid. ¹H NMR (CD₃CN) δ = 3.10 (s, 6H, -CH₃), 3.78 (s, 4H, -CH₂-), 7.42 (m, 3H, *ortho*, *para* of –Ph), 8.17 (m, 2H, *meta* of -Ph). ¹³C{¹H} NMR (CD₃CN) δ = 37.7 (d, -CH₃, ³J_{CP} = 11 Hz), 52.3 (s, -CH₂-), 128.4 (m, *meta* of -Ph), 130.9 (s, *para* of -Ph), 136.4 (d, *ortho* of -Ph, ²J_{CP} = 21 Hz), 137.8 (d, *ipso* of –Ph, ¹J_{CP} = 41 Hz), 174.86 (d, carbene-C, ¹J_{CP} = 78 Hz). ³¹P{¹H} NMR (CD₃CN) δ = -22.6 (s). Elemental analysis (%) calcd for C₁₁H₁₅N₂PCl₂ (277.13): C, 47.67; H, 5.46; N, 10.11. Found: C, 47.51; H, 5.38; N, 9.96.

(NHC^{Me})PCl₂Me (3c): 3c was prepared following the procedure for 3a. Quantities used: 2 (2.41 g, 8.99 mmol), MePCl₂ (1.17 g, 10.00 mmol). 3c was obtained. Yield: 1.88 g (97% based on 2). Colorless solid. ¹H NMR (CD₃CN) δ = 2.41 (d, 3H, P-CH₃, ²*J*_{PH} = 11 Hz), 3.31 (s, 6H, -CH₃), 3.75 (s, 4H, -CH₂-). ¹³C{¹H} NMR (CD₃CN) δ = 25.6 (d, P-CH₃, ¹*J*_{PC} = 35 Hz), 36.4 (d, N-CH₃, ³*J*_{CP} = 14 Hz), 52.3 (s, -CH₂-), 176.1 (d, carbene-C, ¹*J*_{CP} = 82 Hz). ³¹P{¹H}

NMR (CD₃CN) δ = -22.1 (s). Elemental analysis (%) calcd for C₆H₁₃N₂PCl₂ (215.06): C, 33.51; H, 6.09; N, 13.03. Found: C, 33.49; H, 6.19; N, 13.01.

(NHC^{Me})PF₄H (4): A solution of **3a** (2.49 g, 10.57 mmol) in dichloromethane (60 ml) was placed in a 2-neck 250 ml flask equipped with a septum. At -40 °C triethylamine trihydrofluoride (2.60 g, 16.13 mmol) was added through the septum using a syringe, followed by dropwise addition of triethylamine (3.26 g, 32.22 mmol). During a period of 12 h, the reaction mixture was allowed to reach room temperature. All volatile components were removed under reduced pressure. The residue was suspended in ethanol and filtered through a glas frit, washed with small amounts of ethanol followed by diethyl ether. A solution of the crude product in acetonitrile was stored at -40 °C for 7 days to give crystals of **4**. Yield: 0.54 g (25% based on **3a**). Colorless solid. M.p.: 181 °C (dec). ¹H NMR (CD₃CN) δ = 3.20 (s, 6H, -CH₃), 3.71 (s, 4H, -CH₂-), 5.72 (d,quint, 1H, P-H, ¹*J*_{PH} = 938 Hz, ²*J*_{HF} = 119 Hz). ¹⁹F NMR (CD₃CN) δ = -49.1 (d,d, 4F, ¹*J*_{FP} = 839 Hz, ²*J*_{FH} = 119 Hz). ¹³C{¹H} NMR (CD₃CN) δ = 37.2 (m, -CH₃), 52.2 (d, -CH₂-, ³*J*_{CP} = 11 Hz), 177.4 (d,quint, carbene-C, ¹*J*_{CP} = 292 Hz, ²*J*_{CF} = 61 Hz). ³¹P NMR (CD₃CN) δ = 141.9 (d,quint, ¹*J*_{PH} = 939 Hz, ¹*J*_{PF} = 839 Hz). HRMS (ESI, positive): m/z = 229.0477 (calcd for [M+Na]⁺: 229.0488).

 $(NHC^{Me})_2NiCl_2$ (5): A solution of 2 (3.51 g, 13.08 mmol) in tetrahydrofuran (80 ml) was placed into a 250 ml 2-neck flask equipped with a reflux condenser. Solid Ni(PPh₃)₂Cl₂ (2.67 g, 5.89 mmol) was added at once. The reaction mixture was refluxed for 12 h during which a orange/yellow solution was formed. The solution was cooled to room temperature. All volatile components were removed under reduced pressure. The residue was thoroughly washed with diethyl ether and then recrystallized from a hot acetonitrile solution. The solution was kept at -40 °C for 2 days to give **75**. Yield: 1.56 g (81% based on Ni(PPh₃)₂Cl₂). Orangebrown solid. M.p.: 212 °C (dec). Elemental analysis (%) calcd for C₁₀H₂₀N₄NiCl₂ (325.89): C, 36.85; H, 6.19; N, 17.19. Found: C, 36.76; H, 6.29; N, 17.03.

 $(NHC^{Me})_2PdCl_2$ (6): A solution of 2 (2.54 g, 9.48 mmol) in tetrahydrofuran (80 ml) was placed in a 250 ml 2-neck flask. Finely grinded PdCl₂ (0.93 g, 5.24 mmol) was added as a solid at once. The reaction mixture was refluxed for 12 h during which a yellow solution was formed. The solution was cooled to room temperature. All volatile components were removed under reduced pressure. The residue was dissolved in dichloromethane and filtered through

celite. The solvent was removed under reduced pressure and the residue was dissolved in acetonitrile and stored at -40 °C for 2 days to give **76**. Yield: 1.31 g (74 % based on **2**). Yellow solid. M.p.: 221 °C. ¹H NMR (CDCl₃) δ = 3.45 (s, 12H, -CH₃), 3.50 (s, 8H, -CH₂-). ¹³C{¹H} NMR (CDCl₃) δ = 36.5 (s, -CH₃), 51.3 (s, -CH₂-), 198.3 (s, carbene-C). Elemental analysis (%) calcd for C₁₀H₂₀N₄PdCl₂ (373.62): C, 32.15; H, 5.40; N, 15.00. Found: C, 32.01; H, 5.47; N, 14.86.

2. X-Ray Crystallography

Figure S1. Atom labeling for the crystal structure of 2.

Figure S2. Atom labeling for the crystal structure of 3a.

Figure S3. Atom labeling for the crystal structure of 3b.

Figure S4. Atom labeling for the crystal structure of 3c.

Figure S5. Atom labeling for the crystal structure of 4.

Figure S6. Atom labeling for the crystal structure of 5.

Figure S7. Atom labeling for the crystal structure of 6.

Crystal structure determination

Crystal data for **3b**, **3c**, **4** and **5** was collected on a Siemens P4 diffractometer using graphite monochromated Mo K α radiation ($\lambda = 71.073$ pm). Measurements were performed at -100°C by cooling with the low temperature nozzle Siemens LTII. The diffractometer was operated by the XSCAnS program. Single crystals of **2**, **3a** and **6** were each mounted on a Hampton cryo-loop for indexing and intensity data collection at 100 K on a Bruker D8 APEX II CCD using Mo K α radiation ($\lambda = 71.073$ pm). Lorentz and polarization corrections were applied, and an absorption correction was performed using the SADABS program.^[1]

Direct methods were used for structure solution of all structures (SHELXS-97). Structural refinement was obtained from successive Fourier maps (SHELXL-97).^[2] All heavy atoms (C, N, O, Si, P, Ni, Pd, F, Cl) were refined anisotropically whereas the hydrogen atoms were found either directly and refined isotropically for **2**, **3a**, **3b**, **3c**, **4**, **6** or through calculated constrained positions for **5**. The crystallographic data for are summarized in Table S1.

parameter	2	3a	3b	3c	4	5	6	
Empirical formula	$C_5H_{10}Cl_4N_2Si$	$C_5H_{10}Cl_3N_2P$	$C_{11}H_{15}Cl_2N_2P$	$C_6H_{13}Cl_2N_2P$	$C_5H_{11}F_4N_2P$	$C_{10}H_{20}Cl_2N_4Ni$	$C_{10}H_{20}Cl_2N_4Pd$	
Formular Weight	268.04	235.47	277.12	215.05	206.13	325.91	373.60	
crystal system	Orthorhombic	Monoclinic	Monoclinic	Orthorhombic	Triclinic	Monoclinic	Monoclinic	
space group	Pbca	$P2_{I}/c$	C2/c	Pbca	$P\overline{\iota}$	$P2_{l}/n$	$P2_{l}/n$	
<i>a</i> (Å)	12.8424(6)	11.4381(10)	19.240(3)	7.768(2)	7.375(3)	8.0672(11)	8.9858(4)	
<i>b</i> (Å)	12.6500(6)	7.7170(7)	11.531(3)	12.985(3)	7.560(2)	13.6398(12)	12.0174(6)	
<i>c</i> (Å)	13.2356(6)	12.9790(11)	15.038(3)	19.423(4)	8.6846(15)	12.880(2)	13.4315(7)	
a (deg)	90.00	90.00	90.00	90.00	74.688(16)	90.00	90.00	
β (deg)	90.00	122.697(6)	128.66(3)	90.00	76.04(2)	100.756(13)	104.706(3)	
γ (deg)	90.00	90.00	90.00	90.00	62.60(2)	90.00	90.00	
volume (Å ³)	2150.21(17)	964.09(15)	2605.4(9)	1959.2(8)	410.5(2)	1392.4(3)	1402.90(12)	
Z	8	4	8	8	2	4	4	
D_{calcd} (g/cm ³)	1.656	1.622	1.413	1.458	1.667	1.555	1.769	
abs coeff	1.163	1.057	0.596	0.769	0.351	1.762	1.688	
<i>F</i> (000)	1088	480	1152	896	212	680	752	
crystal size, mm ³	0.38 x 0.21 x 0.08	0.4 x 0.4 x 0.4	1.0 x 0.9 x 0.7	1.0 x 0.9 x 0.8	1.0 x 0.7 x 0.6	0.6 x 0.3 x 0.2	0.4 x 0.4 x 0.4	
θ range for data collection (deg)	3.46 - 23.25	3.73 - 30.50	3.47 - 27.49	3.71 - 27.50	3.52 - 27.48	3.55 - 26.36	3.56 - 30.51	
reflections collected	53047	53367	6638	5553	2344	6878	93989	
independent reflections	1528	2934	2974	2243	1875	2837	4274	
<i>R</i> (int)	0.1073	0.0518	0.0354	0.0296	0.0403	0.0664	0.0501	
observed ($I > 2\sigma(I)$)	1247	2730	2680	2033	1767	2486	3890	
goodness- of-fit on F^2	1.024	1.018	1.008	1.012	1.012	1.023	1.011	
$R_{I}[I > 2\sigma(I)]^{a}$	0.0288	0.0309	0.0305	0.0316	0.0537	0.0310	0.0260	
R_w (all data) ^b	0.0819	0.0869	0.1014	0.0879	0.1532	0.0847	0.0773	
${}^{\mathrm{a}}R_{I} = \Sigma F_{\mathrm{o}} -$	${}^{a}R_{I} = \Sigma F_{o} - F_{c} \Sigma F_{o} . {}^{b}R_{w} = \{\Sigma [w(F_{o}^{2} - F_{c}^{2})^{2}] / \Sigma [w(F_{o}^{2})^{2}] \}^{1/2}.$							

Table S1. Crystal data for 2, 3a, 3b, 3c, 4, 5 and 6.

3. NMR Spectra

Figure S8. ¹H NMR of 2.

Figure S9. ¹³C{¹H} NMR of **2**.

Figure S10. ²⁹Si NMR of 2.

Figure S12. ${}^{31}P{}^{1}H{}$ NMR of 3a.

Figure S13. ¹³C{¹H} NMR of **3a**.

Figure S14. ¹H NMR of 3b.

Figure S15. ³¹P{¹H} of **3b**.

Figure S16. ${}^{13}C{}^{1}H$ NMR of **3b**.

Figure S18. ${}^{31}P{}^{1}H{}$ NMR of **3c**.

Figure S19. ${}^{13}C{}^{1}H$ NMR of **3c**.

Figure S21. ¹⁹F NMR of **4**.

Figure S22. ³¹P NMR of 4.

Figure S23. ¹³C{¹H} NMR of **4**.

Figure S24. ¹H NMR of 6.

Figure S25. ¹³C{¹H} NMR of **6**.

4. Computational Results

The computational results have been produced with full electron DFT^[3] calculations using the adf2010.02 package.^[4] The PBE^[5] functional has been emplopoyed together with full electron TZ2P ZORA^[6] basis sets for all atoms. Scalar relativistic correction has been applied for all calculations. For the analysis of the chemical bonding, we carried out fragment analyses to assess the C-Si and C-P bonds, and NBO^[7] and AIM^[8] analyses to obtain a general picture of the bonding in the molecules studied here. The coordinates of the optimized structures as well the charges, correlation diagrams and information for the contributions of the symmetrized fragment orbitals are listed below. The charge transfer through the C-Si bond has been evaluated as a change of the charge in the neutral fragments with respect to the charge of the same fragments in the complex. The total charge of the SiCl₄ fragment (-0.376 e⁻) is calculated as a sum of the Si and Cl atomic charges in the complex. This leads to a conclusion that the direct electrostatic interaction (C-Si) is accompanied with transfer of electrons from the NHC to SiCl₄ fragment.

4.1. Data for (NHC^{Me})SiCl₄ (2).

Figure S26. Structure of compound 2.

atom	No	Х	Y	Z
Si	1	0	0	0
Cl	2	-1.6407	1.4945	0.2329
Cl	3	-1.1929	-1.2999	-1.1351
Cl	4	1.1843	1.2857	-1.1601
Cl	5	1.6416	-1.4903	0.2411

Table S2. Coordinates of 2.

С	6	0.0051	0.013	1.9572
С	7	-0.2531	-0.6891	4.153
С	8	0.2714	0.7468	4.1415
С	9	-1.06	-2.2214	2.3232
С	10	1.0716	2.2522	2.2863
Н	11	-1.1395	-0.8247	4.7865
Н	12	0.5205	-1.4148	4.4594
Н	13	1.1597	0.892	4.7702
Н	14	-0.5014	1.4766	4.4401
Н	15	-1.3606	-2.2049	1.272
Н	16	-1.9291	-2.4921	2.9372
Н	17	-0.2664	-2.9741	2.4533
Н	18	1.3867	2.215	1.2399
Н	19	0.2727	3.0034	2.3894
Н	20	1.931	2.5398	2.9062
N	21	-0.5892	-0.9085	2.7336
N	22	0.6029	0.9452	2.7182

 Table S3. NBO Charges of (NHC^{Me})SiCl₄ (2).

Natural Population							
Atom	No	Charge	Core	Valence	Rydberg	Total	
Si	1	1.10869	9.99866	2.76758	0.12507	12.89131	
Cl	2	-0.42586	9.99972	7.4117	0.01444	17.42586	
Cl	3	-0.31669	9.99954	7.29767	0.01947	17.31669	
Cl	4	-0.31679	9.99954	7.29778	0.01947	17.31679	
Cl	5	-0.42543	9.99972	7.41123	0.01448	17.42543	
С	6	0.15653	1.99901	3.79198	0.05248	5.84347	
С	7	-0.26194	1.99942	4.24873	0.01379	6.26194	
С	8	-0.26193	1.99942	4.24871	0.0138	6.26193	
С	9	-0.45347	1.99938	4.44126	0.01284	6.45347	
С	10	-0.4538	1.99938	4.44158	0.01285	6.4538	
Н	11	0.22535	0	0.77215	0.0025	0.77465	
Н	12	0.21512	0	0.78057	0.00431	0.78488	
Н	13	0.22531	0	0.77219	0.0025	0.77469	
Н	14	0.21517	0	0.78052	0.00431	0.78483	

Н	15	0.24189	0	0.75538	0.00272	0.75811
Н	16	0.21562	0	0.78247	0.00191	0.78438
Н	17	0.21897	0	0.77768	0.00335	0.78103
Н	18	0.24178	0	0.75551	0.0027	0.75822
Н	19	0.21947	0	0.77717	0.00337	0.78053
Н	20	0.2157	0	0.78241	0.00189	0.7843
N	21	-0.29175	1.99934	5.27095	0.02147	7.29175
N	22	-0.29194	1.99934	5.27112	0.02148	7.29194
Total		0	63.99246	71.63633	0.37121	136

Figure S27. Correlation diagram of 2. Left column: NHC-fragment molecular orbitals; Middle column: full complex molecular orbitals; Right column: $SiCl_4$ molecular orbitals. The thickness of the lines corresponds to the contribution of the fragment molecular orbitals to the complex molecular orbitals.

fragment/atom number	fragment	atom	contribution to HOMO	orbital type	Energy (eV)	occupation
1	SiCl4		86.52%	41 A	-7.633	2
3		Cl	13.89%	2 P:x	-8.581	1.67
2		Cl	13.45%	2 P:y	-8.581	1.67
5		Cl	13.28%	2 P:y	-8.581	1.67
4		Cl	11.94%	2 P:y	-8.581	1.67
3		Cl	11.85%	2 P:y	-8.581	1.67
2		Cl	10.87%	2 P:x	-8.581	1.67
5		Cl	10.68%	2 P:x	-8.581	1.67
2	NHC		10.06%	26 A	-4.971	2
17		Ν	28.70%	1 P:x	-7.089	1
16		Ν	28.64%	1 P:x	-7.089	1
17		Ν	7.30%	1 P:y	-7.089	1
16		Ν	7.29%	1 P:y	-7.089	1
1	SiCl4		2.94%	34 A	-9.330	2
5		Cl	13.72%	2 P:y	-8.581	1.67
2		Cl	13.60%	2 P:y	-8.581	1.67
4		Cl	12.49%	2 P:x	-8.581	1.67
3		Cl	12.42%	2 P:x	-8.581	1.67
5		Cl	11.24%	2 P:x	-8.581	1.67
2		Cl	11.17%	2 P:x	-8.581	1.67
3		Cl	10.45%	2 P:y	-8.581	1.67
4		Cl	10.36%	2 P:y	-8.581	1.67

Table S4. Decomposition of the $(NHC^{Me})SiCl_4$ HOMO orbital into symmetrized fragment orbitals.

Table S5 Energy Decomposition Analysis (EDA).

The following table summarizes the computational results of the EDA for compounds that are representative for ionic and donor-acceptor bonds. The data for the compounds investigated by us and Liu^[9], and the data for NHC-AgCl are given at the bottom of the table for comparison. The table compares the oribital, electrostatic, Pauli, and total binding energies. As described in ref. [10], they can be used to identify the covalent and the electrostatic contribution to the bond. The table also contains a column with the values of the charge transfer between the fragments in the complex. These are calculated using Natural Population Analysis (NPA), as a difference between the total charge of the isolated fragment and the charge of the same fragment in the complex.

Molecule	Total binding	Pauli repulsion	Electrostatic	Orbital	NPA charge
	energy		interaction	interaction	transfer
[CH₃O] ⁻ -Na ⁺	-152.51	26.54	-156.49	-22.56	0.041
[CH₃O]⁻-K⁺	138.43	41.4	-149.34	-30.49	0.047
H_3B-NH_3	-47.40	110.67	-78.78	-79.27	0.397
$[H_3N-H]^+$	-210.85	0.0	-40.39	-169.92	0.53
[H₂O-H]⁺	-170.4	0.0	-24.27	-146.17	0.4
NHC-SiCl ₄	68.1	235.4	-169.96	-136.51	0.37
NHC-AgCl	-55.8	128.32	-143.96	-41.04	0.189
NHC-SiCl ₄ ^a	-72.44	232.21	-143.10	-136.28	0.41

a) The compound has been investigated in article published by Liu^[9] however the data published in this table has been recalculated with the methods and basis sets used for the other compounds in this table.

Figure S28. Structure of compound 3a.

Atom	No	Х	Y	Z
Н	1	-2.39498	1.929933	3.509708
Н	2	-1.25666	1.886398	4.882209
Н	3	-2.56098	0.650669	4.736133
Н	4	-0.07607	-2.20159	2.409563
Н	5	1.473246	-1.67916	3.144174
Н	6	0.353201	-0.39548	4.847935
Н	7	-1.05573	-1.43787	4.474526
Н	8	1.676807	0.390874	0.264006
Н	9	0.295491	-0.67021	-0.14547
Н	10	1.752096	-1.34257	0.664349
Ν	11	0.519045	-0.23605	1.911702
Ν	12	-0.97489	0.396302	3.411318
С	13	-0.39164	0.689333	2.23963
С	14	0.46135	-1.35647	2.871229
С	15	-0.31454	-0.7519	4.045147
С	16	1.09071	-0.47243	0.588625
С	17	-1.8402	1.267861	4.183954
Р	18	-0.98983	2.243838	1.355798
Cl	19	0.270266	2.545511	-0.27974
Cl	20	0.487777	3.322816	2.821258
Cl	21	-2.30643	0.657753	0.211914

Table S6. Coordinates of 3a.

Atom	No	Charge	Core	Valence	Rydberg	Total
Н	1	0.23515	0	0.76146	0.00339	0.76485
Н	2	0.22836	0	0.76804	0.00359	0.77164
Н	3	0.21995	0	0.77794	0.0021	0.78005
Н	4	0.2174	0	0.7783	0.0043	0.7826
Н	5	0.22595	0	0.77145	0.0026	0.77405
Н	6	0.21646	0	0.77902	0.00452	0.78354
Н	7	0.22534	0	0.772	0.00267	0.77466
Н	8	0.23971	0	0.75766	0.00262	0.76029
Н	9	0.23663	0	0.75973	0.00364	0.76337
Н	10	0.21648	0	0.782	0.00153	0.78352
Ν	11	-0.29938	1.99929	5.2763	0.02379	7.29938
Ν	12	-0.29546	1.99931	5.27324	0.02291	7.29546
С	13	0.27248	1.9991	3.6857	0.04272	5.72752
С	14	-0.25646	1.99941	4.24405	0.013	6.25646
С	15	-0.25879	1.99941	4.24589	0.01348	6.25879
С	16	-0.45707	1.99937	4.44395	0.01375	6.45707
С	17	-0.45216	1.99937	4.43937	0.01342	6.45216
Р	18	0.63865	9.9989	4.26438	0.09808	14.36135
Cl	19	-0.22561	9.99973	7.20362	0.02227	17.22561
Cl	20	-0.46055	9.9999	7.44907	0.01158	17.46055
Cl	21	-0.4671	9.99991	7.456	0.01119	17.4671
Total		0	53.9937	65.68916	0.31713	120

Table S7. NBO charges of 3a.

Figure S29. Correlation diagram of 3a. Left column: NHC-fragment molecular orbitals; Middle column: full complex molecular orbitals; Right column: PCl_3 molecular orbitals. The thickness of the lines corresponds to the contribution of the fragment molecular orbitals to the complex molecular orbitals.

4.2. Data for $(NHC)_2NiCl_2$ (5).

Figure S30. Complex 5.

atom	No	Х	Y	Z
Ni	1	-0.1881	0.0018	0
Cl	2	1.3002	-0.3921	-1.5888
Cl	3	1.3008	0.3933	1.589
С	4	-1.4256	0.168	1.3644
С	5	-3.0418	1.0244	2.8341
С	6	-2.585	-0.3516	3.3322
С	7	-2.0485	2.5546	1.0739
С	8	-0.9912	-2.0467	2.3886
С	9	-1.4265	-0.1665	-1.3642
С	10	-2.58	0.3452	-3.3369
С	11	-3.042	-1.0266	-2.8326
С	12	-0.9913	2.0438	-2.3953
С	13	-2.0555	-2.5524	-1.066
Н	14	-2.9617	1.8085	3.6004
Н	15	-4.0811	1.0098	2.4606
Н	16	-3.4219	-1.0294	3.5492
Н	17	-1.9519	-0.2762	4.234
Н	18	-1.1337	2.5933	0.4748
Н	19	-2.9233	2.7267	0.4246
Н	20	-2.0072	3.3538	1.8279

Н	21	-0.3081	-2.1576	1.5409
Н	22	-0.3766	-1.9685	3.2999
Н	23	-1.6467	-2.9266	2.4679
Н	24	-3.4139	1.0232	-3.5641
Н	25	-1.941	0.2616	-4.2339
Н	26	-2.9625	-1.8143	-3.5952
Н	27	-4.0818	-1.0073	-2.4609
Н	28	-0.3143	2.1617	-1.5436
Н	29	-0.3702	1.9585	-3.3014
Н	30	-1.6466	2.9229	-2.4859
Н	31	-1.1399	-2.5951	-0.4688
Н	32	-2.9302	-2.7184	-0.4148
Н	33	-2.02	-3.3535	-1.8184
Ν	34	-2.1069	1.2709	1.7317
N	35	-1.7791	-0.8423	2.2027
N	36	-1.7802	0.8411	-2.2057
N	37	-2.109	-1.2703	-1.7276

Table S9. NBO charges of 5.

Natural Population							
Atom	No	Charge	Core	Valence	Rydberg	Total	
Ni	1	0.53438	17.99326	9.43502	0.03734	27.46562	
Cl	2	-0.56082	9.99987	7.5497	0.01126	17.56082	
Cl	3	-0.56058	9.99987	7.54945	0.01126	17.56058	
С	4	0.26833	1.99913	3.67071	0.06183	5.73167	
С	5	-0.26192	1.99942	4.24812	0.01438	6.26192	
С	6	-0.26093	1.99942	4.24681	0.0147	6.26093	
С	7	-0.44235	1.9994	4.4292	0.01374	6.44235	
С	8	-0.44635	1.9994	4.43349	0.01346	6.44635	
С	9	0.26821	1.99913	3.67082	0.06184	5.73179	
С	10	-0.26106	1.99942	4.24695	0.0147	6.26106	
С	11	-0.26188	1.99942	4.24809	0.01438	6.26188	
С	12	-0.44641	1.9994	4.43355	0.01347	6.44641	
С	13	-0.44223	1.9994	4.42907	0.01376	6.44223	

Н	14	0.21597	0	0.78105	0.00298	0.78403
Н	15	0.20001	0	0.79522	0.00477	0.79999
Н	16	0.21169	0	0.78546	0.00285	0.78831
Н	17	0.20763	0	0.78741	0.00496	0.79237
Н	18	0.23531	0	0.76162	0.00306	0.76469
Н	19	0.19672	0	0.79882	0.00447	0.80328
Н	20	0.20934	0	0.78824	0.00243	0.79066
Н	21	0.23751	0	0.7596	0.00289	0.76249
Н	22	0.21396	0	0.78216	0.00389	0.78604
Н	23	0.197	0	0.80041	0.0026	0.803
Н	24	0.21184	0	0.78533	0.00284	0.78816
Н	25	0.20769	0	0.78733	0.00499	0.79231
Н	26	0.21593	0	0.7811	0.00297	0.78407
Н	27	0.20003	0	0.79519	0.00478	0.79997
Н	28	0.23694	0	0.76017	0.00288	0.76306
Н	29	0.21398	0	0.78212	0.0039	0.78602
Н	30	0.19731	0	0.8001	0.00259	0.80269
Н	31	0.23527	0	0.76167	0.00306	0.76473
Н	32	0.19675	0	0.79877	0.00449	0.80325
Н	33	0.20933	0	0.78825	0.00242	0.79067
Ν	34	-0.33645	1.99933	5.31481	0.0223	7.33645
Ν	35	-0.35187	1.99935	5.33047	0.02205	7.35187
Ν	36	-0.35167	1.99935	5.33024	0.02208	7.35167
Ν	37	-0.33659	1.99933	5.31496	0.0223	7.33659
Total		0	65.98387	103.5615	0.45466	170

Figure S31. Correlation diagram of 3a. Left column: NHC-fragment molecular orbitals; Middle column: full complex molecular orbitals; Right column: NiCl₂ molecular orbitals. The thickness of the lines corresponds to the contribution of the fragment molecular orbitals to the complex molecular orbitals.

5. Thermogravimetric Analysis

Figure S32: TGA diagram for 2.

Figure S33: TGA diagram for 3a.

Figure S34: TGA diagram for 3b.

Figure S35: TGA diagram for 3c.

Figure S36. TGA diagram of 5.

Figure S37: TGA diagram of 6.

6. References

- [1] G. M. Sheldrick, *Program for empirical X-ray absorption correction*; Bruker-Nonius, 1990.
- [2] G. M. Sheldrick, Acta Crystallogr., Sect. A: Found. Crystallogr. 2008, 64, 112.
- [3] W. Kohn, L. J., Sham Phys. Rev. 1965, 140, A1133.
- [4] (a) G. te Velde, F. M. Bickelhaupt, E. J. Baerends, C. Fonseca Guerra, S. J. A. van Gisbergen, J. G. Snijders, T. Ziegler, J. Comput. Chem. 2001, 22, 931.(b) C. Fonseca Guerra, J. G. Snijders, G. te Velde, E. J. Baerends, Theor. Chem. Acc. 1998, 99, 391.
- [5] J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.
- [6] E. v. Lenthe, E. J. Baerends, J. G. Snijders, J. Chem. Phys. 1993, 99, 4597.
- [7] NBO 5.0. E. D. Glendening, J. K. Badenhoop, A. E. Reed, J. E. Carpenter, J. A. Bohmann, C. M. Morales, and F. Weinhold (Theoretical Chemistry Institute, University of Wisconsin, Madison, WI, 2001); http://www.chem.wisc.edu/~nbo5.
- [8] R. F. W. Bader, Chem. Rev. 1991, 91, 893.
- [9] Z. Liu, J. Phys. Chem. A, 2009, 113, 6410-6414.
- [10] G. Frenking, W. Wichmann, N. Fröhlich, C. Loschen, M. Lein, J. Frunzke, V. M. Rayón Coord. Chem. Rev. 2003, 238-239, 55-82.