## Supporting Information for A potential-controlled switch on/off mechanism for selective excitation in mixed electrochemiluminescent systems

Egan H. Doeven,<sup>†</sup> Elizabeth M. Zammit,<sup>‡</sup> Gregory J. Barbante,<sup>‡</sup> Paul S. Francis\*<sup>‡</sup>, Neil W. Barnett<sup>‡</sup> and Conor F. Hogan\*<sup>†</sup>

<sup>†</sup>Department of Chemistry, La Trobe Institute for Molecular Sciences, La Trobe University, Victoria 3086, Australia. <sup>‡</sup>Centre for Chemistry and Biotechnology, Faculty of Science and Technology, Deakin University, Victoria 3216, Australia. \*Corresponding authors: <u>c.hogan@latrobe.edu.au</u> <u>paul.francis@deakin.edu.au</u>

## **Experimental details**

Tris[2-phenylpyridinato- $C^2$ ,N]iridium(III) (Ir(ppy)<sub>3</sub>, 99%), tris[2-(4,6-difluorophenyl)pyridinato- $C^2$ ,N]iridium(III) (Ir(df-ppy)<sub>3</sub>, 96%), TPA (98%), TBAPF<sub>6</sub> (99.5%, electrochemical grade) were purchased from Sigma-Aldrich (Australia). The synthesis and characterization of bis(2,2'-bipyridine- $\kappa$ N1,  $\kappa$ N1')[1,1'-dimethyl-N,N'-[([2,2'-bipyridine]-4,4'-diyl- $\kappa$ N1,  $\kappa$ N1')dicarbonyl]bis[L-alaninate]]ruthenium(II) hexafluorophosphate ([Ru(bpy)<sub>2</sub>(L)] (PF<sub>6</sub>)<sub>2</sub>) has been previously described.<sup>1</sup> Acetonitrile was distilled over calcium hydride drying reagent under grade 5 argon, and solutions were degassed with argon. Tripropylamine (TPA) was distilled under vacuum over NaOH.

Electrochemical experiments were performed with either a CH Instruments (Texas, USA) CH660B (Cyclic voltammograms), Autolab (Metrohm Autolab B.V., Netherlands) PGSTAT12 (Chronoamperometrey & CV with CCD ECL detection), or µAutolab (Chronoamperometry with PMT ECL detection) potentiostat. For all ECL experiments, a 3-electrode electrochemical cell was used, comprising a 3 mm glassy carbon working electrode, Ag/AgNO<sub>3</sub> (20 mM) (CH Instruments), non-aqueous reference electrode and gold wire counter electrode. The electrodes were positioned within the quartz cell so as to maximize collection of light through the base. ECL detection: Emission spectra were captured using an Ocean Optics QE65000 spectrometer, interfaced with our electrochemical cell using an optical fiber (1.0 m, 1.5 mm core diameter), with a collimating lens, via a custom cell holder. For some experiments, ECL was detected using an Electron Tubes model 9828B PMT (ET enterprises, UK) biased at 500 V. The electrochemical cell was located within a custom light-tight faraday cage for all ECL experiments. Photoluminescence: Emission spectra were collected using a Varian (Varian, Australia) Eclipse spectrofluorimeter using quartz cells with a 1 cm path length. 3D ECL emission matrix experiments were conducted under argon bubbling using the PGSTA12 potentiostat and QE65000 CCD spectrometer as described previously.<sup>2</sup> The integration time per spectrum was 2 s (resolution = 50 mV per spectrum), facilitated by a relatively slow scan rate of 25 mV/s. The data for each graph was the sum of four or five CV sets and 3D data were smoothed using a Fourier transform algorithm. The lower co-reactant ECL efficiency of  $Ir(ppy)_3$  was compensated for by using a larger concentration of this complex in the binary mixtures.

|                                | Potentials vs. Fc <sup>a</sup> |                  |                                |                                | Photoluminescence    |
|--------------------------------|--------------------------------|------------------|--------------------------------|--------------------------------|----------------------|
|                                | E <sub>ox</sub>                | E <sub>red</sub> | E <sup>*</sup> ox <sup>c</sup> | E* <sub>red</sub> <sup>c</sup> | $\lambda_{\max}^{d}$ |
| <i>Ir(ppy)</i> <sub>3</sub>    | 0.33                           | -2.70            | -2.1                           | -0.30                          | 520                  |
| $[Ru(bpy)_2(L)]^{2+}$          | 0.96                           | -1.47            | -0.90                          | 0.39                           | 666                  |
| <i>Ir(df-ppy)</i> <sub>3</sub> | 0.69                           | -2.51            | -1.82                          | 0.00                           | 495                  |
| TPA/TPA*+                      | (0.43) <sup>b</sup>            | -                | -                              | -                              | -                    |
| TPA <sup>•</sup>               | -                              | -2.09            | -                              | -                              | -                    |

## Table S1 Electrochemical and photoluminescence data.

 ${}^{a}Fc = 0.39$  vs SCE;  ${}^{b}peak$  potential from SWV, (see Fig S9);  ${}^{c}Estimated$  from ground state redox potentials and RT emission maxima.  ${}^{d}Corrected$  for wavelength dependence of detector response.

Abbreviations: ppy = 2-phenylpyridinato; bpy = 2,2'-bipyridine;  $L = N^4$ ,  $N^4$ '-bis((2S)-1-methoxy-1-oxopropan-2-yl)-2,2'-bipyridyl-4,4'-dicaboxamide); df-ppy = 2-(2,4-difluorophenyl)pyridine); Fc = ferrocene; TPA = tripropylamine.



**Figure S1** Cyclic voltammetric response for mixture of 0.25 mM  $Ir(ppy)_3$  and 0.25 mM  $[Ru(bpy)_2(L)]^{2+}$  dissolved in acetonitrile containing 0.1 M TBAPF<sub>6</sub> as supporting electrolyte (system A). The scan rate was 0.1 V s<sup>-1</sup> and the working electrode was a 3 mm diameter boron doped diamond disc electrode.



**Figure S2** Cyclic voltammetric response for mixture of 0.25 mM  $Ir(ppy)_3$  and 0.25 mM  $Ir(df-ppy)_3$  dissolved in acetonitrile containing 0.1 M TBAPF<sub>6</sub> as supporting electrolyte (system B). The scan rate was 0.1 Vs<sup>-1</sup> and the working electrode was a 3 mm diameter boron doped diamond electrode.



**Figure S3** UV-Visible absorption spectra of (A)  $Ir(df-ppy)_3$ , (B)  $Ir(ppy)_3$  and (C)  $[Ru(bpy)_2(L)]^{2+}$ , concentration 10  $\mu$ M in acetonitrile.



**Figure S4** Corrected photoluminescence spectra of (A)  $Ir(df-ppy)_3$ , (B)  $Ir(ppy)_3$ , and (C)  $[Ru(bpy)_2(L)]^{2+}$  in acetonitrile. Excitation wavelength 280 nm, concentration 10  $\mu$ M.  $[Ru(bpy)_2(L)]^{2+}$  intensity normalized to  $Ir(ppy)_3$ .



**Figure S5** An ECL - potential profile for system B (mixture of  $Ir(ppy)_3$  and  $Ir(df-ppy)_3$ ). This is a cross section of Figure 3 at wavelength mid-way between the two emission maxima.



**Figure S6** Integrated ECL intensity as a function of applied potential from solution containing  $0.1 \text{ mM Ir}(df-ppy)_3$  and 10 mM TPA only. Chronoamperometry was used to elicit the ECL emission.



**Figure S7** Raw data corresponding to Figure 2 in the main text. 3D-ECL emission matrix for system A (mixture of 0.34 mM  $Ir(ppy)_3$  and 0.016 mM  $[Ru(bpy)_2(L)]^{2+}$ , in the presence of 20 mM TPA), during a CV potential sweep from 0 to 1.03 V vs. ferrocene. Scan-rate = 0.025 V/s, spectral integration time = 2 s (resolution = 50 mV per spectrum), data is the sum of 5 CV sets.



**Figure S8** Raw data corresponding to Figure 3 in the main text. 3D-ECL emission matrix for system B (mixture of 0.11 mM  $Ir(ppy)_3$  and 0.14 mM  $Ir(df-ppy)_3$ , in the presence of 20 mM TPA), during a CV potential sweep from 0 to 1.03 V vs. ferrocene. Scan-rate = 0.025 V/s, spectral integration time = 2 s (resolution = 50 mV per spectrum), data is the sum of 4 CV sets.



**Figure S9:** Square wave voltammograms of solutions of 0.25 mM Ir(ppy)<sub>3</sub> (purple line) and 1 mM TPA (red line, separate solution) in CH<sub>3</sub>CN, the supporting electrolyte was 0.1 M TBAPF<sub>6</sub>. Amplitude: 0.025V, Frequency: 15Hz.

## References

- 1. G. J. Barbante, C. F. Hogan, D. J. D. Wilson, N. A. Lewcenko, F. M. Pfeffer, N. W. Barnett and P. S. Francis, Analyst, 2011, 136, 1329.
- 2. E. H. Doeven, E. M. Zammit, G. J. Barbante, C. F. Hogan, N. W. Barnett and P. S. Francis, Angew. Chem. Int. Ed., 2012, 124, 4430.