Structure elucidation and control of cyclic peptidederived nanotube assemblies in solution

Robert Chapman, Ming Liang Koh, Gregory G. Warr, Katrina A. Jolliffe,* Sébastien Perrier*

Key Centre for Polymers & Colloids, School of Chemistry, Building F11, The University of Sydney, NSW 2006, Australia kate.jolliffe@sydney.edu.au; sebastien.perrier@sydney.edu.au

KEYWORDS: Nanotubes, RAFT, cyclic peptide, conjugates

SUPPORTING INFORMATION

Polymer and conjugate synthesis data:

							•	
[M]: Time		¹ H-NMR				DMF SEC Conventional calibration ^[a]		
Polymer	[CTA]	(min)	X (%)	DP _{Theo}	DP _{Actual}	$M_{\rm n}$ (g.mol ⁻¹)	$M_{\rm n}$ (g.mol ⁻¹)	$M_{\rm w}/M_{\rm n}$
pBA16	18	157	79	14	16	2,320	2,250	1.15
pBA30	35	140	79	28	30	4,150	3,450	1.16
pBA70	120	55	56	67	70	9,280	6,590	1.15
pBA91	120	100	73	88	91	11,940	8,450	1.16
pBA108	120	135	84	101	108	14,150	11,400	1.15
pBA195	250	123	79	198	195	25,240	18,500	1.19

Table S1: Conditions and characterization data for polymer synthesis

Notes: [a] Conventional calibration relative to pS standards. Uncorrected with Mark Houwink parameters.

Figure S1: SEC traces of pBA-CP conjugates prepared in the microwave reactor at 100 °C for 15 min. 2.10 equivalents of polymer per peptide were used in each case.

Figure S2: ATR-IR traces of the 2 arm cyclic peptide and pBA-CP conjugates prepared in the microwave reactor at 100 °C for 15 min. 2.10 equivalents of polymer per peptide were used in each case.

Figure S3: ¹H-NMR of (pBA₁₆)₂-CP in *d*-TFA

Stability of the conjugates to TFA:

Figure S4: ¹H-NMR (CDCl₃) of $pBA_{16}a$) before and b) after heating in TFA at 60 °C

Electronic Supplementary Material (ESI) for Chemical Science This journal is O The Royal Society of Chemistry 2013

Figure S5: ¹H-NMR (CDCl₃) of PABTC a) before and b) after, and a model conjugate c) before, and d) after heating in TFA at 60 °C. e) ¹H-NMR (CDCl₃) spectrum of hydrolysed RAFT agent.

Self assembly DLS

Figure S1: Dynamic light scattering intensity (Δ) and number (▲) distributions for (pBA₁₆)₂-CP conjugates a) 10 mg in 0.25 ml TFA, diluted with THF or with DCM to a final concentration of 4 mg/ml; b) in TFA / DMF (1:9) diluted with THF to a final concentration of 10 mg/ml

Figure S7: DLS intensity (Δ) and number (\blacktriangle) distributions for 0.2 mM solutions of (pBA₉₀)₂-CP in TFA, and DMF heated to 70 °C

SANS model output

pBA90-CP in DMF / TFA (3:1)

Stacked disc model	pBA90-CP TFA/DMF (1:3)
Volume Fraction	0.10
Disc Radius (Å)	68.0
Core Thickness (Å)	5.5
Layer Thickness (Å)	7.7
Core SLD (Å ⁻² / 10 ⁶)	0.00
Layer SLD (Å ⁻² / 10 ⁶)	5.90
Solvent SLD (\AA^{-2} / 10 ⁶)	6.09
# of Stacking	2.9
GSD of d-Spacing	6.0
Incoherent background (cm ⁻¹)	0.018

Figure S8: SANS data for dilution of (pBA90)2-CP from TFA with DMF

Various DP's in THF / DMF / TFA (90:9:1)

Core-Shell-Shell Cylinder	pBA	pBA
Model	10-CP	108-CP
Volume Fraction	0.007	0.018
Core radius (Å)	13.10	15.2
Shell 1 thickness (Å)	11.03	13.6
Shell 2 thickness (Å)	22.80	50.2
Total Thickness (Å)	46.9	79.0
Core length (Å)	>1000	203.2
SLD core (Å ⁻² / 10^{6})	0.00	0.00
SLD shell 1 (Å ⁻² / 10 ⁶)	5.83	6.04
SLD shell 2 ($Å^{-2} / 10^{6}$)	6.03	6.25
SLD solvent (Å ⁻² / 10^6)	6.36	6.36
Incoherent background (cm ⁻¹)	0.060	0.049

Figure S9: SANS of pBA-CP dissolved in TFA/DMF (1:9) and diluted with THF (1:9)

Various DP's in DMF, TFA / THF and TFA / CDCl_3 $\,$

Core-Shell-Shell (CSS) Cylinder	pBA30-CP	pBA70-CP	pBA90-CP	pBA108-CP	pBA195-CP
Model	25 °C	25 °C	25 °C	25 °C	25 °C
Volume Fraction	0.034	0.093	0.120	0.149	0.235
Core radius (Å)	9.8	10.3	10.1	11.3	10.7
Shell 1 thickness (Å)	25.2	14.4	15.3	19.3	17.0
Shell 2 thickness (Å)	8.3	26.1	24.1	27.5	26.1
Total Thickness (Å)	43.3	50.8	49.5	58.2	53.8
Core length (Å)	142.0	135.8	176.3	186.1	259.3
SLD core (Å-2 / 106)	0.00	0.00	0.00	0.00	0.00
SLD shell 1 (Å-2 / 106)	6.56	6.45	6.53	6.51	6.55
SLD shell 2 (Å-2 / 106)	6.68	6.67	6.67	6.67	6.67
SLD solvent (Å-2 / 106)	6.79	6.79	6.79	6.79	6.79
Incoherent background (cm-1)	0.005	0.009	0.012	0.015	0.018

Figure S10: SANS data for (pBA_n)₂-CP conjugates in *d7*-DMF

Core-Shell-Shell Cylinder Model	pBA16-CP	pBA30-CP	pBA70-CP	pBA90-CP	pBA108-CP	pBA195- CP
Volume Fraction	0.010	0.055	0.142	0.181	0.263	0.283
Core radius (Å)	10.2	9.0	9.4	8.7	8.8	9.7
Shell 1 thickness (Å)	20.0	20.0	20.0	20.0	20.0	20.0
Shell 2 thickness (Å)	7.3	25.2	36.3	47.4	35.4	27.7
Total Thickness (Å)	37.5	54.2	65.7	76.1	64.1	57.3
Core length (Å)	102.1	190.3	312.9	3,525.8	292.6	244.2
SLD core ($Å^{-2} / 10^{6}$)	-0.40	-0.40	-0.40	-0.40	-0.40	-0.40
SLD shell 1 (Å ⁻² / 10 ⁶)	5.77	5.74	5.84	5.79	5.86	5.99
SLD shell 2 ($Å^{-2} / 10^{6}$)	5.80	5.99	6.03	6.03	6.03	6.03
SLD solvent (Å ⁻² / 10^6)	6.09	6.09	6.09	6.09	6.09	6.09
Incoherent background (cm ⁻¹)	0.0033	0.0050	0.0060	0.0080	0.0100	0.0150

Figure S11: SANS data for (pBAn)2-CP conjugates in TFA / THF (1:9) at 25 °C

Core-Shell-Shell Cylinder	nBA16-CP	pBA30_CP	nBA70-CP	nBA90_CP	pBA108_CP	pBA105_CP
Model	pDA10-CI	рвязо-сі	рвя/о-сі	рвяжение	pDA100-CI	pDA155-CI
Scale	-	0.044	0.065	0.089	0.082	0.150
Core radius (Å)	-	10.7	12.1	10.2	11.7	12.1
Shell 1 thickness (Å)	-	36.3	32.3	36.4	26.6	30.8
Shell 2 thickness (Å)	-	31.6	37.0	47.4	36.1	36.3
Total Thickness (Å)	-	78.6	81.3	94.0	74.4	79.2
Core length (Å)	-	123.8	250.0	4,413.3	213.2	187.7
SLD core ($Å^{-2} / 10^{6}$)	-	0.00	0.00	0.00	0.00	0.00
SLD shell 1 ($Å^{-2} / 10^{6}$)	-	3.15	3.14	3.14	3.15	3.16
SLD shell 2 ($Å^{-2} / 10^{6}$)	-	3.20	3.20	3.20	3.19	3.20
SLD solvent ($Å^{-2} / 10^{6}$)	-	3.22	3.22	3.22	3.22	3.22
Incoherent background (cm ⁻¹)	-	0.002	0.006	0.005	0.007	0.012

Core-Shell-Shell (CSS)	pBA30-CP	pBA70-CP	pBA90-CP	pBA108-CP	pBA195-CP
Cylinder Model	70 °C	70 °C	70 °C	70 °C	70 °C
Scale	0.034	0.093	0.120	0.149	0.235
Core radius (Å)	9.7	8.9	9.0	9.7	9.6
Shell 1 thickness (Å)	0.3	6.5	7.3	10.9	10.8
Shell 2 thickness (Å)	32.4	26.9	25.5	27.8	26.1
Total Thickness (Å)	42.5	42.4	41.7	48.4	46.4
Core length (Å)	130.4	133.5	157.4	176.3	214.4
SLD core $(Å^{-2} / 10^{6})$	0.00	0.00	0.00	0.00	0.00
SLD shell 1 ($Å^{-2} / 10^{6}$)	6.56	6.45	6.53	6.51	6.55
SLD shell 2 ($Å^{-2} / 10^{6}$)	6.68	6.67	6.67	6.67	6.67
SLD solvent ($Å^{-2} / 10^{6}$)	6.79	6.79	6.79	6.79	6.79
Incoherent background (cm ⁻¹)	0.0050	0.0090	0.0120	0.0150	0.0180

Figure S13: Effect of heating $(pBA_n)_2$ -CP conjugates measured by SANS in DMF from 25 °C to 70 °C

Tubes with deuterated cores:

Synthesis:

Polymer		p(d9-BA)29	p(<i>d</i> 9-BA)29- <i>b</i> - BA45	p(<i>d</i> 9-BA)29- <i>b</i> - BA65
[M] : [CTA]	35	45	68	
Polymerisation time (min)	130	130	130	
Conversion (X)		90%	90%	87%
Theoretical DP [a]	31.3	40.5	59.2	
DP from 1H-NMR	29	45	65	
Mn (g.mol-1) from 1H-NMR	4,200	9,904	12,467	
SEC: DMF + LiBr.	$M_{\rm n}$ (g.mol ⁻¹)	3,350	9,350	10,850
Conventional calibration	$M_{ m w}/M_{ m n}$	1.19	1.22	1.23
SEC: THF	$M_{\rm n}$ (g.mol ⁻¹)	4,100	11,100	13,400
Conventional calibration	$M_{ m w}/M_{ m n}$	1.122	1.174	1.172
	dn/dc [b]	0.0588	0.0576	0.0571
SEC: THF Light scattering	$M_{\rm n}$ (g.mol ⁻¹)	5,200	13,000	15,800
Light bouttoining	$M_{ m w}/M_{ m n}$	1.043	1.095	1.093

Figure S14: SEC traces of the three polymers and conjugates prepared from deuterated BA monomer. Notes: [a] Theoretical DP calculated based on conversion, measured by ¹H-NMR, [b] dn/dc calculated based on the assumption of 100% elution of the polymer by the SEC.

Core-Shell-Shell	pBA30-CP	p(d9-BA)30-CP
Cylinder Model	in d8-THF	in <i>n</i> -THF
Scale	0.055	0.0582
Core radius (Å)	9.0	5.0
Shell 1 thickness (Å)	20.0	7.8
Shell 2 thickness (Å)	25.2	33.9
Total Thickness (Å)	54.2	46.8
Core length (Å)	190.3	190.3
SLD core (Å ⁻² / 10^6)	-0.40	-0.40
SLD shell 1 ($Å^{-2} / 10^{6}$)	5.74	4.10
SLD shell 2 ($Å^{-2} / 10^{6}$)	5.99	0.86
SLD solvent (Å ⁻² / 10^6)	6.09	0.80
Incoherent background (cm ⁻¹)	0.005	0.055

Figure S15: SANS pattern for [p(*d*₂·BA)₂₉]₂-CP in n-THF/ d-TFA (9:1) compared to (pBA₃₀)₂-CP in d8-THF / d-TFA (9:1)

Core-Shell-Shell (CSS) Cylinder Model	pBA70-CP	p(d9-BA)29- b-BA45-CP	pBA90-CP	p(d9-BA)29- b-BA65-CP
Scale	0.142	0.127	0.181	0.160
Core radius (Å)	9.4	11.2	8.7	12.0
Shell 1 thickness (Å)	20.0	45.1	20.0	47.3
Shell 2 thickness (Å)	36.3	43.3	47.4	41.6
Total Thickness (Å)	65.7	99.5	76.1	100.9
Core length (Å)	312.9	380.1	>1500	356.4
SLD core (Å ⁻² / 10^{6})	-0.40	-0.40	-0.40	-0.40
SLD shell 1 ($Å^{-2} / 10^{6}$)	5.84	6.02	5.79	6.02
SLD shell 2 ($Å^{-2}$ / 10 ⁶)	6.03	6.06	6.03	6.06
SLD solvent ($Å^{-2} / 10^{6}$)	6.09	6.09	6.09	6.09
Incoherent background (cm ⁻¹)	0.006	0.005	0.008	0.008

Figure S16: SANS pattern and fits for tubes with deuterated cores in *d8*-THF / *d*-TFA (9:1)

SANS Error fitting:

The error in the length dimension from the model fitting, was obtained using the NIST IGOR Pro Macros. Once the best fit was obtained, all constants but the length were held constant, and the error in the length was determined. In all cases the error fit from the model was less than instrumental error, and so carries little real meaning. The error for conjugates assembled in 100% DMF at 25°C and 70°C are shown below.

D 1	DMF	, 25°C	DMF, 25°C		
DP DP	Length (Å)	Model Fitting Error (Å)	Length (Å)	Model Fitting Error (Å)	
30	229	0.784	215	0	
70	237	0.454	218	0.843	
90	275	0.6	241	0.513	
108	303	0.527	273	0.564	
195	367	0.744	307	0.568	

Table S2: Model fitting errors for $p(BA_n)_2$ -CP tubes in 100% DMF as measured by SANS

Cross-linkable tubes

Synthesis:

Figure S17: SEC and IR traces for p(HEA-co-BA) polymer and conjugate

DLS:

Figure S18: DLS intensity (Δ) and number (▲) distributions after cross-linking for 1 h of assembled (p(HEA-*co*-BA))₂-CP conjugates in a) THF, b) DMF/TFA (3:1) after 2h at 70 °C.