Supplementary Information

Shining light on the stability of metal thiosemicarbazonate complexes in living cells by FLIM

Philip A. Waghorn,*^{*a*} Michael W. Jones, ^{*a*} Mark B. Theobald, ^{*a*} Rory L. Arrowsmith, ^{*b*} Sofia I. Pascu, ^{*b*} Stanley W. Botchway, ^{*c*} Stephen Faulkner, ^{*a*} and Jonathan R. Dilworth*^{*a*}

^a Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK. Fax: 01865 285002.
^b Chemistry Department, University of Bath, Bath, UK, BA2 7AY, UK.

^c Research Complex at Harwell, Central Laser Facility, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Oxfordshire OX11 0OX, UK.

E-mail: jon.dilworth@chem.ox.ac.uk, philip.waghorn@oncology.ox.ac.uk

*To whom correspondence should be addressed.

Contents

SI1: Experimental data	p3
SI2: Fluorescent quantum yields and serum stability plots	p13
SI3: Confocal fluorescence co-localisation images	p16
SI4: 2P FLIM solution lifetime data	p20
SI5: 2P FLIM cell image data	p27

SI1: Experimental data

<u>L1</u>

¹H:

MS:

Analysis Info						7/8/2009 9:31:55 AM		
Analysis Name Method Sample Name Comment	D:\Data\Robin ESI_neg_Jan2(Procter\ESI17404_0 007	00001.d	C	Operator Instrument		Administrator Apex 3.33	
Acquisition Pa	arameter							
Source Type	n/a	Ion Polarity	n/a		Capillary Exit	n/a		
ntens.					ES	17404_000001.d	: -MS, 100%=0	
1.5-		638	9.2471	This is the m	easured mass sp	ectrum of your	compound	
1.0								
0.5-		627 2511	639	.2500				
-		037.2011		640.2443				
x109	4 at 1000 and 1000 and 1000	638	2478	ESI17404	_000001.d: C 29 F	135 B 1 F 2 N 9 C	01S2.638.2	
1.50		000	1	This is a t	eoretical isotop	e model of you	r compound	
1.25								
1.00								
0.75								
0.50-			639	.2500				
		637.2509		640 2474				
0.25		10 YE 44 YE		040.2474	641 2478			
0.00	636		<u>, 1</u>	<u> </u>	642		644 m/	
004	000	030	,	040	042		0 11 III/	
0.00.11.65.5	Sum Formula	Sigma m/z	Err [ppm]	Mean Err [ppm]	rdb N Rule	e		
C 29 H 35 B	1 F 2 N 9 O 1 S 2	0.03 638.2473	0.26	0.83	16.50 ok	even		

MS:

Mass Spectrum SmartFormula Report

Analysis Info		Acquisition Date	11/03/2010 08:16:20			
Analysis Name Method Sample Name Comment	\\Utof\Data\Mar 10\ESI 2.0min_isocratic_Lowr ESI20685	l20685_8_01_17443.d nass.m	Operator Instrument / Ser#	Robin micrOTOF	92	
Acquisition Par	ameter	las Dalasita	Desitive	Cat Nahulian		0 Per
Source Type Focus Scan Begin Scan End	ESI Not active 50 m/z 1100 m/z	Set Capillary Set End Plate Offset	4500 V -500 V	Set Nebulizer Set Dry Heat Set Dry Gas Set Divert Va	er 1 1 Ive S	80 °C 0.0 I/min Source
Intens x104. 1.0-		718.1642	This is	the measured mass spect	+MS, 1.5-1.5 rum of your o	min #(160-163) compound
0.8						
0.6-		720.1611				
0.4-						
0.2-			A. A. A			734.1458
x10 ⁴ -			Thie	C 29 H 34 B	F 2 N 9 Na Ni odel of your	OS2 ,718.16
1.0-		718.1640	11115	is a theoretical isotope in	louer or your	compound
0.8-						
0.6-		720.1592				
0.4-						
0.2			Ι.			
0.0	712.5 715.0	717.5 720.0	722.5 7	725.0 727.5 73	30.0 73	2.5 m/z
Meas. m/z	# Formula	m/z	err [ppm] N	lean err [ppm] rdb	e Confr	mSigma
/ 18.1042	1 C 29 H 34 B F 2 N 9 N	a Ni O S 2 718.1635	-1.1	-1.2 16.5	even	26.81

¹³C:

MS:

<u>CuL1</u>

EPR:

Figure S1_1: EPR of CuLI at 295K at X-band and 1mmol concentration in DMSO/ethylene glycol (4:1).

HPLC:

HPLC:

EPR

Figure S1_2 EPR of CuL2 at 210K at X-band and 1mmol concentration in DMSO/ethylene glycol (4:1).

S2 a: Fluorescence quantum yields:

Standard plots used for calculating quantum yields of L1, CuL1, NiL1, ZnL1, L2 and CuL2 in DMSO, MeOH and H₂O by relating fluorescence intensity to UV absorption (λ_{ex} = 496nm), relative to fluorescein (Φ = 0.95) as a reference

<u>L1</u>

CuL1

H₂O

14

Figure S2_1: Overlay of UV/Vis spectra of **CuL1** in human serum after 0 (black), 1, 2, 4 and 24 h (blue) incubation in human serum. (Control: **L1** incubated in human serum for 24 h (pink))

Figure S2_2: Overlay of UV/Vis spectra of **CuL2** in human serum after 0 (black), 1, 2, 4 and 24 h (blue) incubation in human serum. (Control: **L2** incubated in human serum for 24 h (pink))

S3: Confocal Fluorescence Colocalisation studies

<u>NiL1</u>

Figure S3_1: Confocal fluorescence images of uptake of a) **NiL1** in HeLa cell line, at 10 μ M, 20 min incubation, $\lambda_{ex} = 488$ nm and b) Hoescht nucleic acid stain, 1 μ g/mL, 30 min, $\lambda_{ex} = 405$ nm with c) overlay of **NiL1** and Hoescht and d) DIC image. Confocal fluorescence images of uptake of e) **NiL1** in HeLa cell line, at 10 μ M, 20 min incubation, $\lambda_{ex} = 488$ nm and f) Lysotracker® Red DND-99, 200 nM, 60 min, $\lambda_{ex} = 543$ nm with g) overlay of **NiL1** and Lysotracker® Red and h) DIC image. Confocal fluorescence images of uptake of i) **NiL1** in HeLa cell line, at 10 μ M, 20 min incubation, $\lambda_{ex} = 488$ nm and j) ER-trackerTM Red (BODIPY® TR Glibenclamide), 1 μ M, 20 min, $\lambda_{ex} = 543$ nm; with k) overlay of **NiL1** and ER-trackerTM Red and l) DIC image.

ZnL1

Figure S3_2: Confocal fluorescence images of uptake of a) **ZnL1** in HeLa cell line, at 10 μ M, 20 min incubation, $\lambda_{ex} = 488$ nm and b) Hoescht nucleic acid stain, 1 μ g/mL, 30 min, $\lambda_{ex} = 405$ nm with c) overlay of **ZnL1** and Hoescht and d) DIC image. Confocal fluorescence images of uptake of e) **ZnL1** in HeLa cell line, at 10 μ M, 20 min incubation, $\lambda_{ex} = 488$ nm and f) Lysotracker® Red DND-99, 200 nM, 60 min, $\lambda_{ex} = 543$ nm with g) overlay of **ZnL1** and Lysotracker® Red and h) DIC image. Confocal fluorescence images of uptake of i) **ZnL1** in HeLa cell line, at 10 μ M, 20 min incubation, $\lambda_{ex} = 488$ nm and j) ER-trackerTM Red (BODIPY® TR Glibenclamide), 1 μ M, 20 min, $\lambda_{ex} = 543$ nm; with k) overlay of **ZnL1** and ER-trackerTM Red and l) DIC image.

<u>L2</u>

Figure S3_3: Confocal fluorescence images of uptake of a) **L2** in HeLa cell line, at 10 μ M, 20 min incubation, $\lambda_{ex} = 488$ nm and b) Hoescht nucleic acid stain, 1 μ g/mL, 30 min, $\lambda_{ex} = 405$ nm with c) overlay of **L2** and Hoescht and d) DIC image. Confocal fluorescence images of uptake of e) **L2** in HeLa cell line, at 10 μ M, 20 min incubation, $\lambda_{ex} = 488$ nm and f) Lysotracker® Red DND-99, 200 nM, 60 min, $\lambda_{ex} = 543$ nm with g) overlay of **L2** and Lysotracker® Red and h) DIC image. Confocal fluorescence images of uptake of i) **L2** in HeLa cell line, at 10 μ M, 20 min incubation, $\lambda_{ex} = 488$ nm and f) Lysotracker® Red and h) DIC image. Confocal fluorescence images of uptake of i) **L2** in HeLa cell line, at 10 μ M, 20 min incubation, $\lambda_{ex} = 488$ nm and j) ER-trackerTM Red (BODIPY® TR Glibenclamide), 1 μ M, 20 min, $\lambda_{ex} = 543$ nm; with k) overlay of **L2** and ER-trackerTM Red and l) DIC image.

CuL2

Figure S3_4: Confocal fluorescence images of uptake of a) **CuL2** in HeLa cell line, at 10 μ M, 20 min incubation, $\lambda_{ex} = 488$ nm and b) Hoescht nucleic acid stain, 1 μ g/mL, 30 min, $\lambda_{ex} = 405$ nm with c) overlay of **CuL2** and Hoescht and d) DIC image. Confocal fluorescence images of uptake of e) **CuL2** in HeLa cell line, at 10 μ M, 20 min incubation, $\lambda_{ex} = 488$ nm and f) Lysotracker® Red DND-99, 200 nM, 60 min, $\lambda_{ex} = 543$ nm with g) overlay of **CuL2** and Lysotracker® Red and h) DIC image. Confocal fluorescence images of uptake of i) **CuL2** in HeLa cell line, at 10 μ M, 20 min incubation, $\lambda_{ex} = 488$ nm and j) ER-trackerTM Red (BODIPY® TR Glibenclamide), 1 μ M, 20 min, $\lambda_{ex} = 543$ nm; with k) overlay of **CuL2** and ER-trackerTM Red and l) DIC image.

S4: 2P FLIM solution lifetime data

Table S1: Solution lifetime decay values for L1, ZnL1, CuL1, NiL1, L2 and CuL2 in range of solvents. Lifetimes given are an average of three separate measurements and expressed as mean average with SD. χ^2 values and % weightings are mean values of three separate measurements.

	DMSO		МеОН		DCM		Medium	
	χ ² 1.17		χ ² 1.22		$\chi^2 1.30$		χ ² 1.31	
L1	$(\tau_1) 2.47 {\pm}~ 0.13~ns$	100%	$(\tau_1)2.01 \pm 0.04 \text{ ns}$	100 %	($\tau_{l})2.52\pm0.24$ ns	100 %	$(\tau_3) 8.49 \pm 0.56 \ ns$	21.4 %
	-	-	-	-	-	-	$(\tau_2)2.41 \pm 0.21 \text{ ns}$	38.5 %
	-	-	-	-	-	-	(τ_1)0.37 ± 0.17 ns	40.1 %
	χ ² 1.27		χ ² 1.25		$\chi^2 1.31$		$\chi^2 1.24$	
ZnL1	(τ_2)1.91± 0.18 ns	65.7 %	$(\tau_2)1.79 \pm 0.07 \text{ ns}$	68.5 %	(τ_2)2.19 ± 0.03 ns	59.6 %	$(\tau_3)7.18 \pm 0.42$ ns	19.9 %
	$(\tau_1)0.65 \pm 0.12$ ns	34.3 %	$(\tau_1)0.51 \pm 0.11 \text{ ns}$	31.5 %	(τ_1)0.78 ± 0.09 ns	41.4 %	$(\tau_2)2.04 \pm 0.22 \text{ ns}$	35.2 %
	-	-	-	-	-	-	$(\tau_1)0.32 \pm 0.08 \text{ ns}$	44.9 %
	χ ² 1.28		χ ² 1.27		$\chi^2 1.31$		χ ² 1.29	
CuL1	$(\tau_2)2.89 \pm 0.31 \text{ ns}$	16.0 %	$(\tau_2)2.39 \pm 0.11$ ns	21.5 %	(τ_2)2.49 ± 0.10 ns	21.6 %	$(\tau_3)7.49 \pm 0.26$ ns	12.4 %
	(τ_1)0.11± 0.04 ns	84.0 %	(τ_1)0.091± 0.02 ns	78.5 %	(τ_1)0.078 ± 0.02 ns	79.4 %	$(\tau_2)2.18 \pm 0.41$ ns	17.7 %
	-	-	-	-	-	-	(τ_1)0.11 ±0.02 ns	69.9 %
NiL1	χ^{2} 1.08		χ ² 1.17		χ ² 1.15		-	
	(τ_2)3.22 ± 0.12 ns	14.0 %	$(\tau_2)3.17 \pm 0.15 \text{ ns}$	15.6 %	$(\tau_2)3.76\pm 0.25 \text{ ns}$	9.8 %	-	-
	(τ_1)0.19 ± 0.01 ns	86.0 %	(τ_1)0.17 ± 0.02 ns	84.4 %	(τ_1)0.19 \pm 0.02 ns	90.2 %	-	-
$\chi^2 1.04$ χ^2		$\chi^2 1.06$		-		$\chi^2 1.31$		
L2	$(\tau_1)2.84 \pm 0.24 \text{ ns}$	100 %	$(\tau_1)2.13 \pm 0.15 \text{ ns}$	100 %	-	-	$(\tau_3)8.76\pm 0.41ns$	14.2 %
	-	-	-	-	-	-	$(\tau_2)2.98\pm 0.25ns$	41.3 %
	-	-	-	-	-	-	(τ_1)0.52 ± 0.11 ns	44.6 %
CuL2	χ ² 1.10		χ ² 1.21		-		χ ² 1.27	
	$(\tau_2)3.23 \pm 0.17$ ns	14.6 %	$(\tau_2)2.67 \pm 0.41 \text{ ns}$	11.8 %	-	-	$(\tau_3)8.17 \pm 0.35 \text{ ns}$	5.4 %
	(τ_1)0.18 ± 0.01ns	85.4 %	$(\tau_1)0.11 \pm 0.04 \text{ ns}$	88.2 %	-	-	$(\tau_2)2.01 \pm 0.11 \text{ ns}$	10.4 %
	-	-	-	-	-	-	(τ_1)0.07 ± 0.02 ns	84.2 %

Example screen shots of solution lifetime decay curves for each compound in each solvent are given below in Figures S4_1-S4_21:

<u>L1</u>

Figure S4_1: Solution lifetime decay plot and data fit for L1 (10 µM) in DMSO:

Figure S4_2: Solution lifetime decay plot and data fit for L1 (10 µM) in MeOH:

Figure S4_3: Solution lifetime decay plot and data fit for L1 (10 µM) in DCM:

Figure S4_4: Solution lifetime decay plot and data fit for L1 (10 µM) in Cell Medium:

ZnL1

Figure S4_5: Solution lifetime decay plot and data fit for ZnL1 (10 µM) in DMSO:

Figure S4_7: Solution lifetime decay plot and data fit for ZnL1 (10 µM) in DCM:

Figure S4_8: Solution lifetime decay plot and data fit for ZnL1 (10 µM) in Cell Medium:

<u>NiL1</u>

Figure S4_9: Solution lifetime decay plot and data fit for NiL1 (10 µM) in DMSO:

Figure S4_10: Solution lifetime decay plot and data fit for NiL1 (10 µM) in MeOH:

Figure S4_11: Solution lifetime decay plot and data fit for NiL1 (10 µM) in DCM:

CuL1

Figure S4_12: Solution lifetime decay plot and data fit for CuL1 (10 µM) in DMSO:

Figure S4_14: Solution lifetime decay plot and data fit for CuL1 (10 µM) in DCM:

Figure S4_15: Solution lifetime decay plot and data fit for CuL1 (10 µM) in Cell Medium:

<u>L2</u>

Figure S4_16: Solution lifetime decay plot and data fit for L2 (10 µM) in DMSO:

Figure S4_17: Solution lifetime decay plot and data fit for L2 (10 µM) in MeOH:

Figure S4_18: Solution lifetime decay plot and data fit for L2 (10 µM) in Cell Medium:

CuL2

Figure S4_19: Solution lifetime decay plot and data fit for CuL2 (10 µM) in DMSO:

Figure S4_21: Solution lifetime decay plot and data fit for CuL2 (10 µM) in Cell Medium:

SI5: 2P FLIM cell image data

Example screen shots of *in vitro* lifetime decay curves for each compound are given below along with GLD maps

Figure S5_1: Cellular fluorescence intensity and lifetime maps, selected lifetime decay plot with data fit and GLD for L1 (10 μ M) after 20 min incubation in HeLa cells:

Figure S5_2: Cellular fluorescence intensity and lifetime maps, selected lifetime decay plot with data fit and GLD for **ZnL1** (10 μ M) after 20 min incubation in HeLa cells:

Figure S5_3: Cellular fluorescence intensity and lifetime maps, selected lifetime decay plot with data fit and GLD for **NiL1** (10 μ M) after 20 min incubation in HeLa cells:

Figure S5_4: Cellular fluorescence intensity and lifetime maps, selected lifetime decay plot with data fit and GLD for **CuL1** (10 μ M) after 20 min incubation in HeLa cells (Point 1):

Figure S5_5: Cellular fluorescence intensity and lifetime maps, selected lifetime decay plot with data fit and GLD for **CuL1** (10 μ M) after 20 min incubation in HeLa cells (Point 2):

Figure S5_6: Cellular fluorescence intensity and lifetime maps, selected lifetime decay plot with data fit and GLD for **CuL1** (10 μ M) after 20 min incubation in HeLa cells (Point 3):

Figure S5_7: Cellular fluorescence intensity and lifetime maps, selected lifetime decay plot with data fit and GLD for **CuL1** (10 μ M) after 20 min incubation in HeLa cells (Point 4):

Figure S5_8: Cellular fluorescence intensity and lifetime maps, selected lifetime decay plot with data fit and GLD for **CuL1** (10 μ M) after 20 min incubation in HeLa cells (Point 5):

Figure S5_9: Cellular fluorescence intensity and lifetime maps, selected lifetime decay plot with data fit and GLD for **CuL1** (10 μ M) after 20 min incubation in HeLa cells (Point 6):

Figure S5_10: Cellular fluorescence intensity and lifetime maps, selected lifetime decay plot with data fit and GLD for **CuL1** (10 μ M) after 1 h incubation in HeLa cells:

Figure S5_11: Cellular fluorescence intensity and lifetime maps, selected lifetime decay plot with data fit and GLD for L2 (10 μ M) after 20 min incubation in HeLa cells:

Figure S5_12: Cellular fluorescence intensity and lifetime maps, selected lifetime decay plot with data fit and GLD for **CuL2** (10 μ M) after 20 min incubation in HeLa cells:

Figure S5_13: Cellular fluorescence intensity and lifetime maps, selected lifetime decay plot with data fit and GLD for 1:1 mix of **L1:CuL1** (10 μ M) after 20 min incubation in HeLa cells:

Figure S5_14: Cellular fluorescence intensity and lifetime maps, selected lifetime decay plot with data fit and GLD for 1:3 mix of L1:CuL1 ($10 \mu M$) after 20 min incubation in HeLa cells:

