Oxidative Cycloaddition and Cross-Coupling Processes on Unactivated Benzene Derivatives

Guillaume Jacquemot, Marc-André Ménard, Chloé L'Homme and Sylvain Canesi*

Laboratoire de Méthodologie et Synthèse de Produit Naturels. Université du Québec à Montréal, C.P.8888, Succ. Centre-Ville, Montréal. H3C 3P8, Québec, Canada.

Supporting Information

Table of Contents

1. General information	SI-2
2. Experimental procedures	SI-2-SI-15
3. Copies of ¹ H and ¹³ C NMR spectra for all compounds	SI-15-SI-121

I. General information and materials

Unless otherwise indicated, ¹H and ¹³C NMR spectra were recorded at 300 and 75 MHz, respectively, in CDCl₃ solutions. Chemical shifts are reported in ppm on the δ scale. Multiplicities are described as s (singlet), d (doublet), dd, ddd, etc. (doublet of doublets, doublet of doublets of doublets, etc.), t (triplet), q (quartet), p (pentuplet), m (multiplet), and further qualified as app (apparent) br (broad) c (complex). Coupling constants, J, are reported in Hz. IR spectra (cm–1) were recorded from thin films. Mass spectra (m/e) were measured in the electrospray (ESI) mode.

II. Experimental procedures

General procedure for the formation of cycloadduct 11:

A solution of hypevalent iodine (0.32 mmol, 1.6 equiv.) in $(CF_3)_2$ CHOH ("HFIP", 0.35 ml) was added dropwise on 30 second to a vigorously stirred solution of phenol **9** (0.20 mmol, 1 equiv.) and the corresponding aromatic compound (10 equiv.) in HFIP/DCM (2:1; ml) at -4 °C. The mixture was then stirred for 30 seconds and quenched with NaHCO₃. The phases were separated and the aqueous phase extracted with EtOAc. The organic phases were dried over Na₂SO₄, filtered and concentrated under vacuum. The residue was purified by silica gel chromatography with a mixture of ethyl acetate/hexane to give the corresponding cycloaddition product **11**.

4a-iodo-8-(2-(phenylsulfonyl)ethyl)-4a,9b-dihydrodibenzo[b,d]furan (11a-g or 12a): Pale yellow oil: 0.032 mmol, 14.8 mg, 34-51% yield; ¹H NMR (300 MHz, CDCl₃) δ 7.94 (d, *J* = 8.0 Hz, 2H), 7.69 – 7.54 (m, 4H), 7.49 (s, 1H), 6.91 (d, *J* = 8.1 Hz, 1H), 6.73 – 6.66 (m, 2H), 6.02 (dd, *J* = 9.6, 4.4 Hz, 1H), 5.82 (dd, *J* = 9.6, 6.1 Hz, 1H), 5.36 (dd, *J* = 11.3, 4.4 Hz, 1H), 4.35 (d, *J* = 11.3 Hz, 1H), 3.40 – 3.33 (m, 2H), 3.08 – 3.00 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 157.3, 139.3, 133.9, 133.3, 129.5, 128.9, 128.2, 128.1, 126.9, 126.6, 121.9, 109.8, 101.15, 81.3, 58.0, 49.9, 28.5; HRMS (ESI): Calc. for C₂₀H₁₈IO₃S (M+H)⁺: 465.0016; found: 465.0011.

4a-iodo-8-(2-(propylsulfonyl)ethyl)-4a,9b-dihydrodibenzo[b,d]furan (11h): Pale yellow oil: 0.037 mmol, 16.2 mg, 55% yield; ¹H NMR (300 MHz, CDCl₃) δ 7.60 (s, 1H), 7.04 (dd, *J* = 8.2, 1.7 Hz, 1H), 6.79 (d, *J* = 8.2 Hz, 1H), 6.70 (dd, *J* = 6.1, 1.7 Hz, 1H), 6.05 (dd, *J* = 9.6, 4.4 Hz, 1H), 5.84 (dd, *J* = 9.6, 6.1 Hz, 1H), 5.39 (dd, *J* = 11.2, 4.4 Hz, 1H), 4.40 (d, *J* = 11.2 Hz, 1H), 3.25 – 3.09 (m, 4H), 2.91 – 2.84 (m, 2H), 1.92 – 1.79 (sx, *J* = 7.6 Hz, 2H), 1.04 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 157.5, 133.3, 129.7, 129.1, 128.3, 126.9, 126.8, 121.9, 110.0, 101.2, 81.4, 55.2, 54.7, 49.9, 27.9, 16.0, 13.3; HRMS (ESI): Calc. for C₁₇H₂₀IO₃S (M+H)⁺: 431.0172; found: 431.0171.

4a-iodo-8-(2-((4-methoxyphenyl)sulfonyl)ethyl)-4a,9b-dihydrodibenzo[b,d]furan (11i): Pale yellow oil: 0.048 mmol, 24.0 mg, 48% yield; ¹H NMR (300 MHz, CDCl₃) δ 7.85 (d, *J* = 8.8 Hz, 2H), 7.48 (s, 1H), 7.01 (d, *J* = 8.9 Hz, 2H), 6.90 (d, *J* = 8.1 Hz, 1H), 6.71 (d, *J* = 8.2 Hz, 1H), 6.67 (dd, *J* = 6.2, 1.7 Hz, 1H), 6.02 (dd, *J* = 9.6, 4.4 Hz, 1H), 5.82 (dd, *J* = 9.6, 6.1 Hz, 1H), 5.36 (dd, *J* = 11.2, 4.4 Hz, 1H), 4.34 (d, *J* = 11.1 Hz, 1H), 3.88 (s, 3H), 3.37 – 3.30 (m, 2H), 3.04 – 2.97 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 163.9, 157.2, 133.2, 130.8, 130.4, 129.6, 128.9, 128.0, 126.8, 126.1, 121.9, 114.7, 109.8, 101.2, 81.3, 58.3, 55.8, 49.9, 28.7; HRMS (ESI): Calc. for C₂₁H₂₀IO₄S (M+H)⁺: 495.0121; found: 495.014.

4a-iodo-8-(2-((4-nitrophenyl)sulfonyl)ethyl)-4a,9b-dihydrodibenzo[b,d]furan (11j): Pale yellow oil: 0.071 mmol, 36.4 mg, 41% yield; ¹H NMR (300 MHz, CDCl₃) δ 8.34 (d, *J* = 8.7 Hz, 2H), 8.07 (dd, *J* = 7.5, 5.7 Hz, 2H), 7.45 (s, 1H), 6.90 (d, *J* = 8.3 Hz, 1H), 6.66 (dd, *J* = 10.9, 4.9 Hz, 2H), 6.00 (dd, *J* = 9.6, 4.3 Hz, 1H), 5.81 (dd, *J* = 9.6, 6.1 Hz, 1H), 5.36 (dd, *J* = 11.4, 4.3 Hz, 1H), 4.33 (d, *J* = 11.3 Hz, 1H), 3.45 (dd, *J* = 9.4, 6.5 Hz, 2H), 3.07 (dd, *J* = 9.4, 6.6 Hz, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 157.4, 150.9, 145.0, 133.3, 129.7, 129.1, 128.6, 128.2, 126.7, 126.4, 124.5, 122.0, 109.9, 100.7, 81.4, 57.9, 49.8, 28.5; HRMS (ESI): Calc. for C₂₀H₁₇INO₅S (M+H)⁺: 509.9867; found: 509.9878.

2-((2-(5a-iodo-5a,9a-dihydrodibenzo[b,d]furan-2-yl)ethyl)sulfonyl)benzo[d]thiazole

(11k): Pale yellow oil: 0.019 mmol, 10.2 mg, 45% yield; ¹H NMR (300 MHz, CDCl₃) δ 8.21 (d, *J* = 7.6 Hz, 1H), 8.02 (d, *J* = 7.4 Hz, 1H), 7.68 – 7.56 (m, 2H), 7.52 (s, 1H), 6.98 (dd, *J* = 8.2, 1.7 Hz, 1H), 6.70 (d, *J* = 8.2 Hz, 1H), 6.66 (dd, *J* = 6.1, 1.8 Hz, 1H), 6.00 (dd, *J* = 9.6, 4.4 Hz, 1H), 5.81 (dd, *J* = 9.6, 6.1 Hz, 1H), 5.28 (dd, *J* = 11.3, 4.4 Hz, 1H), 4.26 (d, *J* = 11.4 Hz, 1H), 3.81 (td, *J* = 7.2, 3.2 Hz, 2H), 3.24 – 3.16 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 166.0, 157.4, 152.8, 137.0, 133.2, 129.2, 128.9, 128.2, 128.1, 127.8, 126.8, 126.7, 125.7, 122.5,

121.9, 109.8, 101.1, 81.3, 56.4, 49.8, 28.4; HRMS (ESI): Calc. for $C_{21}H_{17}INO_3S_2$ (M+H)⁺: 521.9689; found: 521.9692.

General procedure for the formation of cycloadduct 12:

A solution of bis(*tert*-butylcarbonyloxy)iodobenzene (0.32 mmol, 1.6 equiv.) in $(CF_3)_2$ CHOH ("HFIP", 0.35 ml) was added dropwise on 30 second to a vigorously stirred solution of phenol **9** (0.20 mmol, 1 equiv.) and the corresponding aromatic compound (2.00 mmol, 10.0 equiv.) in HFIP/DCM (2:1; ml) at -4 °C. The mixture was then stirred for 30 seconds and quenched with NaHCO₃. The phases were separated and the aqueous phase extracted with EtOAc. The organic phases were dried over Na₂SO₄, filtered and concentrated under vacuum. The residue was purified by silica gel chromatography with a mixture of ethyl acetate/hexane to give the corresponding cycloaddition product **12**.

4a-iodo-9b-methyl-8-(2-(phenylsulfonyl)ethyl)-4a,9b-dihydrodibenzo[b,d]furan (12b):

Pale yellow oil: 0.019 mmol, 9.2 mg, 54% yield; ¹H NMR (300 MHz, CDCl₃) δ 7.94 (dd, J = 5.3, 3.3 Hz, 2H), 7.70 – 7.53 (m, 4H), 7.48 (s, 1H), 6.90 (dd, J = 8.1, 1.7 Hz, 1H), 6.70 (d, J = 8.2 Hz, 1H), 6.56 (dd, J = 6.3, 1.7 Hz, 1H), 5.57 (dd, J = 6.3, 1.5 Hz, 1H), 5.16 (d, J = 11.0 Hz, 1H), 4.34 (d, J = 10.9 Hz, 1H), 3.41 – 3.33 (m, 2H), 3.08 – 3.00 (m, 2H), 1.92 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 157.3, 139.3, 133.9, 133.8, 131.3, 129.5, 129.4, 128.9, 128.7, 128.2, 126.5, 122.7, 109.7, 97.1, 85.3, 58.1, 50.3, 28.5, 20.6; HRMS (ESI): Calc. for C₂₁H₂₀IO₃S (M+H)⁺: 479.0172; found: 479.0165.

9b-ethyl-4a-iodo-8-(2-(phenylsulfonyl)ethyl)-4a,9b-dihydrodibenzo[b,d]furan (12c): Pale yellow oil: 0.020 mmol, 9.9 mg, 47% yield; ¹H NMR (300 MHz, CDCl₃) δ 7.94 (d, *J* =

Pale yellow oil: 0.020 mmol, 9.9 mg, 47% yield; H NMR (300 MHz, CDCl₃) 8 7.94 (d, J = 7.4 Hz, 2H), 7.69 – 7.53 (m, 4H), 7.47 (s, 1H), 6.90 (d, J = 8.2 Hz, 1H), 6.69 (d, J = 8.2 Hz, 1H), 6.61 (d, J = 6.4 Hz, 1H), 5.57 (d, J = 6.4 Hz, 1H), 5.18 (d, J = 10.9 Hz, 1H), 4.31 (d, J = 10.9 Hz, 1H), 3.41 – 3.32 (m, 2H), 3.08 – 3.00 (m, 2H), 2.41 – 2.19 (m, 2H), 1.12 (t, J = 7.4 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 157.4, 139.3, 136.7, 133.9, 133.8, 129.5, 129.4, 128.8, 128.7, 128.2, 126.7, 121.0, 109.7, 97.7, 84.4, 58.1, 50.4, 28.5, 27.1, 11.7; HRMS (ESI): Calc. for C₂₂H₂₂IO₃S (M+H)⁺: 493.0329; found: 493.0319.

4a-iodo-9b-isopropyl-8-(2-(phenylsulfonyl)ethyl)-4a,9b-dihydrodibenzo[b,d]furan (12d): Pale yellow oil: 0.015 mmol, 7.7 mg, 40% yield; ¹H NMR (300 MHz, CDCl₃) δ 7.96 (s, *J* = 7.3 Hz, 2H), 7.70 – 7.55 (m, 5H), 7.44 (s, 1H), 6.89 (d, *J* = 8.3 Hz, 1H), 6.69 (d, *J* = 8.1 Hz, 1H), 6.63 (dd, J = 6.5, 1.9 Hz, 1H), 5.62 (d, J = 6.2 Hz, 1H), 5.22 (d, J = 10.4 Hz, 1H), 4.24 (d, J = 10.1 Hz, 1H), 3.39 – 3.30 (m, 2H), 3.07 – 3.00 (m, 2H), 2.56 (h, J = 6.5 Hz, 1H), 1.14 (dd, J = 6.8, 2.0 Hz, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 157.6, 140.7, 139.3, 134.0, 133.9, 129.5, 129.4, 128.8, 128.7, 128.3, 126.8, 120.5, 109.7, 98.3, 83.4, 58.1, 50.6, 32.1, 28.6, 21.9, 21.1; HRMS (ESI): Calc. for C₂₃H₂₄IO₃S (M+H)⁺: 507.0485; found: 507.0489.

tert-butyl((5a-iodo-2-(2-(phenylsulfonyl)ethyl)-5a,9a-dihydrodibenzo[b,d]furan-9ayl)methoxy)dimethylsilane (12e): Pale yellow oil: 0.014 mmol, 8.8 mg, 35% yield; ¹H NMR (300 MHz, CDCl₃) δ 7.94 (d, *J* = 7.2 Hz, 2H), 7.71 – 7.53 (m, 4H), 7.48 (s, 1H), 6.93 – 6.87 (m, 1H), 6.67 (dd, *J* = 9.3, 4.8 Hz, 2H), 5.81 (d, *J* = 6.4 Hz, 1H), 5.25 (d, *J* = 10.9 Hz, 1H), 4.31 (s, 2H), 3.41 – 3.32 (m, 2H), 3.09 – 2.99 (m, 2H), 0.91 (s, 9H), 0.09 (d, *J* = 2.1 Hz, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 157.4, 139.3, 137.8, 134.0, 133.9, 133.5, 129.5, 129.5, 129.0, 128.9, 128.5, 128.2, 126.7, 121.2, 109.7, 99.3, 81.7, 63.9, 58.1, 50.3, 28.5, 26.0, 18.5, -5.2, -5.3; HRMS (ESI): Calc. for C₂₇H₃₄IO₄SSi (M+H)⁺: 609.0986; found: 609.0978.

4a-iodo-8-(3-(phenylsulfonyl)propyl)-4a,9b-dihydrodibenzo[b,d]furan (12f): Pale yellow oil: 0.013 mmol, 6.2 mg, 31% yield; ¹H NMR (300 MHz, CDCl₃) δ 7.89 (d, *J* = 7.3 Hz, 2H), 7.69 – 7.52 (m, 4H), 7.47 (s, 1H), 6.90 (d, *J* = 8.1 Hz, 1H), 6.72 (d, *J* = 8.1 Hz, 1H), 6.69 (dd, *J* = 6.1, 1.9 Hz, 1H), 6.06 (dd, *J* = 9.7, 4.5 Hz, 1H), 5.85 (dd, *J* = 9.6, 6.1 Hz, 1H), 5.34 (dd, *J* = 11.1, 4.5 Hz, 1H), 4.34 (d, *J* = 10.9 Hz, 1H), 3.09 (dd, *J* = 8.7, 7.2 Hz, 2H), 2.69 (t, *J* = 7.3 Hz, 2H), 2.04 (dq, *J* = 11.3, 7.1 Hz, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 157.0, 139.4, 133.8, 133.3, 132.0, 129.4, 129.0, 128.2, 127.8, 127.0, 126.8, 121.8, 109.6, 102.0, 81.1, 55.6, 49.8, 33.8, 24.7; HRMS (ESI): Calc. for C₂₁H₂₀IO₃S (M+H)⁺: 479.0172; found: 479.0182.

8-(**2**-(**phenylsulfonyl**)**ethyl**)-**4a**,**9b**-dihydrodibenzo[b,d]furan (**12g**)**:** Pale yellow oil: 0.041 mmol, 14.2 mg, 40% yield; ¹H NMR (300 MHz, CDCl₃) δ 7.92 (d, *J* = 7.2 Hz, 2H), 7.70 – 7.52 (m, 4H), 6.98 (s, 1H), 6.83 (d, *J* = 8.0 Hz, 1H), 6.70 (d, *J* = 8.2 Hz, 1H), 6.12 (dd, *J* = 9.8, 5.5 Hz, 1H), 5.97 – 5.88 (m, 2H), 5.77 (dd, *J* = 9.7, 3.3 Hz, 1H), 5.42 (dd, *J* = 12.1, 4.6 Hz, 1H), 4.17 (d, *J* = 12.0 Hz, 1H), 3.33 (dd, *J* = 10.4, 6.2 Hz, 2H), 2.99 (dd, *J* = 10.4, 6.3 Hz, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 157.4, 139.3, 133.9, 130.1, 129.8, 129.4, 128.2, 128.1, 127.6, 126.5, 124.6, 121.3, 121.2, 110.0, 78.7, 58.1, 40.8, 28.4; HRMS (ESI): Calc. for C₂₀H₁₈O₃SNa (M+Na)⁺: 361.0869; found: 361.0860.

10-(2-(phenylsulfonyl)ethyl)-6a,11b-dihydronaphtho[**2,1-b**]**benzofuran (12h):** Pale yellow oil: 0.095 mmol, 37.1 mg, 72% yield; ¹H NMR (300 MHz, CDCl₃) δ 7.89 (d, *J* = 7.3 Hz, 2H), 7.68 – 7.49 (m, 5H), 7.38 – 7.19 (m, 4H), 7.07 (d, *J* = 7.2 Hz, 1H), 6.87 – 6.79 (m, 2H), 6.72 (d, *J* = 8.1 Hz, 1H), 6.48 (d, *J* = 8.8 Hz, 1H), 5.85 – 5.76 (m, 2H), 4.64 (d, *J* = 10.5 Hz, 1H), 3.33 – 3.23 (m, 2H), 2.98 – 2.89 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 157.2, 139.2, 133.8, 132.7, 130.6, 130.5, 129.8, 129.6, 129.4, 128.6, 128.5, 128.4, 128.2, 128.0, 127.7, 124.6, 124.5, 110.0, 81.4, 58.0, 43.7, 28.3; HRMS (ESI): Calc. for C₂₄H₂₀O₃SNa (M+Na)⁺: 411.1025; found: 411.1028.

2-(2-(phenylsulfonyl)ethyl)-6,11-dihydro-6,11-[1,2]benzenodibenzo[b,e]oxepine (13):

A solution of bis(*tert*-butylcarbonyloxy)iodobenzene (0.17 mmol, 1.6 equiv.) in (CF₃)₂CHOH ("HFIP", 0.35 ml) was added dropwise on 30 second to a vigorously stirred solution of phenol **9** (0.11 mmol, 1 equiv.) and the anthracene (0.55 mmol, 5.0 equiv.) in HFIP/DCM (2:1; ml) at -4 °C. The mixture was then stirred for 30 seconds and quenched with NaHCO₃. The phases were separated and the aqueous phase extracted with EtOAc. The organic phases were dried over Na₂SO₄, filtered and concentrated under vacuum. The residue was purified by silica gel chromatography with a mixture of ethyl acetate/hexane to afford **13** in 58% yield (0.034 mmol, 14.8 mg). ¹H NMR (300 MHz, CDCl₃) δ 7.85 (d, *J* = 7.2 Hz, 2H), 7.62 – 7.54 (m, 2H), 7.53 – 7.42 (m, 5H), 7.38 – 7.32 (m, 2H), 7.25 – 7.22 (m, 2H), 6.93 (d, *J* = 2.2 Hz, 1H), 6.71 (dd, *J* = 8.4, 2.2 Hz, 1H), 6.44 (d, *J* = 8.3 Hz, 1H), 5.88 (s, *J* = 6.6 Hz, 1H), 4.51 (s, 1H), 3.33 – 3.24 (m, 2H), 2.95 – 2.87 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 151.7, 144.8, 139.3, 134.8, 133.7, 129.3, 128.8, 128.7, 128.4, 128.1, 127.5, 127.4, 124.5, 120.3, 78.8, 57.8, 52.3, 28.0; HRMS (ESI): Calc. for C₂₈H₂₃O₃S (M+H)⁺: 439.1362; found: 439.1353.

7-(2-((4-methoxyphenyl)sulfonyl)ethyl)-3a,8b-dihydrofuro[3,2-b]benzofuran (14):

A solution of bis(*tert*-butylcarbonyloxy)iodobenzene (0.08 mmol, 1.6 equiv.) in (CF₃)₂CHOH ("HFIP", 0.35 ml) was added dropwise on 30 second to a vigorously stirred solution of phenol **9i** (0.05 mmol, 1 equiv.) and the furan (0.75 mmol, 15.0 equiv.) in TFE at -25 °C. After completion the reaction was quenched with NaHCO₃. The phases were separated and the aqueous phase extracted with EtOAc. The organic phases were dried over Na₂SO₄, filtered and concentrated under vacuum. The residue was purified by silica gel chromatography with a mixture of ethyl acetate/hexane to afford **14** in 95% yield (0.047 mmol, 16.8 mg). ¹H NMR (300 MHz, CDCl₃) δ 7.83 (d, *J* = 8.9 Hz, 2H), 7.17 (d, *J* = 1.4 Hz, 1H), 7.01 (d, *J* = 8.8 Hz, 3H), 6.76 (d, *J* = 8.3 Hz, 1H), 6.61 (d, *J* = 2.5 Hz, 1H), 5.97 (s, 2H), 5.28 (t, *J* = 2.3 Hz, 1H),

3.89 (s, 3H), 3.35 – 3.27 (m, 2H), 3.02 – 2.95 (m, 2H); 13 C NMR (75 MHz, CDCl₃) δ 163.9, 158.5, 151.3, 131.7, 131.5, 130.6, 130.4, 130.1, 126.3, 125.4, 114.6, 111.2, 100.2, 89.4, 85.1, 58.2, 55.8, 28.5; HRMS (ESI): Calc. for C₁₉H₁₈O₅SNa (M+Na)⁺: 381.0767; found: 381.0779.

General procedure for the formation of cycloadduct 17: A solution of bis(*tert*butylcarbonyloxy)iodobenzene (0.22 mmol, 1.6 equiv.) in $(CF_3)_2CHOH$ ("HFIP", 0.35 ml) was added dropwise on 30 second to a vigorously stirred solution of sulfonamide 15 (0.14 mmol, 1 equiv.) and the corresponding aromatic compound (0.70 mmol, 5.0 equiv.) in HFIP/DCM (2:1; ml) at -4 °C. The mixture was then stirred for 30 seconds and quenched with NaHCO₃. The phases were separated and the aqueous phase extracted with EtOAc. The organic phases were dried over Na₂SO₄, filtered and concentrated under vacuum. The residue was purified by silica gel chromatography with a mixture of ethyl acetate/hexane to give the corresponding cycloaddition product 17.

10-methyl-7-(methylsulfonyl)-7,11b-dihydro-6aH-benzo[c]carbazole (17a): Pale yellow oil: 0.074 mmol, 23.3 mg, 61% yield; ¹H NMR (300 MHz, CDCl₃) δ 7.38 – 7.27 (m, 4H), 7.05 (dd, *J* = 14.5, 7.5 Hz, 2H), 6.75 (s, 1H), 6.43 (dd, *J* = 9.9, 2.1 Hz, 1H), 5.83 (dd, *J* = 9.9, 2.5 Hz, 1H), 5.53 (dt, *J* = 9.8, 2.3 Hz, 1H), 4.64 (d, *J* = 9.8 Hz, 1H), 2.94 (s, 3H), 2.24 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 137.6, 135.0, 135.0, 131.6, 130.7, 129.2, 128.8, 128.1, 128.1, 127.9, 126.5, 125.3, 116.2, 64.0, 43.9, 37.7, 21.1; HRMS (ESI): Calc. for C₁₈H₁₈NO₂S (M+H)⁺: 312.1058; found: 312.1051.

7-(ethylsulfonyl)-10-methyl-7,11b-dihydro-6aH-benzo[c]carbazole (17b): Pale yellow oil: 0.081 mmol, 26.4 mg, 59% yield; ¹H NMR (300 MHz, CDCl₃) δ 7.32 (dd, *J* = 9.1, 6.7 Hz, 4H), 7.07 (d, *J* = 6.7 Hz, 1H), 7.00 (d, *J* = 8.0 Hz, 1H), 6.72 (s, 1H), 6.41 (dd, *J* = 9.9, 2.0 Hz, 1H), 5.84 (dd, *J* = 9.9, 2.4 Hz, 1H), 5.53 (dt, *J* = 9.8, 2.3 Hz, 1H), 4.62 (d, *J* = 9.7 Hz, 1H), 3.18 – 3.08 (m, 2H), 2.22 (s, 3H), 1.38 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 137.8, 134.7, 134.4, 131.6, 130.7, 129.3, 129.2, 128.6, 128.1, 128.0, 127.9, 127.1, 125.2, 115.4, 64.0, 45.9, 44.0, 21.1, 8.2; HRMS (ESI): Calc. for C₁₉H₂₀NO₂S (M+H)⁺: 326.1209; found: 326.1207.

10-methyl-7-tosyl-7,11b-dihydro-6aH-benzo[c]carbazole (**17c):** Pale yellow oil: 0.030 mmol, 11.7 mg, 32% yield; ¹H NMR (300 MHz, CDCl₃) δ 7.59 – 7.53 (m, 2H), 7.24 – 7.18

(m, 4H), 7.14 – 6.99 (m, 4H), 6.55 (s, 1H), 6.38 (d, J = 9.9 Hz, 1H), 5.86 (dd, J = 9.8, 2.3 Hz, 1H), 5.39 (d, J = 9.6 Hz, 1H), 3.80 (d, J = 9.7 Hz, 1H), 2.40 (s, 3H), 2.20 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 144.0, 138.0, 135.9, 135.9, 135.3, 131.6, 130.8, 129.9, 129.2, 129.1, 128.5, 128.0, 127.8, 127.8, 127.2, 127.1, 124.8, 118.1, 63.8, 43.4, 21.7, 21.2; HRMS (ESI): Calc. for C₂₄H₂₂NO₂S (M+H)⁺: 388.1369; found: 388.1374.

7-(isopropylsulfonyl)-10-methyl-7,11b-dihydro-6aH-benzo[c]carbazole (17d): Pale yellow oil: 0.032 mmol, 11.0 mg, 38% yield; ¹H NMR (300 MHz, CDCl₃) δ 7.38 – 7.27 (m, 5H), 7.06 (d, *J* = 6.8 Hz, 1H), 6.97 (d, *J* = 8.1 Hz, 1H), 6.70 (s, 1H), 6.41 (d, *J* = 9.9 Hz, 1H), 5.86 (dd, *J* = 9.9, 2.2 Hz, 1H), 5.51 (d, *J* = 9.7 Hz, 1H), 4.63 (d, *J* = 9.7 Hz, 1H), 3.40 (h, *J* = 6.8 Hz, 1H), 2.21 (s, 3H), 1.45 – 1.37 (m, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 138.4, 134.1, 133.7, 131.7, 129.3, 129.1, 128.5, 128.1, 128.0, 127.8, 127.5, 125.2, 114.7, 64.4, 54.0, 43.9, 21.1, 17.2, 16.8; HRMS (ESI): Calc. for C₂₀H₂₂NO₂S (M+H)⁺: 340.1366; found: 340.1358.

7-(benzylsulfonyl)-10-methyl-7,11b-dihydro-6aH-benzo[c]carbazole (17e): Pale yellow oil: 0.048 mmol, 18.5 mg, 45% yield; ¹H NMR (300 MHz, CDCl₃) δ 7.38 – 7.29 (m, 4H), 7.26 – 7.23 (m, 3H), 7.19 (t, *J* = 6.1 Hz, 2H), 7.00 (dd, *J* = 9.8, 4.2 Hz, 2H), 6.70 (s, 1H), 6.30 (dd, *J* = 9.9, 1.9 Hz, 1H), 5.69 (dd, *J* = 9.9, 2.5 Hz, 1H), 4.96 (dt, *J* = 10.1, 2.2 Hz, 1H), 4.40 (d, *J* = 2.6 Hz, 2H), 3.92 (d, *J* = 10.1 Hz, 1H), 2.25 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 137.4, 134.9, 134.2, 131.8, 130.8, 130.7, 129.2, 129.2, 129.0, 128.6, 128.0, 127.9, 127.8, 127.7, 127.3, 125.2, 114.7, 64.7, 57.3, 43.2, 21.2; HRMS (ESI): Calc. for C₂₄H₂₂NO₂S (M+H)⁺: 388.1369; found: 388.1381.

10-chloro-7-(methylsulfonyl)-7,11b-dihydro-6aH-benzo[c]carbazole (17f): Pale yellow oil: 0.043 mmol, 14.3 mg, 51% yield; ¹H NMR (300 MHz, CDCl₃) δ 7.41 – 7.28 (m, 4H), 7.18 (ddd, *J* = 8.5, 2.0, 0.9 Hz, 1H), 7.12 – 7.06 (m, 1H), 6.93 – 6.88 (m, 1H), 6.45 (dd, *J* = 9.9, 2.0 Hz, 1H), 5.83 (dd, *J* = 9.9, 2.5 Hz, 1H), 5.55 (dt, *J* = 9.8, 2.3 Hz, 1H), 4.65 (d, *J* = 9.8 Hz, 1H), 2.98 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 138.7, 137.0, 130.7, 130.6, 130.3, 130.1, 129.8, 129.1, 128.8, 128.5, 128.4, 128.1, 127.4, 125.9, 125.1, 117.1, 64.1, 43.8, 38.3; HRMS (ESI): Calc. for C₁₇H₁₄NO₂SClNa (M+Na)⁺: 354.0326; found: 354.0320.

10-isopropyl-7-(methylsulfonyl)-7,11b-dihydro-6aH-benzo[c]carbazole (17g): Pale yellow oil: 0.023 mmol, 7.8 mg, 52% yield; ¹H NMR (300 MHz, CDCl₃) δ 7.40 – 7.29 (m, 4H), 7.07

(d, J = 6.7 Hz, 2H), 6.78 (s, 1H), 6.43 (dd, J = 9.9, 2.0 Hz, 1H), 5.85 (dd, J = 9.9, 2.5 Hz, 1H), 5.53 (dt, J = 9.9, 2.3 Hz, 1H), 4.65 (d, J = 9.7 Hz, 1H), 2.95 (s, 3H), 2.79 (h, J = 6.9 Hz, 1H), 1.15 (dd, J = 6.9, 3.8 Hz, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 146.0, 137.8, 134.8, 131.7, 130.8, 129.2, 128.9, 128.1, 128.1, 128.0, 127.7, 126.5, 122.8, 116.1, 63.9, 43.9, 37.9, 33.9, 24.4, 24.0; HRMS (ESI): Calc. for C₂₀H₂₂NO₂S (M+H)⁺: 340.1366; found: 340.1361.

7-(methylsulfonyl)-10-propyl-7,11b-dihydro-6aH-benzo[c]carbazole (17h): Pale yellow oil: 0.061 mmol, 20.7 mg, 51% yield; ¹H NMR (300 MHz, CDCl₃) δ 7.39 – 7.28 (m, 4H), 7.05 (dd, *J* = 12.8, 7.5 Hz, 2H), 6.74 (s, 1H), 6.43 (dd, *J* = 9.9, 2.0 Hz, 1H), 5.84 (dd, *J* = 9.9, 2.5 Hz, 1H), 5.53 (dt, *J* = 9.8, 2.3 Hz, 1H), 4.64 (d, *J* = 9.8 Hz, 1H), 2.95 (s, 3H), 2.51 – 2.43 (m, 2H), 1.53 (sx, *J* = 7.4 Hz, 2H), 0.89 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 139.9, 137.8, 134.9, 131.6, 130.7, 129.2, 128.8, 128.7, 128.1, 128.1, 127.9, 126.5, 124.6, 116.1, 64.0, 43.9, 37.8, 37.8, 24.8, 14.0; HRMS (ESI): Calc. for C₂₀H₂₂NO₂S (M+H)⁺: 340.1366; found: 340.1368.

7-(methylsulfonyl)-10-(2-(phenylsulfonyl)ethyl)-7,11b-dihydro-6aH-benzo[c]carbazole (**17i):** Pale yellow oil: 0.016 mmol, 7.6 mg, 54% yield; ¹H NMR (300 MHz, CDCl₃) δ 7.88 (d, J = 7.2 Hz, 2H), 7.68 – 7.49 (m, 5H), 7.39 – 7.28 (m, 5H), 7.08 (dd, J = 5.7, 2.4 Hz, 1H), 6.95 (d, J = 8.2 Hz, 1H), 6.71 (s, 1H), 6.42 (dd, J = 9.9, 2.0 Hz, 1H), 5.81 (dd, J = 9.9, 2.5 Hz, 1H), 5.52 (dt, J = 9.9, 2.3 Hz, 1H), 4.60 (d, J = 9.8 Hz, 1H), 3.29 – 3.20 (m, 3H), 2.99 – 2.91 (m, 2H), 2.95 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 139.2, 139.0, 135.6, 134.3, 134.0, 131.2, 130.6, 129.5, 129.2, 129.0, 128.7, 128.4, 128.2, 128.0, 126.2, 124.7, 116.3, 64.0, 57.6, 43.8, 38.2, 28.4; HRMS (ESI): Calc. for C₂₅H₂₃NO₄SNa (M+Na)⁺: 488.0961; found: 488.0957.

(7-(methylsulfonyl)-7,11b-dihydro-6aH-benzo[c]carbazol-10-yl)methanol (17j): Pale yellow oil: 0.064 mmol, 21.0 mg, 53% yield; ¹H NMR (300 MHz, CDCl₃) δ 7.44 (d, *J* = 8.1 Hz, 1H), 7.37 – 7.29 (m, 3H), 7.21 (d, *J* = 7.9 Hz, 1H), 7.07 (d, *J* = 7.6 Hz, 1H), 6.98 (s, 1H), 6.43 (d, *J* = 9.9 Hz, 1H), 5.84 (dd, *J* = 9.9, 2.2 Hz, 1H), 5.56 (d, *J* = 9.9 Hz, 1H), 4.66 (d, *J* = 9.9 Hz, 1H), 4.56 (s, 2H), 2.97 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 190.9, 139.5, 137.8, 135.4, 131.8, 131.3, 130.6, 129.3, 128.9, 128.3, 128.3, 128.0, 127.8, 126.2, 123.7, 118.4, 116.0, 65.0, 60.6, 43.8, 38.1; HRMS (ESI): Calc. for C₁₈H₁₇NO₃SNa (M+Na)⁺: 350.0821; found: 350.0811. **2-(7-(methylsulfonyl)-7,11b-dihydro-6aH-benzo[c]carbazol-10-yl)ethanol (17k):** Pale yellow oil: 0.042 mmol, 14.2 mg, 62% yield; ¹H NMR (300 MHz, CDCl₃) δ 7.44 (d, *J* = 8.1 Hz, 1H), 7.39 – 7.31 (m, 3H), 7.12 (dd, *J* = 7.3, 3.0 Hz, 2H), 6.84 (s, 1H), 6.47 (dd, *J* = 9.9, 2.0 Hz, 1H), 5.88 (dd, *J* = 9.9, 2.5 Hz, 1H), 5.58 (dt, *J* = 9.9, 2.3 Hz, 1H), 4.69 (d, *J* = 9.9 Hz, 1H), 3.81 (t, *J* = 6.5 Hz, 2H), 3.01 (s, 3H), 2.79 (t, *J* = 6.5 Hz, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 138.5, 135.5, 135.3, 131.4, 130.7, 130.1, 129.3, 129.2, 128.9, 128.2, 128.2, 128.0, 126.3, 125.5, 125.3, 116.2, 64.0, 63.7, 43.8, 38.8, 38.1; HRMS (ESI): Calc. for C₁₉H₁₉NO₃SNa (M+Na)⁺: 364.0978; found: 364.0972.

10-(2-((tert-butyldimethylsilyl)oxy)ethyl)-7-(methylsulfonyl)-7,11b-dihydro-6aH-

benzo[c]carbazole (171): Pale yellow oil: 0.048 mmol, 21.8 mg, 52% yield; ¹H NMR (300 MHz, CDCl₃) δ 7.37 (d, *J* = 8.1 Hz, 1H), 7.29 (dd, *J* = 9.0, 4.2 Hz, 3H), 7.09 – 7.03 (m, 2H), 6.80 (s, 1H), 6.42 (dd, *J* = 9.9, 1.9 Hz, 1H), 5.83 (dd, *J* = 9.9, 2.4 Hz, 1H), 5.53 (dt, *J* = 9.8, 2.2 Hz, 1H), 4.63 (d, *J* = 9.8 Hz, 1H), 3.71 (t, *J* = 6.6 Hz, 2H), 2.93 (s, 3H), 2.69 (t, *J* = 6.6 Hz, 2H), 0.81 (d, *J* = 6.6 Hz, 10H), -0.12 (s, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 138.2, 136.7, 134.9, 131.5, 130.7, 129.4, 129.2, 128.8, 128.2, 128.1, 127.9, 126.5, 125.6, 121.2, 116.1, 64.4, 64.0, 43.9, 39.1, 37.7, 26.0, 18.4, -5.3, -5.4; HRMS (ESI): Calc. for C₂₅H₃₃NO₃SNa (M+Na)⁺: 478.1843; found: 478.1850.

7-(methylsulfonyl)-10-(trimethylsilyl)-7,11b-dihydro-6aH-benzo[c]carbazole (17m):

Pale yellow oil: 0.038 mmol, 14.2 mg, 43% yield; ¹H NMR (300 MHz, CDCl₃) δ 7.47 – 7.42 (m, 1H), 7.40 – 7.31 (m, 3H), 7.08 (d, *J* = 5.5 Hz, 2H), 6.44 (dd, *J* = 9.9, 2.0 Hz, 1H), 5.86 (dd, *J* = 9.9, 2.5 Hz, 1H), 5.54 (dt, *J* = 10.0, 2.3 Hz, 1H), 4.67 (d, *J* = 10.0 Hz, 1H), 2.98 (s, 3H), 0.19 – 0.15 (m, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 140.6, 136.6, 134.0, 133.9, 131.6, 130.7, 129.3, 129.2, 129.0, 128.1, 128.0, 126.1, 115.1, 63.7, 43.8, 38.4, -0.9; HRMS (ESI): Calc. for C₂₀H₂₄NO₂SSi (M+H)⁺: 370.1292; found: 370.1299.

10-isopropyl-7-(methylsulfonyl)-7,11b-dihydro-6aH-benzo[c]carbazol-5-yl methanesulfonate (18) and 4-(N-(4-isopropylphenyl)methylsulfonamido)naphthalen-1-yl methanesulfonate (19) :

A solution of bis(*tert*-butylcarbonyloxy)iodobenzene (0.08 mmol, 1.6 equiv.) in (CF₃)₂CHOH ("HFIP", 0.2 ml) was added dropwise on 30 second to a vigorously stirred solution of sulfonamide **15a** (10.7 mg, 0.05 mmol, 1 equiv.) and the O-Mesyl-Naphthol (0.35 mmol, 7.0 equiv.) in HFIP/DCM (2:1; ml) at -4 °C. The mixture was then stirred for 30 seconds and

quenched with NaHCO₃. The phases were separated and the aqueous phase extracted with EtOAc. The organic phases were dried over Na₂SO₄, filtered and concentrated under vacuum. The residue was purified by silica gel chromatography with a mixture of ethyl acetate/hexane to afford **18 and 19** in 72% yield (0.036 mmol, 15.6 mg) as a 1:1.2 ratio. **18:** ¹H NMR (300 MHz, CDCl₃) δ 7.51 (d, *J* = 7.6 Hz, 1H), 7.48 – 7.33 (m, 5H), 7.11 (d, *J* = 8.2 Hz, 1H), 6.78 (s, 1H), 5.93 (d, *J* = 2.9 Hz, 1H), 5.70 (dd, *J* = 9.8, 3.0 Hz, 1H), 4.68 (d, *J* = 9.7 Hz, 1H), 3.09 (s, 3H), 2.99 (s, 3H), 2.80 (p, *J* = 6.9 Hz, 1H), 1.16 (d, *J* = 4.0 Hz, 3H), 1.14 (d, *J* = 4.0 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 146.1, 145.9, 137.5, 133.7, 133.0, 129.8, 129.2, 128.3, 126.9, 123.4, 122.8, 115.8, 114.5, 63.3, 43.8, 38.3, 38.1, 33.9, 24.4, 24.0. HRMS (ESI): Calc. for C₂₁H₂₄NO₅S₂ (M+H)⁺: 434.1090; found: 434.1083.

19: ¹H NMR (300 MHz, CDCl₃) δ 8.36 (dd, J = 7.1, 2.4 Hz, 1H), 8.14 (dd, J = 7.0, 2.5 Hz, 1H), 7.72 (d, J = 8.2 Hz, 1H), 7.68 – 7.62 (m, 2H), 7.60 (d, J = 8.1 Hz, 1H), 7.45 (d, J = 8.5 Hz, 2H), 7.19 (d, J = 8.5 Hz, 2H), 3.25 (s, 3H), 3.24 (s, 3H), 2.86 (p, J = 6.9 Hz, 1H), 1.19 (d, J = 6.9 Hz, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 147.9, 145.6, 138.7, 136.3, 133.8, 128.6, 128.4, 128.1, 127.7, 127.4, 125.9, 124.4, 122.1, 118.2, 40.1, 38.4, 33.7, 24.0. HRMS (ESI): Calc. for C₂₁H₂₃NO₅S₂Na (M+Na)⁺: 456.0910; found: 456.0913.

(9s,10s)-10-(N-p-tolylmethylsulfonamido)-9,10-dihydroanthracen-9-yl pivalate (20) : A solution of bis(*tert*-butylcarbonyloxy)iodobenzene (0.096 mmol, 1.6 equiv.) in (CF₃)₂CHOH ("HFIP", 0.2 ml) was added dropwise on 30 second to a vigorously stirred solution of sulfonamide **15a** (11.1 mg, 0.060 mmol, 1 equiv.) and the anthracene (0.299 mmol, 5.0 equiv.) in HFIP/DCM (2:1; ml) and Na₂CO₃ at -4 °C. The mixture was then stirred for 30 seconds and quenched with NaHCO₃. The phases were separated and the aqueous phase extracted with EtOAc. The organic phases were dried over Na₂SO₄, filtered and concentrated under vacuum. The residue was purified by silica gel chromatography with a mixture of ethyl acetate/hexane to afford **20** in 46% yield (0.027 mmol, 12.1 mg). ¹H NMR (300 MHz, CDCl₃) δ 7.81 (d, *J* = 7.5 Hz, 2H), 7.46 (t, *J* = 7.4 Hz, 2H), 7.35 (t, *J* = 7.1 Hz, 2H), 7.02 (d, *J* = 7.8 Hz, 2H), 6.85 (d, *J* = 7.0 Hz, 2H), 6.84 (s, 1H), 6.16 (d, *J* = 8.2 Hz, 2H), 5.52 (s, 1H), 3.00 (s, 3H), 2.26 (s, 3H), 1.30 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 178.2, 139.7, 138.4, 133.2, 131.9, 131.7, 129.7, 129.4, 128.5, 128.5, 125.2, 66.4, 60.3, 41.1, 39.1, 27.4, 21.3. HRMS (ESI): Calc. for C₂₇H₃₀NO₄S (M+H)⁺: 464.1890; found: 464.1882.

General procedure for the formation of coupling product 5:

Trifluoroacetic acid (0.55 mmol, 5.0 equiv.) was added to a solution of cycloaddition product **21** (0.11 mnol, 1.0 equiv.) in DCM at room temperature and the solution was heated at 40 °C. After completion, the solution was evaporated under reduced pressure and purified by silica gel chromatography with a mixture of ethyl acetate/hexane to give the corresponding coupling product **5**.

2'-iodo-5-(2-(phenylsulfonyl)ethyl)-[1,1'-biphenyl]-2-ol (5a): Pale yellow oil: 0.032 mmol, 15.0 mg, 97% yield; ¹H NMR (300 MHz, CDCl₃) δ 8.01 – 7.92 (m, 3H), 7.67 – 7.54 (m, 3H), 7.43 (dd, *J* = 7.4, 6.6 Hz, 1H), 7.24 (d, *J* = 1.6 Hz, 1H), 7.08 (ddd, *J* = 15.8, 8.0, 1.9 Hz, 2H), 6.88 (d, *J* = 8.3 Hz, 1H), 6.83 (d, *J* = 2.1 Hz, 1H), 3.41 – 3.32 (m, 2H), 3.06 – 2.98 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 151.2, 141.5, 139.9, 139.2, 133.9, 131.3, 131.0, 130.3, 130.1, 129.8, 129.5, 129.4, 128.9, 128.3, 116.4, 100.6, 57.9, 28.1; IR ν (cm–1) 3418, 1634, 1511, 1446, 1306, 1149; HRMS (ESI): Calc. for C₂₀H₁₈IO₃S (M+H)⁺: 465.0016; found: 465.0013.

2'-iodo-5'-methyl-5-(2-(phenylsulfonyl)ethyl)-[1,1'-biphenyl]-2-ol (5b): Pale yellow oil: 0.051 mmol, 24.5 mg, 91% yield; ¹H NMR (300 MHz, CDCl₃) δ 7.94 (d, *J* = 7.1 Hz, 2H), 7.82 (d, *J* = 8.1 Hz, 1H), 7.67 – 7.53 (m, 3H), 7.07 (d, *J* = 1.9 Hz, 1H), 7.04 (dd, *J* = 8.3, 2.3 Hz, 1H), 6.92 (dd, *J* = 8.2, 2.1 Hz, 1H), 6.87 (d, *J* = 8.3 Hz, 1H), 6.82 (d, *J* = 2.2 Hz, 1H), 3.41 – 3.33 (m, 2H), 3.05 – 2.97 (m, 2H), 2.32 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 151.2, 141.2, 139.6, 139.2, 139.1, 133.9, 131.8, 131.3, 131.2, 130.3, 129.7, 129.5, 129.4, 128.3, 116.3, 96.3, 57.9, 28.1, 21.0; HRMS (ESI): Calc. for C₂₁H₂₃INO₃S (M+NH₄)⁺: 496.0438; found: 496.0416.

5'-ethyl-2'-iodo-5-(2-(phenylsulfonyl)ethyl)-[1,1'-biphenyl]-2-ol (5c): Pale yellow oil: 0.041 mmol, 20.0 mg, 98% yield; ¹H NMR (300 MHz, CDCl₃) δ 7.94 (d, *J* = 7.1 Hz, 2H), 7.85 (d, *J* = 8.1 Hz, 1H), 7.67 – 7.55 (m, 3H), 7.09 (d, *J* = 2.1 Hz, 1H), 7.05 (dd, *J* = 8.3, 2.2 Hz, 1H), 6.98 – 6.91 (m, 1H), 6.88 (d, *J* = 8.3 Hz, 1H), 6.83 (d, *J* = 2.1 Hz, 1H), 4.71 (s, 1H), 3.41 – 3.33 (m, 2H), 3.05 – 2.98 (m, 2H), 2.62 (q, *J* = 7.6 Hz, 2H), 1.23 (t, *J* = 7.5 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 151.2, 145.4, 141.2, 139.8, 139.2, 133.9, 131.4, 130.6, 130.3, 130.0, 129.7, 129.5, 129.4, 128.3, 116.3, 96.5, 57.9, 28.4, 28.1, 15.4; HRMS (ESI): Calc. for C₂₂H₂₂IO₃S (M+H)⁺: 493.0329; found: 493.0324. **2'-iodo-5'-isopropyl-5-(2-(phenylsulfonyl)ethyl)-[1,1'-biphenyl]-2-ol (5d):** Pale yellow oil: 0.059 mmol, 29.7 mg, 90% yield; ¹H NMR (300 MHz, CDCl₃) δ 7.95 (d, *J* = 7.2 Hz, 2H), 7.86 (d, *J* = 8.2 Hz, 1H), 7.67 – 7.57 (m, 4H), 7.12 (d, *J* = 2.2 Hz, 1H), 7.05 (dd, *J* = 8.3, 2.1 Hz, 1H), 6.98 (d, *J* = 8.3 Hz, 2H), 6.88 (d, *J* = 8.3 Hz, 1H), 6.84 (d, *J* = 2.1 Hz, 1H), 3.42 – 3.34 (m, 2H), 3.06 – 2.97 (m, 2H), 2.94 – 2.83 (m, 1H), 1.23 (t, *J* = 6.7 Hz, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 151.2, 150.2, 141.2, 139.8, 139.1, 137.5, 134.0, 131.5, 130.3, 129.7, 129.5, 129.4, 129.3, 128.8, 128.6, 128.3, 116.3, 96.6, 57.9, 33.8, 28.1, 23.9, 23.9; IR υ (cm–1) 3426, 1509, 1446, 1306, 1149; HRMS (ESI): Calc. for C₂₃H₂₄IO₃S (M+H)⁺: 507,0485; found: 507,0493.

5-(2-(phenylsulfonyl)ethyl)-[1,1'-biphenyl]-2-ol (5e): Pale yellow oil: 0.082 mmol, 27.7 mg, 97% yield; ¹H NMR (300 MHz, CDCl₃) δ 7.93 (d, *J* = 7.2 Hz, 2H), 7.67 – 7.55 (m, 3H), 7.50 – 7.37 (m, 5H), 7.02 – 6.96 (m, 2H), 6.87 (d, *J* = 8.1 Hz, 1H), 3.42 – 3.33 (m, 2H), 3.06 – 2.97 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 151.5, 139.2, 136.8, 133.9, 130.2, 129.7, 129.5, 129.4, 129.1, 129.0, 128.6, 128.2, 128.2, 116.4, 57.9, 28.1; IR υ (cm–1) 3425, 1446, 1305, 1149; HRMS (ESI): Calc. for C₄₀H₃₆NaO₆S₂ (2M+Na)⁺: 699.1846; found: 699.1823.

2'-iodo-5-(2-((4-methoxyphenyl)sulfonyl)ethyl)-[1,1'-biphenyl]-2-ol (5f): Pale yellow oil: 0.025 mmol, 12.3 mg, 87% yield; ¹H NMR (300 MHz, CDCl₃) δ 8.00 – 7.95 (m, 1H), 7.85 (d, J = 8.9 Hz, 2H), 7.43 (dt, J = 7.5, 3.7 Hz, 1H), 7.08 (ddd, J = 15.7, 7.9, 1.9 Hz, 2H), 7.02 (d, J = 8.9 Hz, 2H), 6.88 (d, J = 8.3 Hz, 1H), 6.83 (d, J = 2.1 Hz, 1H), 3.88 (s, 3H), 3.38 – 3.30 (m, 2H), 3.05 – 2.95 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 164.0, 151.2, 141.6, 139.9, 131.3, 131.0, 130.5, 130.3, 130.1, 129.8, 129.6, 128.9, 128.4, 116.4, 114.7, 100.6, 58.2, 55.9, 28.3; IR υ (cm–1) 3418, 1594, 1497, 1262, 1144; HRMS (ESI): Calc. for C₂₁H₂₀IO₄S (M+H)⁺: 495.0121; found: 495.0116.

2-(naphthalen-1-yl)-4-(2-(phenylsulfonyl)ethyl)phenol (5g): Pale yellow oil: 0.030 mmol, 11.5 mg, 98% yield; ¹H NMR (300 MHz, CDCl₃) δ 7.92 (dd, *J* = 5.3, 3.2 Hz, 4H), 7.63 (d, *J* = 7.3 Hz, 1H), 7.55 (t, *J* = 7.8 Hz, 5H), 7.49 (dd, *J* = 8.5, 1.3 Hz, 1H), 7.42 (t, *J* = 7.5 Hz, 2H), 7.12 (dd, *J* = 8.3, 2.3 Hz, 1H), 7.00 (d, *J* = 2.2 Hz, 1H), 6.96 (d, *J* = 8.3 Hz, 1H), 3.42 – 3.35 (m, 2H), 3.09 – 3.01 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 152.3, 139.3, 134.1, 133.9, 133.7, 131.8, 131.0, 129.5, 129.5, 129.2, 128.7, 128.3, 128.2, 127.0, 126.8, 126.6, 125.9, 125.6, 116.2, 57.9, 28.1; HRMS (ESI): Calc. for C₂₄H₂₄NO₃S (M+NH₄)⁺: 406.1471; found: 406.1453. N-(4-methyl-2-(naphthalen-1-yl)phenyl)ethanesulfonamide (5h): Pale yellow oil: 0.074 mmol, 24.0 mg, 97% yield; ¹H NMR (300 MHz, CDCl₃) δ 7.95 (d, J = 8.2 Hz, 2H), 7.62 – 7.46 (m, 5H), 7.41 (dd, J = 7.0, 1.1 Hz, 1H), 7.30 (dd, J = 8.3, 1.6 Hz, 1H), 7.22 (d, J = 1.9 Hz, 1H), 2.83 (q, J = 7.4 Hz, 2H), 2.41 (s, 3H), 0.80 (t, J = 7.4 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 135.0, 134.8, 134.0, 132.6, 132.1, 131.8, 131.6, 130.0, 129.2, 128.9, 127.6, 127.2, 126.7, 125.8, 125.2, 120.8, 46.1, 20.9, 7.9; IR υ (cm–1) 3357, 1498, 1333, 1153; HRMS (ESI): Calc. for C₁₉H₂₀NO₂S (M+H)⁺: 326.1209; found: 326.1203.

N-(2-(naphthalen-1-yl)-4-propylphenyl)methanesulfonamide (5i): Pale yellow oil: 0.051 mmol, 17.2 mg, 83% yield; ¹H NMR (300 MHz, CDCl₃) δ 7.95 (d, J = 8.2 Hz, 2H), 7.68 (d, J = 8.3 Hz, 1H), 7.61 – 7.51 (m, 2H), 7.46 (d, J = 3.2 Hz, 2H), 7.39 (d, J = 7.0 Hz, 1H), 7.30 (dd, J = 8.3, 1.9 Hz, 1H), 7.15 (d, J = 1.9 Hz, 1H), 2.69 (s, 3H), 2.67 – 2.59 (m, 2H), 1.68 (sx, J = 7.4 Hz, 2H), 0.97 (t, J = 7.3 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 139.8, 135.0, 134.1, 132.7, 131.8, 131.7, 131.5, 129.4, 129.2, 128.9, 127.7, 127.2, 126.7, 125.8, 125.1, 120.9, 39.4, 37.4, 24.6, 13.9; HRMS (ESI): Calc. for C₂₀H₂₂NO₂S (M+H)⁺: 340.1366; found: 340.1359.

N-(4-isopropyl-2-(naphthalen-1-yl)phenyl)methanesulfonamide (5j): Pale yellow oil: 0.105 mmol, 35.8 mg, 97% yield; ¹H NMR (300 MHz, CDCl₃) δ 7.96 (d, *J* = 8.2 Hz, 2H), 7.68 (d, *J* = 8.4 Hz, 1H), 7.60 – 7.52 (m, 2H), 7.48 – 7.45 (m, 2H), 7.40 (dd, *J* = 7.0, 1.1 Hz, 1H), 7.35 (dd, *J* = 8.4, 2.2 Hz, 1H), 7.19 (d, *J* = 2.1 Hz, 1H), 2.95 (h, *J* = 6.9 Hz, 1H), 2.69 (s, 3H), 1.27 (d, *J* = 1.8 Hz, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 146.0, 135.1, 134.1, 132.7, 131.8, 131.7, 129.6, 129.2, 128.9, 127.7, 127.4, 127.2, 126.7, 125.8, 125.1, 121.0, 39.5, 33.7, 24.1; HRMS (ESI): Calc. for C₂₀H₂₂NO₂S (M+H)⁺: 340.1366; found: 340.1352.

N-(4-(2-hydroxyethyl)-2-(naphthalen-1-yl)phenyl)methanesulfonamide (5k): Pale yellow oil: 0.016 mmol, 5.5 mg, 76% yield; ¹H NMR (300 MHz, CDCl₃) δ 7.96 (d, *J* = 8.3 Hz, 2H), 7.72 (d, *J* = 8.4 Hz, 1H), 7.55 (ddd, *J* = 7.6, 6.5, 5.0 Hz, 2H), 7.45 (d, *J* = 3.7 Hz, 2H), 7.40 – 7.33 (m, 2H), 7.20 (d, *J* = 2.0 Hz, 1H), 6.01 (s, 1H), 3.91 (t, *J* = 6.5 Hz, 2H), 2.91 (t, *J* = 6.5 Hz, 2H), 2.72 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 135.7, 134.6, 134.1, 133.5, 132.1, 131.9, 131.7, 130.0, 129.4, 129.0, 127.8, 127.3, 126.8, 125.8, 125.0, 120.9, 63.6, 39.6, 38.6; IR υ (cm–1) 3349, 1496, 1329, 1155; HRMS (ESI): Calc. for C₁₉H₁₉NNaO₃S (M+Na)⁺: 364.0978; found: 364.0968.

4-(methylsulfonamido)-3-(naphthalen-1-yl)phenethyl 2,2,2-trifluoroacetate (5l): Pale yellow oil: 0.038 mmol, 16.5 mg, 79% yield; ¹H NMR (300 MHz, CDCl₃) δ 7.97 (d, *J* = 8.2 Hz, 2H), 7.75 (d, *J* = 8.4 Hz, 1H), 7.62 – 7.51 (m, 2H), 7.50 – 7.32 (m, 5H), 7.19 (d, *J* = 1.9 Hz, 1H), 4.59 (t, *J* = 6.8 Hz, 2H), 3.09 (t, *J* = 6.8 Hz, 2H), 2.73 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 134.2, 133.1, 132.1, 131.9, 131.7, 129.9, 129.6, 129.0, 127.7, 127.4, 126.9, 125.8, 124.9, 120.7, 68.2, 39.6, 34.1; HRMS (ESI): Calc. for C₂₁H₁₈F₃NNaO₄S (M+Na)⁺: 460.0801; found: 460.0795.

N-(2-(naphthalen-1-yl)-4-(2-(phenylsulfonyl)ethyl)phenyl)methanesulfonamide (5m):

Pale yellow oil: 0.011 mmol, 5.0 mg, 94% yield; ¹H NMR (300 MHz, CDCl₃) δ 7.94 (t, *J* = 6.8 Hz, 4H), 7.72 – 7.63 (m, 2H), 7.62 – 7.51 (m, 4H), 7.44 (t, *J* = 7.5 Hz, 1H), 7.37 – 7.31 (m, 2H), 7.08 (d, *J* = 1.6 Hz, 1H), 5.98 (s, 1H), 3.44 – 3.36 (m, 2H), 3.15 – 3.06 (m, 2H), 2.71 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 139.2, 134.4, 134.0, 132.0, 131.6, 131.4, 129.6, 129.6, 129.4, 129.1, 128.3, 127.7, 127.4, 126.9, 125.8, 124.8, 120.8, 57.5, 39.7, 28.2; HRMS (ESI): Calc. for C₂₅H₂₄NO₄S₂ (M+H)⁺: 466.1141; found: 466.1133.

General procedure for the formation of coupling product 23:

A solution of bis(*tert*-butylcarbonyloxy)iodobenzene (0.17 mmol, 1.6 equiv.) in $(CF_3)_2$ CHOH ("HFIP", 0.35 ml) was added dropwise on 30 second to a vigorously stirred solution of sulfamide **22** (0.11 mmol, 1 equiv.) and naphthalene (0.55 mmol, 5.0 equiv.) in HFIP/DCM (2:1; ml) at -4 °C. The mixture was then stirred for 30 seconds and quenched with NaHCO₃. The phases were separated and the aqueous phase extracted with EtOAc. The organic phases were dried over Na₂SO₄, filtered and concentrated under vacuum. The residue was purified by silica gel chromatography with a mixture of ethyl acetate/hexane to give the corresponding coupling product **23**.

N-(4-methyl-2-(naphthalen-1-yl)phenyl)pyrrolidine-1-sulfonamide (23a): Pale yellow oil: 0.035 mmol, 12.9 mg, 55% yield; ¹H NMR (300 MHz, CDCl₃) δ 8.37 (d, *J* = 8.3 Hz, 1H), 7.89 (d, *J* = 7.5 Hz, 1H), 7.85 (d, *J* = 8.2 Hz, 2H), 7.57 – 7.48 (m, 3H), 7.46 (d, *J* = 8.3 Hz, 2H), 7.09 (d, *J* = 8.3 Hz, 2H), 3.36 (t, *J* = 6.6 Hz, 4H), 2.28 (s, 3H), 1.72 – 1.65 (m, 4H); ¹³C NMR (75 MHz, CDCl₃) δ 140.2, 138.2, 135.9, 135.1, 132.0, 129.7, 128.9, 128.4, 128.0, 127.1, 126.4, 125.6, 125.5, 123.8, 49.0, 25.8, 21.0; HRMS (ESI): Calc. for C₂₁H₂₃N₂O₂S (M+H)⁺: 367.1475; found: 367.1471.

N-(4-ethyl-2-(naphthalen-1-yl)phenyl)pyrrolidine-1-sulfonamide (23b): Pale yellow oil: 0.057 mmol, 21.6 mg, 64% yield; ¹H NMR (300 MHz, CDCl₃) δ 8.38 (d, J = 8.3 Hz, 1H), 7.90 (d, J = 7.4 Hz, 1H), 7.85 (d, J = 8.2 Hz, 2H), 7.58 – 7.45 (m, 5H), 7.11 (d, J = 8.5 Hz, 2H), 3.36 (t, J = 6.6 Hz, 4H), 2.58 (q, J = 7.6 Hz, 2H), 1.71 – 1.64 (m, 4H), 1.17 (t, J = 7.6Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 142.2, 140.3, 138.2, 135.1, 132.1, 128.9, 128.5, 128.4, 128.1, 127.1, 126.4, 125.6, 125.5, 123.8, 49.0, 28.4, 25.8, 15.5; IR υ (cm–1) 1595, 1506, 1343, 1156; HRMS (ESI): Calc. for C₂₂H₂₄N₂NaO₂S (M+Na)⁺: 403.1451; found: 403.1431.

N-(4-isopropyl-2-(naphthalen-1-yl)phenyl)pyrrolidine-1-sulfonamide (23c): Pale yellow oil: 0.031 mmol, 12.4 mg, 54% yield; ¹H NMR (300 MHz, CDCl₃) δ 8.39 (d, J = 8.3 Hz, 1H), 7.90 (d, J = 7.4 Hz, 1H), 7.85 (d, J = 8.1 Hz, 2H), 7.59 – 7.45 (m, 5H), 7.13 (d, J = 8.5 Hz, 2H), 3.35 (t, J = 6.5 Hz, 4H), 2.92 – 2.76 (m, 1H), 1.71 – 1.63 (m, 4H), 1.18 (d, J = 6.9 Hz, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 146.8, 140.3, 138.2, 135.1, 132.1, 128.9, 128.4, 128.0, 127.1, 126.4, 125.6, 125.5, 123.8, 49.0, 33.7, 25.8, 24.0. IR ν (cm–1) 1498, 1343, 1156; HRMS (ESI): Calc. for C₂₃H₂₇N₂O₂S (M+H)⁺: 395.1788; found: 395.1797.

N-(4-chloro-2-(naphthalen-1-yl)phenyl)pyrrolidine-1-sulfonamide (23d): Pale yellow oil: 0.054 mmol, 21.0 mg, 81% yield; ¹H NMR (300 MHz, CDCl₃) δ 8.27 – 8.21 (m, 1H), 7.92 – 7.79 (m, 4H), 7.58 – 7.48 (m, 3H), 7.48 – 7.40 (m, 3H), 7.23 (d, *J* = 8.9 Hz, 2H), 3.33 (d, *J* = 6.4 Hz, 4H), 1.72 – 1.66 (m, 4H); ¹³C NMR (75 MHz, CDCl₃) δ 141.5, 137.4, 135.1, 131.9, 131.1, 129.5, 129.4, 129.2, 128.6, 128.7, 127.4, 126.6, 125.8, 125.6, 123.5, 49.0, 25.8. HRMS (ESI): Calc. for C₂₀H₁₉ClKN₂O₂S (M+K)⁺: 425.0487; found: 425.0466.

N-(2-(naphthalen-1-yl)-4-(trimethylsilyl)phenyl)pyrrolidine-1-sulfonamide (23e):

Pale yellow oil: 0.056 mmol, 23.7 mg, 52% yield; ¹H NMR (300 MHz, CDCl₃) δ 8.32 (d, *J* = 8.0 Hz, 1H), 7.90 – 7.82 (m, 3H), 7.52 (q, *J* = 8.0 Hz, 4H), 7.43 (q, *J* = 8.6 Hz, 4H), 3.37 (s, 4H), 1.72 – 1.65 (m, 4H), 0.21 (s, *J* = 3.2 Hz, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 143.3, 137.7, 137.3, 135.1, 134.2, 132.2, 129.1, 128.4, 128.4, 127.2, 126.5, 125.6, 123.8, 123.5, 49.0, 25.8, -1.0; IR υ (cm–1) 1592, 1499, 1347, 1157; HRMS (ESI): Calc. for C₄₆H₅₆N₄NaO₄S₂Si (2M+Na)⁺: 871.3174; found: 871.3148.

Diethyl 8-(2-(phenylsulfonyl)ethyl)-1,4,4a,9b-tetrahydro-1,4pidiazanodibenzo[b,d]furan-10,11-dicarboxylate (26) :

To a solution of **12a** (36.7 mg, 0.079 mmol, 1.0 equiv.) in benzene (1.0 ml) was added DEAD (0.094 mmol, 1.2 equiv.). The reaction was heated at 60°C and the reaction was followed by TLC. After completion, the mixture was rapidly purified by silica gel chromatography with a mixture of ethyl acetate/hexane and the residue was treated with LiOH in THF/H₂O (1:1) at 40°C. After 24h, the reaction was quenched with NH₄Cl. The phases were separated and the aqueous phase extracted with EtOAc. The organic phases were dried over Na₂SO₄, filtered and concentrated under vacuum. The residue was purified by silica gel chromatography with a mixture of ethyl acetate/hexane to afford **26** in 59 % yield (0.047 mmol, 29.5 mg). ¹H NMR (300 MHz, CDCl₃) δ 7.95 (d, *J* = 7.3 Hz, 2H), 7.72 – 7.64 (m, 1H), 7.63 – 7.50 (m, 3H), 6.91 (d, *J* = 7.7 Hz, 1H), 6.62 (s, 1H), 6.55 (d, *J* = 8.2 Hz, 1H), 6.35 (s, 1H), 5.20 – 5.00 (m, 2H), 4.89 (s, 1H), 4.34 – 4.10 (m, 4H), 3.39 – 3.29 (m, 2H), 3.07 – 2.96 (m, 2H), 1.35 – 1.22 (m, 7H); ¹³C NMR (75 MHz, CDCl₃) δ 160.2, 157.2, 139.2, 133.9, 129.8, 129.5, 128.2, 125.4, 109.8, 80.7, 63.4, 63.2, 58.0, 54.4, 51.0, 28.4, 14.6, 14.5; HRMS (ESI): Calc. for C₂₆H₂₇IN₂O₇S (M+H)⁺: 638.0578; found: 638.0568.

10-methyl-7-(methylsulfonyl)-6,6a,7,11b-tetrahydro-5H-benzo[c]carbazole (27):

To a solution of **17a** (23.2 mg, 0.075 mmol, 1.0 equiv.) in MeOH (2.0 mL) was added Pd/C (0.0038mmol, 0.05 equiv.). The mixture was stirred at room temperature and the reaction was followed by Mass Spectroscopy. After completion the mixture was filtered through Celite and concentrated under vacuum. The residue was purified by silica gel chromatography with a mixture of ethyl acetate/hexane to afford **28** in 66% yield (0.049 mmol, 15.4 mg).¹H NMR (300 MHz, CDCl₃) δ 7.39 (d, *J* = 7.3 Hz, 1H), 7.34 – 7.29 (m, 2H), 7.21 (td, *J* = 7.4, 1.3 Hz, 1H), 7.12 (d, *J* = 7.5 Hz, 1H), 6.98 (d, *J* = 8.2 Hz, 1H), 6.90 (s, 1H), 4.81 – 4.71 (m, 2H), 2.93 (d, *J* = 7.0 Hz, 3H), 2.69 (t, *J* = 6.0 Hz, 2H), 2.38 – 2.26 (m, 1H), 2.23 (s, 3H), 2.03 – 1.89 (m, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 138.7, 138.2, 135.0, 134.6, 134.4, 129.3, 129.0, 128.8, 127.0, 126.7, 125.9, 115.2, 63.1, 44.9, 36.4, 29.8, 26.2, 21.1. HRMS (ESI): Calc. for C₁₈H₂₀NO₂S (M+H)⁺: 314.1209; found: 314.1211.

10-methyl-7-(methylsulfonyl)-6,6a,7,11b-tetrahydro-5H-benzo[c]carbazole-5,6-diol (28) : To a solution of **17a** (18.7 mg, 0.060 mmol, 1.0 equiv.) in THF (1.5 mL) was added OsO_4 (0.012 mmol, 0.2 equiv.) and NMO (0.120 mmol, 2.0 equiv.). The mixture was stirred at room temperature and the reaction was followed by TLC. After completion, $Na_2S_2O_3$ was added, followed by Celite and EtOAc. The mixture was stirred during 30 minutes, filtered through Celite and concentrated under vacuum. The residue was purified by silica gel chromatography with a mixture of ethyl acetate/hexane to afford **28** in 60% yield (0.036 mmol, 12.5 mg). ¹H NMR (300 MHz, CDCl₃) δ 7.46 (d, *J* = 4.0 Hz, 2H), 7.37 (d, *J* = 8.2 Hz, 2H), 7.03 (d, *J* = 8.4 Hz, 1H), 6.99 (s, 1H), 4.85 (t, *J* = 9.9 Hz, 1H), 4.81 – 4.74 (m, 2H), 4.01 (dd, *J* = 7.4, 2.8 Hz, 1H), 2.97 (s, 3H), 2.26 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 137.6, 135.5, 135.0, 134.2, 133.1, 130.0, 129.4, 129.2, 129.0, 127.9, 125.3, 117.2, 70.9, 69.5, 65.3, 44.7, 37.0, 21.2. HRMS (ESI): Calc. for C₁₈H₂₀NO₄S (M+H)⁺: 346.1108; found: 346.1102.

III. Copies of ¹H and ¹³C NMR spectra

CDCl₃, 300 MHz

22

CDCl₃, 300 MHz

CDCl₃, 300 MHz

CDCl₃, 300 MHz

44

45

74

CDCl₃, 300 MHz

86

88

CDCl₃, 300 MHz

CDCl₃, 300 MHz

100

CDCl₃, 300 MHz

106

CDCl₃, 300 MHz

