Chemical Science

Synthesis and Solution-State Dynamics of Donor-Acceptor Oligorotaxane Foldamers

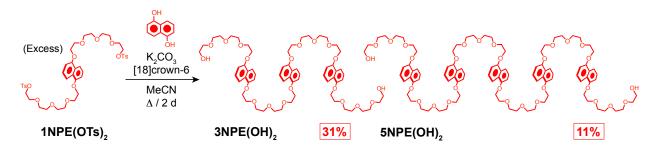
Zhixue Zhu, [†] Carson J. Bruns, ^{†,‡} Hao Li, [†] Juying Lei, [†] Chenfeng Ke, [†] Zhichang Liu, [†] Saman Shafaie, [†] Howard M. Colquhoun, [§] J. Fraser Stoddart ^{†,‡}*

[‡]NanoCentury KAIST Institute, Graduate School of Energy, Environment, Water, and Sustainability (World Class University), Korea Advanced Institute of Science and Technology (KAIST), 373-1 Guseong Dong, Yuseong Gu, Daejeon 305-701 (Republic of Korea)

§Department of Chemistry, University of Reading, Whiteknights, Reading, RG6 6AD (UK)

ELECTRONIC SUPPLEMENTARY INFORMATION

Table of Contents

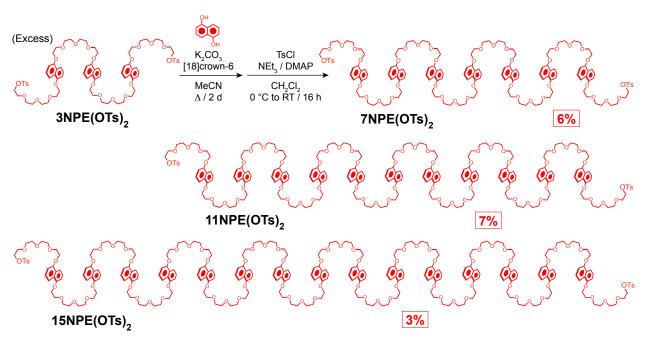

1.	General Methods	S2
2.	Synthetic Procedures	S2
3.	Analysis of the ¹ H NMR Spectra of the Rotaxanes	S20
4.	References	S4 4

[†]Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois, 60208 (USA)

1. General Methods

All reagents and solvents were purchased from commercial suppliers (Aldrich or Fisher) and used without further purification. Cyclobis(paraquat-p-phenylene) hexafluorophosphate (CBPQT·4PF₆), S1 1NPE(OTs)₂, S2 and 3NPE(OTs)₂, S3 5NPE(OTs)₂, S3 and the stopper precursor S1^{S4} were prepared according to literature procedures. All reactions were performed in dry solvents under a nitrogen atmosphere unless otherwise stated. Thin layer chromatography (TLC) was performed on silica gel 60 F₂₅₄ (E. Merck) and visualized under a UV lamp at 254 nm. Column chromatography was carried out on silica gel 60F (Merck 9385, 0.040-0.063 mm). Nuclear magnetic resonance (NMR) spectra were recorded on Bruker Avance 500 and 600 spectrometers, with working frequencies of 500 and 600 MHz for ¹H, and 125 and 150 MHz for ¹³C nuclei, respectively. Chemical shifts are reported in ppm and referenced to the residual nondeuterated solvents for ¹H (CDCl₃: $\delta = 7.26$ ppm, CD₂Cl₂: $\delta = 5.32$ ppm, CD₃CN: $\delta = 1.94$ ppm) and ¹³C (CDCl₃: $\delta = 77.0$ ppm, CD₂Cl₂: $\delta = 54.0$ ppm, CD₃CN: $\delta = 1.32$ ppm). High-resolution mass spectra (HRMS) were measured in electrospray ionization (ESI) mode on Agilent 6210 LC-TOF mass spectrometer with sample introduction via an Agilent 1200 HPLC. Gel permeation chromatography (GPC) was performed using an Agilent 100 Series pump with a Viscotek ViscoGEL GPC column, coupled to a Wyatt DAWN HELEOS-II multi-angle light scattering detector and an OPTILAB rEX refractive index detector. Analyses were carried out in THF solution (5 mg·mL⁻¹) at room temperature, with a flow rate of 1.0 mL·min⁻¹ and with an injection volume of 100 µL

2. Synthetic Procedures

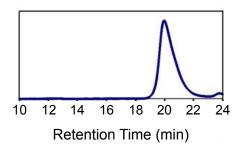


Scheme S1. One-pot synthesis of oligomers 3NPE(OH)₂ and 5NPE(OH)₂

One-pot synthesis of oligomers 3NPE(OH)₂ and 5NPE(OH)₂: A dry round-bottomed flask was charged with 1,5-dihydroxynaphthalene (16.02 g, 100 mmol) and dry MeCN (400 mL) under a nitrogen atmosphere. K₂CO₃ (41.46 g, 300 mol) and 18-crown-6 (1.32 g, 5 mmol) were introduced and the mixture was heated under reflux for 1 h before 1NPE(OTs)₂ (123.1 g, 150 mmol) was added and the reaction mixture was heated under reflux for a further 48 h. The solvent was removed under reduced pressure and the reaction mixture washed with H₂O and extracted into CH₂Cl₂. The organic layers were dried (Na₂SO₄) and evaporated under reduced pressure. The residue was purified by column chromatography on SiO₂, eluting with a solvent gradient from EtOAc to EtOAc:MeOH (85:15, v/v) to afford pure 3NPE(OH)₂ and 5NPE(OH)₂. The higher oligomers 7NPE(OH)₂ and 9NPE(OH)₂ were collected as a mixture in small quantity.

3NPE(OH)₂: 35.6 g, 31%; ¹H NMR (500 MHz, CDCl₃, 298 K): $\delta = 7.84$ (d, J = 8.5 Hz, 2H), 7.83 (d, J = 8.4 Hz, 4H), 7.31 (t, J = 7.6 Hz, 2H), 7.30 (t, J = 7.6 Hz, 2H), 7.29 (t, J = 8.4 Hz, 2H), 6.80 (d, J = 7.4 Hz, 2H), 6.79 (d, J = 7.6 Hz, 2H), 6.77 (d, J = 7.7 Hz, 2H), 4.28–4.22 (m, 12H), 3.98–3.94 (m, 12H), 3.80–3.77 (m, 12H), 3.71–3.67 (m, 16H), 3.65–3.64 (m, 8H), 3.57–3.55 (m, 4H) ppm. ¹³C NMR (125 MHz, CDCl₃, 298 K): $\delta = 160.2$, 128.7, 123.6, 115.3, 105.7, 70.7, 70.4, 69.6, 62.9 ppm. HRMS (ESI-TOF-MS): m/z calcd for C₆₂H₈₈NO₂₀ [$M + NH_4$]⁺: 1166.5900, found 1166.5923.

5NPE(OH)₂: 9.82 g, 11%; ¹H NMR (500 MHz, CD₂Cl₂, 298 K): $\delta = 7.87$ (d, J = 8.2 Hz, 4H), 7.86 (d, J = 8.6 Hz, 6H), 7.39 (t, J = 8.1 Hz, 2H), 7.38 (t, J = 7.9 Hz, 4H), 7.37 (t, J = 8.1 Hz, 4H), 6.89 (d, J = 7.6 Hz, 2H), 6.87 (d, J = 7.7 Hz, 2H), 6.86 (d, J = 7.8 Hz, 6H), 4.32–4.26 (m, 20H), 4.00–3.97 (m, 20H), 3.80–3.77 (m, 20H), 3.72–3.69 (m, 24H), 3.67–3.65 (m, 8H), 3.58–3.56 (m, 4H) ppm. ¹³C NMR (125 MHz, CDCl₃, 298 K): $\delta = 154.7$, 127.0, 125.6, 115.7, 106.0, 72.8, 71.3, 71.0, 70.7, 70.1, 68.4, 62.0 ppm. HRMS (ESI-TOF-MS): m/z calcd for C₉₈H₁₃₂NO₃₀ [$M + NH_4$] ⁺: 1802.8834, found 1802.8817.



Scheme S2. One-pot synthesis of extended DNP oligomers 7NPE(OTs)₂, 11NPE(OTs)₂, and 15NPE(OTs)₂

One-pot synthesis of oligomers 7NPE(OTs)₂, 11NPE(OTs)₂, and 15NPE(OTs)₂: A dry roundbottomed flask was charged with 1,5-dihydroxynaphthalene (733 mg, 4.57 mol) and dry MeCN (200 mL) under a nitrogen atmosphere. K₂CO₃ (1.898 g, 13.72 mol) and 18-crown-6 (80 mg, 0.3 mmol) were added and the mixture was heated under reflux for 1 h before 3NPE(OTs)₂ (10.0 g, 6.86 mmol) was added and the reaction mixture was heated under reflux for a further 48 h. The solvent was removed under reduced pressure and the reaction mixture was washed with H₂O and extracted into CH₂Cl₂. The organic layers were dried (Na₂SO₄) and the solvent was removed under reduced pressure. The crude product (2 g) was taken up in dry CH₂Cl₂ (50 mL) and Et₃N (526 mg, 0.725 mL, 5.2 mmol) and 4-dimethylaminopyridine (DMAP) (21 mg, 0.17 mmol) were added at 0 °C under a nitrogen atmosphere. After 5 min, a solution of p-toluenesulfonyl chloride (TsCl) (827 mg, 4.33 mmol) in CH₂Cl₂ (5 mL) was added directly to the reaction vessel. The reaction mixture was allowed to warm up to ambient temperature and it was stirred for an additional 16 h. The mixture was concentrated under reduced pressure, washed with H₂O₂, extracted into CH₂Cl₂, dried (Na₂SO₄), filtered, concentrated under reduced pressure, and purified by column chromatography on SiO₂, eluting with a solvent gradient from EtOAc to MeOH:EtOAc (1:4 v/v), to afford the individual products as colorless solids.

7NPE(OTs)₂: 700 mg, 6%; ¹H NMR (500 MHz, CD₂Cl₂, 298 K): δ = 7.90–7.86 (m, 14H), 7.80 (d, J = 8.4 Hz, 4H), 7.41–7.39 (m, 18H), 6.90–6.85 (m, 14H), 4.31–4.26 (m, 28H), 4.14–4.12 (m, 4H), 4.00–3.96 (m, 28H), 3.80–3.76 (m, 28H), 3.73–3.70 (m, 24H), 3.67–3.64 (m, 8H), 3.61–3.59 (m, 4H), 3.58–3.56 (m, 4H), 2.45 (s, 6H) ppm. ¹³C NMR (125 MHz, CD₂Cl₂, 298 K): δ = 154.8, 151.9, 145.5, 136.2, 133.2, 130.3, 128.7, 128.3, 127.0, 125.8, 125.6, 114.7, 106.3, 106.0, 71.3, 71.2, 71.0, 70.8, 70.1, 69.9, 69.0, 68.4, 30.5 ppm. HRMS (ESI-TOF-MS): m/z calcd for C₁₄₈H₁₉₂N₂O₄₄S₂ [M + 2NH₄]⁺: 1382.6164, found 1382.6164; m/z calcd for C₁₄₈H₁₉₆N₃O₄₄S₂ [M + 3NH₄]⁺: 927.7526, found 927.7584.

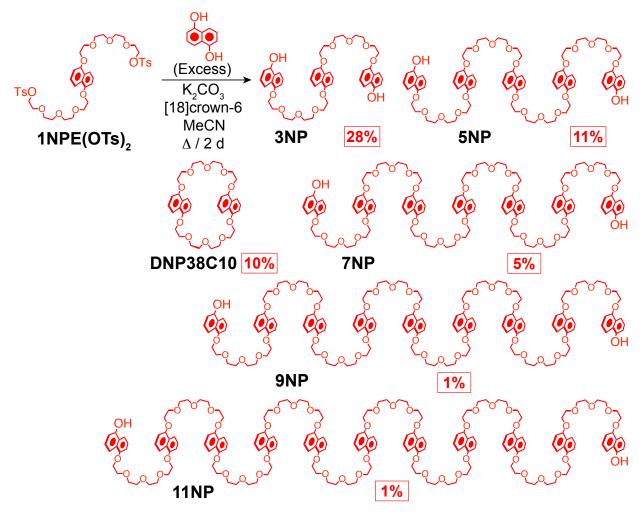

11NPE(OTs)₂: 640 mg, 7%; ¹H NMR (500 MHz, CD₂Cl₂, 298 K): δ = 7.90–7.86 (m, 22H), 7.80 (d, J = 8.3 Hz, 4H), 7.41–7.36 (m, 26H), 6.89 – 6.85 (m, 22H), 4.30–4.26 (m, 44H), 4.14–4.12 (m, 4H), 4.00–3.96 (m, 44H), 3.80–3.76 (m, 44H), 3.73–3.70 (m, 40H), 3.67–3.64 (m, 8H), 3.61–3.58 (m, 4H), 3.57–3.55 (m, 4H), 2.45 (s, 6H) ppm. ¹³C NMR (125 MHz, CD₂Cl₂, 298 K): δ = 154.7, 151.9, 145.5, 136.2, 133.2, 130.3, 128.7, 128.3, 127.0, 125.8, 125.6, 114.7, 108.3, 106.0, 71.3, 71.0, 70.8, 70.1, 69.9, 69.4, 69.0, 68.4, 68.0, 64.0, 30.5 ppm. HRMS (ESI-TOF-MS): m/z calcd for C₂₂₀H₂₈₀N₂O₆₄S₂ [M + 2NH₄]²⁺: 2018.9019, found 2018.8994; m/z calcd for C₂₂₀H₂₈₄N₃O₆₄S₂ [M + 3NH₄]³⁺: 1351.9501, found 1351.9486; m/z calcd for C₂₂₀H₂₈₈N₄O₆₄S₂ [M + 4NH₄]⁴⁺: 1018.4712, found 1018.4687.

Figure S1. GPC trace of **11NPE(OTs)**₂. $M_n = 4.49 \times 10^3$, $M_w = 4.54 \times 10^3$, PDI = 1.01

15NPE(OTs)₂: 240 mg, 3%; ¹H NMR (500 MHz, CD₂Cl₂, 298 K): δ = 7.89–7.86 (m, 30H), 7.79 (d, J = 8.3 Hz, 4H), 7.40–7.35 (m, 34H), 6.88 (d, J = 8.3 Hz, 4H), 6.87–6.84 (m, 30H), 4.30–4.25 (m, 60H), 4.13–4.11 (m, 4H), 3.99–3.96 (m, 60H), 3.80–3.76 (m, 60H), 3.72–3.68 (m, 56H), 3.66–3.64 (m, 8H), 3.60–3.58 (m, 4H), 3.57–3.55 (m, 4H), 2.45 (s, 6H) ppm. ¹³C NMR (125 MHz, CD₂Cl₂, 298 K): δ = 154.7, 151.8, 145.5, 136.2, 133.2, 130.3, 128.7, 128.3, 127.0, 125.8,

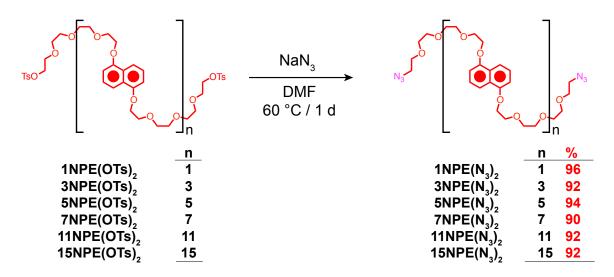
125.6, 114.7, 106.0, 71.3, 71.0, 70.8, 70.1, 69.9, 68.9, 68.4, 30.5 ppm. HRMS (ESI-TOF-MS): m/z calcd for $C_{292}H_{368}N_2O_{84}S_2$ [$M+2NH_4$]²⁺: 2655.2014, found 2655.2017; m/z calcd for $C_{292}H_{372}N_3O_{84}S_2$ [$M+3NH_4$]³⁺: 1776.1457, found 1776.1505; m/z calcd for $C_{292}H_{376}N_4O_{84}S_2$ [$M+4NH_4$]⁴⁺: 1336.6179, found 1336.6213; m/z calcd for $C_{292}H_{380}N_5O_{84}S_2$ [$M+5NH_4$]⁵⁺: 1072.9012, found 1072.8850.

Scheme S3. Synthesis of DNP oligomers

One-pot synthesis of oligomers (3NP, 5NP, 7NP, 9NP, 11NP): A dry round-bottomed flask was charged with 1,5-dihydroxynaphthalene (24.02 g, 150 mol) and dry MeCN (800 mL) under a nitrogen atmosphere. K₂CO₃ (20.73 g, 150 mol) and 18-crown-6 (2.643 g, 10 mmol) were added and the mixture was heated under reflux for 1 h before 1NPE(OTs)₂ (41.05 g, 50 mol) was added and the reaction mixture was heated under reflux for a further 48 h. The reaction

mixture was concentrated under reduced pressure, washed with H₂O, and extracted into CH₂Cl₂. The organic layers were dried (Na₂SO₄) and concentrated under reduced pressure. The crude material was purified on SiO₂, eluting with a solvent gradient from hexane:EtOAc (4:1 v/v) to EtOAc to obtain a crystalline solid, identified as **DNP38C10** (1.65 g, 10%). Continued elution in a gradient from EtOAc to MeOH:EtOAc (15:85 v/v) afforded **3NP**, **5NP**, **7NP**, **9NP**, and **11NP** as viscous liquids. Some impure fractions were subjected to repeated purification as described above.

3NP: 10.6 g, 28%; ¹H NMR (500 MHz, CDCl₃, 298 K): δ = 7.82 (d, J = 8.5 Hz, 2H), 7.77 (d, J = 8.3 Hz, 2H), 7.76 (d, J = 7.2 Hz, 2H), 7.30 (d, J = 8.3 Hz, 2H), 7.25 (d, J = 8.2 Hz, 2H), 7.12 (d, J = 8.3 Hz, 2H), 6.81 (d, J = 7.5 Hz, 2H), 6.73 (d, J = 7.6 Hz, 2H), 6.66 (d, J = 7.7 Hz, 2H), 4.22–4.20 (m, 4H), 4.19–4.17 (m, 4H), 3.97–3.96 (m, 4H), 3.95–3.94 (m, 4H), 3.83–3.79 (m, 4H), 3.77–3.76 (m, 4H) ppm. ¹³C NMR (125 MHz, CDCl₃, 298 K): δ = 154.3, 154.2, 152.3, 127.0, 126.7, 125.8, 125.3, 125.1, 124.8, 114.5, 114.4, 109.2, 105.6, 105.3, 70.9, 70.8, 70.7, 69.8, 69.7, 68.0, 67.7, 67.6 ppm. HRMS (ESI-TOF-MS): m/z calcd for C₄₆H₅₃O₁₂ [M + H]⁺: 797.3532, found 797.3505.


5NP: 3.34 g, 11%; ¹H NMR (500 MHz, CDCl₃, 298 K): δ = 7.87–7.83 (m, 8H), 7.76 (d, J = 8.4 Hz, 2H), 7.32–7.27 (m, 8H), 7.18 (t, J = 7.9 Hz, 2H), 6.90 (d, J = 7.4 Hz, 2H), 6.76–6.71 (m, 6H), 6.70 (d, J = 7.6 Hz, 2H), 4.22–4.17 (m, 16H), 3.95–3.92 (m, 16H), 3.80–3.77 (m, 16H), 3.73–3.71 (m, 16H) ppm. ¹³C NMR (125 MHz, CDCl₃, 298 K): δ = 154.3, 154.2, 152.5, 127.0, 126.7, 125.9, 125.4, 125.1, 125.0, 124.6, 114.6, 114.5, 113.6, 109.2, 105.6, 105.3, 71.0, 70.9, 70.7, 69.8, 69.7, 67.8, 67.7 ppm. HRMS (ESI-TOF-MS): m/z calcd for $C_{82}H_{97}O_{22}$ [M + H]⁺: 1433.6471, found 1433.6456.

7NP: 1.6 g, 5%; ¹H NMR (500 MHz, CDCl₃, 298 K): δ = 7.87–7.83 (m, 10H), 7.78 (d, J = 8.9 Hz, 2H), 7.76 (d, J = 8.9 Hz, 2H), 7.33–7.29 (m, 10H), 7.26 (t, J = 7.9 Hz, 2H), 7.12 (t, J = 7.9 Hz, 2H), 6.82 (d, J = 7.6 Hz, 2H), 6.78–6.75 (m, 10H), 6.65 (d, J = 7.6 Hz, 2H), 4.25–4.21 (m, 20H), 4.19–4.17 (m, 4H), 3.97–3.94 (m, 24H), 3.82–3.77 (m, 24H), 3.75–3.72 (m, 24H) ppm. ¹³C NMR (125 MHz, CDCl₃, 298 K): δ = 154.3, 152.4, 127.0, 126.7, 125.8, 125.3, 125.1, 124.7, 114.6, 113.7, 109.2, 105.6, 105.3, 71.0, 70.9, 70.8, 69.8, 68.0, 67.9, 67.8, 67.7 ppm. HRMS

(ESI-TOF-MS): m/z calcd for $C_{118}H_{144}NO_{32}[M+NH_4]^+$: 2086.9666, found 2086.9665; m/z calcd for $C_{118}H_{140}NaO_{32}[M+Na]^+$: 2091.9225, found 2091.9264.

9NP: 600 mg, 1%; ¹H NMR (500 MHz, CDCl₃, 298 K): δ = 7.88–7.84 (m, 12H), 7.80 (d, J = 8.5 Hz, 2H), 7.76 (d, J = 8.5 Hz, 2H), 7.34–7.26 (m, 14H), 7.13 (t, J = 8.2 Hz, 2H), 6.85 (d, J = 7.6 Hz, 2H), 6.78–6.75 (m, 12H), 6.68 (d, J = 7.6 Hz, 2H), 4.24–4.21 (m, 28H), 4.19–4.17 (m, 4H), 3.97–3.95 (m, 32H), 3.81–3.79 (m, 32H), 3.75–3.72 (m, 32H) ppm. ¹³C NMR (125 MHz, CDCl₃, 298 K): δ = 154.4, 154.3, 154.2, 152.3, 127.0, 126.7, 125.8, 125.3, 125.1, 124.7, 114.6, 113.8, 109.3, 105.6, 105.3, 71.0, 70.9, 70.8, 69.8, 68.0, 67.9, 67.8, 67.7 ppm. HRMS (ESI-TOF-MS): m/z calcd for C₁₅₄H₁₈₈NO₄₂ [M + NH₄]⁺: 2723.2706, found 2723.2702; m/z calcd for C₁₅₄H₁₈₄NaO₄₂ [M + Na]⁺: 2728.2160, found 2728.2228.

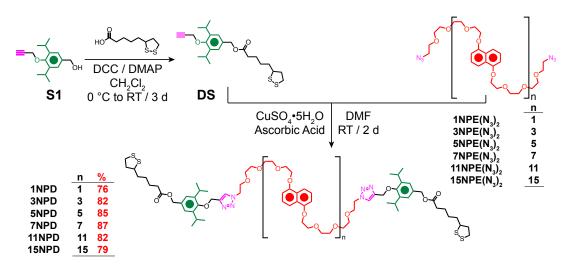
11NP: 400 mg, 1%; ¹H NMR (500 MHz, CDCl₃, 298 K): $\delta = 7.89$ –7.85 (m, 18H), 7.82 (d, J = 8.5 Hz, 2H), 7.77 (d, J = 8.4 Hz, 2H), 7.35–7.27 (m, 20H), 7.15 (t, J = 8.2 Hz, 2H), 6.87 (d, J = 7.4 Hz, 2H), 6.79–6.74 (m, 18H), 6.69 (d, J = 7.6 Hz, 2H), 4.24–4.18 (m, 36H), 3.98–3.93 (m, 36H), 3.82–3.78 (m, 36H), 3.75–3.72 (m, 36H) ppm. ¹³C NMR (125 MHz, CDCl₃, 298 K): $\delta = 154.4$, 154.3, 154.2, 152.2, 135.8, 127.0, 126.7, 125.8, 125.6, 125.3, 125.1, 124.7, 114.6, 114.5, 113.8, 109.3, 105.6, 105.3, 71.0, 70.8, 69.8, 68.0, 67.9, 67.8, 67.7 ppm. HRMS (ESI-TOF-MS): m/z calcd for $C_{190}H_{232}NO_{52}$ [$M + NH_4$]⁺: 3359.5540, found 3359.6126; m/z calcd for $C_{190}H_{228}NaO_{52}$ [M + Na]⁺: 3364.5094, found 3364.5409.

Scheme S4. Synthesis of oligomeric DNP diazides

General procedure for the synthesis of the diazides: The synthesis of $7NPE(N_3)_2$ is given as a representative example. A mixture of $7NPE(OTs)_2$ (400 mg, 0.147 mmol) and sodium azide (28.6 mg, 0.44 mmol) in DMF (30 mL) was heated at 60 °C overnight. The solvent was removed under reduced pressure and the reaction mixture was washed with H_2O and extracted into CH_2Cl_2 . The organic layers were dried (MgSO₄), concentrated under reduced pressure, and chromatographed on SiO_2 , eluting with a solvent gradient from CH_2Cl_2 to CH_2Cl_2 :MeOH (85:15 v/v) to afford the diazide $7NPE(N_3)_2$ as a pale yellow solid (326 mg, 90%).

1NPE(N₃)₂: 2.26 g, 96%; ¹H NMR (500 MHz, CDCl₃, 298 K): δ = 7.85 (d, J = 8.5 Hz, 2H), 7.34 (t, J = 8.5 Hz, 2H), 6.83 (d, J = 8.5 Hz, 2H), 4.29 (t, J = 4.7 Hz, 4H), 4.00 (t, J = 5.0 Hz, 4H), 3.82–3.80 (m, 4H), 3.72–3.68 (m, 8H), 3.66–3.63 (m, 8H), 3.35 (t, J = 5.2 Hz, 4H) ppm. ¹³C NMR (125 MHz, CDCl₃, 298 K): δ = 154.3, 126.7, 125.1, 114.6, 105.6, 71.0, 70.8, 70.7, 70.0, 69.8, 67.9, 50.7 ppm. HRMS (ESI-TOF-MS): m/z calcd for C₂₆H₃₉N₆O₈ [M + H]⁺: 563.2829, found 563.2789.

3NPE(N₃)₂: 3.31 g, 92%; ¹H NMR (500 MHz, CDCl₃, 298 K): δ = 7.85 (d, J = 8.4 Hz, 2H), 7.84 (d, J = 8.4 Hz, 4H), 7.33 (t, J = 8.4 Hz, 2H), 7.31 (t, J = 8.4 Hz, 4H), 6.81 (d, J = 8.4 Hz, 2H), 6.80 (d, J = 8.4 Hz, 2H), 6.78 (d, J = 8.4 Hz, 2H), 4.29–4.24 (m, 12H), 4.00–3.96 (m, 12H), 3.73–3.63 (m, 24H), 3.34 (t, J = 5.2 Hz, 4H) ppm. ¹³C NMR (125 MHz, CDCl₃, 298 K): δ = 154.3, 126.7, 125.1, 114.6, 105.6, 71.0, 70.8, 70.7, 70.0, 69.8, 67.9, 50.7 ppm. HRMS (ESITOF-MS): m/z calcd for $C_{62}H_{83}N_6O_{18}[M+H]^+$: 1199.5764, found 1199.5718.


5NPE(N₃)₂: 1.71 g, 94%; ¹H NMR (600 MHz, CDCl₃, 298 K): δ = 7.87 (d, J = 8.5 Hz, 2H), 7.86 (d, J = 8.5 Hz, 8H), 7.36 (t, J = 8.5 Hz, 2H), 7.35 (t, J = 8.5 Hz, 2H), 7.34 (t, J = 8.5 Hz, 6H), 6.81 (d, J = 8.5 Hz, 2H), 6.80 (d, J = 8.5 Hz, 2H), 6.78 (d, J = 8.5 Hz, 6H), 4.29–4.23 (m, 20H), 4.01–3.97 (m, 20H), 3.83–3.81 (m, 20H), 3.75–3.72 (m, 20H), 3.71–3.69 (m, 4H), 3.67–3.64 (m, 8H), 3.37 (t, J = 5.1 Hz, 4H) ppm. ¹³C NMR (125 MHz, CDCl₃, 298 K): δ = 154.3, 126.7, 125.1,

114.6, 105.6, 71.0, 70.9, 70.7, 70.0, 69.8, 67.9, 50.6 ppm. HRMS (ESI-TOF-MS): m/z calcd for $C_{98}H_{130}N_7O_{28}$ [$M + NH_4$]⁺: 1852.8964, found 1852.8948; m/z calcd for $C_{98}H_{134}N_8O_{28}S_4$ [$M + 2NH_4$]²⁺ 935.4654, found 935.4519.

7NPE(N₃)₂: 310 mg, 90%; ¹H NMR (500 MHz, CD₂Cl₂, 298 K): δ = 7.88 (d, J = 8.4 Hz, 14H), 7.40 (t, J = 8.4 Hz, 4H), 7.38 (t, J = 8.4 Hz, 10H), 6.89 (d, J = 8.4 Hz, 2H), 6.88 (d, J = 8.4 Hz, 2H), 6.86 (d, J = 8.4 Hz, 10H), 4.31–4.27 (m, 28H), 4.00–3.97 (m, 28H), 3.79–3.78 (m, 28H), 3.74–3.69 (m, 28H), 3.67–3.65 (m, 12H), 3.38 (t, J = 5.0 Hz, 4H) ppm. ¹³C NMR (125 MHz, CD₂Cl₂, 298 K): δ = 154.8, 127.1, 125.6, 114.8, 106.0, 71.3, 71.1, 71.0, 70.3, 70.1, 68.4, 68.2, 67.9, 51.2 ppm. HRMS (ESI-TOF-MS): m/z calcd for C₁₃₄H₁₇₈N₈O₃₈ [M + 2NH₄]²⁺: 1253.6116, found 1253.6072.

11NPE(N₃)₂: 250 mg, 92%; ¹H NMR (500 MHz, CD₂Cl₂, 298 K): δ = 7.89 (d, J = 8.4 Hz, 22H), 7.40 (t, J = 8.4 Hz, 4H), 7.38 (t, J = 8.4 Hz, 18H), 6.89 (d, J = 8.4 Hz, 2H), 6.88 (d, J = 8.4 Hz, 2H), 6.86 (d, J = 8.4 Hz, 18H), 4.31–4.27 (m, 44H), 4.00–3.97 (m, 44H), 3.79–3.77 (m, 44H), 3.72–3.69 (m, 44H), 3.67–3.64 (m, 12H), 3.38 (t, J = 5.0 Hz, 4H) ppm. ¹³C NMR (125 MHz, CD₂Cl₂, 298 K): δ = 154.8, 127.0, 125.6, 114.7, 106.0, 71.3, 71.0, 70.3, 70.1, 68.4, 51.2 ppm. HRMS (ESI-TOF-MS): m/z calcd for C₂₀₆H₂₆₆N₈O₅₈ [M + 2NH₄]²⁺: 1889.9055, found 1889.9040.

15NPE(N₃)₂: 250 mg, 92%; ¹H NMR (500 MHz, CD₂Cl₂, 298 K): δ = 7.88 (d, J = 8.4 Hz, 30H), 7.40 (t, J = 8.4 Hz, 4H), 7.38 (t, J = 8.4 Hz, 26H), 6.89 (d, J = 8.4 Hz, 2H), 6.88 (d, J = 8.4 Hz, 2H), 6.86 (d, J = 8.4 Hz, 26H), 4.31–4.27 (m, 60H), 4.00–3.97 (m, 60H), 3.79–3.77 (m, 60H), 3.72–3.69 (m, 60H), 3.67–3.65 (m, 12H), 3.38 (t, J = 5.1 Hz, 4H) ppm. ¹³C NMR (125 MHz, CD₂Cl₂, 298 K): δ = 154.8, 127.1, 125.6, 114.8, 106.0, 71.3, 71.1, 71.0, 70.3, 70.1, 68.4, 68.2, 51.2 ppm. HRMS (ESI-TOF-MS): m/z calcd for C₂₇₈H₃₅₄N₈O₇₈ [M + 2NH₄]²⁺: 2526.1990, found 2526.1945; m/z calcd for C₂₇₈H₃₅₈N₉O₇₈ [M + 3NH₄]³⁺: 1690.1441, found 1690.1493; m/z calcd for C₂₇₈H₃₆₂N₁₀O₇₈ [M + 4NH₄]⁴⁺: 1272.1166, found 1272.1182.

Scheme S5. Synthesis of oligomeric DNP dumbbells

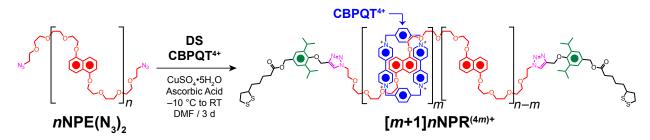
Synthesis of dithiolane stopper DS. A mixture of the stopper precursor **S1** (360 mg, 1.46 mmol) and thioctic acid (453 mg, 2.2 mmol) was stirred for 15 min at 0 °C in CH₂Cl₂ (50 mL) and DCC (604 mg, 2.93 mmol) and DMAP (54 mg, 0.44 mmol) were added. The mixture was stirred at room temperature over 3 d before filtering off a white precipitate. The filtrate was concentrated and purified by column chromatography on SiO₂ in CH₂Cl₂:hexanes (1:1 v/v) to afford stopper **DS** as yellow oil (630 mg, 99%). ¹H NMR (500 MHz, CDCl₃, 298 K): δ = 7.10 (s, 2H), 5.07 (s, 2H), 4.47 (s, 2H), 3.66–3.60 (m, 1H), 3.42–3.37 (m, 2H), 3.21–3.09 (m, 2H), 2.59 (t, J = 2.3 Hz, 1H), 2.49–2.43 (m, 1H), 2.40 (t, J = 7.4 Hz, 2H), 1.94–1.88 (m, 1H), 1.76–1.67 (m, 4H), 1.54–1.45 (m, 2H), 1.25 (d, J = 7.0 Hz, 12H) ppm. ¹³C NMR (125 MHz, CDCl₃, 298 K): δ =173.4, 152.7, 142.2, 132.6, 124.4, 79.1, 75.3, 66.4, 62.0, 56.3, 40.2, 38.5, 34.6, 34.1, 28.8, 26.8, 24.7, 24.1 ppm. HRMS (ESI-TOF-MS): m/z calcd for C₂₄H₃₄NaO₃S₂ [M + Na]⁺: 457.1847, found 457.1853.

General procedure for the synthesis of dumbbells: The synthesis of dumbbell 7NPD is given as a representative example. A mixture of $11NPE(N_3)_2$ (21.5 mg, 0.006 mmol), the alkyne stopper **DS** (10.7 mg, 0.025 mmol), and ascorbic acid (4.35 mg, 0.025 mmol) in DMF (6 mL) was stirred at room temperature for 1 h, then $CuSO_4 \cdot 5H_2O$ (3.0 mg, 0.013 mmol) was added and the reaction stirred at room temperature for 2 d. The solvent was evaporated under reduced pressure, washed with H_2O , extracted into CH_2Cl_2 , dried (MgSO₄), concentrated, and purified by column chromatography on SiO_2 , eluting with a solvent gradient from neat CH_2Cl_2 to CH_2Cl_2 :MeOH (85:15 v/v) to afford the product.

1NPD: 54 mg (0.048 mmol scale), 76%; ¹H NMR (600 MHz, CD₂Cl₂, 298 K): δ = 7.84 (s, 2H), 7.82 (d, J = 8.4 Hz, 2H), 7.33 (t, J = 8.0 Hz, 2H), 7.11 (s, 4H), 6.85 (d, J = 7.6 Hz, 2H), 5.04 (s, 4H), 4.89 (s, 4H), 4.52 (t, J = 5.1 Hz, 4H), 4.27–4.25 (m, 4H), 3.95–3.93 (m, 4H), 3.87–3.85 (m, 4H), 3.75–3.73 (m, 4H), 3.65–3.63 (m, 4H), 3.62–3.60 (m, 8H), 3.56 (tt, J = 6.3, 8.4 Hz, 2H), 3.43 (hept, J = 7.0 Hz, 4H), 3.16 (dt, J = 7.0, 12.0 Hz, 2H), 3.09 (dt, J = 7.0, 11.0 Hz, 2H), 2.46–2.41 (m, 2H), 2.37 (t, J = 7.5 Hz, 4H), 1.91–1.85 (m, 2H), 1.73–1.62 (m, 8H), 1.52–1.42 (m, 4H), 1.22 (d, J = 6.9 Hz, 24H) ppm. ¹³C NMR (125 MHz, CD₂Cl₂, 298 K): δ = 173.7, 154.8, 153.4, 144.6, 142.7, 133.1, 127.1, 125.7, 124.8, 124.3, 114.9, 106.2, 71.4, 71.1, 70.9, 70.3, 70.0, 68.6, 68.5, 66.8, 56.9, 50.8, 40.8, 39.0, 35.1, 34.6, 29.3, 27.2, 25.3, 24.3 ppm. HRMS (ESI-TOF-MS): m/z calcd for C₇₄H₁₀₇N₆O₁₄S₄ [M + H]⁺ 1431.6728, found 1431.6693; m/z calcd for C₇₄H₁₀₆N₆NaO₁₄S₄ [M + Na]⁺ 1453.6548, found 1453.6538.

3NPD: 45 mg (0.025 mmol scale), 82%; 1 H NMR (600 MHz, CD₂Cl₂, 298 K): δ = 7.86–7.82 (m, 8H), 7.35–7.32 (m, 6H), 7.11 (s, 4H), 6.85–6.83 (m, 6H), 5.05 (s, 4H), 4.90 (s, 4H), 4.51 (t, J = 5.0 Hz, 4H), 4.27–4.23 (m, 12H), 4.96–4.92 (m, 12H), 3.86 (t, J = 5.0 Hz, 4H), 3.76–3.73 m, 12H), 3.69–3.66 (m, 12H), 3.65–3.62 (m, 4H), 3.61–3.60 (m, 8H), 3.56 (tt, J = 6.3, 8.4 Hz, 2H), 3.41 (hept, J = 7.0 Hz, 4H), 3.16 (dt, J = 7.0, 12.0 Hz, 2H), 3.08 (dt, J = 7.0, 11.0 Hz, 2H), 2.46–2.41 (m, 2H), 2.37 (t, J = 7.5 Hz, 4H), 1.91–1.85 (m, 2H), 1.73–1.62 (m, 8H), 1.52–1.42 (m, 4H), 1.22 (d, J = 6.9 Hz, 24H) ppm. 13 C NMR (125 MHz, CD₂Cl₂, 298 K): δ = 173.7, 154.9, 154.8, 153.4, 144.6, 142.7, 133.1, 129.6, 129.5, 129.0, 128.6, 128.4, 127.1, 127.1, 125.7, 124.8, 114.9, 114.8, 114.7, 106.1, 71.4, 71.2, 71.1, 71.1, 71.0, 70.2, 69.9, 68.6, 68.5, 68.4, 66.8, 56.9, 50.8, 40.7, 39.0, 35.1, 34.5, 29.3, 27.1, 25.2, 24.3 ppm. HRMS (ESI-TOF-MS): m/z calcd for C₁₁₀H₁₅₁N₆O₂₄S₄ [M + H]⁺ 2067.9657, found 2067.9667; m/z calcd for C₁₁₀H₁₅₂N₆O₂₄S₄ [M + H]⁺ 1034.4865, found 1034.4890.

5NPD: 39 mg, 85%; ¹H NMR (600 MHz, CD₂Cl₂, 298 K): δ = 7.86–7.83 (m, 10H), 7.37–7.34 (m, 10H), 7.12 (s, 4H), 6.97 (s, 2H), 6.86–6.83 (m, 10H), 5.05 (s, 4H), 4.90 (s, 4H), 4.52 (t, J = 5.0 Hz, 4H), 4.27–4.25 (m, 20H), 3.96–3.94 (m, 20H), 3.87 (t, J = 5.0 Hz, 4H), 3.77–3.74 (m, 20H), 3.69–3.68 (m, 16H), 3.65–3.64 (m, 4H), 3.62 (br s, 8H), 3.58–3.54 (m, 2H), 3.44–3.37 (m, 4H), 3.19–3.15 (m, 2H), 3.13–3.08 (m, 2H), 2.47–2.42 (m, 2H), 2.38 (t, J = 5.0 Hz, 4H), 1.92–1.87 (m, 2H), 1.74–1.64 (m, 8H), 1.53–1.45 (m, 4H), 1.24 (d, J = 6.9 Hz, 24H) ppm. ¹³C NMR

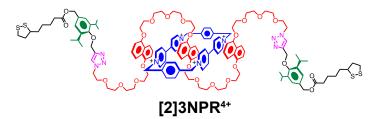

(125 MHz, CD₂Cl₂, 298 K): δ = 173.6, 154.7, 153.3, 151.9, 144.5, 142.6, 136.2, 133.0, 128.7, 127.0, 125.8, 125.6, 124.7, 124.6, 124.2, 114.7, 106.0, 71.3, 71.0, 70.9, 70.1, 69.8, 68.5, 68.4, 68.2, 66.7, 62.3, 56.8, 50.7, 40.6, 38.9, 35.0, 34.5, 34.4, 30.5, 29.1, 27.1, 27.0, 25.1, 24.2, 24.1, 21.2. HRMS (ESI-TOF-MS): m/z calcd for $C_{146}H_{196}N_6O_{34}S_4$ [M + 2H]²⁺ 1352.6338, found 1352.6331.

7NPD: 38.8 mg, 87%; ¹H NMR (600 MHz, CD₂Cl₂, 298 K): δ = 7.86–7.83 (m, 14H), 7.37–7.34 (m, 14H), 7.12 (s, 4H), 6.97 (s, 2H), 6.86–6.83 (m, 14H), 5.05 (s, 4H), 4.90 (s, 4H), 4.52 (t, J = 5.0 Hz, 4H), 4.27–4.24 (m, 28H), 3.97–3.95 (m, 28H), 3.87 (t, J = 5.0 Hz, 4H), 3.77–3.75 (m, 28H), 3.69–3.68 (m, 24H), 3.65–3.64 (m, 4H), 3.62 (br s, 8H), 3.59–3.54 (m, 2H), 3.44–3.39 (m, 4H), 3.19–3.15 (m, 2H), 3.12–3.08 (m, 2H), 2.47–2.42 (m, 2H), 2.38 (t, J = 5.0 Hz, 4H), 1.92–1.87 (m, 2H), 1.74–1.64 (m, 8H), 1.52–1.46 (m, 4H), 1.24 (d, J = 6.9 Hz, 24H) ppm. ¹³C NMR (125 MHz, CD₂Cl₂, 298 K): δ = 173.6, 154.8, 153.3, 151.9, 144.5, 142.6, 136.2, 133.0, 128.7, 127.0, 125.8, 125.6, 124.7, 124.2, 114.7, 106.0, 71.0, 70.9, 70.1, 69.8, 68.5, 68.4, 68.2, 66.7, 56.8, 50.7, 40.6, 38.9, 35.0, 34.5, 34.4, 30.5, 29.1, 27.0, 26.0, 25.1, 24.2, 21.3 ppm. HRMS (ESI-TOF-MS): m/z calcd for C₁₈₂H₂₄₀N₆O₄₄S₄ [M + 2H]²⁺ 1670.7799, found 1670.7838.

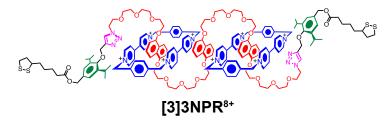
11NPD: 22.7 mg, 82%; ¹H NMR (600 MHz, CD₂Cl₂, 298 K): δ = 7.86–7.83 (m, 22H), 7.37–7.34 (m, 22H), 7.12 (s, 4H), 6.98 (s, 2H), 6.86–6.83 (m, 22H), 5.05 (s, 4H), 4.90 (s, 4H), 4.52 (t, J = 5.0 Hz, 4H), 4.27–4.24 (m, 44H), 3.96–3.94 (m, 44H), 3.87 (t, J = 5.0 Hz, 4H), 3.76–3.74 (m, 44H), 3.69–3.67 (m, 40H), 3.65–3.64 (m, 4H), 3.61 (br s, 8H), 3.59–3.54 (m, 2H), 3.44–3.39 (m, 4H), 3.19–3.15 (m, 2H), 3.12–3.08 (m, 2H), 2.47–2.41 (m, 2H), 2.39–2.33 (m, 4H), 1.92–1.87 (m, 2H), 1.73–1.62 (m, 8H), 1.50–1.45 (m, 4H), 1.24 (d, J = 6.9 Hz, 24H) ppm. ¹³C NMR (125 MHz, CD₂Cl₂, 298 K): δ = 173.6, 154.7, 153.3, 151.8, 144.4, 142.6, 136.2, 133.0, 128.7, 127.0, 125.8, 125.6, 124.7, 124.2, 114.7, 106.0, 71.3, 71.0, 70.9, 70.1, 69.8, 68.5, 68.4, 68.2, 66.7, 56.8, 50.7, 40.6, 38.9, 35.0, 34.5, 34.4, 30.5, 30.1, 29.1, 27.0, 26.0, 25.1, 24.2, 21.2 ppm. HRMS (ESITOF-MS): m/z calcd for C₂₅₄H₃₂₈N₆O₆₄S₄ [M + 2H]²⁺ 2307.0734, found 2307.0762.

15NPD: 22.1 mg, 79%; ¹H NMR (600 MHz, CD₂Cl₂, 298 K): δ = 7.85 (d, J = 8.5 Hz, 30H), 7.35 (t, J = 8.2 Hz, 30H), 7.12 (s, 4H), 6.98 (s, 2H), 6.86–6.83 (m, 30H), 5.05 (s, 4H), 4.90 (s, 4H), 4.52 (t, J = 5.0 Hz, 4H), 4.27–4.24 (m, 60H), 3.96–3.94 (m, 60H), 3.87 (t, J = 5.0 Hz, 4H), 3.76–3.74 (m, 60H), 3.69–3.67 (m, 56H), 3.65–3.64 (m, 4H), 3.61 (br s, 8H), 3.59–3.54 (m, 2H),

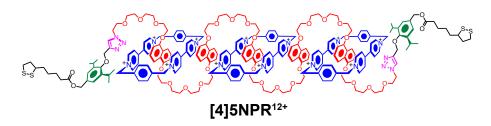
3.44–3.39 (m, 4H), 3.19–3.15 (m, 2H), 3.12–3.08 (m, 2H), 2.47–2.41 (m, 2H), 2.39–2.33 (m, 4H), 1.92–1.87 (m, 2H), 1.73–1.62 (m, 8H), 1.50–1.45 (m, 4H), 1.24 (d, J = 6.9 Hz, 24H) ppm. ¹³C NMR (125 MHz, CD₂Cl₂, 298 K): δ = 173.5, 154.7, 153.3, 151.8, 144.4, 142.6, 136.2, 133.0, 128.7, 127.0, 125.8, 125.6, 124.7, 124.2, 114.7, 106.0, 71.3, 71.0, 70.9, 70.1, 69.8, 68.5, 68.4, 68.2, 66.7, 56.8, 50.7, 40.6, 38.9, 35.0, 34.5, 34.4, 30.5, 30.1, 29.1, 27.0, 26.5, 25.1, 24.2, 21.2 ppm. HRMS (ESI-TOF-MS): m/z calcd for C₃₂₆H₄₁₇N₆O₈₄S₄ [M + 3H]³⁺ 1962.9152, found 1962.9192.


Scheme S6. Synthesis of donor-acceptor oligorotaxanes by the threading-followed-by-stoppering approach using click chemistry

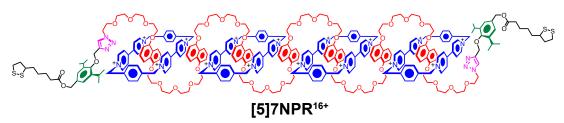
General procedure for the synthesis of oligorotaxanes: The synthesis of rotaxane [5]7NPR·16PF₆ is given as a representative example. A mixture of 7NPE(N₃)₂ (124 mg, 0.05 mmol), CBPQT·4PF₆ (330 mg, 0.30 mmol), stopper DS (54.3 mg, 0.125 mmol), and ascorbic acid (35.2 mg, 0.2 mmol) in DMF (5 mL) was cooled to -10 °C. The deep red solution was stirred for 1 h, followed by addition of CuSO₄·5H₂O (25 mg, 0.1 mmol). The reaction mixture was stirred at -10 °C for 1 d and room temperature for an additional 2 d. The solvent was removed under vacuum to leave dark red gum, which was sequentially washed with CH₂Cl₂, aqueous EDTA solution, and H₂O. The residue was redissolved in MeCN:TFA (3:1 v/v, 40 mL) and stirred overnight. The solvent was evaporated and the residue was redissolved in Me₂SO (10 mL). The resulting dark red solution was filtered through a 0.2 µm PTFE filter, and subjected to chromatography by RP-HPLC with an eluant gradient of 0-60% in aqueous MeCN over 1 h at a flow rate of 20 mL·min⁻¹. The red-colored fractions were combined and subjected to repeated RP-HPLC purification using the same method. The purity of each fraction was checked by analytical HPLC before it was combined, concentrated, and precipitated in saturated aqueous NH₄PH₆ to afford a red precipitate, which was collected by filtration and washed with water, MeOH, ether, and dried under a flow of air.


[2]1NPR41

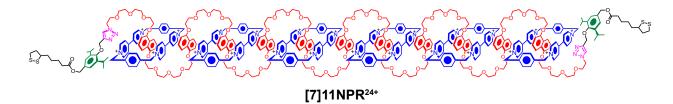
[2]1NPR·4PF₆: (2× scale) 142 mg, 55%; ¹H NMR (600 MHz, CD₃CN, 233 K): δ = 8.96 (d, J = 6.6 Hz, 4H), 8.53 (d, J = 6.6 Hz, 4H), 7.95 (s, 4H), 7.93 (s, 2H), 7.80 (s, 4H), 7.35 (d, J = 6.6 Hz, 4H), 7.21 (s, 4H), 7.13 (d, J = 6.7 Hz, 4H), 6.15 (d, J = 7.8 Hz, 2H), 5.86 (t, J = 7.9 Hz, 2H), 5.63 (d, J = 13.6 Hz, 4H), 5.54 (d, J = 13.6 Hz, 4H), 5.00 (s, 4H), 4.77 (s, 4H), 4.20 (br s, 4H), 4.17 (br s, 4H), 4.15 (br s, 4H), 3.98 (br s, 4H), 3.79 (br s, 4H), 3.69 (br s, 4H), 3.56 (m, 2H), 3.50 (br s, 4H), 3.44 (hept, J = 6.9 Hz, 4H), 3.35 (br s, 4H), 3.16 (dt, J = 6.0, 12.0 Hz, 2H), 3.07 (dt, J = 7.0, 11.1 Hz, 2H), 2.44–2.39 (m, 2H), 2.35 (t, J = 7.3 Hz, 4H), 2.23 (d, J = 8.1 Hz, 2H), 1.87–1.81 (m, 4H), 1.72–1.65 (m, 2H), 1.62–1.51 (m, 6H), 1.43–1.33 (m, 4H), 1.19 (d, J = 6.8 Hz, 24H) ppm. ¹³C NMR (125 MHz, CD₃CN, 298 K): δ = 174.1, 153.5, 52.0, 146.1, 144.4, 143.1, 137.5, 134.2, 132.3, 129.0, 125.3, 109.2, 105.1, 71.0, 70.7, 70.5, 69.6, 69.3, 68.5, 66.7, 66.0, 57.3, 50.6, 41.0, 39.2, 35.3, 34.6, 29.4, 25.5, 24.3 ppm. HRMS (ESI-TOF-MS): m/z calcd for C₁₁₀H₁₃₈F₁₂N₁₀O₁₄P₂S₄ [M - PF₆]⁺ 2386.823, found 2386.819; m/z calcd for C₁₁₀H₁₃₈F₁₂N₁₀O₁₄P₂S₄ [M - 2PF₆]²⁺ 1120.929, found 1120.931; m/z calcd for C₁₁₀H₁₃₈F₆N₁₀O₁₄P₁S₄ [M - 2PF₆]²⁺ 1120.929, found 1120.931; m/z calcd for C₁₁₀H₁₃₈F₆N₁₀O₁₄P₁S₄ [M - 3PF₆]³⁺ 698.964, found 698.966.



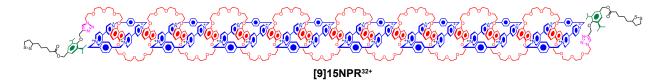
[2]3NPR·4PF₆: 41 mg, 44%; ¹H NMR (600 MHz, CD₃CN, 233 K): δ = 8.73 (br s, 4H), 8.11 (d, J = 6.5 Hz, 4H), 8.03 (s, 2H), 7.82 (s, 4H), 7.73 (s, 4H), 7.18 (d, J = 7.8 Hz, 4H), 7.17 (s, 4H), 7.03 (t, J = 7.8 Hz, 4H), 6.54 (d, J = 6.0 Hz, 4H), 6.52 (d, J = 7.8 Hz, 4H), 6.45 (d, J = 6.0 Hz, 4H), 5.84 (d, J = 7.8 Hz, 2H), 5.70 (d, J = 13.7 Hz, 4H), 5.58 (t, J = 7.8 Hz, 2H), 5.52 (d, J = 13.8 Hz, 4H), 4.97 (s, 4H), 4.78 (s, 4H), 4.53 (t, J = 5.0 Hz, 4H), 3.99 (br s, 16 H), 3.88 (br s, 4H), 3.80 (br s, 12H), 3.66 (br s, 4H), 3.64 (br s, 4H), 3.57 (br s, 4H), 3.53 (br s, 4H), 3.50 (br s, 4H), 3.47 (br s, 4H), 3.42–3.37 (m, 6H), 3.29 (hept, J = 6.8 Hz, 4H), 3.15 (dt, J = 6.5, 12.5 Hz, 2H), 3.06 (dt, J = 6.9, 10.8 Hz, 2H), 2.43–2.38 (m, 2H), 2.33 (t, J = 7.4 Hz, 4H), 1.90 (d, J = 8.0


Hz, 2H), 1.86–1.79 (m, 2H), 1.70–1.62 (m, 2H), 1.60–1.49 (m, 6H), 1.41–1.30 (m, 4H), 1.16 (d, J = 6.8 Hz, 24H) ppm. ¹³C NMR (125 MHz, CD₃CN, 298 K): $\delta = 174.0$, 154.6, 153.6, 153.3, 151.7, 143.1, 143.0, 137.4, 134.2, 128.9, 126.6, 126.4, 125.7, 125.2, 125.1, 114.8, 108.8, 106.9, 106.7, 104.7, 80.0, 76.7, 71.6, 71.2, 71.0, 70.9, 70.7, 70.6, 70.2, 69.8, 68.8, 68.6, 66.7, 66.6, 65.8, 62.7, 57.2, 50.9, 41.0, 39.2, 35.2, 34.5, 30.3, 29.3, 27.5, 27.4, 25.4, 24.2, 24.1 ppm. HRMS (ESITOF-MS): m/z calcd for $C_{146}H_{182}F_{12}N_{10}O_{24}P_2S_4$ [$M - 2PF_6$]²⁺ 1439.076, found 1439.074; m/z calcd for $C_{146}H_{182}F_{6}N_{10}O_{24}PS_4$ [$M - 3PF_6$]³⁺ 911.062, found 911.064; m/z calcd for $C_{146}H_{182}N_{10}O_{24}S_4$ [$M - 4PF_6$]⁴⁺ 647.306, found 647.306.

[3]3NPR·8PF₆: 21 mg, 8%; ¹H NMR (600 MHz, CD₃CN, 233 K): $\delta = 8.88$ (d, J = 6.5 Hz, 4H), 8.75 (d, J = 6.5 Hz, 4H), 8.39 (d, J = 6.6 Hz, 4H), 8.27 (d, J = 6.5 Hz, 4H), 7.91 (s, 2H), 7.87 (s, 4H), 7.85 (s, 4H), 7.73 (s, 4H), 7.71 (s, 4H), 7.19 (s, 4H), 6.98 (d, J = 6.0 Hz, 4H), 6.94 (d, J =6.8 Hz, 8H), 6.86 (t, J = 7.8 Hz, 2H), 6.80–6.77 (m, 6H), 6.22 (d, J = 7.5 Hz, 2H), 6.03 (d, J =7.8 Hz, 2H), 5.98 (d, J = 7.8 Hz, 2H), 5.75 (t, J = 7.8 Hz, 2H), 5.68 (t, J = 7.8 Hz, 2H), 5.64 (d, J = 7.8 Hz, 2H), 5.65 (e, J = 7.8 Hz, 2H), 5.64 (d, J = 7.8 Hz, 2H), 5.65 (e, J = 7.= 13.5 Hz, 4H), 5.53 (d, J = 13.5 Hz, 4H), 5.52 (d, J = 13.5 Hz, 4H), 5.43 (d, J = 13.5 Hz, 4H), 4.99 (s, 4H), 4.75 (s, 4H), 4.16 (br s, 4H), 4.09 (br s, 8H), 4.06 (br s, 4H), 3.96 (br s, 4H), 3.92 (br s, 4H), 3.86 (br s, 4H), 3.77 (br s, 4H), 3.76 (br s, 4H), 3.66 (br s, 8H), 3.61 (br s, 4H), 3.56 (dt, J = 5.8, 11.7 Hz, 2H), 3.49 (br s, 8H), 3.43-3.37 (m, 8H), 3.16 (dt, J = 6.0, 11.8 Hz, 2H),3.07 (dt, J = 7.0, 11.1 Hz, 2H), 2.45-2.33 (m, 2H), 2.32 (t, J = 7.4 Hz, 4H), 2.09 (d, J = 8.0 Hz, 2H), 2.02 (d, J = 8.0 Hz, 2H), 1.87–1.81 (m, 2H), 1.71–1.65 (m, 2H), 1.62–1.51 (m, 6H), 1.42– 1.33 (m, 4H), 1.18 (d, J = 6.9 Hz, 24H) ppm. ¹³C NMR (125 MHz, CD₃CN, 298 K): $\delta = 174.1$, 153.6, 151.9, 145.6, 145.5, 145.4, 145.3, 145.2, 145.1, 144.6, 143.1, 137.4, 134.1, 132.1, 129.0, 126.7, 125.3, 125.2, 114.7, 109.0, 109.0, 106.8, 106.7, 105.1, 104.9, 72.1, 71.9, 71.6, 71.5, 71.4, 71.1, 71.0, 70.6, 70.5, 70.2, 69.6, 69.2, 68.8, 68.6, 66.7, 65.9, 57.3, 50.6, 41.1, 39.2, 35.3, 34.6, 29.4, 27.4, 25.5, 24.3 ppm. HRMS (ESI-TOF-MS): m/z calcd for $C_{182}H_{214}F_{36}N_{14}O_{24}P_6S_4$ [M- $2PF_{6}|^{2+}$ 1989.637, found 1989.640; m/z calcd for $C_{182}H_{214}F_{30}N_{14}O_{24}P_{5}S_{4}$ $[M-3PF_{6}]^{3+}$ 1278.103, found 1278.104.



[4]5NPR·12PF₆: 66 mg, 25%; ¹H NMR (600 MHz, CD₃CN, 233 K): $\delta = 8.84$ (d, J = 6.4 Hz, 4H), 8.72 (d, J = 6.3 Hz, 4H), 8.62 (d, J = 6.5 Hz, 4H), 8.34 (d, J = 6.5 Hz, 4H), 8.24 (d, J = 6.5Hz, 4H), 8.02 (d, J = 6.5 Hz, 4H), 7.90 (s, 2H), 7.83 (s, 8 H), 7.76 (s, 4H), 7.70 (s, 8H), 7.63 (s, 4 H), 7.19 (s, 4H), 6.93 (d, J = 6.0 Hz, 4H), 6.91 (d, J = 6.0 Hz, 8H), 6.80 (m, J = 7.8 Hz, 2H), 6.78 (t, J = 7.8 Hz, 2H), 6.75 (d, J = 6.0 Hz, 4H), 6.68 (d, J = 8.2 Hz, 2H) 6.64 (d, J = 8.2 Hz, 2 H), 6.50 (d, J = 6.4 Hz, 4H), 6.44 (d, J = 6.4 Hz, 4H), 6.12 (d, J = 7.6 Hz, 4H), 6.00 (d, J = 7.7Hz, 2H), 5.96 (d, J = 7.7 Hz, 2H), 5.81 (d, J = 7.6 Hz, 2H), 5.72 (t, J = 7.7, 2H), 5.66 (t, J = 7.7Hz, 2H), 5.61 (d, J = 14.0 Hz, 4H), 5.52 (t, J = 7.3 Hz, 2H) 5.49 (d, J = 14.0 Hz, 12H) 5.42–5.37 (m, 8H), 4.99 (s, 4H), 4.74 (s, 4H), 4.15 (br s, 8H), 4.07 (br s, 8H), 4.04 (br s, 4H), 3.96 (br s, 8H), 3.91 (br s, 8H), 3.85 (br s, 4H), 3.83 (br s, 4H), 3.75 (br s, 12H), 3.65 (br s, 8H), 3.62 (br s, 8H), 3.59–3.53 (m, 10H), 3.47 (br s, 8H), 3.46–3.36 (m, 12H), 3.16 (dt, J = 6.1, 11.8 Hz, 2H), 3.07 (dt, J = 6.9, 10.9 Hz, 2H), 2.44-2.38 (m, 2H), 2.34 (t, J = 7.5 Hz, 4H), 2.06 (d, J = 7.9 Hz, 2.44-2.38 (m, 2H), 2.34 (t, J = 7.5 Hz, 4H), 2.06 (d, J = 7.9 Hz, 2.44-2.38 (m, 2H), 2.34 (t, J = 7.5 Hz, 4H), 2.06 (d, J = 7.9 Hz, 2.44-2.38 (m, 2H), 2.34 (t, J = 7.5 Hz, 4H), 2.06 (d, J = 7.9 Hz, 2.44-2.38 (m, 2H), 2.34 (m, 2H)2H), 1.99 (d, J = 7.9 Hz, 2H), 1.87–1.81 (m, 2H), 1.83 (d, J = 6.9 Hz, 2H), 1.72–1.65 (m, 2H), 1.61–1.52 (m, 6H), 1.42–1.34 (m, 4H), 1.88 (d, J = 6.6 Hz, 24H) ppm. ¹³C NMR (125 MHz, CD₃CN, 298 K): δ = 172.8, 153.0, 152.3, 150.6, 144.2, 143.6, 143.2, 141.8, 136.0, 132.8, 130.8, 127.6, 125.4, 125.0, 124.0, 123.9, 113.4, 107.8, 105.5, 103.7, 103.6, 70.6, 70.2, 70.1, 69.7, 69.3, 69.2, 68.9, 68.3, 67.8, 67.4, 67.3, 65.4, 64.6, 56.0, 49.2, 39.7, 37.9, 33.9, 33.2, 29.6, 28.0, 26.1, 24.2, 23.0 ppm. HRMS (ESI-TOF-MS): m/z calcd for $C_{254}H_{290}F_{48}N_{18}O_{34}P_8S_4$ $[M-4PF_6]^{4+}$ 1356.690, found 1356.686; m/z calcd for $C_{254}H_{290}F_{42}N_{18}O_{34}P_7S_4$ $[M-5PF_6]^{5+}$ 1056.359, found 1056.362.


[5]7NPR·16PF₆: 160 mg, 28%; ¹H NMR (600 MHz, CD₃CN, 233 K): δ = 8.84 (d, J = 6.4 Hz, 4H), 8.71 (d, J = 6.2 Hz, 4H), 8.60 (m, 8H), 8.33 (d, J = 6.6 Hz, 4H), 8.24 (d, J = 6.3 Hz, 4H),

8.02 (m, 8H), 7.89 (s, 2H), 7.83 (s, 8H), 7.74 (s, 8H), 7.69 (s, 8H), 7.62 (s, 8H), 7.18 (s, 4H), 6.90 (d, J = 6.5 Hz, 4H), 6.93 (d, J = 6.5 Hz, 8H), 6.78 (d, J = 8.0 Hz, 4H), 6.74 (d, J = 6.4 Hz, 4H), 6.72 (t, J = 7.5 Hz, 2H), 6.67 (d, J = 8.0 Hz, 2H), 6.63 (d, J = 8.0 Hz, 2H), 6.56 (d, J = 7.6Hz, 2H), 6.49-6.46 (m, 8H), 6.43-6.40 (m, 8H), 6.12 (d, J = 7.7 Hz, 4H), 6.05 (d, J = 7.5 Hz, 2H), 6.00 (d, J = 7.5 Hz, 2H), 5.95 (d, J = 7.5 Hz, 2H), 5.79, (d, J = 7.5 Hz, 4H), 5.71 (t, J = 7.7Hz, 2H), 5.65 (t, J = 7.7 Hz, 2H), 5.60 (d, J = 13.8, 4H), 5.52–5.34 (m, 32H), 4.98 (s, 4H), 4.74 (s, 4H), 4.15 (br s, 4H), 4.06 (br s, 16H), 3.95 (br s, 24H), 3.90 (br s, 12H), 3.85 (br s, 4H), 3.82 (br s, 8H), 3.75 (br s, 16H), 3.64 (br s, 8H), 3.61 (br s, 12H), 3.59–3.53 (m, 10H), 3.47 (br s, 4H), 3.44–3.36 (m, 16H), 3.16 (dt, J = 6.0, 12.0 Hz, 2H), 3.07 (dt, J = 7.0, 11.1 Hz, 2H), 2.44–2.38 (m, 2H), 2.34 (t, J = 7.4 Hz, 4H), 2.05 (d, J = 8.0 Hz, 2H), 1.99 (d, J = 8.0 Hz, 2H), 1.87–1.81 (m, 4H), 1.81 (d, J = 8.0 Hz, 4H), 1.71-1.64 (m, 2H), 1.62-1.51 (m, 4H), 1.42-1.32 (m, 4H),1.17 (d, J = 6.8 Hz, 24H) ppm. ¹³C NMR (125 MHz, CD₃CN, 298 K): $\delta = 172.8$, 153.0, 152.3, 150.6, 144.2, 143.6, 143.2, 141.8, 136.0, 132.8, 130.8, 127.6, 125.4, 124.9, 124.4, 123.9, 113.4, 107.7, 105.5, 103.6, 70.6, 70.2, 70.1, 69.7, 69.3, 69.2, 68.9, 68.3, 67.8, 67.7, 67.4, 67.3, 65.4, 64.6, 64.5, 56.0, 49.2, 39.7, 37.9, 33.9, 33.2, 28.0, 26.1, 24.2, 23.0 ppm; HRMS (ESI-TOF-MS): m/z calcd for $C_{326}H_{366}F_{72}N_{22}O_{44}P_{12}S_4$ $[M-4PF_6]^{4+}$: 1791.044, found: 1791.045; m/z calcd for $C_{326}H_{366}F_{66}N_{22}O_{44}P_{11}S_4$ [M - 5PF₆]⁵⁺: 1403.842, found: 1403.840; m/z calcd for $C_{326}H_{366}F_{60}N_{22}O_{44}P_{10}S_4 [M-6PF_6]^{6+}$: 1145.708; found: 1145.709.

[7]11NPR·24PF₆: 52 mg, 15%; ¹H NMR (600 MHz, CD₃CN, 233 K): δ = 8.84 (d, J = 6.0 Hz, 4H), 8.71 (d, J = 6.0 Hz, 4H), 8.62–8.58 (m, 8H), 8.58–8.53 (m, 8H), 8.33 (d, J = 6.5 Hz, 4H), 8.24 (d, J = 6.5 Hz, 4H), 8.02–7.98 (m, 8H), 7.98–7.95 (m, 8H), 7.89 (s, 2H), 7.83 (s, 8H), 7.74 (s, 8H), 7.72 (s, 8H), 7.69 (s, 8H), 7.61 (s, 8H), 7.60 (s, 8H), 7.18 (s, 4H), 6.93 (d, J = 6.0 Hz, 4H), 6.90 (d, J = 6.5 Hz, 8H), 6.78 (d, J = 8.0 Hz, 4H), 6.74 (d, J = 6.0 Hz, 4H), 6.73–6.68 (m, 6H), 6.67 (d, J = 8.0 Hz, 2H), 6.63 (d, J = 8.0 Hz, 2H), 6.56–6.51 (m, 6H), 6.49–6.46 (m, 8H), 6.45–6.42 (m, 8H), 6.42–6.39 (m, 8H), 6.39–6.35 (m, 8H), 6.11 (d, J = 7.3 Hz, 4H), 6.05–6.01 (m, 6H), 6.00 (d, J = 7.5 Hz, 2H), 5.95 (d, J = 7.5 Hz, 2H), 5.81–5.75 (m, 8H), 5.71 (t, J = 7.7

Hz, 2H), 5.66 (t, J = 7.7 Hz, 2H), 5.60 (d, J = 13.8 Hz, 4H), 5.50–5.31 (m, 60H), 4.98 (s, 4H), 4.73 (s, 4H), 4.15 (br s, 4H), 4.06 (br s, 16H), 3.95 (br s, 36H), 3.90 (br s, 24H), 3.84 (br s, 8H), 3.81 (br s, 16H), 3.75 (br s, 24H), 3.64 (br s, 8H), 3.61 (br s, 16H), 3.59–3.53 (m, 22H), 3.47 (br s, 4H), 3.43–3.31 (m, 20H), 3.16 (dt, J = 6.0, 12.0 Hz, 2H), 3.07 (dt, J = 7.0, 11.0 Hz, 2H), 2.46–2.36 (m, 2H), 2.34 (t, J = 7.4 Hz, 4H), 2.05 (d, J = 8.0 Hz, 2H), 1.99 (d, J = 8.0 Hz, 2H), 1.87–1.81 (m, 4H), 1.81–1.77 (m, 8H), 1.71–1.64 (m, 2H), 1.60–1.51 (m, 4H), 1.41–1.32 (m, 4H), 1.17 (d, J = 6.8 Hz, 24H) ppm. ¹³C NMR (125 MHz, CD₃CN, 298 K): δ = 172.8, 153.0, 152.3, 150.6, 150.5, 144.2, 143.6, 143.2, 141.8, 136.1, 136.0, 132.8, 130.8, 127.7, 127.6, 125.4, 124.9, 124.6, 123.9, 113.4, 107.6, 105.5, 103.5, 70.6, 70.2, 70.1, 69.7, 69.3, 69.2, 68.9, 68.3, 67.8, 67.7, 67.4, 67.3, 65.4, 64.6, 64.5, 56.0, 49.2, 39.7, 37.9, 33.9, 33.2, 28.0, 26.1, 24.2, 23.0 ppm. HRMS (ESI-TOF-MS): m/z calcd for $C_{470}H_{518}F_{90}N_{30}O_{64}P_{16}S_4$ calcd for [M - $PF_6]^{7+}$: 1457.587, found: 1257.268; m/z calcd for $C_{470}H_{518}F_{90}N_{30}O_{64}P_{16}S_4$ calcd for [M - $9PF_6]^{9+}$: 1101.464; found: 1101.467.

[9]15NPR·32PF₆: 31 mg, 10%; ¹H NMR (600 MHz, CD₃CN, 233 K): δ = 8.84 (br s, 4H), 8.71 (br s, 4H), 8.59 (br s, 8H), 8.56 (br s, 16H), 8.33 (m, 8H), 8.23 (m, 8H), 8.00 (br s, 8H), 7.96 (br s, 8H), 7.89 (s, 2H), 7.83 (s, 8H), 7.74 (s, 8H), 7.72 (s, 16H), 7.69 (s, 8H), 7.60 (s, 8H), 7.59 (s, 16H), 7.18 (s, 4H), 6.93 (br s, 4H), 6.91 (br s, 8H), 6.78 (d, J = 8.0 Hz, 4H), 6.74 (br s, 4H), 6.73–6.67 (m, 12H), 6.64 (d, J = 7.7 Hz, 2H), 6.56–6.51 (m, 10H), 6.47 (br s, 12H), 6.42 (br s, 24H), 6.36 (br s, 12H), 6.12 (d, J = 7.5 Hz, 4H), 6.06–5.99 (m, 12H), 5.95 (d, J = 7.5 Hz, 2H), 5.82–5.73, (m, 12H), 5.71 (t, J = 7.7 Hz, 2H), 5.65 (t, J = 7.7 Hz, 2H), 5.63–5.29 (m, 76H), 4.98 (s, 4H), 4.73 (s, 4H), 4.14 (br s, 4H), 4.06 (br s, 16H), 3.95 (br s, 48H), 3.90 (br s, 36H), 3.84 (br s, 12H), 3.81 (br s, 24H), 3.75 (br s, 32H), 3.64 (br s, 8H), 3.61 (br s, 22H), 3.59–3.53 (m, 32H), 3.47–3.31 (m, 28H), 3.16 (dt, J = 6.0, 12.0 Hz, 2H), 3.07 (dt, J = 7.0, 11.0 Hz, 2H), 2.44–2.33 (m, 6H), 2.06 (d, J = 8.0 Hz, 2H), 1.99 (d, J = 8.0 Hz, 2H), 1.86–1.75 (m, 16H), 1.71–1.64 (m, 2H), 1.60–1.51 (m, 4H), 1.41–1.32 (m, 4H), 1.17 (d, J = 6.8 Hz, 24H) ppm. ¹³C NMR (150 MHz, CD₃CN, 233 K): δ = 173.4, 152.7, 152.5, 152.3, 150.4, 144.2, 144.0, 143.4, 143.2, 143.0, 142.1,

136.4, 133.1, 131.1, 131.0, 130.7, 127.9, 125.8, 125.4, 124.7, 124.5, 123.9, 123.7, 123.0, 113.2, 107.2, 105.4, 103.4, 70.6, 70.3, 69.9, 69.7, 69.5, 69.0, 68.5, 67.8, 67.5, 67.4, 66.0, 64.6, 64.3, 56.4, 49.5, 40.2, 38.3, 34.5, 33.5, 28.7, 26.4, 24.5, 23.3 ppm. HRMS (ESI-TOF-MS): m/z calcd for $C_{614}H_{670}F_{126}N_{38}O_{84}P_{21}S_4$ $[M-11PF_6]^{11+}$: 1190.735, found: 1190.730; m/z calcd for $C_{614}H_{670}F_{120}N_{38}O_{84}P_{20}S_4$ $[M-12PF_6]^{12+}$: 1079.428, found: 1079.425.

3. Analysis of the ¹H NMR Spectra of the Oligorotaxanes

The ¹H NMR resonances of the oligorotaxanes were assigned with the aid of two-dimensional correlation spectroscopy and nuclear Overhauser effect (nOe) spectroscopy, namely ¹H–¹H gradient selected correlation spectroscopy (gCOSY) and ¹H–¹H gradient selected nuclear Overhauser effect spectroscopy (gNOESY). ¹H NMR spectra of [2]1NPR⁴⁺, [2]3NPR⁴⁺, [3]3NPR⁸⁺, [4]5NPR¹²⁺, [5]7NPR¹⁶⁺, [7]11NPR²⁴⁺, and [9]15NPR³²⁺ were acquired in CD₃CN at 233 K, where dynamic processes associated with pirouetting motions of 1,5-dioxynaphthalene (DNP) unit and CBPQT⁴⁺ rings with respect to each other and rotation of the bipyridinium (BIPY²⁺) units through the cyclophane's cavity are 'frozen out' in a slow exchange regime on the NMR timescale. Note that only oligorotaxanes within the *Happy* series – those having 0.5(*n*–1)+2 components – express a single translational isomer, while the ¹H NMR signals of *Confused* and *Frustrated* oligorotaxanes are exceedingly difficult to assign by contrast, with the exception of [2]3NPR⁴⁺, which has only two translational isomers. The ¹H NMR analyses for each of the oligorotaxanes we were capable of unraveling are discussed in detail below.

3A. ¹H NMR Spectroscopic Analysis of [2]1NPR·4PF₆

Assignment of the 1 H NMR spectrum (Figure S2) of [2]1NPR $^{4+}$ is trivial in light of many previous studies on analogous compounds. This [2]rotaxane serves as an important model compound for comparing the effects of oligomerization on the chemical shifts of DNP and CBPQT $^{4+}$ protons. [2]1NPR $^{4+}$ has higher symmetry (see Figure 4 and the corresponding discussion in the main text) than the larger multicomponent oligomers because it possesses a single CBPQT $^{4+}$ ring on a symmetrical dumbbell, leading to two α and two β signals from the BIPY $^{2+}$ protons as a result of the C_2 symmetry of the DNP dumbbell being imposed on the CBPQT $^{4+}$ ring. This separation of α and β signals verifies that DNP and BIPY $^{2+}$ units do not undergo significant rearrangements (i.e. rotations that lead to signal averaging) on the timescale of the NMR experiment at 233 K in CD₃CN.

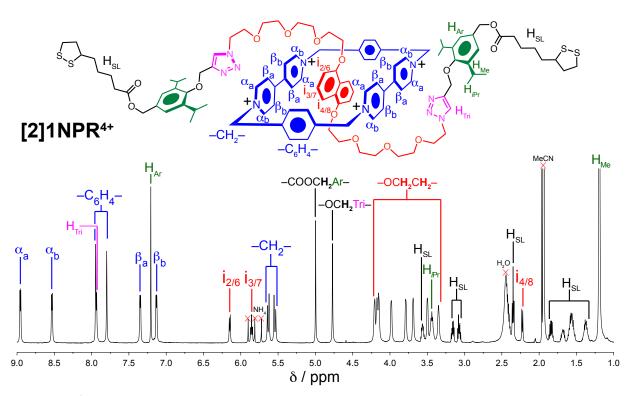


Figure S2. ¹H NMR spectrum (600 MHz) of [2]1NPR·4PF₆ in CD₃CN at 233 K

3B. ¹H NMR Spectroscopic Analysis of [2]3NPR·4PF₆

Although [2]1NPR⁴⁺ represents a control compound for probing the effects of oligomerization on the chemical shifts of CBPQT⁴⁺ and included DNP protons, it has no alongside protons to serve as a basis for comparison. Therefore, [2]3NPR⁴⁺ represents the best model for approximating the chemical shift of an 'alongside' DNP resonance in a two-component rotaxane. Unfortunately, [2]3NPR⁴⁺ is not a *Happy* rotaxane; it belongs instead to the *Confused* series. Two translational isomers are allowed (Scheme S7) for this compound: one in which the CBPQT⁴⁺ ring encircles the central DNP unit, and one in which it occupies a DNP unit at the dumbbell terminus. These two isomers were found by integration of the ¹H NMR spectrum (Figure S3) to exist in a 4:1 ratio.

Scheme S7. Equilibrium between two translational isomers of [2]3NPR⁴⁺ in CD₃CN at 233 K

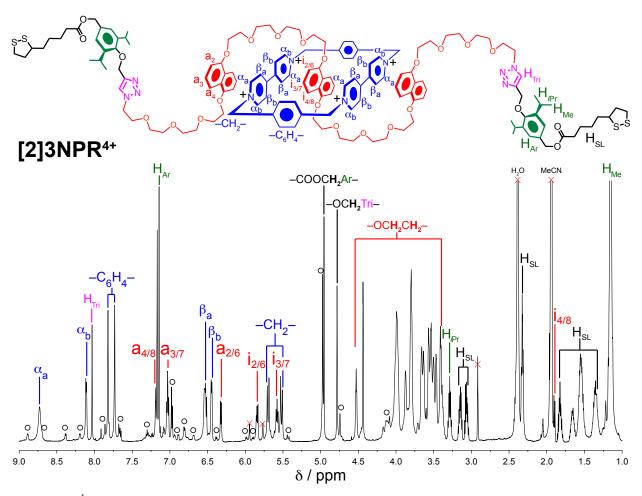


Figure S3. ¹H NMR spectrum (600 MHz) of [2]3NPR·4PF₆ in CD₃CN at 233 K

The unequal distribution of the two isomers can be accounted for on the basis that the translational isomer in which the CBPQT⁴⁺ ring occupies the central unit is more stabilized by an extended D-A stack, since it has twice as many alongside DNP–BIPY²⁺ interactions as there are in the terminal isomer. Signals are assigned to the major (80%) translational isomer in Figure S3, while those corresponding to the minor (20%) isomer are designated with open circles.

3C. ¹H NMR Spectroscopic Analysis of [3]3NPR·8PF₆

The first example of an oligomer in the *Happy* rotaxane series having more than one CBPQT⁴⁺ ring, namely [3]3NPR⁸⁺, has reduced symmetry in comparison with the two-component systems featured in Sections 3A and 3B. The well-resolved signals with narrow linewidths in the ¹H NMR spectrum (Figure S4) clearly belong to a single isomer.

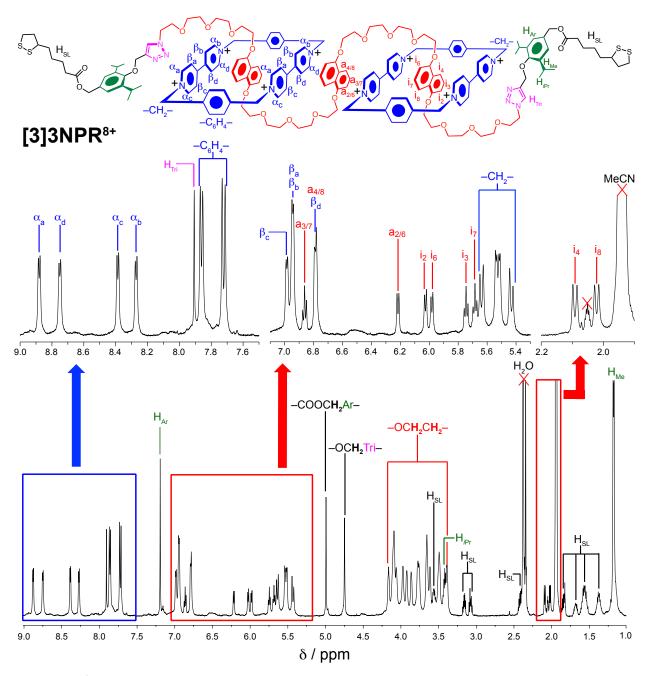


Figure S4. 1 H NMR spectrum (600 MHz) of [3]3NPR·8PF $_{6}$ in CD $_{3}$ CN at 233 K

It is noted in the main text that the presence of only four α and four β signals means that the folded co-conformations represented by the structural formulas are not static on the NMR timescale, since the two (constitutionally equivalent) CBPQT⁴⁺ rings would have eight heterotopic α sites and eight heterotopic β sites under conditions of slow co-conformational reorganization on the ¹H NMR timescale.

The signals could be assigned unambiguously by consulting the ${}^{1}H^{-1}H$ gCOSY and ${}^{1}H^{-1}H$ gNOESY spectra (Figures S5 and S6). A detailed discussion of how the signals were assigned for [4]5NPR¹²⁺, which is presented in Section 3D, is also applicable to the ${}^{1}H$ NMR data for [3]3NPR·8PF₆, and so it will not be repeated here.

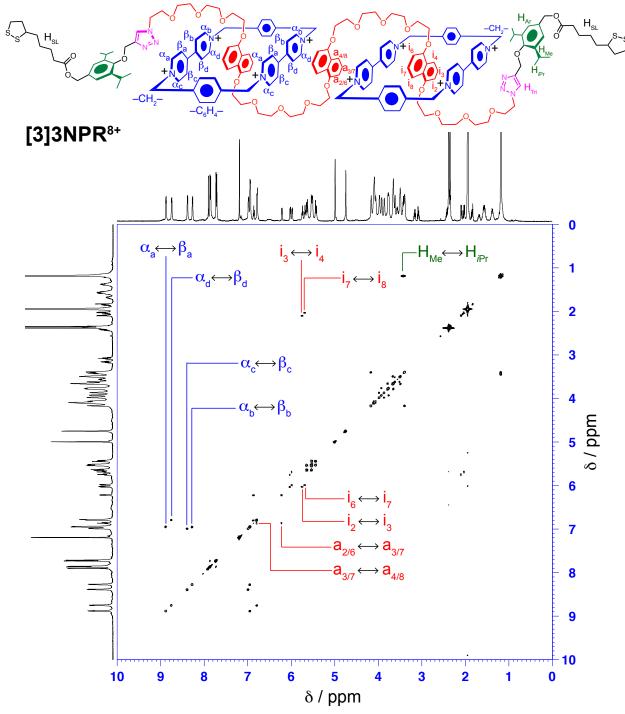
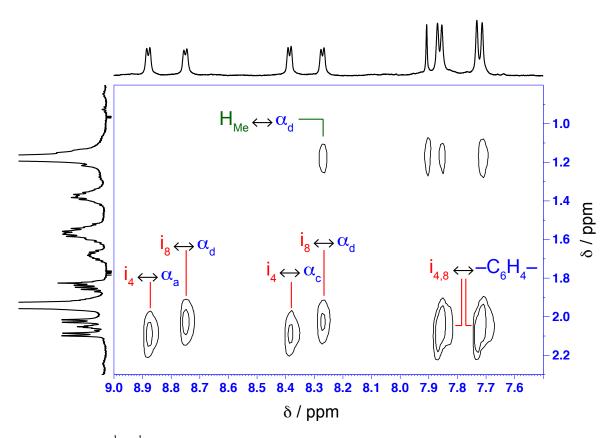



Figure S5. ¹H–¹H gCOSY spectrum (600 MHz) of [3]3NPR·8PF₆ in CD₃CN at 233 K

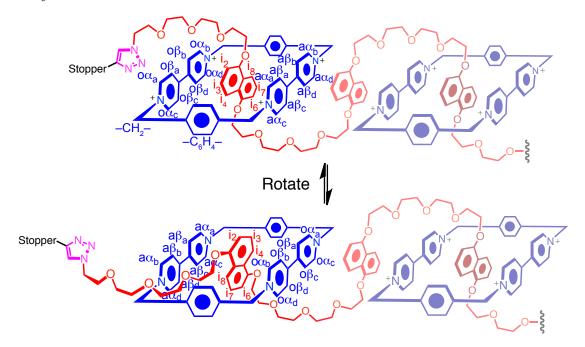


Figure S6. Partial ¹H–¹H gNOESY spectrum (600 MHz) of [3]3NPR·8PF₆ in CD₃CN at 233 K, showing the signals most relevant to structural assignments

3D. ¹H NMR Spectroscopic Analysis of [4]5NPR·12PF₆

In a previous analysis S3 of a close analogue of $[4]5NPR^{12+}$ – differing only in the functionality at the 4–position of the aryl stopper – we assigned the 1H NMR signals on the assumption of a folded secondary structure that was long-lived on the NMR timescale – i.e., slow exchange regime – leading us to distinguish between 'outside' (designated with the prefix 'o') and 'alongside' (designated with the prefix 'a') BIPY²⁺ units for the outer rings of the oligomer. In the folded co-conformation of $[4]5NPR^{12+}$, all eight α protons (and all eight β protons) of the outermost cyclophane are heterotopic because there are no local axes, planes, or centers of symmetry. Taking into account the inner ring, with its higher symmetry on account of an inversion center, there are a total of 12α and 12β heterotopic proton environments in the folded co-conformation of $[4]5NPR^{12+}$. Since only six α and six β resonances were observed in the 1H NMR spectrum, it was implied in the previous analysis that certain pairs of α protons (and likewise pairs of β protons) resonated at the same frequency despite their heterotopicity.

An alternative and more realistic explanation for the observation of six instead of 12 sets of α and β resonances in the ¹H NMR spectrum of [4]5NPR¹²⁺ is that the [4]rotaxane interconverts (Scheme S8) between multiple folded (and, likely to a much lesser extent, unfolded) coconformations quickly on the timescale of the NMR experiment. In this scenario, the ¹H signals represent an average of the resonances in each co-confomation as well as in their intermediate states, and therefore can be understood and interpreted with respect to the co-conformation of highest possible symmetry. Scheme S8 shows how the 'outside' and 'alongside' BIPY²⁺ units of the outer ring can be exchanged by executing a 180° rotation on the DNP ⊂ CBPQT⁴⁺ subcomplex. It transpires that additional data for the [4]rotaxane that were not included in our previous report^{S3} – namely, ¹H–¹H gNOESY, – have revealed that this interpretation is the correct one on the basis of specific through-space correlations (vide infra) between DNP and BIPY²⁺ protons. In the case of [4]5NPR¹²⁺, we retain the distinction between 'a' and 'o' resonances in order to remain consistent with our previous report and also to aid our description of the molecular dynamics in play. However, 'a' and 'o' resonances with the same subscript – e.g., $o\alpha_a$ and $a\alpha_a$ or $o\beta_d$ and $a\beta_d$ – are, in fact, undergoing fast exchange on the ¹H NMR timescale at 233 K in CD₃CN.

Scheme S8. The equilibration between two (of many) folded secondary structures of **[4]5NPR**¹²⁺, showing how a 180° rotation of the outer DNP ⊂ CBPQT⁴⁺ complex causes 'outside' and 'alongside' BIPY²⁺ units to exchange positions in the D-A stack.

We turn our attention now to a detailed description of how the ^{1}H NMR signals were assigned (Figure S7) and how our conclusions about the solution-state structure were reached. Firstly, the higher symmetry of the central CBPQT⁴⁺ ring facilitated assignment of the resonances, since the two phenylene $-C_6H_4-$ signals of the central ring can be assigned on the basis of integrated intensities alone, and the remaining resonances discerned through cross-peaks in the $^{1}H-^{1}H$ gCOSY (Figure S8) and $^{1}H-^{1}H$ gNOESY (Figures S9 and S10) spectra.

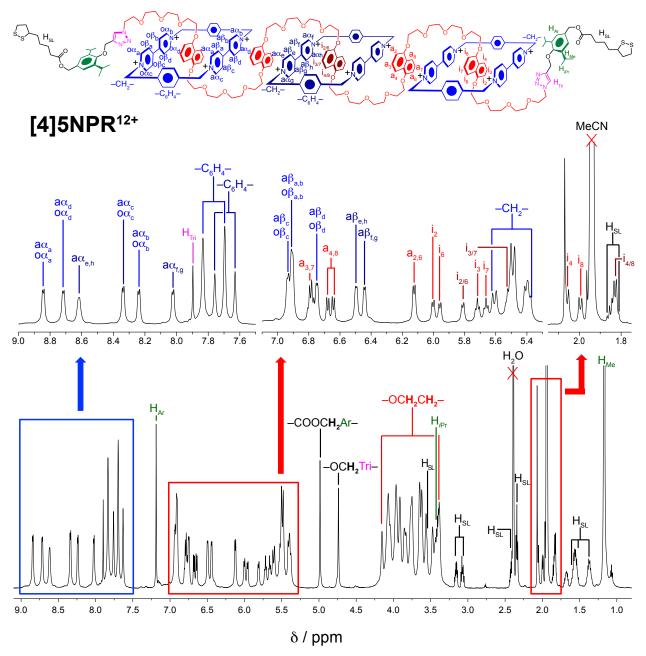


Figure S7. ¹H NMR spectrum (600 MHz) of [4]5NPR·12PF₆ in CD₃CN at 233 K

It is noteworthy that the α and β resonances for the innermost CBPQT⁴⁺ ring (α_{e-h} and β_{e-h}) are shifted to lower frequencies with respect to their counterparts in the outer rings and are also slightly broadened. Both of these features support the hypothesis of extended donor-acceptor π - π stacking in these rotaxanes, since alongside interactions from DNP units will shield the innermost ring and also slightly inhibit its (co)conformational freedom, leading to slower nuclear relaxation and line broadening.

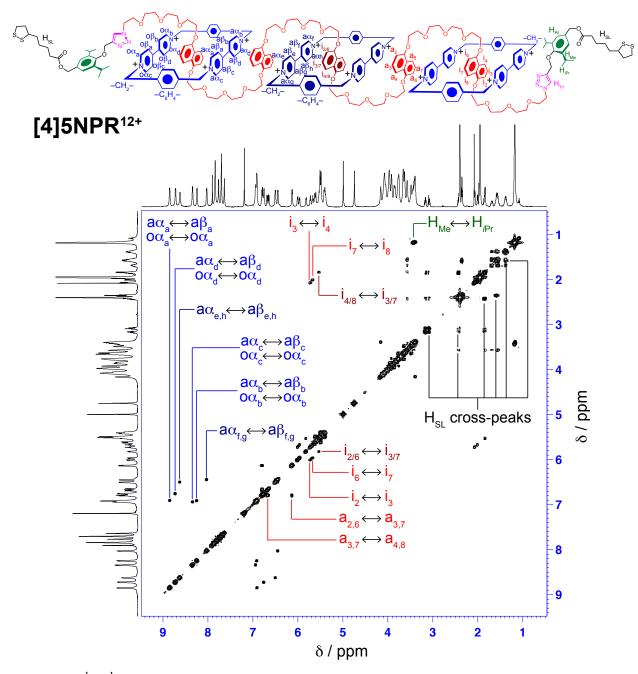


Figure S8. $^{1}\text{H}-^{1}\text{H}$ gCOSY spectrum (600 MHz) of [4]5NPR \cdot 12PF $_{6}$ in CD $_{3}$ CN at 233 K

The $^{1}H^{-1}H$ gCOSY spectrum (Figure S8) reveals the coupling between each of the six α and β resonances of CBPQT⁴⁺, as well as between neighboring protons in DNP subunits located inside (designated with a 'i') and alongside (designated with an 'a') the CBPQT⁴⁺ rings. In addition, the gCOSY spectrum revealed which signals correspond to the stoppers: the isopropyl resonance H_{iPr} could be identified among the $-OCH_2CH_2O-$ resonances through its coupling with H_{Me} , and the set of multiplets belonging to the thioctic acid moiety could also be identified.

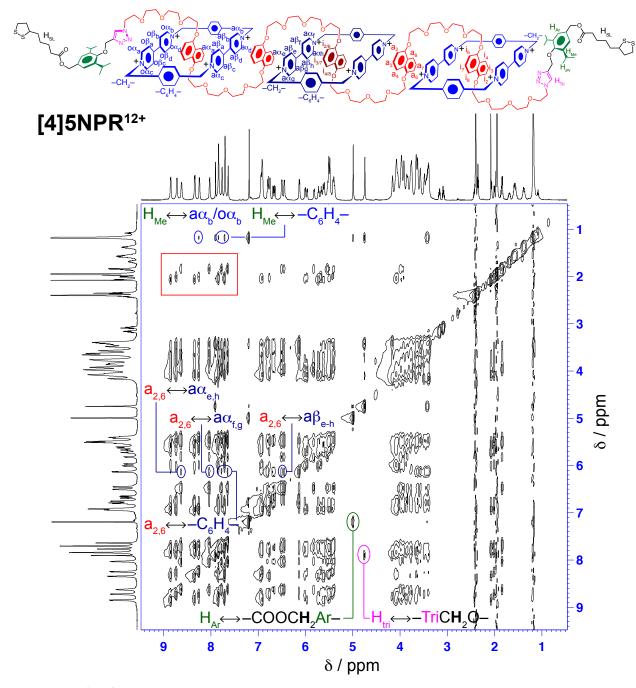
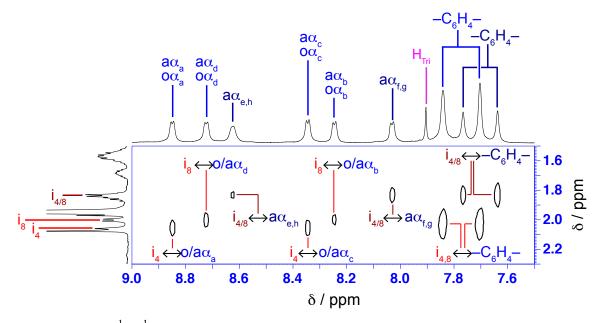



Figure S9. $^{1}\text{H}-^{1}\text{H}$ gNOESY spectrum (600 MHz) of [4]5NPR·12PF₆ in CD₃CN at 233 K

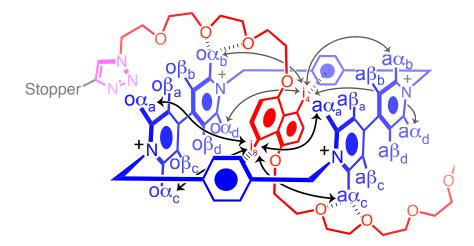

The $^1H^{-1}H$ gNOESY spectrum (Figure S9) was critical to both the full assignment of signals and to solution-state structural elucidation. For example, the assignment of the methylene signals associated with the stopper was confirmed by their through-space interactions with the aryl and triazole protons H_{Ar} and H_{Tri} , respectively. Particularly important are the nOe correlations between the 4/8 protons of 'inside' DNP units and the α and $-C_6H_4-$ resonances of CBPQT⁴⁺. Since the three unique 'i' DNP proton environments at the 4– and 8–positions do not resonate at overlapping frequencies, their observed nOe correlations with the α CBPQT⁴⁺ protons permit their unambiguous assignment. This section of the $^1H^{-1}H$ gNOESY spectrum is isolated in Figure S10.

Figure S10. Partial ${}^{1}\text{H}-{}^{1}\text{H}$ gNOESY spectrum (600 MHz, CD₃CN, 233 K) showing correlations between DNP proton resonances corresponding to i_4 , i_8 , $i_{4/8}$ and the α and $-C_6H_4-{}^{1}\text{H}$ signals of CBPQT⁴⁺ in **[4]5NPR**·12PF₆ (boxed in red in Figure S9)

In order to underline the key insights provided by the 2D NOESY section in Figure S10, we turn our attention to the three highest-frequency resonances at 8.84 ppm, 8.72 ppm, and 8.62 ppm as demonstrative examples. Originally, we ascribed^{S3} the 8.84 ppm resonance to $a\alpha_e$ and $a\alpha_h$, the 8.72 ppm resonance to $a\alpha_b$ and $a\alpha_c$, and the 8.62 ppm resonance to $a\alpha_a$ and $a\alpha_d$. In these assignments, the protons within each pair are located on opposite pyridinium rings of a single BIPY²⁺ subunit. However, the three well-resolved DNP signals i_4 , i_8 , & $i_{4/8}$ in the region ca. 1.8–2.1 ppm each correlate through-space with exclusively *one* of the three $a\alpha_a$ H environments under

consideration. This fact is important because it leads us unequivocally to the conclusion that each signal corresponds, not to α protons located on the same BIPY²⁺ subunit, but instead to α protons on opposite BIPY²⁺ sites that are adjacent to the same phenylene ring of the cyclophane. The basis for this conclusion is the well known^{S5} phenomenon – based primarily on dozens of crystal structures and dramatic changes in chemical shifts – in which each of the protons at the 4-and 8-positions of the DNP guest are directed by $[C-H\cdots\pi]$ interactions toward the center of a phenylene $(-C_6H_4-)$ ring. From this location, no nOe correlation with two α protons on opposite poles of the CBPQT⁴⁺ ring could be reasonably expected, and thus the nOe cross-peaks were assigned to $i_4\leftrightarrow o/a\alpha_a$, $i_8\leftrightarrow o/a\alpha_d$, and $i_{4/8}\leftrightarrow \alpha_{f,g}$. The nOe correlations are noted in a structural illustration for visualization purposes in Figure S11.

Figure S11. The nOe correlations observed between protons at the 4- and 8-positions of included DNP guests and the α protons of the CBPQT⁴⁺ rings at the terminal sites of [4]5NPR¹²⁺. Through-space correlations for i₄ and i₈ protons are each confined exclusively to one hemisphere of the cyclophane on account of noncovalent bonding interactions (dashed lines) that direct them toward the center of a phenylene group

The i_4 and i_8 proton signals were among the most challenging designations to define unambiguously. Our explicit assignments were made on the basis of several indirect arguments that were all consistent with the same conclusion. Firstly, we expected the i_8 protons, which are directed away from the stoppers toward the interior of the rotaxane, to resonate at slightly lower frequency than i_4 protons because they may be slightly more shielded in that local environment. We also encountered (Figure S9) a weak nOe signal between the H_{Me} stopper protons and α_b .

This nOe correlation was made more relevant by following the correlations from $H_{Me} \leftrightarrow a/o\alpha_b$ to $a/o\alpha_b \leftrightarrow i_4$, since the [C–H···O] interactions between α protons and the electron-rich polyether chains (which are also observable in the crystal structure of many analogous compounds, see Ref. 17 in the main text) would likely place the stopper nearest in space to $a\alpha_b/o\alpha_b$. Furthermore, the proximity of α_b to the terminal polyether segment having the most conformational freedom is consistent with its chemical shift bearing the lowest frequency among all of the α protons of the terminal CBPQT⁴⁺ rings. Although these arguments support our specific assignments of i_4 and i_8 , we leave open the possibility that they may be transposed.

Having arrived at a description of the oligorotaxane as a rapidly exchanging foldamer in solution, we wish to point out that the dynamic nature of the folded state is not entirely surprising; with no strong bonds, either covalent or mechanical, that permanently fix two BIPY²⁺ subunits on different CBPQT⁴⁺ rings at a distance of ca. 0.7 Å – a distance that underpins the recognition properties of the CBPOT⁴⁺ ring by allowing a planar entitiv to fit inside with nearly perfect π - π contacts – one would expect the association between unencircled 'alongside' DNP units and 'alongside' BIPY²⁺ units to be many orders of magnitude weaker than those observed for CBPOT⁴⁺ inclusion complexes, and therefore to be much more transient because of the correspondingly lower activation barriers. This is not to say that the folded co-conformation is absent in solution. Indeed, our claim that an extended donor-acceptor π -stack is a significant contributor to the solution-state structure of [4]5NPR¹²⁺ is supported, not only by the displaced chemical shifts of the alongside DNP protons and the innermost DNPCBPQT⁴⁺ resonances relative to both their uncomplexed dumbbell/cyclophane counterparts and even to their more peripherally-located cousins within the same rotaxane, but also by nOe correlations (Figure S9) between alongside DNP protons a_2 , a_6 , and the inner CBPQT⁴⁺ resonances $a\alpha_{e-h}$. These correlations would be expected in a folded secondary structure in which the alongside DNP units interact with the BIPY²⁺ units of the CBPQT⁴⁺ ring.

3E. ¹H NMR Spectroscopic Analysis of [5]7NPR·16PF₆

In [5]7NPR¹⁶⁺ and larger oligorotaxanes, we forsake the extraneous designation between outer and alongside α and β BIPY²⁺ environments since they undergo fast site exchange and drop the 'o' and 'a' prefixes. The presence of multiple inequivalent 'included' DNP sites also made it

necessary to further distinguish between 'i' DNP resonances. Therefore, included DNP units are iteratively designated with an additional 'i' moving toward the center of the rotaxane from the periphery. Thus, in [5]7NPR¹⁶⁺, the innermost included DNP protons are designated 'ii', while the outermost included DNP protons retain the 'i' label. Although they are formally constitutionally heterotopic – in contrast with i_{4/8} of [4]5NPR¹²⁺ – the resonances of ii₄ & ii₈, ii₃ & ii₇, and ii₂ & ii₆ overlap, so their corresponding single signals are labeled ii_{4,8}, ii_{3,7}, and ii_{2,6}, respectively. As usual, the ¹H NMR signals were assigned (Figure S12) with the aid of multidimensional ¹H–¹H correlation and nOe spectroscopies.

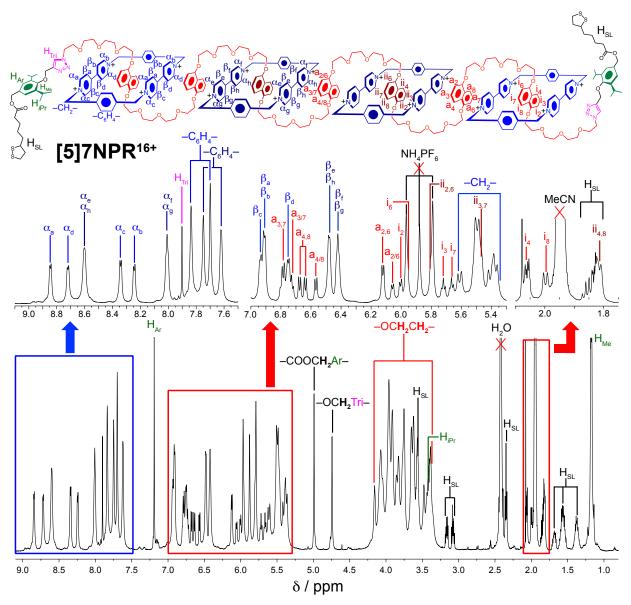


Figure S12. ¹H NMR spectrum (600 MHz) of [5]7NPR·16PF₆ in CD₃CN at 233 K

Again, we observed that the innermost CBPQT⁴⁺ resonances are shifted to lower frequency relative to their outermost counterparts, and their lineshapes are slightly broadened by comparison. Since the innermost rings of [5]7NPR¹⁶⁺ have lower symmetry than that of [4]5NPR¹²⁺, a total of eight α and eight β resonances are expected, but only six are observed because the α and β proton signals of the innermost rings apparently overlap; they have two signals that each integrate for eight protons instead of four signals integrating for four protons.

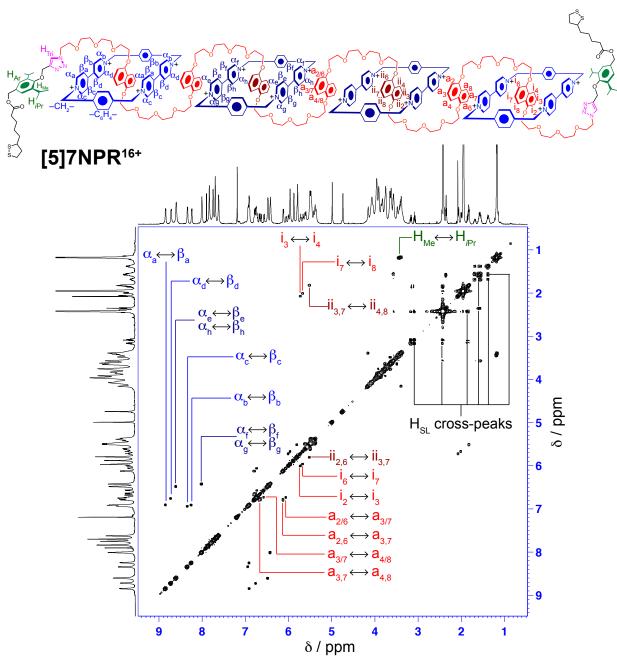


Figure S13. ¹H–¹H gCOSY spectrum (600 MHz) of [5]7NPR·16PF₆ in CD₃CN at 233 K

All of the expected coupling between α and β ¹H signals and 2/6, 3/7, and 4/8 DNP signals were observed in the ¹H–¹H gCOSY spectrum (Figure S13). The spectrum bears a remarkable similarity to that of [4]5NPR·12PF₆, with the main exception being the central alongside DNP unit, whose resonances uniformly appear at slightly lower frequencies than the other alongside DNP resonances, pointing once again to contributions from the continuously stacked folded secondary structure and its shielding effect on the alongside DNP protons.

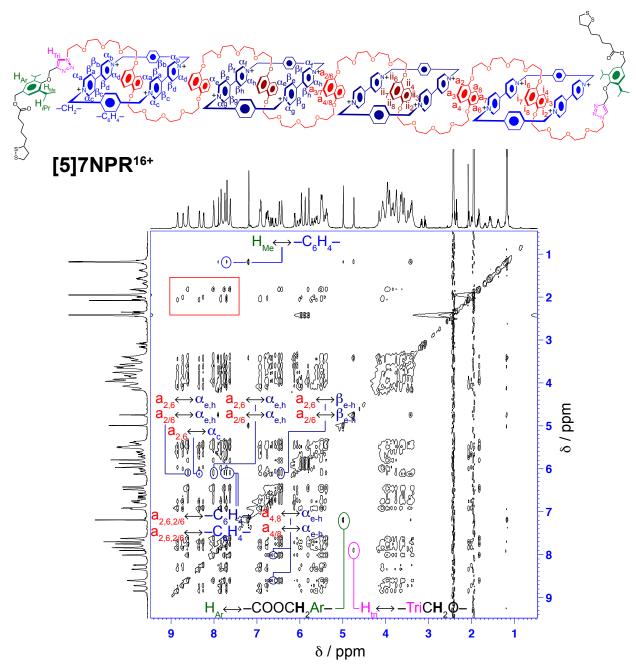
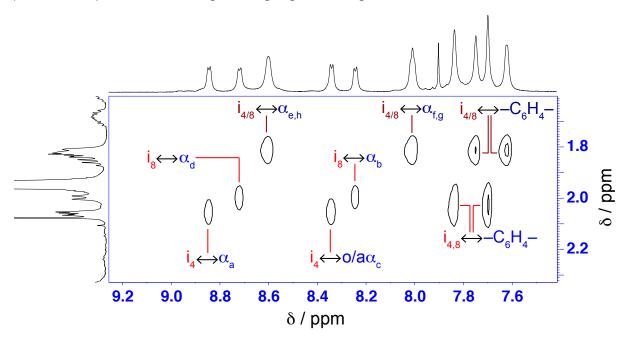



Figure S14. ¹H–¹H gNOESY spectrum (600 MHz) of [5]7NPR·16PF₆ in CD₃CN at 233 K

The ${}^{1}H_{-}^{1}H$ gNOESY spectrum (Figure S14) of [5]7NPR·16PF₆ presents an even stronger case for a folded solution-state secondary structure than that of [4]5NPR¹²⁺ because yet more through-space correlations can be identified between alongside DNP proton resonances and CBPQT⁴⁺. It is convenient to use both the 2/6 and the 4/8 resonances of the alongside DNP units as structural probes for [5]7NPR¹⁶⁺ because all of their signals are isolated and well resolved. For example, a_4 , a_8 , & $a_{4/8}$ have nOe correlations with the α protons of the inner CBPQT⁴⁺ rings. All of the $a_{2/6}$ correlations with the innermost CBPQT⁴⁺ α and β resonances observed in [4]5NPR¹²⁺ are also maintained in [5]7NPR¹⁶⁺. In addition, we found more rare examples of cross-talk between alongside DNP units and the peripheral CBPQT⁴⁺ rings by way of the $a_{2,6} \leftrightarrow \alpha_c$ and $a_{2,6} \leftrightarrow -C_6H_4$ — cross-peaks highlighted in Figure S14.

Figure S15 Partial ${}^{1}\text{H}-{}^{1}\text{H}$ gNOESY spectrum (600 MHz, CD₃CN, 233 K) showing correlations between DNP proton resonances corresponding to i_4 , i_8 , $ii_{4,8}$ and the α and $-C_6H_4-{}^{1}\text{H}$ signals of CBPQT⁴⁺ in **[5]7NPR**·16PF₆ (boxed in red in Figure S14)

The partial ¹H–¹H gNOESY spectrum of **[5]7NPR**¹⁶⁺ in Figure S15 is nearly identical to that (Figure S10) of **[4]5NPR**¹²⁺. See the corresponding description in Section 3D for the significance of these correlations in fully assigning the resonances to their appropriate protons in the molecular structure of the oligorotaxane.

3F. ¹H NMR Spectroscopic Analysis of [7]11NPR·24PF₆

Although line broadening and signal overlap make it more challenging to assign all of the resonances for [7]11NPR²⁴⁺, it is still possible to assign most of the 1 H NMR signals of interest without ambiguity, especially for the α and β CBPQT⁴⁺ protons. The 1 H NMR spectrum of [7]11NPR·24PF₆ is shown in Figure S16. The same labeling scheme carries over from [5]7NPR¹⁶⁺, except that it becomes necessary to introduce the 'i' prefix to 'alongside' DNP units. In a similar nomenclature to the 'inside' DNP protons, 'alongside' DNP protons with more 'i' prefixes are located further inward, i.e., more distant from the stoppers.

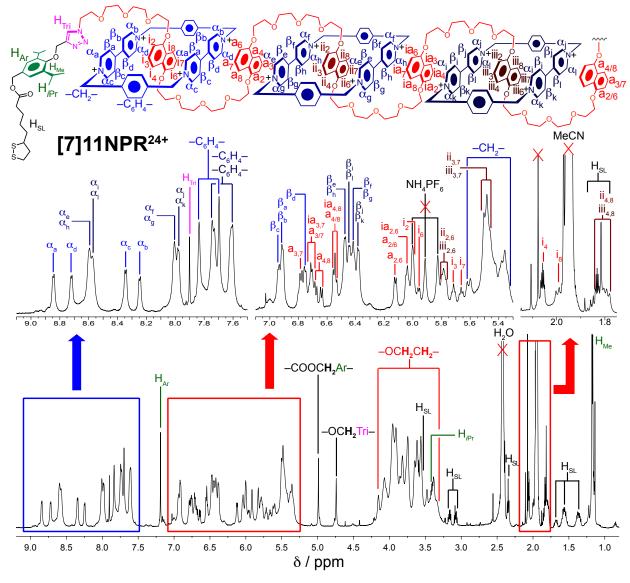


Figure S16. ¹H NMR spectrum (600 MHz) of [7]11NPR·24PF₆ in CD₃CN at 233 K

The ${}^{1}\text{H}{}^{-1}\text{H}$ gCOSY (Figure S17) allowed us to identify the expected $\alpha \leftrightarrow \beta$ coupling for CBPQT⁴⁺ resonances and $(2,6)\leftrightarrow(3,7)$ and $(3,7)\leftrightarrow(4,8)$ for DNP. The spectrum is particularly important for identifying the 4 and 8 DNP signals because they are shifted so dramatically as to resonate at the same frequency as the satellite signals for the residual deuterated MeCN solvent. The DNP proton signal i_4 , for example, is completely eclipsed by a MeCN satellite so as to be nearly undetectable without the aid of two-dimensional NMR spectroscopy.

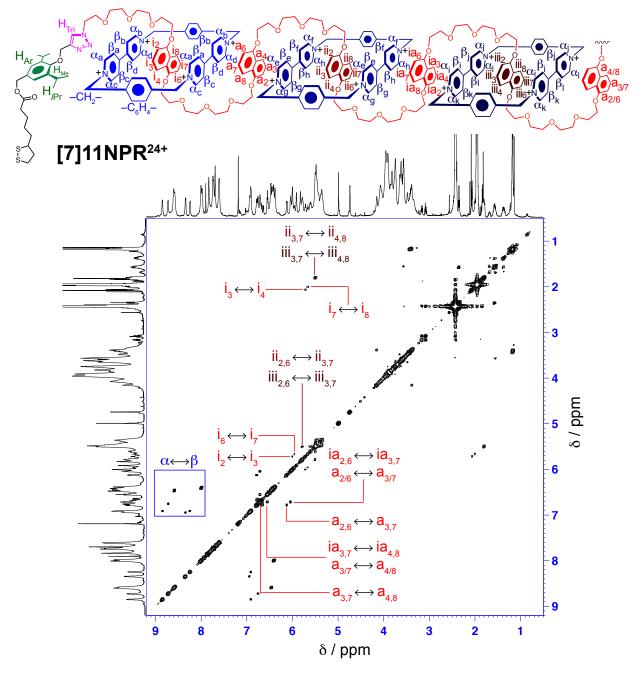
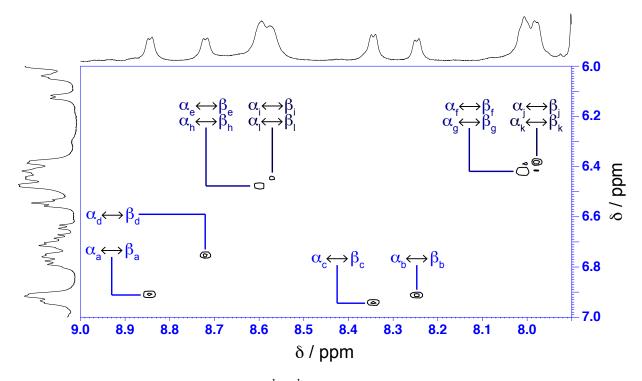



Figure S17. ¹H–¹H gCOSY spectrum (600 MHz) of [7]11NPR·24PF₆ in CD₃CN at 233 K

The α and β resonances of the inner CBPQT⁴⁺ rings of [7]11NPR²⁴⁺ have overlapping signals not unlike those of [5]7NPR¹⁶⁺. However, in contrast with [5]7NPR¹⁶⁺, four of these signals can be observed instead of only two – an observation indicating that the proton resonances for the innermost pair of CBPQT⁴⁺ rings are once again shifted to slightly lower frequency on account of accumulated aromatic ring-current shift, generated by the interactions at play in the folded secondary structure. This section of the 1 H $^-$ 1H gCOSY spectrum is enlarged in Figure S18 and shows that the four signals are coupled in pairs, providing further support to the same hypothesis.

Figure S18. Enlarged section of the ${}^{1}\text{H}-{}^{1}\text{H}$ gCOSY NMR spectrum of [7]11NPR·24PF₆ showing the $\alpha \leftrightarrow \beta$ correlations in the CBPQT⁴⁺ rings

It is now apparent, after analyzing fully the ¹H NMR spectra of oligorotaxanes building up from [3]3NPR⁴⁺ to [7]11NPR²⁴⁺, that the chemical shifts of signals corresponding to the terminal DNP⊂CBPQT⁴⁺ subcomplex are essentially independent of the oligomer length, while the resonances of the inner subcomplexes gradually shift to lower frequencies as more donor-acceptor stacking sites are iteratively added to the oligorotaxanes. This effect is qualitatively represented by Figure 9 in the main text for the CBPQT⁴⁺ signals, and quantitatively represented by Figures 10 and 11 in the main text and in the Tables S1 and S2 in Section 3H for all DNP and CBPQT⁴⁺ signals.

3G. ¹H NMR Analysis of [9]15NPR·32PF₆

The most synthetically challenging rotaxane of the series, [9]15NPR·32PF₆, bridges the gap between small molecules and polymers. With a molecular weight of 14693 Da, it comes as no surprise that the ¹H NMR spectrum (Figure S19) exhibits line broadening that is characteristic of high molecular weight polymers with their slower tumbling rates. Nevertheless, the majority of the resonances can be identified by the same methods as those described previously.

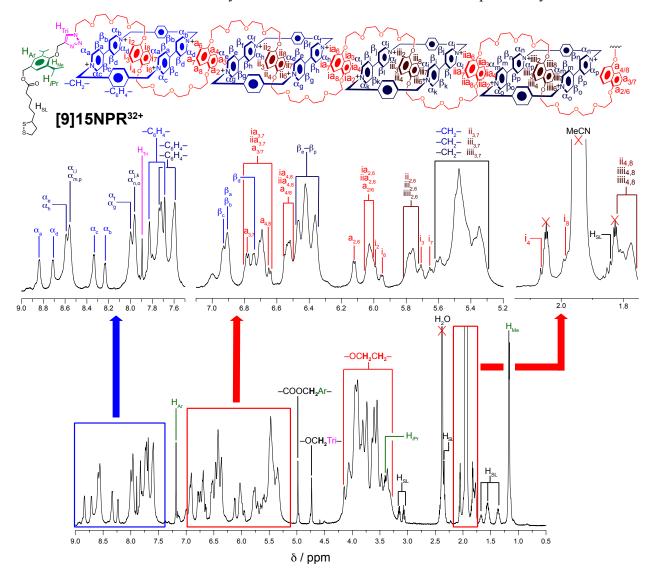


Figure S19. ¹H NMR spectrum (600 MHz) of [9]15NPR·32PF₆ in CD₃CN at 233 K

The ¹H–¹H gCOSY NMR spectrum of **[9]15NPR**³²⁺ (Figure S20) made it possible to assign precise frequencies for the purposes of a quantitative analysis of the chemical shifts (Section 3H) to protons with overlapping signals, especially those belonging to included DNP units.

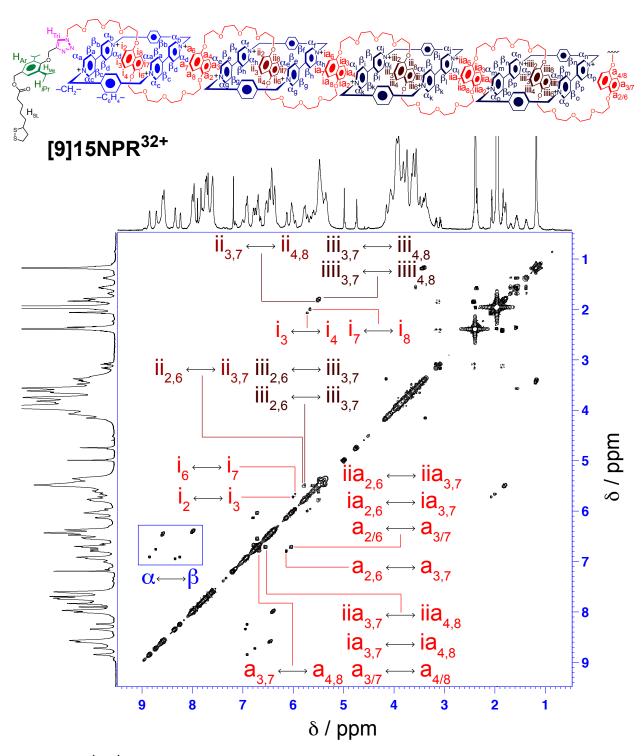
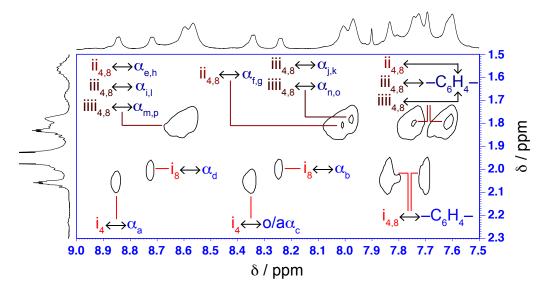



Figure S20. $^{1}\text{H}-^{1}\text{H}$ gCOSY spectrum (600 MHz) of [9]15NPR·32PF₆ in CD₃CN at 233 K

Although a sufficiently trustworthy trend was established through to [7]11NPR²⁴⁺ to assign the signals of [9]15NPR³²⁺ without the help of nOe spectroscopy, the assignments were still verified

by consulting the ¹H–¹H gNOESY NMR spectrum. A section of this spectrum, which is shown in Figure S21, highlights the through-space correlations between included DNP protons and BIPY²⁺ units.

Figure S21 Partial ${}^{1}\text{H}-{}^{1}\text{H}$ gNOESY spectrum (600 MHz, CD₃CN, 233 K) showing correlations between included DNP protons and the α and $-\text{C}_{6}\text{H}_{4}-{}^{1}\text{H}$ signals of CBPQT⁴⁺ rings in [9]15NPR·32PF₆

Figure S21 underlines the fact that protons in the two sets of CBPQT⁴⁺ rings at the innermost sites of the rotaxane resonate at equal frequencies, indicating that the accumulated aromatic ring-current shifts are saturated. In other words, adding more repeat units to the oligomers is expected to have a minimal effect on the observed chemical shifts.

3H. Quantitative Analysis of Chemical Shifts in the Oligorotaxanes

The chemical shifts for all of the DNP and BIPY²⁺ proton environments were tabulated for each oligorotaxane and the results are presented in Table S1 (for DNP protons) and Table S2 (for BIPY²⁺ protons). Certain DNP signals were averaged for the sake of brevity in cases where related proton environments (i_2 and i_6 or i_3 and i_7 , for example) resonated at slightly different frequencies. The values in Tables 1 and 2 can be used to visualize the trends in chemical shifts as repeat units are added to the oligomers (see Figure 10 in the main text) and to obtain values for $\Delta\delta$ (Figure 11 in the main text) by subtracting them from the appropriate chemical shifts of the corresponding dumbbell or cyclophane proton at 233K in CD₃CN.

Table S1. The Chemical Shifts (δ) of DNP Protons in Each of the Oligorotaxanes [2]1NPR⁴⁺–[9]15NPR³²⁺ at 233 K in CD₃CN

Duckou	δ (ppm)							
Proton	[2]1NPR ⁴⁺	[3]3NPR ⁸⁺	[4]5NPR ¹²⁺	[5]7NPR ¹⁶⁺	[7]11NPR ²⁴⁺	[9]15NPR ³²⁺		
Included DNP								
i _{2,6}	6.15	6.01 ^a	5.98 ^a	5.98 ^a	5.97 ^a	5.97 ^a		
i _{3,7}	5.86	5.71 ^a	5.69 ^a	5.69 ^a	5.68 ^a	5.68 ^a		
i _{4,8}	2.23	2.06^{a}	2.03^{a}	2.02^{a}	2.02^{a}	2.02^{a}		
$ii_{2,6}$			5.81 ^b	5.79	5.79	5.79°		
ii _{3,7}			5.52 ^b	5.51°	5.49 ^c	5.49 ^c		
ii _{4,8}			1.83 ^b	1.81 ^c	1.80^{c}	1.80^{c}		
iii _{2,6}					5.77	5.75°		
iii _{3,7}					5.48 ^c	5.48 ^c		
iii _{4,8}					1.78 ^c	1.80^{c}		
$iiii_{2,6}$						5.75°		
iiii _{3,7}						5.47 ^c		
iiii _{4,8}						1.77 ^c		
2/6 Average		6.01	5.90	5.89	5.84	5.81		
3/7 Average		5.71	5.61	5.58	5.55	5.53		
4/8 Average		2.06	1.96	1.91	1.87	1.85		
Total Average	4.75	4.59	4.48	4.46	4.42	4.40		
Alongside DNP	[2]3NPR ^{4+ d}							
$a_{2,6}$	6.32		6.12	6.12	6.12	6.12		
$a_{3,7}$	7.03		6.79^{a}	6.78^{a}	6.78^{a}	6.77^{a}		
a _{4,8}	7.18		6.66 ^a	6.65^{a}	6.65^{a}	6.66^{a}		
$ia_{2,6}$					6.04	6.04°		
ia _{3,7}					6.71	6.70^{c}		
ia _{4,8}					6.54 ^a	6.55°		
iia _{2,6}						6.03^{a}		
iia _{3,7}						$6.70^{a,c}$		
iia _{4,8}						6.53 ^{a,c}		
a _{2/6}		6.22		6.05	6.03	6.01		
a _{3/7}		6.86		6.72	6.70	6.68°		
$a_{4/8}$		6.78		6.56	6.53	6.52°		
2/6 Average	6.52	6.22	6.12	6.09	6.06	6.05		
3/7 Average	7.03	6.86	6.79	6.75	6.73	6.71		
4/8 Average	7.18	6.78	6.66	6.61	6.57	6.56		
Total Average	6.91	6.62	6.52	6.48	6.46	6.44		

^aReported chemical shift is an average of two well-resolved signals. ^bProtons i_{2/6}, i_{3/7}, and i_{4/8} are listed under entries ii_{2,6}, ii_{3,7}, and ii_{4,8}, respectively, because they are located in the innermost inclusion complex of [4]5NPR¹²⁺. ^cChemical shifts of overlapping signals were discerned by inspection of the ¹H-¹H gCOSY NMR spectrum. ^d[2]3NPR⁴⁺ is introduced to obtain a value for alongside DNP units in a two-component rotaxane, since [2]1NPR⁴⁺ has no alongside units.

Table S2. The Chemical Shifts (δ) of BIPY²⁺ Protons in Each of the Oligorotaxanes [2]1NPR⁴⁺– [9]15NPR³²⁺ at 233 K in CD₃CN

Ductor		δ (ppm)						
Proton	[2]1NPR ⁴⁺	[3]3NPR ⁸⁺	[4]5NPR ¹²⁺	[5]7NPR ¹⁶⁺	[7]11NPR ²⁴⁺	[9]15NPR ³²⁺		
α BIPY ²⁺								
α_{a}	8.96	8.88	8.84	8.84	8.84	8.84		
$lpha_{ m b}$	8.53	8.27	8.24	8.24	8.24	8.23		
$\alpha_{ m c}$		8.39	8.34	8.33	8.34	8.33		
$lpha_{ m d}$		8.75	8.72	8.71	8.71	8.71		
$\alpha_{\mathrm{e,h}}$			8.62	8.60	8.59	8.59		
$lpha_{ m f,g}$			8.02	8.00	8.00	8.00		
$\alpha_{\mathrm{i,l}}$					8.57	8.56		
$\alpha_{\mathrm{j,k}}$					7.97	7.96		
$\alpha_{ m m,p}$						8.56		
$\alpha_{\mathrm{n.o}}$						7.96		
Outer Rings	8.75	8.57	8.54	8.53	8.53	8.53		
Inner Rings			8.32	8.30	8.28	8.27		
Average	8.75	8.57	8.46	8.45	8.41	8.37		
β BIPY ²⁺								
$eta_{ m a}$	7.35	6.94	6.91	6.90	6.90	6.90		
$oldsymbol{eta_{b}}$	7.13	6.94	6.91	6.90	6.90	6.90		
$eta_{ m c}$		6.98	6.93	6.93	6.93	6.93		
$\beta_{ m d}$		6.79	6.75	6.74	6.74	6.74		
$eta_{\mathrm{e,h}}$			6.50	6.47	6.47	6.47		
$eta_{ m f,g}$			6.44	6.41	6.40	6.41		
$\beta_{i,l}$					6.44	6.43		
$\beta_{j,k}$					6.37	6.36		
$\beta_{m,p}$						6.43		
$\beta_{\rm n,o}$						6.36		
Outer Rings	7.24	6.91	6.88	6.83	6.83	6.83		
Inner Rings			6.47	6.44	6.42	6.41		
Average	7.24	6.91	6.74	6.72	6.64	6.59		

4. References

⁽S1) M. Asakawa, W. Dehaen, G. L'abbé, S. Menzer, J. Nouwen, F. M. Raymo, J. F. Stoddart, D. J. Williams, *J. Org. Chem.*, 1996, **61**, 9591–9595.

⁽S2) C. J. Bruns, S. Basu, J. F. Stoddart, *Tetrahedron Lett.*, 2010, **51**, 983–986.

⁽S3) S. Basu, A. Coskun, D. C. Friedman, M. A. Olson, D. Benítez, E. Tkatchouk, G. Barin, J. Yang, A. C. Fahrenbach, W. A. Goddard III, J. F. Stoddart, *Chem. Eur. J.*, 2011, **17**, 2107–2119.

⁽S4) R. S. Stoll, D. C. Friedman, J. F. Stoddart, Org. Lett., 2011, 13, 2706–2709.

⁽S5) D. B. Amabilino, P.-L. Anelli, P. R. Ashton, G. R. Brown, E Córdova, L. Godínez, W. Hayes, A. E. Kaifer, D. Philp, A. M. Z. Slawin, N. Spencer, J. F. Stoddart, M. S. Tolley, D. J. Williams, *J. Am. Chem. Soc.*, 1995, **117**, 11142–11170.