Palladium-Catalyzed Cascade Reactions of 3-Iodochromones with Aryl Iodides and Norbornadiene Leading to Annulated Xanthones

Ming Cheng, Jianwei Yan, Feng Hu, Hong Chen, Youhong Hu*

State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 ZuChongZhi Road, Shanghai, 201203 (China)

yhhu@mail.shcnc.ac.cn

Supporting Information

Table of Contents

General information	Page 2
Experimental	
Characterization data	Page 3
¹ H NMR and ¹³ C NMR spectra	Page 1

General Information:

Unless otherwise noted, all materials were used as received from commercial sources without further purification. All reactions were performed under nitrogen atmosphere and were heated with oil baths calibrated to an external thermometer. Prior to starting experiments, the oil bath was allowed to equilibrate to the desired temperature over 20 minutes. All ¹H NMR and ¹³C NMR spectra were measured in CDCl₃ with TMS as the internal standard. Chemical shifts are expressed in ppm and J values are given in Hz. High resolution mass spectra were recorded on a Finnigan MAT 95 mass spectrometer (ESI). Column chromatography was performed with 200-300 mesh silica gel using flash column techniques. Melting points are uncorrected.

Experimental:

Procedure A: Synthesis of compound 3a

To a 50 mL flask, were added 3-iodochromone (100 mg, 0.37 mmol), Iodobenzene (40 μ L, 0.37mmol), norbornene (70 mg, 0.74 mmol), Pd(OAc)₂ (4 mg,0.018 mmol), K₂CO₃ (101 mg,0.74 mmol) and DMF(15 mL). The reaction mixture were stirred under nitrogen at 100 °C for 12 h. At the end of this time the reaction was allowed to cool to room temperature, diluted with DCM, filtered through a short pad of Celite, washed with DCM, and concentrated in vacuo. The resulting residue was purified by column chromatography to afford compound 3a in 82% yield.

Procedure B: Synthesis of benzoxanthone derivatives

$$\begin{array}{c|c} \textbf{Ar} & \textbf{I} & \textbf{Pd}(OAc)_2(5mmol\%) \\ \textbf{Me}_3CCOOCs(2equiv.) \\ \underline{DMF, H_2O(1.5equiv)} \\ \hline 130^{\circ}\text{C}, 3h \end{array}$$

Typically, 3-iodochromone (100 mg, 0.37 mmol), $Pd(OAc)_2$ (4 mg, 0.018 mmol), $Me_3CCOOCs$ (172 mg, 0.74 mmol), norbornadiene(220 μL , 2.2 mmol) and aryl iodine (0.74 mmol) (if a solid) were weighed into an oven-dried 50-mL flask. The flask was then evacuated and back-filled with argon, and water (1.5 equiv.) in DMF (15 mL) was added under an argon atmosphere. The reaction mixture was then stirred in a preheated oil bath at 130 °C (or 90 °C as indicated) for 3 hours. At the end of this time the flask was removed from the bath, allowed to cool to room temperature, the contents diluted with DCM (20 mL), and the mixture filtered through a short pad of Celite, washed with DCM, and concentrated in vacuo. The residue was purified by column chromatography to afford desired product.

Characterization Data:

Compoud **3a:** White solid: m.p. 192-193 $^{\circ}$ C; 1 H NMR (500 MHz, CDCl₃) δ 8.18 (d, J = 7.6 Hz, 1H), 7.93 (d, J = 7.6 Hz, 1H), 7.61 (t, J = 7.4 Hz, 1H), 7.47 (d, J = 8.2 Hz, 1H), 7.42 – 7.30 (m, 2H), 7.23 (d, J = 7.3 Hz, 2H), 3.24 (dd, J = 26.9, 10.1 Hz, 2H), 2.49 (s, 1H), 2.34 (s, 1H), 1.84 – 1.54 (m, 4H), 1.35 (d, J = 9.8 Hz, 1H), 1.10 (d, J = 9.9 Hz, 1H); 13 C NMR (125 MHz, CDCl₃) δ 177.6, 156.5, 155.3, 141.5, 133.1, 131.3, 129.4, 126.7, 126.4, 125.6, 124.6, 123.7, 123.2, 117.8, 117.0, 49.2, 45.5, 44.6, 40.0, 33.8, 30.4, 29.9; HRMS calcd for C₂₂H₁₉O₂: 315.1385, found: 315.1381.

7H-benzo[c]xanthen-7-one (4a): White solid: m.p.152-153 $^{\circ}$ C; 1 H NMR (300 MHz, CDCl₃) δ 8.57 (d, J = 7.6 Hz, 1H), 8.37 (d, J = 7.9 Hz, 1H), 8.22 (d, J = 8.4 Hz, 1H), 7.86 (d, J = 7.7 Hz, 1H), 7.76-7.60 (m, 5H), 7.41 (t, J = 7.4 Hz, 1H); 13 C NMR (125 MHz, CDCl₃) δ 176.9, 155.7, 153.6, 136.5, 134.3, 129.6, 128.1, 126.9, 126.5, 124.4, 124.0, 122.9, 122.4, 121.4, 118.1, 117.5; HRMS calcd for $C_{17}H_{11}O_2$: 247.0759, found: 247.0771.

2-methyl-7H-benzo[c]xanthen-7-one (4b): White solid: m.p.184-185 $^{\circ}$ C; 1 H NMR (300 MHz, CDCl₃) δ 8.34 (d, J = 7.7 Hz, 1H), 8.24 (s, 1H), 8.11 (d, J = 8.6 Hz, 1H), 7.71 (t, J = 7.6 Hz, 2H), 7.58 (d, J = 8.5 Hz, 2H), 7.44-7.36 (m, 2H), 2.55 (s, 3H); 13 C NMR (125 MHz, CDCl₃) δ 176.9, 155.7, 153.1, 136.9, 134.6, 134.2, 131.6, 127.8, 126.5, 124.3, 124.0, 123.7, 122.3, 121.8, 120.4, 118.0, 117.6, 21.9; HRMS calcd for $C_{18}H_{13}O_2$: 261.0916, found: 261.0914.

2-methoxy-7H-benzo[c]xanthen-7-one (4c): Yellow solid: m.p.169-171 $^{\rm O}$ C; $^{\rm 1}$ H NMR (300 MHz, CDCl₃) δ 8.37 (d, J = 7.8 Hz, 1H), 8.09 (d, J = 8.6 Hz, 1H), 7.81-7.71 (m, 3H), 7.69 – 7.58 (m, 2H), 7.41 (t, J = 7.3 Hz, 1H), 7.34 – 7.25 (m, 1H), 4.02 (s, 3H); $^{\rm 13}$ C NMR (125 MHz, CDCl₃) δ 177.1, 158.5, 155.7, 152.7, 134.3, 131.8, 129.6, 126.6, 125.1 124.3, 123.7, 122.3, 121.6, 119.1, 118.0, 101.6, 55.6; HRMS calcd for $C_{18}H_{12}O_3Na$: 299.0684, found: 299.0695.

2-(trifluoromethyl)-7H-benzo[c]xanthen-7-one (4d): White solid: m.p.196-197 $^{\circ}$ C; 1 H NMR (300 MHz, CDCl₃) δ 8.82 (s, 1H), 8.32 (t, J = 9.3 Hz, 2H), 7.97 (d, J = 8.5 Hz, 1H), 7.87 – 7.74 (m, 2H), 7.73-7.63 (m, 2H), 7.44 (t, J = 7.5 Hz, 1H). 13 C NMR (125 MHz, CDCl₃) δ 176.5, 155.6, 153.6, 137.7, 134.8, 129.2, 128.8 (q, J = 32.4 Hz, 1C), 126.6, 125.2 (q, J = 3.0 Hz, 1C), 124.9, 124.1, 124.1 (q, J = 275.0 Hz, 1C), 123.6, 123.3, 122.3, 120.7 (q, J = 4.4 Hz, 1C), 118.3, 118.2; HRMS calcd for $C_{18}H_9O_2NaF_3$: 337.0452, found: 337.0462.

Methyl 7-oxo-7H-benzo[c]xanthene-2-carboxylate (4e): White solid: m.p.204-206 $^{\rm O}$ C; $^{\rm 1}$ H NMR (400 MHz,CDCl₃) δ 9.33 (s, 1H), 8.39 (d, J = 7.8 Hz, 1H), 8.35 (d, J = 8.8 Hz, 1H), 8.27 (d, J = 8.6 Hz, 1H),7.95 (d, J = 8.5 Hz, 1H), 7.85 – 7.71 (m, 3H), 7.47 (t, J = 7.4 Hz, 1H), 4.05 (s, 3H); $^{\rm 13}$ C NMR (100 MHz, CDCl₃) δ 176.1, 166.2, 155.2, 153.6, 138.2, 134.2, 128.6, 127.9, 126.1, 125.2, 124.3, 123.7, 123.2, 123.1, 121.9, 117.8, 117.6, 52.1; HRMS calcd for C₁₉H₁₂O₄Na: 327.0633, found: 327.0628.

2-chloro-7H-benzo[c]xanthen-7-one (4f): Yellow solid: m.p.204-205 $^{\rm O}$ C; $^{\rm 1}$ H NMR (300 MHz, CDCl₃) δ 8.52 (s, 1H), 8.35 (d, J = 7.8 Hz, 1H), 8.20 (d, J = 8.7 Hz, 1H), 7.86-7.72 (m, 2H), 7.70-7.53 (m, 3H), 7.44 (t, J = 7.6 Hz, 1H); $^{\rm 13}$ C NMR (125 MHz, CDCl₃) δ 176.7, 155.7, 152.6, 134.7, 134.7, 133.1, 130.3, 129.7, 126.7, 124.9, 124.7, 123.8, 123.7, 122.4 122.1, 122.0, 118.2, 118.1; HRMS calcd for $C_{17}H_9O_2NaCl$: 303.0189, found: 303.0184

3-tert-butyl-7H-benzo[c]xanthen-7-one (4g): White solid: m.p.153-154 $^{\rm O}$ C; $^{\rm 1}$ H NMR (300 MHz, CDCl₃) δ 8.58 (d, J = 8.8 Hz, 1H), 8.40 (d, J = 7.0 Hz, 1H), 8.24 (d, J = 8.8 Hz, 1H), 7.86 (s, 1H), 7.76 (d, J = 7.8 Hz, 2H), 7.79-7.69 (m, 2H), 7.45-7.34 (m,1H), 1.46 (s, 9H); $^{\rm 13}$ C NMR (125 MHz, CDCl₃) δ 177.0, 155.8, 153.7, 153.0, 136.8, 134.2, 126.6, 125.7, 124.3, 124.2, 123.5, 122.7, 122.5, 122.0, 121.4, 118.1, 117.2, 35.2, 31.2; HRMS calcd for $C_{21}H_{18}O_{2}Na$: 325.1204, found: 325.1215.

methyl 7-oxo-7H-benzo[c]xanthene-3-carboxylate (4h): Yellow solid: m.p.205-206^OC; ¹H NMR (500 MHz, CDCl₃) δ 8.69 (d, J = 8.7 Hz, 1H), 8.63 (s, 1H), 8.39 (dd, J = 7.9, 1.4 Hz, 1H), 8.32 (d, J = 8.7 Hz, 1H), 8.25 (dd, J = 8.7, 1.5 Hz, 1H), 7.85 – 7.76 (m, 2H), 7.69 (d, J = 8.3 Hz, 1H), 7.46 (s, 1H), 4.02 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 176.7, 166.6, 155.8, 153.2, 135.8, 134.7, 130.7, 130.6, 126.7, 126.4, 126.4, 124.9, 124.7, 123.3, 122.5, 122.4, 119.0, 118.1, 52.6; HRMS calcd for C₁₉H₁₂O₄Na: 327.0633, found: 327.0624.

1-methyl-7H-benzo[c]xanthen-7-one (4i): White solid: m.p.175-175 $^{\rm o}$ C; $^{\rm l}$ H NMR (300 MHz, CDCl₃) δ 8.39 (d, J = 8.0 Hz, 1H), 8.26 (d, J = 8.7 Hz, 1H), 7.82 – 7.67 (m, 3H), 7.62 (d, J = 8.3 Hz, 1H), 7.54 (t, J = 7.5 Hz, 1H), 7.43 (m, 2H), 3.19 (s, 3H); $^{\rm l3}$ C NMR (100 MHz, CDCl₃) δ 176.5, 155.3, 155.0, 137.7, 135.9, 133.8, 129.9, 128.7, 126.4, 126.0, 124.6, 124.0, 123.0, 121.5, 121.0, 117.9, 117.5, 25.0; HRMS calcd for $C_{18}H_{12}O_{2}Na$: 283.0735, found: 283.0742.

1-methoxy-7H-benzo[c]xanthen-7-one (**4j**): White solid: m.p.215-216 $^{\rm O}$ C; $^{\rm 1}$ H NMR (400 MHz, CDCl₃) δ 8.40 (dd, J = 8.0, 1.3 Hz, 1H), 8.31 (d, J = 8.7 Hz, 1H), 7.81 – 7.73 (m, 1H), 7.66-7.72 (m, 2H), 7.62 (t, J = 8.0 Hz, 1H), 7.50 (d, J = 8.1 Hz, 1H), 7.46-7.43 (m, 1H), 7.07 (d, J = 7.8 Hz, 1H), 4.14 (s, 3H); $^{\rm 13}$ C NMR (125 MHz, CDCl₃) δ 176.8, 160.7, 155.8, 154.0, 138.7, 134.2, 126.6, 124.7, 124.3, 123.2, 122.5, 122.4, 119.0, 118.7, 118.0, 116.3, 106.9, 55.6; HRMS calcd for $C_{18}H_{12}O_{3}$:2 77.0865, found: 277.0877.

3-methoxy-7H-benzo[c]xanthen-7-one (4j'): White solid: m.p.208-209 $^{\circ}$ C; 1 H NMR (400 MHz, CDCl₃) δ 8.58 (d, J = 9.1 Hz, 1H), 8.40 (dd, J = 7.9, 1.6 Hz, 1H), 8.25 (d, J = 8.7 Hz, 1H), 7.81 – 7.74 (m, 1H), 7.70-7.56 (m, 2H), 7.48 – 7.41 (m, 1H), 7.32 (dd, J = 9.1, 2.5 Hz, 1H), 7.23 (d, J = 2.4 Hz, 1H), 3.99 (s, 3H); 13 C NMR (125 MHz, CDCl₃) δ 176.8, 158.3, 155.8, 155.1, 139.2, 134.2, 130.1, 126.2, 124.3, 124.2, 122.4, 122.1, 120.8, 118.6, 118.2, 115.5, 107.8, 56.3; HRMS calcd for $C_{18}H_{12}O_{3}$: 277.0865, found: 277.0867.

1-(trifluoromethyl)-7H-benzo[c]xanthen-7-one (4k): Yellow solid: m.p. 183-185 $^{\circ}$ C; 1 H NMR (500 MHz, CDCl₃) δ 8.51 (d, J = 8.6 Hz, 1H), 8.46 (dd, J = 7.9, 1.5 Hz, 1H), 8.25 (d, J = 7.5 Hz, 1H), 8.21 (d, J = 8.1 Hz, 1H), 7.94 – 7.78 (m, 4H), 7.58 – 7.51 (m, 1H); 13 C NMR (125 MHz, CDCl₃) δ 176.8, 155.5, 152.1, 138.1, 134.9, 133.4, 127.9, 127.8 (q, J = 7.5 Hz, 1C), 126.3, 125.9 (q, J = 31.3 Hz, 1C), 124.9, 124.7, 124.6 (q, J = 31.3 Hz, 1C), 123.2, 121.9, 120.7, 119.6, 118.2; HRMS calcd for $C_{18}H_9O_2NaF_3$: 337.0452, found: 337.0446.

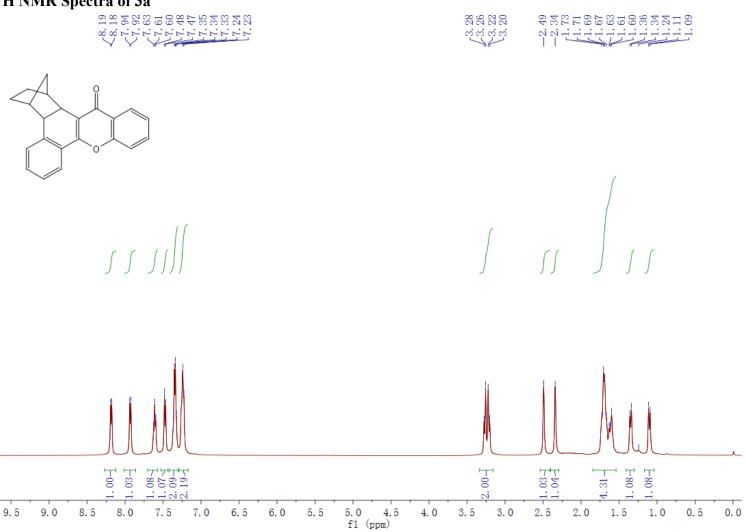
3-(trifluoromethyl)-7H-benzo[c]xanthen-7-one (4k'): Yellow solid: m.p.135-137 $^{\rm O}$ C; $^{\rm 1}$ H NMR (500 MHz, CDCl₃) δ 8.72 (d, J = 8.5 Hz, 1H), 8.35 (dd, J = 22.3, 8.1 Hz, 2H), 8.18 (s, 1H), 7.88 – 7.73 (m, 3H), 7.66 (d, J = 8.2 Hz, 1H), 7.46 (q, J = 7.2 Hz, 1H); $^{\rm 13}$ C NMR (125 MHz, CDCl₃) δ 176.5, 155.7, 153.0, 135.5, 134.8, 131.2 (q, J = 32.5 Hz, 1C), 126.7, 125.6, 125.6 (q, J = 5.0 Hz, 1C), 124.8, 124.3, 124.1,124.0 (q, J = 271.3 Hz, 1C),123.1, 122.6 (q, J = 3.75 Hz, 1C), 122.3, 118.9, 118.1; HRMS calcd for $C_{18}H_9O_2NaF_3$: 337.0452, found: 337.0455.

7H-chromeno[**3,2-h**]isoquinolin-7-one (**4l**): Yellow solid: m.p.213-214 $^{\rm O}$ C; $^{\rm 1}$ H NMR (400 MHz, CDCl₃) δ 10.05 (s, 1H), 8.80 (d, J = 5.6 Hz, 1H), 8.49 (d, J = 8.7 Hz, 1H), 8.41 (dd, J = 8.0, 1.7 Hz, 1H), 7.84 (ddd, J = 8.7, 7.1, 1.7 Hz, 1H), 7.80 – 7.70 (m, 3H), 7.50 (t, J = 7.5 Hz, 1H). $^{\rm 13}$ C NMR (100 MHz, CDCl₃) δ 176.0, 155.5, 153.9, 147.7, 146.9, 139.4, 134.9, 126.6, 126.6, 125.0, 122.4, 122.4, 120.5, 119.4, 118.5, 118.2; HRMS calcd for C₁₆H₁₀NO₂: 248.0712, found: 277.0712.

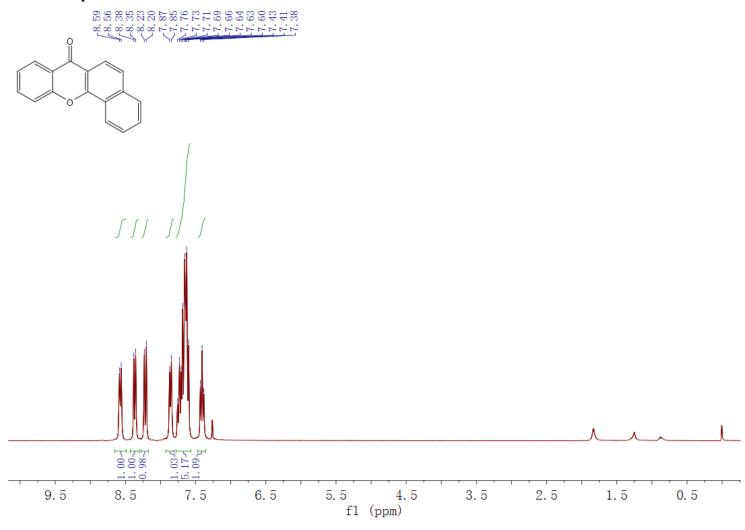
6H-thieno[2,3-c]xanthen-6-one (4m): White solid: m.p.211-212 $^{\circ}$ C; 1 H NMR (400 MHz, CDCl₃) δ 8.39 (dd, J = 7.9 Hz, 1H), 8.24 (d, J = 8.6 Hz, 1H), 7.87 (d, J = 5.5 Hz, 1H), 7.80 (d, J = 8.6 Hz, 1H), 7.75 (m,1H), 7.63 – 7.55 (m, 2H), 7.45 – 7.37 (t, J = 7.5 Hz, 1H); 13 C NMR (125 MHz, CDCl₃) δ 176.9, 155.7, 151.9, 146.4, 134.5, 129.2, 127.3, 126.7, 124.3, 122.2, 121.7, 120.8, 118.4, 118.0, 117.6; HRMS calcd for $C_{15}H_9O_2S$: 253.0323, found: 277.0319.

13-tosylchromeno[2,3-a]carbazol-7(13H)-one (4n): Yellow solid: m.p.200-201 $^{\circ}$ C; 1 H NMR (300 MHz, CDCl₃) δ 8.44 (d, J = 9.3 Hz, 1H), 8.32 (s, 2H), 7.97 (d, J = 6.6 Hz, 1H), 7.85 (d, J = 7.7 Hz, 1H), 7.75 (m, 1H), 7.64-7.50 (m, 4H), 7.48 – 7.35 (m, 2H), 7.09 (d, J = 7.3 Hz, 2H), 2.26 (s, 3H); 13 C NMR (125 MHz, CDCl₃) δ 176.6, 155.4, 145.8, 144.8, 142.3, 136.2, 135.0, 134.9, 134.0, 129.7, 129.0, 126.6, 126.3, 125.9, 124.8, 124.4, 123.2, 121.6, 120.9, 120.6, 117.9, 117.7, 115.4, 21.6; HRMS calcd for $C_{26}H_{17}NO_4NaS$: 462.0776, found: 462.0786

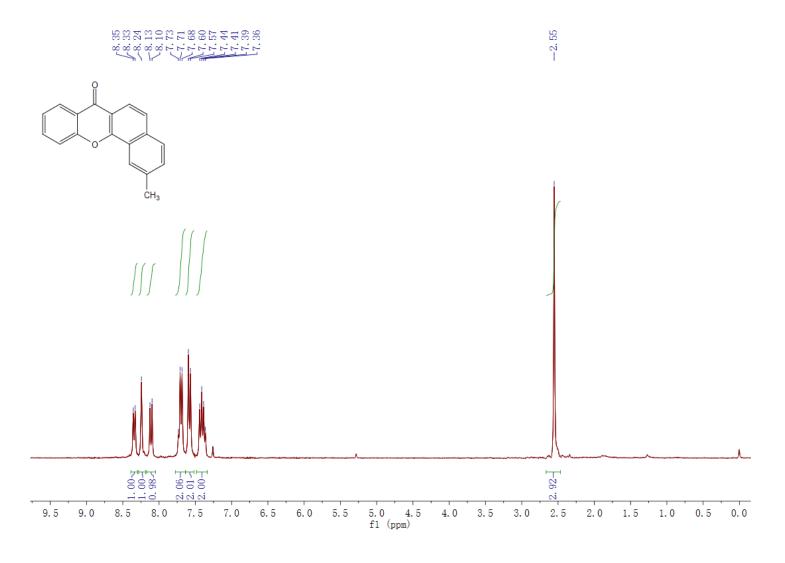
9-fluoro-2-methyl-7H-benzo[c]xanthen-7-one (4o): Yellow solid: 185-186 $^{\circ}$ C; 1 H NMR (400 MHz, CDCl₃) δ 8.41 (s, 1H), 8.17 (d, J = 8.7 Hz, 1H), 8.03 (dd, J = 8.2, 3.0 Hz, 1H), 7.83 (d, J = 8.3 Hz, 1H), 7.71 (dd, J = 9.0, 3.5 Hz, 2H), 7.56 (d, J = 8.3 Hz, 1H), 7.54 – 7.46 (m, 1H), 2.64 (s, 3H); 13 C NMR (100 MHz, CDCl₃) δ 176.3, 159.0(d, J = 244.4 Hz, 1C), 153.3, 151.9, 137.1, 134.8, 131.8, 128.0, 124.1, 124.0, 123.3 (d, J = 8.9 Hz, 1C), 122.4 (d, J = 31.5 Hz, 1C), 121.9, 120.2, 120.0 (d, J = 9.8 Hz, 1C), 116.9, 111.3 (d, J = 29.3 Hz, 1C), 22.0; HRMS calcd for $C_{18}H_{12}O_2F$: 279.0821, found: 279.0833

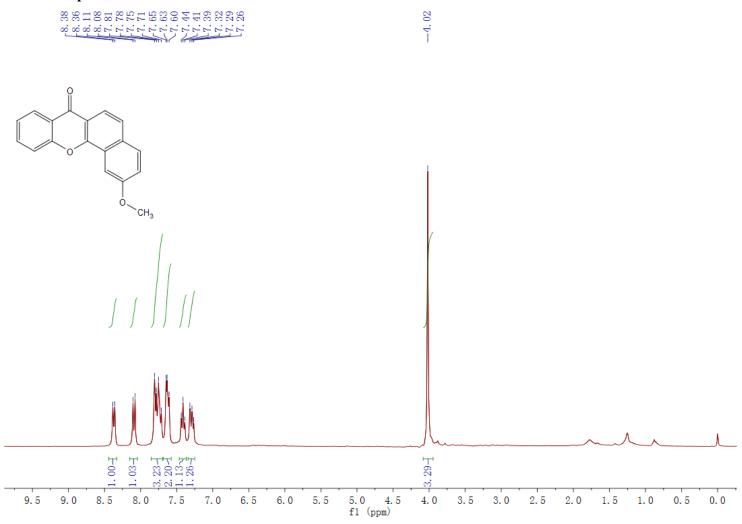

9-methoxy-2-methyl-7H-benzo[c]xanthen-7-one (4p): Yellow solid: 161-162 $^{\rm o}$ C; $^{\rm l}$ H NMR (400 MHz, CDCl₃) δ 8.42 (s, 1H), 8.21 (d, J = 8.5 Hz, 1H), 7.82 (d, J = 8.1 Hz, 1H), 7.76 (d, J = 2.6 Hz, 1H), 7.72-7.60 (m, 2H), 7.54 (d, J = 8.2 Hz, 1H), 7.44-7.33 (m, 1H), 3.95 (s, 3H), 2.64 (s, 3H); $^{\rm l}$ 3C NMR (100 MHz, CDCl₃) δ 176.8, 156.2, 153.2, 150.5, 136.8, 134.5, 131.5, 127.9, 124.3, 124.1, 123.6, 122.7, 121.9, 120.4, 119.4, 117.0, 105.5, 55.9, 21.9; HRMS calcd for $C_{\rm l}$ 9H₁₄O₃Na: 313.0841, found: 313.0844.

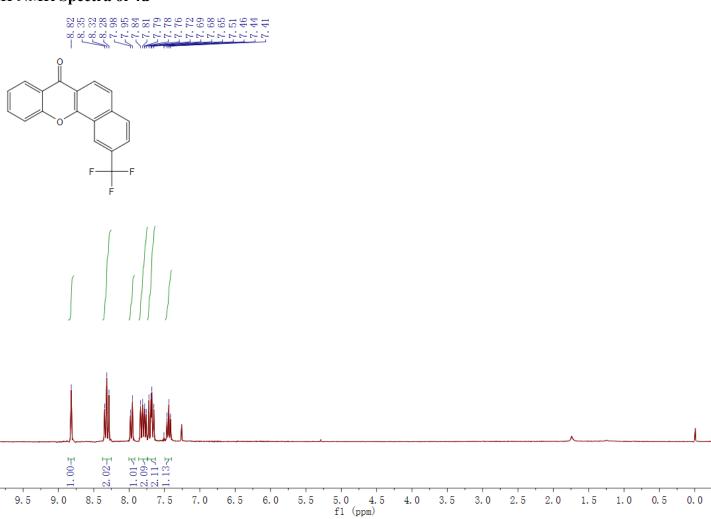
9-chloro-2-methyl-7H-benzo[c]xanthen-7-one (4q): Yellow solid: 187-189 $^{\rm O}$ C; $^{\rm 1}$ H NMR (300 MHz, CDCl₃) δ 8.25 (d, J = 2.4 Hz, 1H), 8.22 (s, 1H), 8.07 (d, J = 8.7 Hz, 1H), 7.73 (d, J = 8.3 Hz, 1H), 7.66 – 7.58 (m, 2H), 7.55 – 7.44 (m, 2H), 2.58 (s, 3H); $^{\rm 13}$ C NMR (125 MHz, CDCl₃) δ 175.8, 153.9, 153.1, 137.1, 134.8, 134.3, 131.8, 130.1, 127.9, 125.8, 124.1, 123.8, 123.1, 121.8, 120.2, 119.7, 117.3, 21.9; HRMS calcd for $C_{18}H_{11}O_2NaCl$: 317.0345, found: 317.0359.

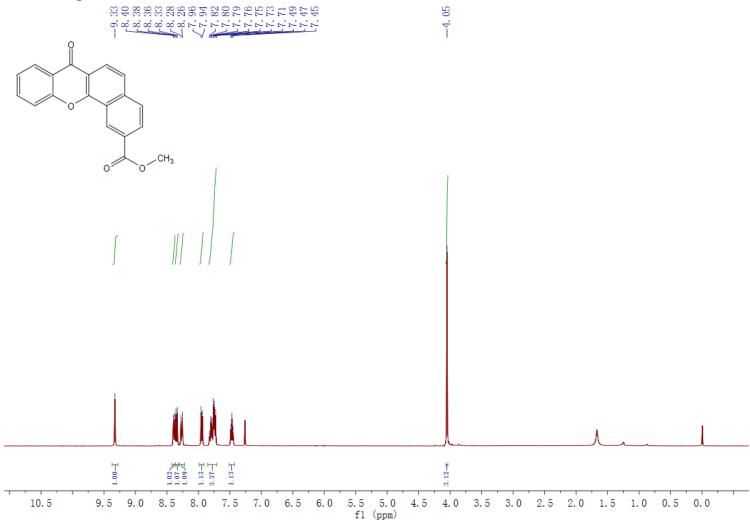

2,8,10-trimethyl-7H-benzo[c]xanthen-7-one (4r): Yellow solid: 226-227 $^{\circ}$ C; 1 H NMR (400 MHz, CDCl₃) δ 8.29 (s, 1H), 8.17 (d, J = 8.7 Hz, 1H), 7.99 (s, 1H), 7.78 (d, J = 8.3 Hz, 1H), 7.64 (d, J = 8.7 Hz, 1H), 7.50 (d, J = 8.3 Hz, 1H), 7.39 (s, 1H), 2.67 (s, 3H), 2.61 (s, 3H), 2.44 (s, 3H); 13 C NMR (100 MHz, CDCl₃) δ 177.2, 152.8, 152.2, 136.7, 136.4, 134.5, 133.4, 131.3, 127.8, 127.0, 124.2, 123.4, 123.3, 121.7, 121.7, 120.5, 117.2, 22.0, 20.8, 15.8; HRMS calcd for $C_{20}H_{16}O_{2}Na$: 311.1048, found: 311.1042.

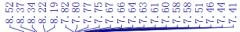
9,10-dimethoxy-2-methyl-7H-benzo[c]xanthen-7-one (4s): Yellow solid: 203-204 $^{\circ}$ C; 1 H NMR (400 MHz, CDCl₃) δ 8.42 (s, 1H), 8.22 (d, J = 8.6 Hz, 1H), 7.84 (d, J = 8.2 Hz, 1H), 7.73 (s, 1H), 7.70 (d, J = 8.8 Hz, 1H), 7.54 (d, J = 8.5 Hz, 1H), 7.14 (s, 1H), 4.09 (s, 3H), 4.03 (s, 3H), 2.64 (s, 3H); 13 C NMR (125 MHz, CDCl₃) δ 175.9, 154.9, 153.0, 151.9, 147.0, 136.7, 134.3, 131.3, 127.9, 124.1, 123.6, 121.7, 120.5, 117.3, 115.5, 105.1, 99.7, 56.5, 56.3, 21.9; HRMS calcd for $C_{20}H_{16}O_4$ Na: 343.0946, found: 343.0932.

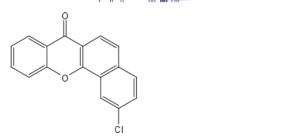

¹H NMR Spectra of 3a

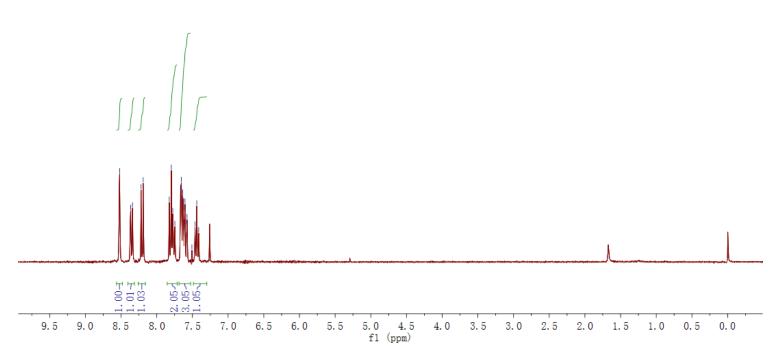

¹H NMR Spectra of 4a

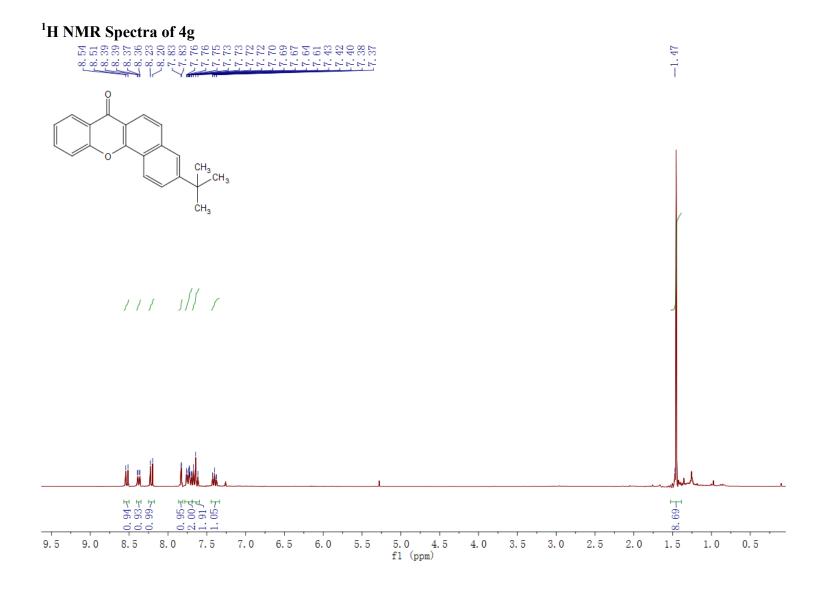

¹H NMR Spectra of 4b

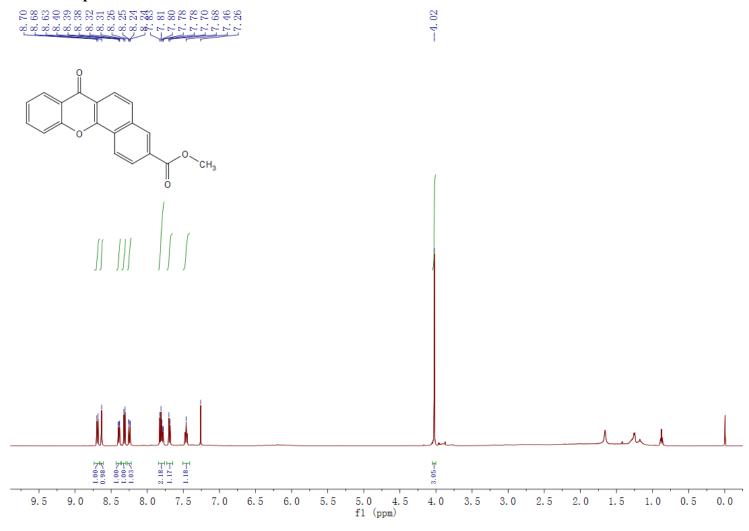

¹H NMR Spectra of 4c

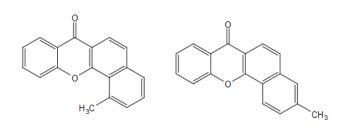

¹H NMR Spectra of 4d

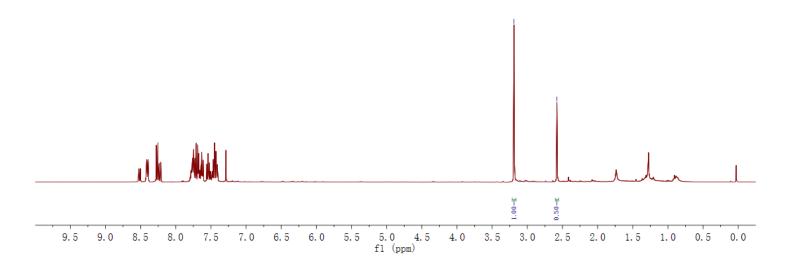




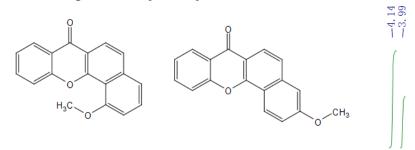


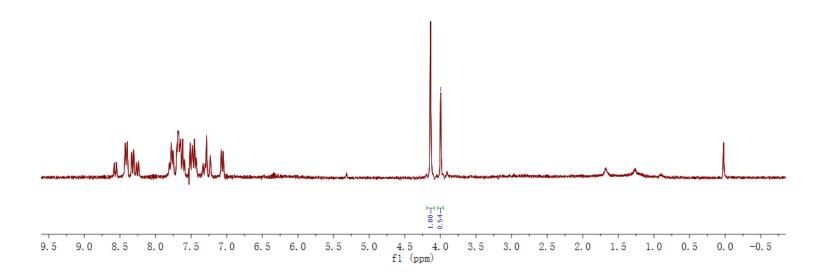




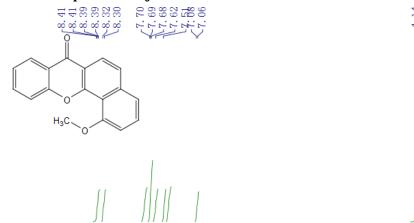

¹H NMR Spectra of 4h

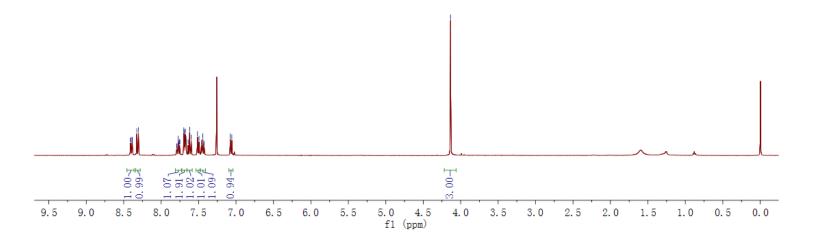
¹H NMR Spectra of 4i and 4i

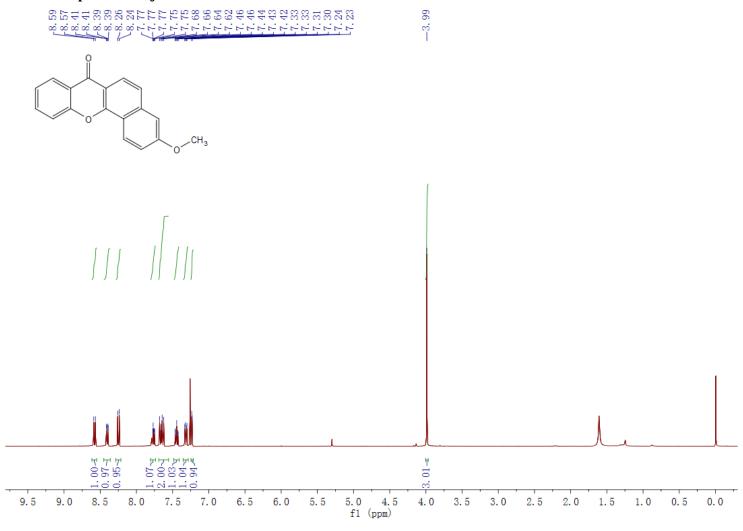


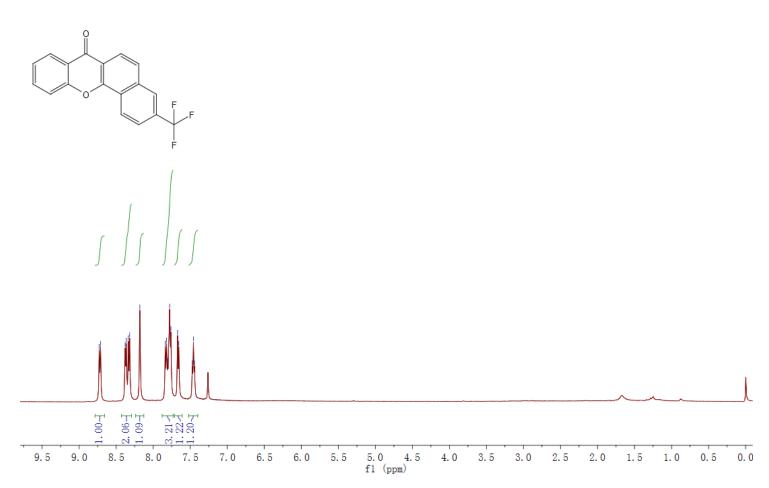


¹H NMR Spectra of 4i

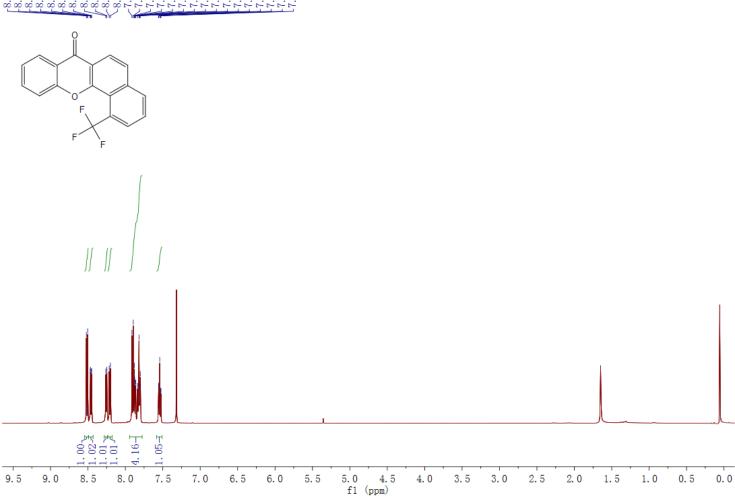



¹H NMR Spectra of 4j and 4j'

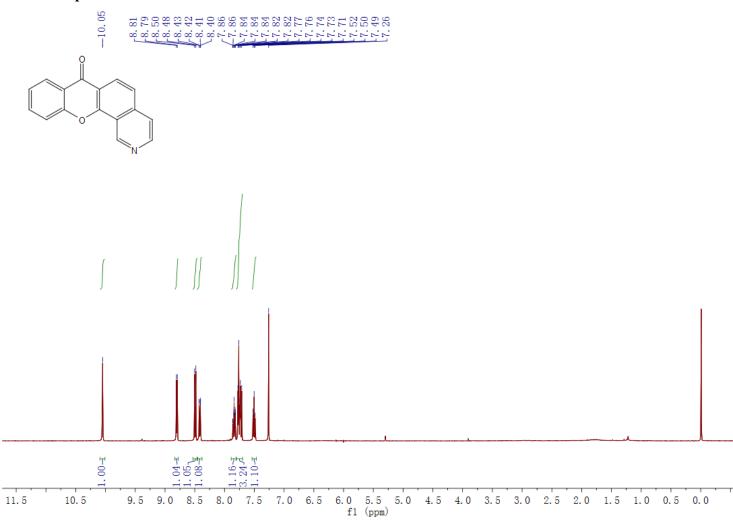




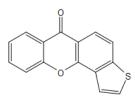
¹H NMR Spectra of 4j'

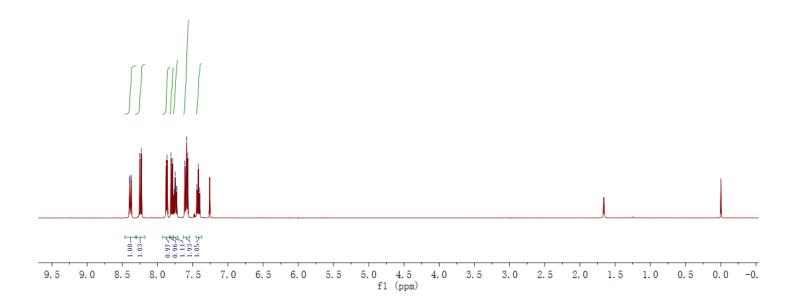


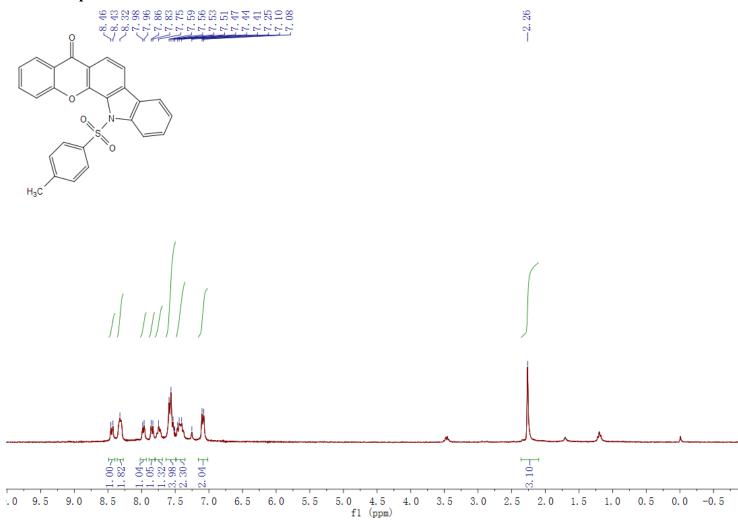
¹H NMR Spectra of 4k

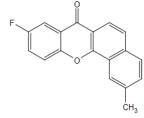


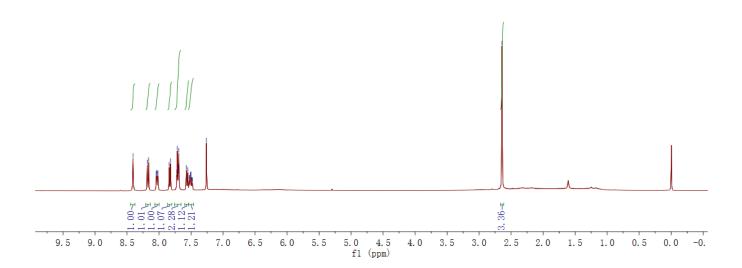
¹H NMR Spectra of 4k'

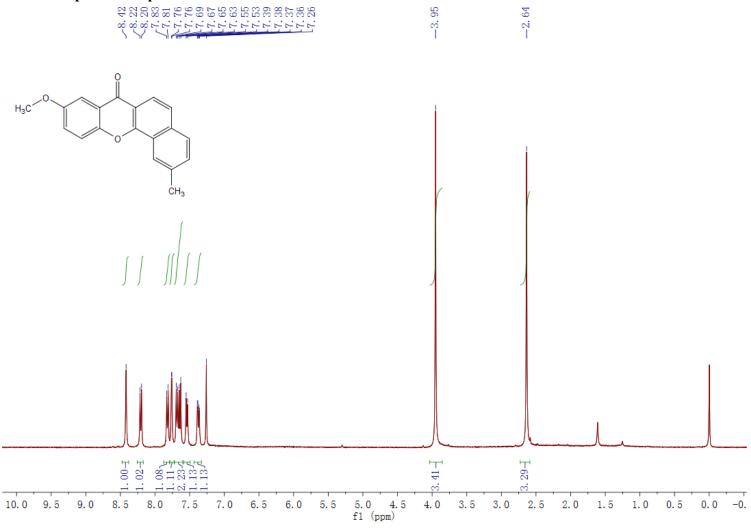


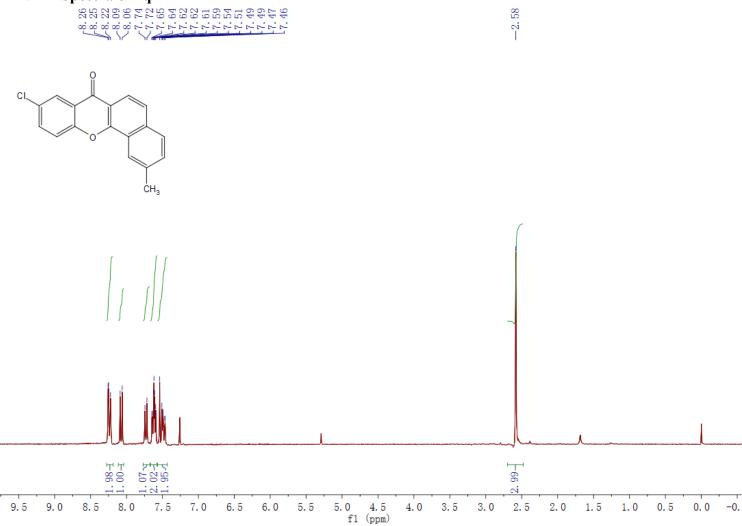

¹H NMR Spectra of 4l

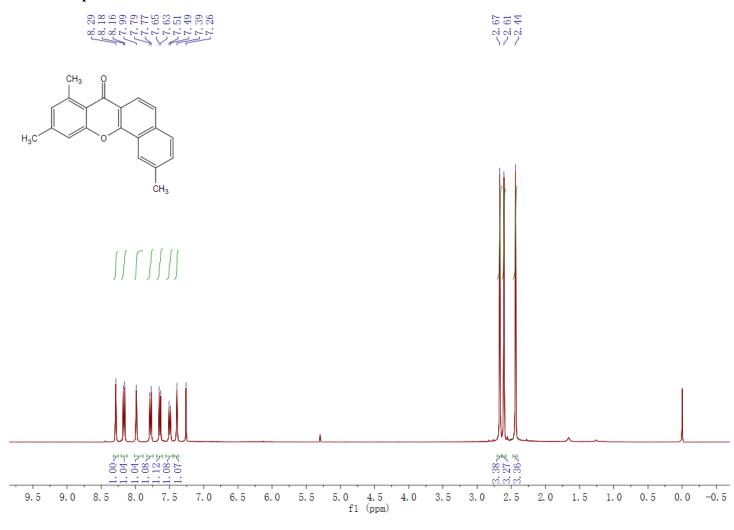

¹H NMR Spectra of 4m

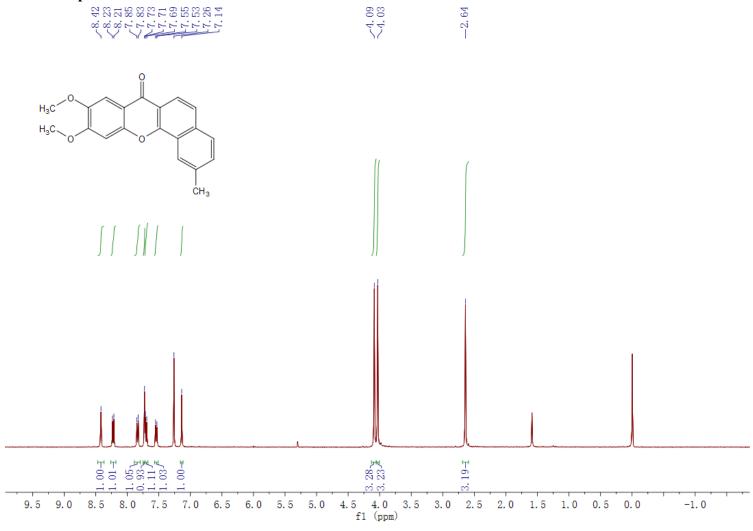


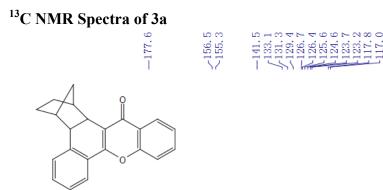

¹H NMR Spectra of 4n


¹H NMR Spectra of 40

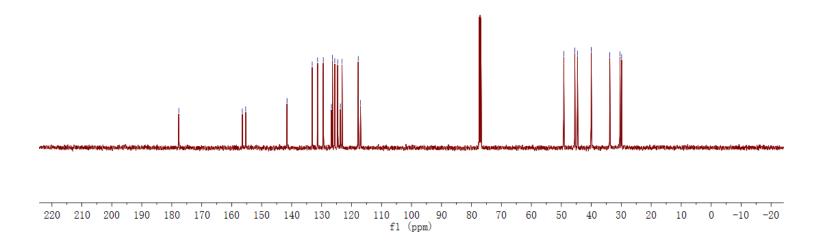




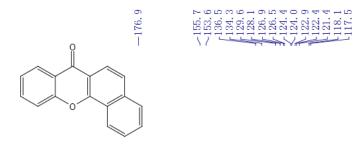

¹H NMR Spectra of 4q

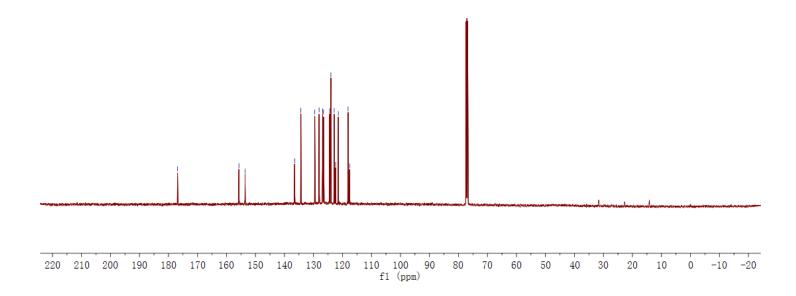


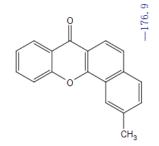
¹H NMR Spectra of 4r



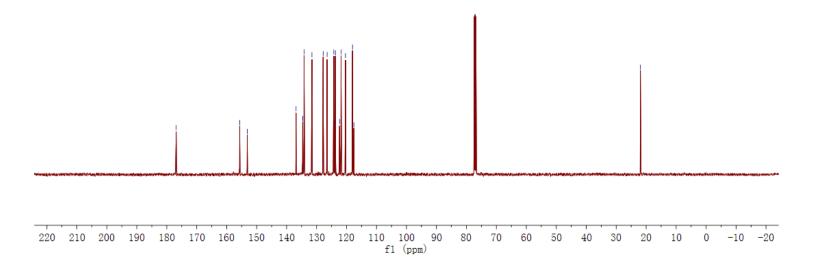
¹H NMR Spectra of 4s

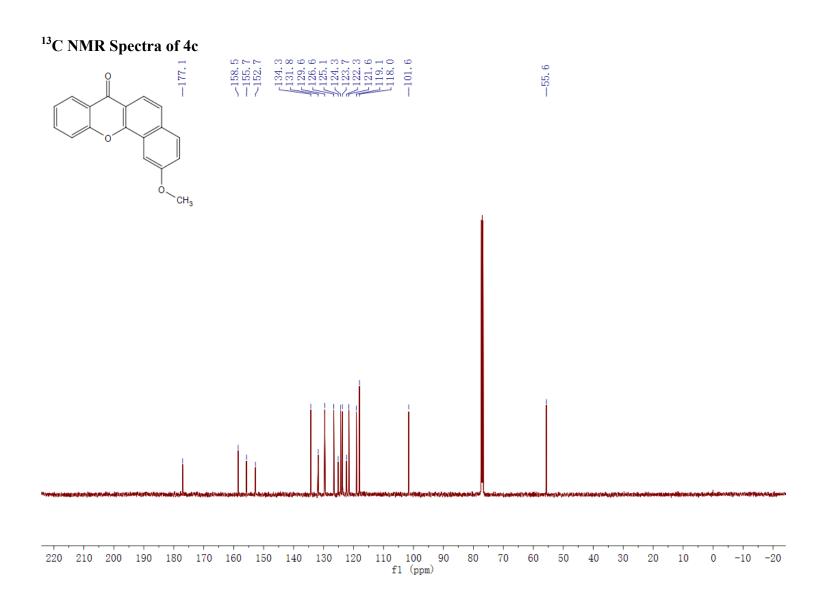


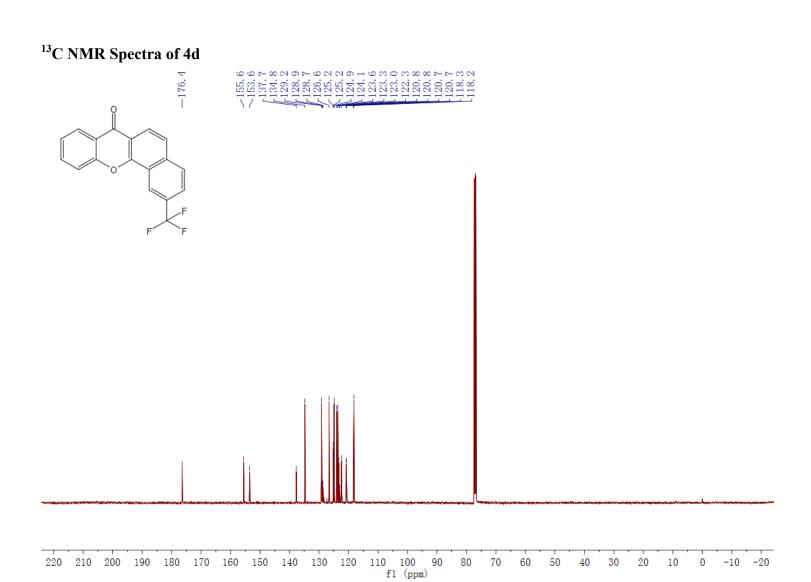


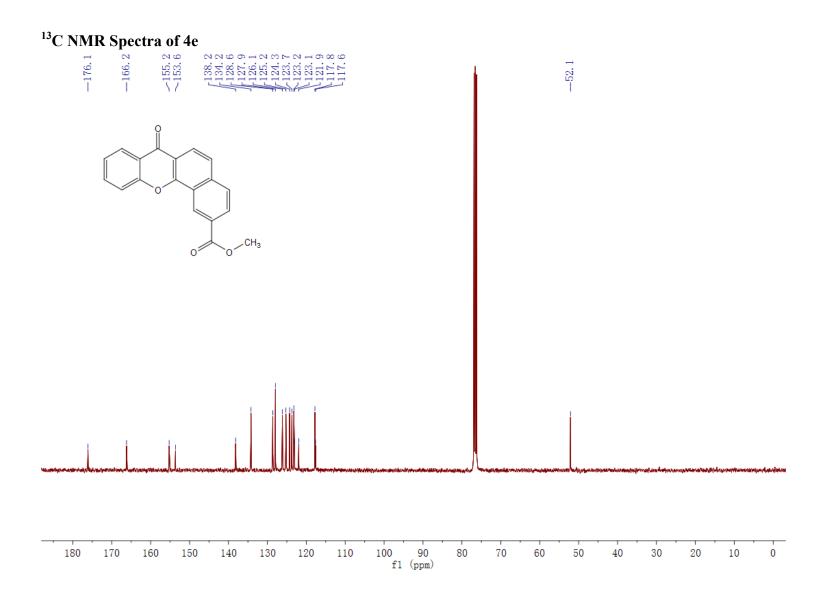


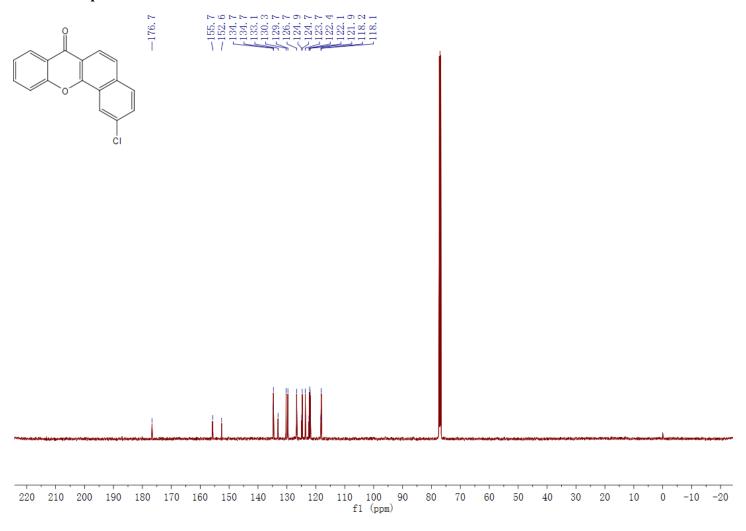
¹³C NMR Spectra of 4a

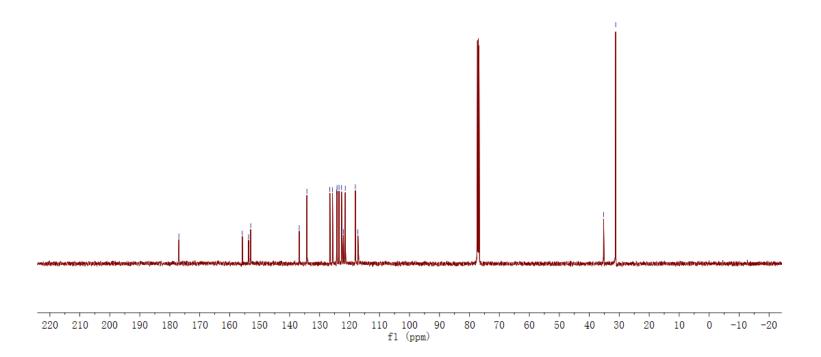



¹³C NMR Spectra of 4b

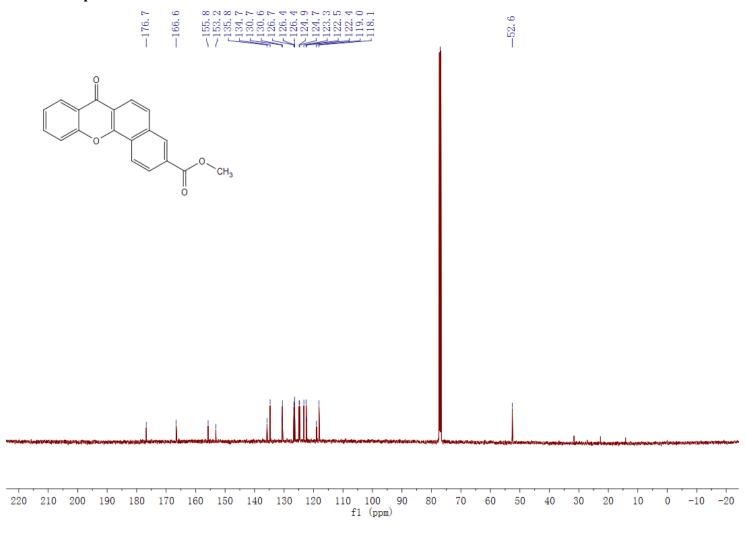


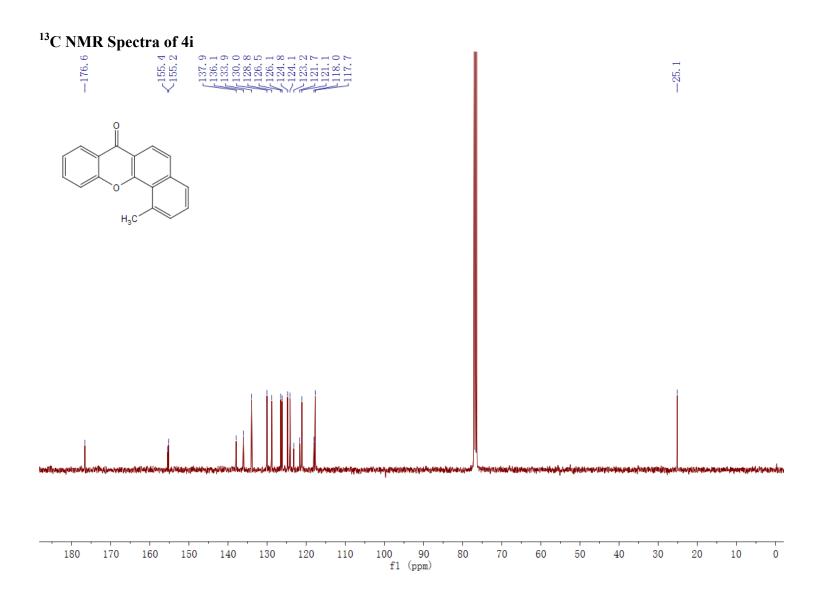


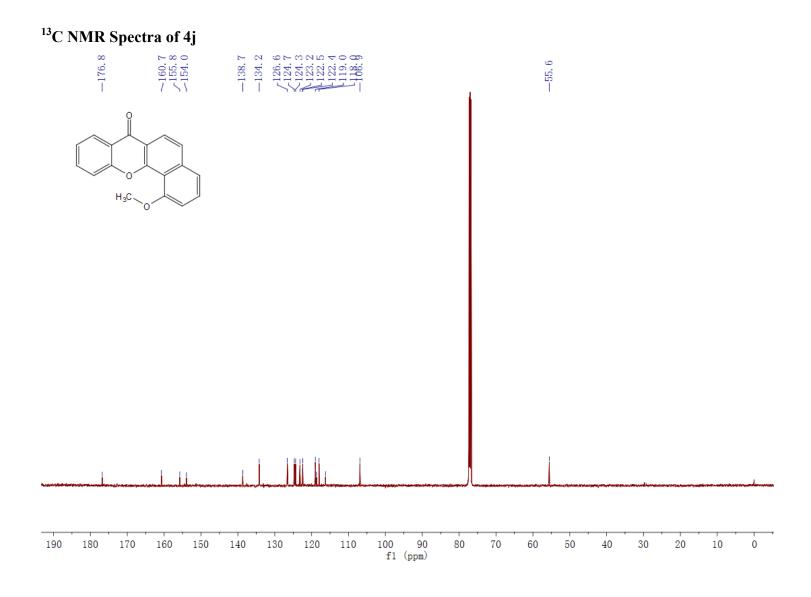

-21.9

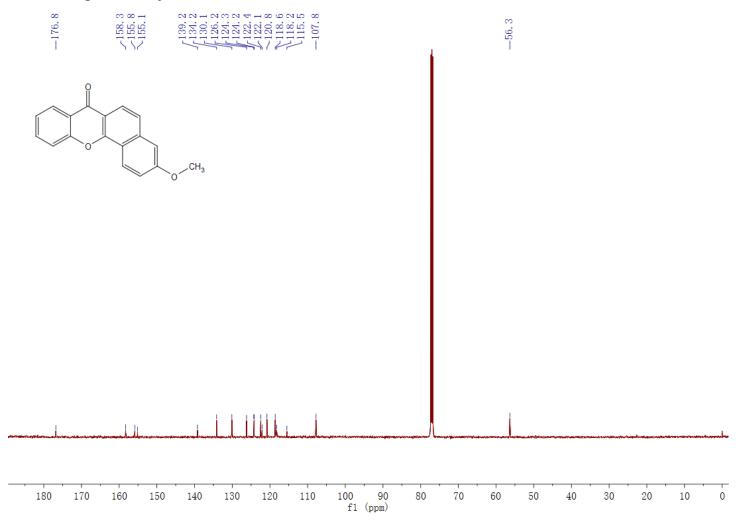


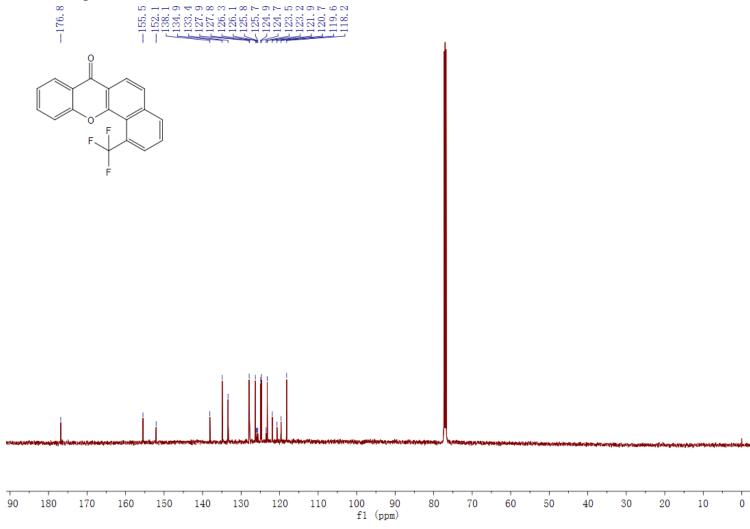
¹³C NMR Spectra of 4f

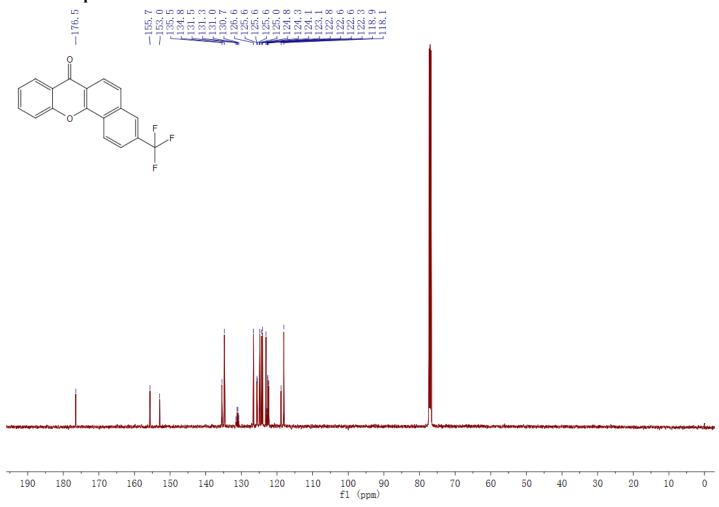


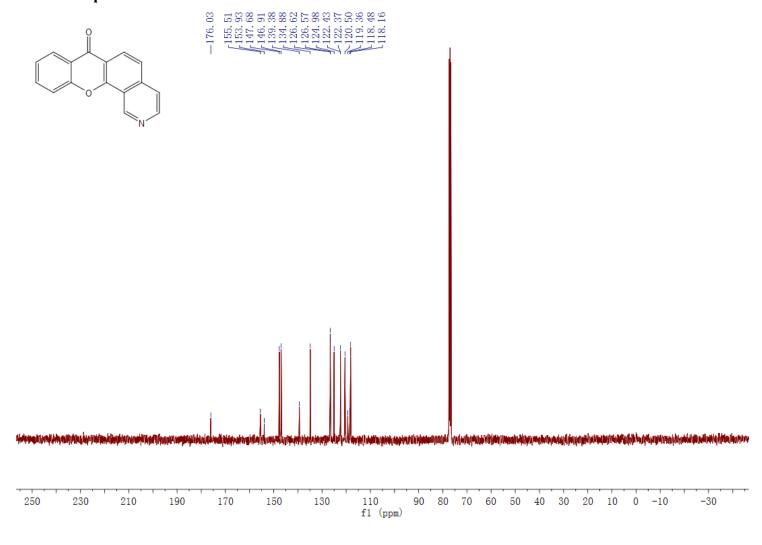


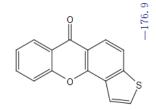


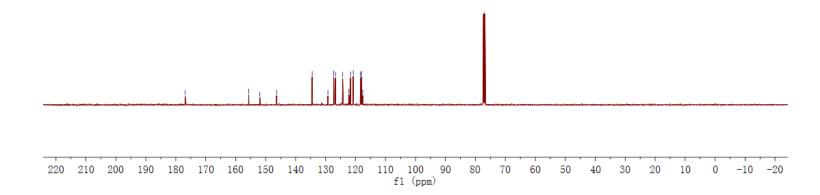

¹³C NMR Spectra of 4h

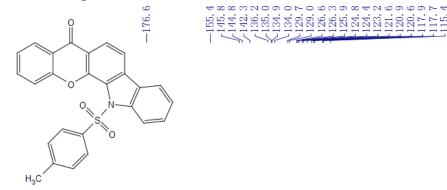


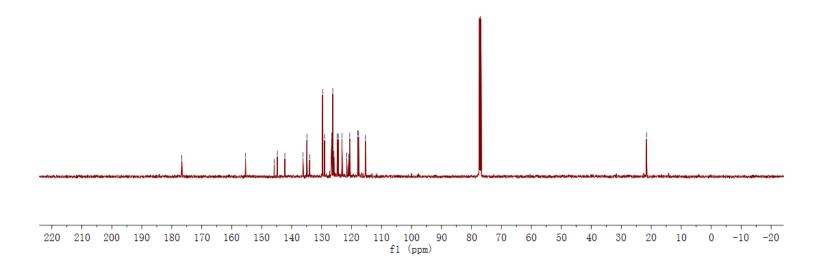


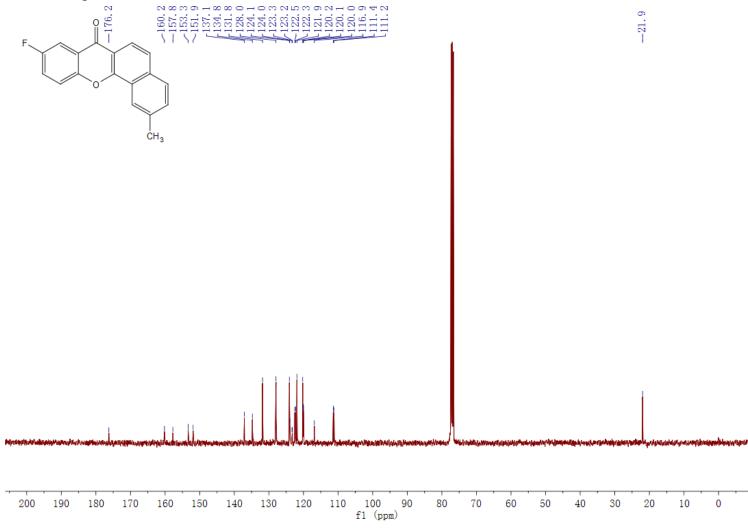


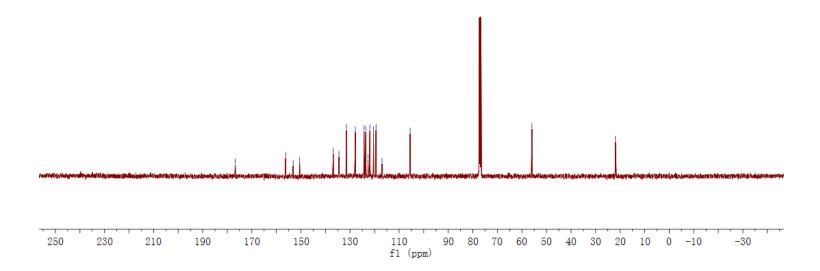

¹³C NMR Spectra of 4k'

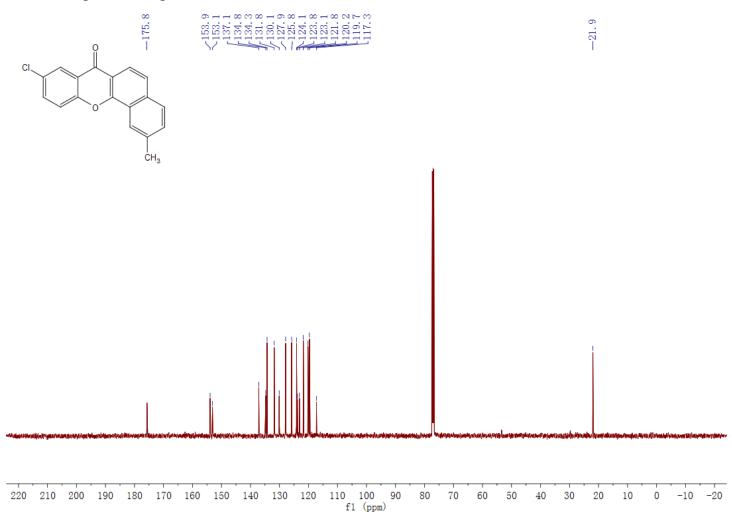

¹³C NMR Spectra of 4l


¹³C NMR Spectra of 4m






-21.6



¹³C NMR Spectra of 4p

