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SI-Theory 

The Hamiltonian in Eq. (1) was discretized in a mixed discrete variable representation 

(DVR) and finite basis representation (FBR).
1
 The z and r2 coordinates were discretized using 

the sine DVR,
2
 while r1 was treated as non-reactive with a potential optimized DVR (PODVR).

3-

4
 This is possible because the transition state is “late” and the flux passing through a particular 

transition state is unlikely to reach the other equivalent one. The potential energy operator is 

diagonal in the DVR representation. To evaluate the rotational kinetic energy terms in the 

Hamiltonian, a non-direct product FBR basis was used,  

 1 2(cos ) (cos ) ( ),K K

j J KjJK jK JK P P          (S1) 

where j, J, and K are the angular momentum quantum numbers associated with diatom, the 

triatom, and the projection of Ĵ  on the molecular-fixed z-axis which is along r2. 
1(cos )K

jP   and 

2(cos )K

JP   are normalized associated Legendre polynomials, and ( )K   is the normalized 

exponential Fourier function (
1

exp( )
2

iK


). The angular kinetic energy operator has a 

tridiagonal form in this basis.
5
 The corresponding angular grid is a direct product of the Gauss-

Legendre quadrature points in θ1 and θ2, and a Fourier grid in φ. While there is no inversion 

symmetry in φ for a molecule on a real surface, such symmetry is present in our model 

Hamiltonian. Hence, we took advantage of the inversion symmetry of the potential with respect 

to φ by expanding the wave function of even parity in terms of cos(Kφ) basis functions. In the 

propagation, the wave packet was transformed to the angular grid by three one-dimensional 

pseudo-spectral transformations,
6
 which allow the evaluation of the action of the potential energy 

operator at each grid point. 
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The reaction probabilities were calculated using the Chebyshev wave packet approach 

recently proposed by the current authors.
7-8

 This method is based on the well-known quantum 

transition-state theory introduced by Miller and coworkers,
9
 which uses the following trace 

formula to calculate the cumulative reaction probability ( )N E : 

2

1 2
ˆ ˆ ˆ ˆ( ) 2 [ ( ) ( )],N E Tr F E H F E H           (S2) 

where Ĥ  is the Hamiltonian of the reaction system, 1F̂  and 2F̂  are the flux operators defined at 

two dividing surfaces S1 and S2, and ˆ( )E H   is the Dirac’s delta function.  

The two dividing surfaces in Eq. (S2) can coincide with each other or be defined in 

different positions, as long as they separate the reactant channel from the product channel. The 

former arrangement is convenient for computing the cumulative reaction probability,
10-12

 and the 

latter is useful when initial state selected reaction probabilities are desired.
7, 13-14

 In our work, S1 

is located in the reactant asymptote with z=z0, which defines naturally the initial wave packets 

associated with various reactant internal states. The initial state selected reaction probabilities are 

computed by evaluating the flux through the second dividing surface S2, placed beyond the 

transition state: 

1 1 1

2

1 2
ˆ ˆ ˆ( ) 4 ( ) ( ) ,n n nP E E H F E H              (S3) 

where λ1 is the absolute value of the two non-zero eigenvalues of the flux operator 1F̂  defined at 

the first dividing surface S1 ( 1 1F̂     ),
15-16

 and 
1 1n n    is a product of the positive 

flux eigenstate and a ro-vibrational state for the reactant labeled by n1.
10
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 To compute the reaction probability in Eq. (S3), the Dirac delta function was 

expanded:
17-18

 

0

0

1ˆ ˆ( ) (2 ) ( ) ( ),
sin

k k norm k norm

k

E H T E T H
H

 
 





  


     (S4) 

where ˆ ˆ( ) cos( )k normT H k   is the Chebyshev propagator,
17-18

 and the Chebyshev angle and the 

corresponding angular operator are given in terms of normalized energy and Hamiltonian, 

respectively, 

ˆ
ˆ ˆarccos( ) arccos ,        arccos( ) arccos .norm norm

E H H H
E H

H H


   
       

    
 (S5) 

Here, the mean and half-width of the Hamiltonian are determined as max min( ) / 2H H H   and 

max min( ) / 2H H H   , where Hmax and Hmin define the spectral range of the Hamiltonian, which 

can be estimated from the kinetic energy and potential on the grid.  

 Substituting Eq. (S4) back to Eq. (S3), we have 

1

1
02 2

02

2 2 0

02

4
( ) Im (2 )cos( )

sin

( ) (2 )cos( ) ,

n k k

k

f k k

k

P E k
H

r r k
r


  

 

   



 




 

 


  

 



      

(S6) 

where 2 2 fr r  defines the second dividing surface.  

 The Chebyshev wave packet 
1

ˆ( )k k norm nT H   is propagated with a modified 

Chebyshev recursion scheme:
19

 

Electronic Supplementary Material (ESI) for Chemical Science
This journal is © The Royal Society of Chemistry 2012



S5 
 

1 2
ˆ(2 ), 2k norm k kD H D k           (S7) 

where 
10 n   and 

1 0
ˆ

normDH  . D is a damping function designed to avoid spurious 

reflection of the wave packet at grid edges, which generally has the following exponential form, 

2

max

-

1 ,

( )

.

d

d

d

d

D

e

 


 

 



 

 
 

 




 
 

              (S8) 

Here,   is defined in both the z and r2 coordinates.  

To calculate the reaction probability as a function of the energy, the wavefunctions 

defined on an energy grid ({ iE }) 

1 0

0

1
( ) (2 )cos( )

sin
n i k i k

ki

E k
H

  
  

  


         (S9a) 

1 0

0 2

1
( ) (2 )cos( )

sin
n i k i k

ki

E k
H r

  
  


  

 
         (S9b) 

are assembled on the fly from the Chebyshev wave packets. Note that only the wave functions on 

the dividing surface (S2 or 2 2 fr r ) are needed. The differentiation of the Chebyshev wave 

packet in Eq. (S9b) can be carried out analytically on the sine basis. All parameters used in this 

work have been listed in Table I. 
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