Supporting Information

For

¹⁹F-MRS/¹H-MRI Dual-Function Probe for Detection of β -Galactosidase Activity

Jian-Xin Yu,^{1*} Vikram D. Kodibagkar,² Li Liu,³ Zhongwei Zhang,¹ Li Liu,¹ Jennifer Magnusson,¹ Yuting Liu⁴

- ¹ Department of Radiology, The University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd., Dallas, Texas 75390-9058, USA.
- ² Currently at School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287-9709, USA.
- ³ Xinjiang Institute of Chemistry and Physics, Chinese Academy of Sciences, 40 Beijing South Road, Urumqi, Xinjiang 830011, China.

⁴ Department of Chemistry, Xinjiang University, 14 Victory Road, Urumqi, Xinjiang 830046, China.

CONTENTS:

- 1. Supporting figures:
 - (1) Figure S1, The illustration of iron chelation therapy.
 - (2) Figure S2, The ¹⁹F-MRS/¹H-MRI and molecular characterization of **4-FCAT** to **4-FCAT/Fe³⁺**.
 - (3) Figure S3, ¹H-MRI detection of β -gal activity.
 - (4) Figure S4, The cytotoxicity of MGD-3-FCAT to wild-type and *lacZ* expressing MCF7 and PC3 cells.
 - (5) Figure S5, *In vitro* ¹H-MRI detection of *lacZ* gene expression in PC3-*lacZ* cells
- 2. Synthesis of ligands.
- 3. Fe-Complex preparation.
- 4. Molecular characterization of 3- and 4-FCAT β -*D*-galactopyranosides.

Figure S1. The illustration of iron chelation therapy.

Figure S2. The ¹⁹F-MRS/¹H-MRI and molecular characterization of **4-FCAT** to **4-FCAT/Fe**³⁺. ¹⁹F-MRS: (1) **4-FCAT** (1.2 mg, 9.0 μ mol) in PBS (0.1 M, pH=7.4, 600 μ L) at 25°C; (2) **4-FCAT** (1.2 mg, 9.0 μ mol) in PBS (0.1 M, pH=7.4, 500 μ L), FAC (796 μ g, 3.0 μ mol) in PBS (0.1 M, pH=7.4, 100 μ L) at 25°C, ¹⁹F-NMR: Using the same parameters as in Figure 4. ¹H-MRI: (A) Control, **4-FCAT** (12.0 mM) in PBS (0.1 M, pH=7.4) at 20-22°C; (B) Complex, **4-FCAT** (12.0 mM), FAC (4.0 mM) in PBS (0.1 M, pH=7.4) at 20-22°C; **Conditions**: (a) *T*₁-weighted ¹H-MRI: Using the same parameters as in Figure 3; (b) *T*₂-weighted ¹H-MRI: Using the same parameters as in Figure 6; **Molecular Modeling Calculation**: Using the same programs as in Figure 4, *r*=6.53 Å.

Figure S3. ¹H-MRI detection of β-gal activity. **Conditions:** ¹H-MRI, 200 MHz, 1 mm slice, 128x128, 40mmx40mm, T_1 -weighted imaging: TR=500 ms, TE=15 ms; T_2 -weighted imaging: TR=2000 ms, TE=60 ms. **(A)** control, **MGD-3-FCAT** (3.5 mg, 12.1 µmol), FAC (4.0 µmol), TFA (2.0 µmol), PBS (1.0 mL); **(B) MGD-3-FCAT** (1.2 mg, 4.1 µmol), FAC (4.0 µmol), β-gal (E801A, 10 units), TFA (2.0 µmol), PBS (1.0 mL); **(C) MGD-3-FCAT** (2.4 mg, 8.3 µmol), FAC (4.0 µmol), β-gal (E801A, 10 units), TFA (2.0 µmol), PBS (1.0 mL); **(D) MGD-3-FCAT** (3.5 mg, 12.1 µmol), FAC (4.0 µmol), β-gal (E801A, 10 units), TFA (2.0 µmol), PBS (1.0 mL); **(D) MGD-3-FCAT** (3.5 mg, 12.1 µmol), FAC (4.0 µmol), β-gal (E801A, 10 units), TFA (2.0 µmol), PBS (1.0 mL); **(D) MGD-3-FCAT** (3.5 mg, 12.1 µmol), FAC (4.0 µmol), β-gal (E801A, 10 units), TFA (2.0 µmol), PBS (1.0 mL); **(D) MGD-3-FCAT** (3.5 mg, 12.1 µmol), FAC (4.0 µmol), β-gal (E801A, 10 units), TFA (2.0 µmol), PBS (1.0 mL); **(D) MGD-3-FCAT** (3.5 mg, 12.1 µmol), FAC (4.0 µmol), β-gal (E801A, 10 units), TFA (2.0 µmol), PBS (1.0 mL); **(D) MGD-3-FCAT** (3.5 mg, 12.1 µmol), FAC (4.0 µmol), β-gal (E801A, 10 units), TFA (2.0 µmol), PBS (1.0 mL); **(D) MGD-3-FCAT** (3.5 mg, 12.1 µmol), FAC (4.0 µmol), β-gal (E801A, 10 units), TFA (2.0 µmol), PBS (1.0 mL) at 37°C in 30 mins.

Figure S4. The cytotoxicity of MGD-3-FCAT to wild-type and *lacZ* expressing MCF7 and PC3 cells.

Figure S5. *In vitro* ¹H-MRI detection of *lacZ* gene expression in PC3-*lacZ* cells after 25-hour incubation at 37°C. ¹H-MRI Conditions: Using the same parameters as in Figure S3. (A) control, MGD-3-FCAT (3.5 mg, 12.1 µmol), FAC (4.0 µmol), TFA (2.0 µmol), PC3-WT cells (5×10⁶) in PBS (0.1M, pH=7.4, 800 µL); (B) MGD-3-FCAT (3.5 mg, 12.1 µmol), FAC (4.0 µmol), TFA (2.0 µmol), PC3-*lacZ* cells (5×10⁶) in PBS (0.1M, pH=7.4, 800 µL); (C) MGD-3-FCAT (7.0 mg, 24.1 µmol), FAC (8.0 µmol), TFA (2.0 µmol), MCF7-*lacZ* cells (1×10⁷) in PBS (0.1M, pH=7.4, 800 µL); (D) MGD-3-FCAT (3.5 mg, 12.1 µmol), without FAC, TFA (2.0 µmol), PC3-*lacZ* cells (5×10⁶) in PBS (0.1M, pH=7.4, 800 µL). Histology: β-gal activity validation in PC3-*lacZ* cells with deep blue (bottom) and no activity in PC3-WT cells (top), X-gal staining (×200).

Synthesis of Ligands. General procedure - A solution of aldehyde (2.50 mmol) in anhydrous EtOH (15 mL) containing AcOH (20 μ L) was stirred vigorously with aroylhydrazide (2.50 mmol) at 80°C under N₂ until TLC showed the reaction was completed, then coevaporated with toluene to dryness *in vacuo.*, and crystallized from EtOH-H₂O.

Pyridoxal isonicotinoylhydrazone (PIH), 644 mg, white crystals, δ_{H} : 12.39, 11.47 (2 H, 2br, 2-OH & NH), 9.10 (1 H, s, CH=N), 8.83 (2 H, d, $J_{2',3'} = J_{5',6'} = 4.0$ Hz, H-3',5'), 7.97 (1H, s, H-6), 7.88 (2 H, d, H-2',6'), 5.43 (1 H, t, $J_{H-5,HO-5} = 4.0$ Hz, α^{5} -OH), 4.62 (2 H, d, CH₂-5), 3.34 (3H, s, CH₃-2) ppm; δ_{C} : 161.55 (s, PyCO), 150.70 ~ 120.03 (m, CH=N, Ar-C), 58.92 (s, CH₂-5), 18.86 (s, CH₃-2) ppm.

Anal. Calcd. for C₁₄H₁₄N₄O₃ (%): C, 58.74, H, 4.93, N, 19.57; Found: C, 58.70, H, 4.91, N, 19.56.

Salicylaldehyde benzoylhydrazone (**SBH**), 570 mg, white needles, δ_{H} : 12.14, 11.34 (2 H, 2br, OH & NH), 8.67 (1 H, s, CH=N), 7.97 ~ 6.92 (9H, m, Ar-H) ppm; δ_{C} : 162.83 (PhCO), 157.48 ~ 116.42 (CH=N, Ar-C) ppm.

Anal. Calcd. for $C_{14}H_{12}N_2O_2$ (%): C, 69.99, H, 5.03, N, 11.66; Found: C, 69.97, H, 5.01, N, 11.63.

Salicylaldehyde isonicotinoylhydrazone (SIH), 567 mg, white crystals, δ_{H} : 12.32, 11.13 (2 H, 2br, OH & NH), 8.83 (1 H, s, CH=N), 8.71 ~ 6.93 (8H, m, Ar-H) ppm; δ_{C} : 161.33 (PyCO), 157.48 ~ 116.44 (CH=N, Ar-C) ppm.

6

Anal. Calcd. for C₁₃H₁₁N₃O₂ (%): C, 64.72, H, 4.60, N, 17.42; Found: C, 64.70, H, 4.57, N, 17.40.

Salicylaldehyde nicotinoylhydrazone (SNH), 579 mg, light yellow crystals, δ_{H} : 12.28, 11.19 (2 H, 2br, OH & NH), 9.13 (1 H, s, CH=N), 8.80 ~ 6.92 (8H, m, Ar-H) ppm; δ_{C} : 161.43 (PyCO), 157.46 ~ 116.43 (CH=N, Ar-C) ppm.

Anal. Calcd. for C₁₃H₁₁N₃O₂ (%):C, 64.72, H, 4.60, N, 17.42; Found: C, 64.69, H, 4.58, N, 17.39.

2-Hydroxyl-5-fluorobenzaldehyde benzoylhydrazone (*p***-FSBH**), 581 mg, white crystals, δ_{H} : 12.17, 11.07 (2 H, 2br, 2-OH & NH), 8.65 (1 H, s, CH=N), 7.97 ~ 6.93 (8H, m, Ar-H) ppm; δ_{C} : 162.97 (s, PhCO), 156.51 ~ 113.82 (m, CH=N, Ar-C) ppm.

Anal. Calcd. for C₁₄H₁₁N₂O₂F (%): C, 65.11, H, 4.29, N, 10.85; Found: C, 65.08, H, 4.27, N, 10.83.

2-Hydroxyl-benzaldehyde 4-fluorobenzoylhydrazone (**SBHF-**p), 601 mg, white needles, δ_{H} : 12.14, 11.29 (2 H, 2s, 2-OH & NH), 8.65 (1 H, s, CH=N), 8.06 ~ 6.90 (8H, m, Ar-H) ppm; δ_{C} : 165.54 (s, PhCO), 163.05 ~ 115.45 (m, CH=N, Ar-C) ppm.

Anal. Calcd. for C₁₄H₁₁N₂O₂F (%): C, 65.11, H, 4.29, N, 10.85; Found: C, 65.09, H, 4.26, N, 10.82.

Fe-Complex Preparation. *General procedure* - To a solution of ligand (2.0 mmol for **PIH**, **SBH**, **SIH**, **SNH**, *p***-FSBH** and **SBHF**-*<i>p*; 3.0 mmol for **3-FCAT** and **4-FCAT**) and Et₃N (323 mg, 3.2 mmol) in anhydrous MeOH (100 mL) was added dropwise a solution of $Fe(CIO_4)_3 \cdot 6H_2O$ (460 mg, 1.0 mmol) in anhydrous MeOH (50 mL) with stirring at gently refluxing under N₂ for 30 min. Upon cooling, a fine black precipitate was obtained, which was filtered off, washed with EtOH then Et₂O, and dried in the vacuum.

PIH/Fe³⁺ Complex, $[Fe(PIH-H)_2](CIO_4) \cdot 3H_2O$ (576 mg) as black powders. Anal. Calcd. for C₂₈H₃₂CIFeN₈O₁₃ (%): C, 43.12, H, 4.14, N, 14.37; Found: C, 43.08, H, 4.09, N, 14.32.

SBH/Fe³⁺ Complex, [Fe(SBH-H)₂](ClO₄)·3H₂O (770 mg) as black powders. Anal. Calcd. for C₂₈H₂₈ClFeN₄O₁₁ (%): C, 48.89, H, 4.10, N, 8.15; Found: C, 48.81, H, 4.03, N, 8.07.

SIH/Fe³⁺ Complex, [Fe(SIH-H)₂](ClO₄)·3H₂O (635 mg) as black powders. Anal. Calcd.
for C₂₆H₂₆ClFeN₆O₁₁ (%): C, 45.27, H, 3.80, N, 12.18; Found: C, 45.18, H, 3.73, N, 12.11.

SNH/Fe³⁺ Complex, [Fe(SNH-H)₂](ClO₄)·3H₂O (717 mg) as black powders. Anal. Calcd. for C₂₆H₂₆ClFeN₆O₁₁ (%): C, 45.27, H, 3.80, N, 12.18; Found: C, 45.21, H, 3.71, N, 12.13.

p-FSBH/Fe³⁺ Complex, [Fe(*p*-FSBH-H)₂](ClO₄)·3H₂O (594 mg) as black powders. Anal. Calcd. for C₂₈H₂₆ClFeN₄O₁₁F₂ (%): C, 46.46, H, 3.62, N, 7.74; Found: C, 46.39, H, 3.54, N, 7.63. **SBHF-***p***/Fe**³⁺ Complex, [Fe(SBHF-*p*-H)₂](ClO₄)·3H₂O (695 mg) as black powders. Anal. Calcd. for C₂₈H₂₆ClFeN₄O₁₁F₂ (%): C, 46.46, H, 3.62, N, 7.74; Found: C, 46.41, H, 3.52, N, 7.65.

3-FCAT/Fe³⁺ Complex, (Et₃NH)₃[Fe(3-FCAT-2H)₃]⋅H₂O (392 mg) as black powders. Anal. Calcd. for C₃₆H₆₉FeN₃O₇F₃ (%): C, 56.24, H, 9.05, N, 5.47; Found: C, 56.16, H, 8.95, N, 5.41.

4-FCAT/Fe³⁺ Complex, $(Et_3NH)_3[Fe(4-FCAT-2H)_3]\cdot H_2O$ (484 mg) as black powders. Anal. Calcd. for $C_{36}H_{69}FeN_3O_7F_3$ (%):C, 56.24, H, 9.05, N, 5.47; Found: C, 56.18, H, 8.99, N, 5.42.

Molecular Characterization of 3- and 4-FCAT β -*D*-Galactopyranosides.

1-*O*-(2', 3', 4', 6'-tetra-*O*-acetyl-β-*D*-galactopyranosyl)-3-fluorocatechol **MG-3-FCAT** (1.09 g, 95%), R_f 0.45 (3:2 cyclohexane-EtOAc), $\delta_{\rm H}$ (CDCl₃, 400MHz): 6.54 (1 H, t, ${}^{3}J_{\rm F3,H4}$ = $J_{4,5}$ = 12.0 Hz, H-4), 6.91 (1 H, dd, $J_{5,6}$ = 8.0 Hz, $J_{4,5}$ = 12 Hz, H-5), 6.65 (1 H, d, $J_{5,6}$ = 8.0 Hz, H-6), 6.79 (1 H, s, HO-2, exchangeable with D₂O), 4.74 (1 H, d, $J_{1',2'}$ = 8.0 Hz, H-1'), 5.40 (1 H, dd, $J_{2',3'}$ = 10.2 Hz, H-2'), 5.03 (1 H, dd, $J_{3',4'}$ = 4.0 Hz, H-3'), 5.35 (1 H, d, $J_{4',5'}$ = 3.6 Hz, H-4'), 3.99 (1 H, m, H-5'), 4.14 (1 H, dd, $J_{5',6a'}$ = 7.8 Hz, $J_{6a',6b'}$ = 12.0 Hz, H-6a'), 4.08 (1 H, dd, $J_{5',6b'}$ = 3.7 Hz, H-6b'), 2.12, 2.06, 1.96, 1.92 (12 H, 4s, 4 × CH₃CO) ppm; $\delta_{\rm C}$ (CDCl₃, 100MHz): 170.43, 170.15, 169.97, 169.76 (4 × CH₃CO), 125.95 (d, ${}^{3}J_{\rm F-C}$ = 9.0 Hz, C-1), 107.50 (d, ${}^{2}J_{\rm F-C}$ = 19.0 Hz, C-2), 155.37 (d, ${}^{1}J_{\rm F-C}$ = 245.0 Hz, C-3), 132.80 (d, ${}^{2}J_{\rm F-C}$ = 13.0 Hz, C-4), 150.96 (C-5), 112.38 (d, ${}^{3}J_{\rm F-C}$ = 3.0 Hz, C-6), 104.16 (C-1'), 68.34 (C-2'), 70.37 (C-3'), 66.77 (C-4'), 71.66 (C-5'), 61.11 (C-6'), 20.67, 20.51, 20.41, 20.26 (4 \times CH₃CO) ppm.

Anal. Calcd. for C₂₀H₂₃O₁₁F (%): C, 52.40, H, 5.06; Found: C, 52.38, H, 5.04.

2-O-(2', 3', 4', 6'-tetra-O-acetyl-β-D-galactopyranosyl)-4-fluorocatechol **MG-4-FCAT** (1.01 g, 88%), Rf 0.56 (1:1 cyclohexane-EtOAc), $\delta_{\rm H}$ (CDCl₃, 400MHz): 6.77 (1 H, dd, ${}^{3}J_{\rm F4,H3}$ = 12.0, $J_{3,5}$ = 3.8 Hz, H-3), 6.71 (1 H, dd, $J_{5,6}$ = 4.0 Hz, ${}^{3}J_{\rm F4,H5}$ = 12.0, H-5), 6.87 (1 H, dd, ${}^{4}J_{\rm F4,H6}$ = 8.0 Hz, H-6), 5.77 (1 H, s, HO-1, exchangeable with D₂O), 4.94 (1 H, d, $J_{1',2'}$ = 8.0 Hz, H-1'), 5.46 (1 H, dd, $J_{2',3'}$ = 10.4 Hz, H-2'), 5.14 (1 H, dd, $J_{3',4'}$ = 3.2 Hz, H-3'), 5.45 (1 H, d, $J_{4',5'}$ = 2.8 Hz, H-4'), 4.11 (1 H, m, H-5'), 4.14 (1 H, dd, $J_{5',6a'}$ = 7.6 Hz, $J_{6a',6b'}$ = 11.2 Hz, H-6a'), 4.08 (1 H, dd, $J_{5',6b'}$ = 5.6 Hz, H-6b'), 2.20, 2.16, 2.10, 2.06 (12 H, 4s, 4 × CH₃CO) ppm; $\delta_{\rm C}$ (CDCl₃, 100MHz): 170.57, 170.27, 170.10, 169.86 (4 × CH₃CO), 143.31 (C-1), 116.21 (d, ${}^{3}J_{\rm F-C}$ = 9.0 Hz, C-2), 104.83 (d, ${}^{2}J_{\rm F-C}$ = 26.8 Hz, C-3), 156.12 (d, ${}^{1}J_{\rm F-C}$ = 248.0 Hz, C-4), 110.95 (d, ${}^{2}J_{\rm F-C}$ = 22.4 Hz, C-5), 144.06 (d, ${}^{3}J_{\rm F-C}$ = 10.4 Hz, C-6), 101.61 (C-1'), 69.10 (C-2'), 70.47 (C-3'), 66.87 (C-4'), 71.67 (C-5'), 61.54 (C-6'), 21.00, 20.74, 20.70, 20.67 (4 × CH₃CO) ppm.

Anal. Calcd. for C₂₀H₂₃O₁₁F (%): C, 52.40, H, 5.06; Found: C, 52.37, H, 5.03.

1-*O*-(β-*D*-galactopyranosyl)-3-fluorocatechol **MgD-3-FCAT** (577.46 mg, 96%), R_f 0.40 (1:2 EtOAc-MeOH), δ_{H} (DMSO-*d*₆, 400MHz): 6.69 (1 H, dd, ${}^{3}J_{F3,H4}$ = 10.0 Hz, $J_{4,5}$ = 3.6 Hz, H-4), 6.95 (1 H, ddd, ${}^{4}J_{F3,H5}$ = 10.0 Hz, $J_{5,6}$ = 6.8 Hz, H-5), 6.65 (1 H, d, H-6), 7.32 (1 H, s, HO-2, exchangeable with D₂O), 4.62 (1 H, d, $J_{1',2'}$ = 8.0 Hz, H-1'), 4.58 - 3.64 (4H, br, HO-2', 3', 4', 6', exchangeable with D₂O), 3.63 (1 H, dd, $J_{2',3'}$ = 9.8 Hz, H-2'), 3.67 (1 H, dd, $J_{3',4'}$ = 2.8 Hz, H-3'), 3.38 (1 H, d, $J_{4',5'}$ = 3.2 Hz, H-4'), 3.57 (1 H, m, H-5'), 3.45 (1 H, dd, $J_{5',6a'}$ = 6.8 Hz, $J_{6a',6b'}$ = 11.2 Hz, H-6a'), 3.41 (1 H, dd, $J_{5',6b'}$ = 2.8 Hz, H-6b') ppm; δ_{C} (DMSO- d_{6} , 100MHz): 124.80 (d, ${}^{3}J_{F-C}$ = 8.9 Hz, C-1), 106.76 (d, ${}^{2}J_{F-C}$ = 19.3 Hz, C-2), 155.70 (d, ${}^{1}J_{F-C}$ = 244.1 Hz, C-3), 132.99 (d, ${}^{2}J_{F-C}$ = 13.4 Hz, C-4), 151.82 (d, ${}^{3}J_{F-C}$ = 3.8 Hz, C-5), 112.61 (C-6), 105.75 (C-1'), 71.32 (C-2'), 73.06 (C-3'), 68.01 (C-4'), 75.75 (C-5'), 60.11 (C-6') ppm.

Anal. Calcd. for C₁₂H₁₅O₇F (%): C, 49.66, H, 5.21; Found: C, 49.62, H, 5.18.

2-*O*-(β-*D*-galactopyranosyl)-4-fluorocatechol **MGD-4-FCAT** (565.43 mg, 94%), R_f 0.43 (1:2 EtOAc-MeOH), δ_{H} (DMSO-*d*₆, 400MHz): 6.77 (1 H, dd, ³J_{F4,H3} = 8.8 Hz, *J*_{3,5} = 6.0 Hz, H-3), 6.66 (1 H, ddd, ³J_{F4,H5} = 30.0 Hz, *J*_{5,6} = 8.4 Hz, H-5), 6.95 (1 H, dd, ⁴J_{F4,H6} = 2.8 Hz, H-6), 7.30 (1 H, s, HO-1, exchangeable with D₂O), 4.67 (1 H, d, *J*_{1',2'} = 8.0 Hz, H-1'), 4.88 - 3.65 (4H, br, HO-2', 3', 4', 6', exchangeable with D₂O), 3.58 (1 H, dd, *J*_{2',3'} = 10.2 Hz, H-2'), 3.41 (1 H, dd, *J*_{3',4'} = 3.2 Hz, H-3'), 3.68 (1 H, d, *J*_{4',5'} = 3.2 Hz, H-4'), 3.53 - 3.48 (3 H, m, H-5', H-6') ppm; δ_{C} (DMSO-*d*₆, 100MHz): 143.27 (d, ⁴J_{F-C} = 2.2 Hz, C-1), 115.90 (d, ³J_{F-C} = 9.7 Hz, C-2), 104.23 (d, ²J_{F-C} = 23.0 Hz, C-3), 155.19 (d, ¹J_{F-C} = 232.9 Hz, C-4), 108.25 (d, ²J_{F-C} = 21.6 Hz, C-5), 145.73 (d, ³J_{F-C} = 11.2 Hz, C-6), 102.68 (C-1'), 70.40 (C-2'), 72.65 (C-3'), 68.27 (C-4'), 75.90 (C-5'), 60.62 (C-6') ppm.

Anal. Calcd. for C₁₂H₁₅O₇F (%): C, 49.66, H, 5.21; Found: C, 49.64, H, 5.19.

1,2-di-*O*-(2', 3', 4', 6'-tetra-*O*-acetyl- β -*D*-galactopyranosyl)-**3**-fluorocatechol **FG-3**-**FCAT** (1.83 g, 93%), R_f 0.35 (1:1 cyclohexane-EtOAc), $\delta_{\rm H}$ (CDCl₃, 400MHz): 6.63 (1 H, ddd, ³*J*_{F3,H4} = 12.0 Hz, *J*_{4,5} = 8.0 Hz, *J*_{4,6} = 4.0 Hz, H-4), 6.98 (1 H, dd, *J*_{5,6} = 12.0 Hz, H-5), 6.74 (1 H, d, H-6), 4.80 (2 H, d, *J*_{1',2'} = *J*_{1'',2''} = 8.0 Hz, H-1', 1''), 5.50 (2 H, dd, *J*_{2',3'} = *J*_{2'',3''} = 10.2 Hz, H-2', 2"), 5.09 (2 H, dd, $J_{3',4'} = J_{3'',4''} = 4.0$ Hz, H-3', 3"), 5.43 (2 H, d, $J_{4',5'} = J_{4'',5''} = 4.0$ Hz, H-4',"), 4.04 (2 H, t, $J_{5',6a'} = J_{5'',6a''} = 8.0$ Hz, H-5', 5"), 4.22 (2 H, dd, $J_{6a',6b'} = J_{6a'',6b''} =$ 12.0 Hz, H-6a', 6a"), 4.16 (2 H, dd, $J_{5',6b'} = J_{5'',6b''} = 4.0$ Hz, H-6b', 6b"), 2.20, 2.15, 2.05, 2.03 (24 H, 4s, 8 × CH₃CO) ppm; δ_{C} (CDCl₃, 100MHz): 170.43, 170.25, 170.15, 170.03, 169.98, 169.77, 169.49, 169.42 (8 × CH₃CO), 125.97 (d, ${}^{3}J_{F-C} = 10.0$ Hz, C-1), 107.53 (d, ${}^{2}J_{F-C} = 19.0$ Hz, C-2), 155.37 (d, ${}^{1}J_{F-C} = 245.0$ Hz, C-3), 132.80 (d, ${}^{2}J_{F-C} = 14.0$ Hz, C-4), 150.95 (C-5), 112.37 (d, ${}^{3}J_{F-C} = 3.0$ Hz, C-6), 101.42 (C-1'), 100.40 (C-1''), 68.33 (C-2', 2''), 70.37 (C-3', 3''), 67.02 (C-4'), 66.76 (C-4''), 71.66 (C-5', 5''), 61.26 (C-6'), 61.11 (C-6''), 20.92, 20.83, 20.70, 20.64, 20.53, 20.51, 20.45, 20.44 (8 × CH₃CO) ppm; ESIMS: *m/z* 789 [M⁺] (17%), 790 [M+1] (9%).

Anal. Calcd. for C₃₄H₄₁O₂₀F (%): C, 51.78, H, 5.24; Found: C, 51.74, H, 5.21.

1,2-di-O-(2', 3', 4', 6'-tetra-O-acetyl-β-*D*-galactopyranosyl)-4-fluorocatechol **FG-4-FCAT** (1.69 g, 86%), R_f 0.42 (1:1 cyclohexane-EtOAc), $\delta_{\rm H}$ (CDCl₃, 400MHz): 6.76 (1 H, dd, ${}^{3}J_{\rm F4,H3}$ = 12.0 Hz, $J_{3,5}$ = 4.0 Hz, H-3), 6.73 (1 H, ddd, ${}^{3}J_{\rm F4,H5}$ = 30.0 Hz, $J_{5,6}$ = 8.0 Hz, H-5), 6.88 (1 H, dd, ${}^{4}J_{\rm F4,H6}$ = 9.0 Hz, H-6), 4.85 (1 H, d, $J_{1',2'}$ = 8.0 Hz, H-1'), 4.94 (1 H, d, $J_{1'',2''}$ = 8.0 Hz, H-1''), 5.48 (2 H, dd, $J_{2',3'}$ = $J_{2'',3''}$ = 10.0 Hz, H-2', 2''), 5.12 (1 H, dd, $J_{3',4'}$ = 4.0 Hz, H-3'), 5.15 (1 H, dd, $J_{3'',4''}$ = 4.0 Hz, H-3''), 5.45 (2 H, d, $J_{4',5'}$ = $J_{4'',5''}$ = 4.0 Hz, H-4', 4''), 4.06 (2 H, t, $J_{5',6a'}$ = $J_{5'',6a''}$ = 7.6 Hz, H-5', 5''), 4.24 (2 H, dd, $J_{6a',6b'}$ = $J_{6a'',6b''}$ = 11.8 Hz, H-6a', 6a''), 4.19 (2 H, dd, $J_{5',6b'}$ = $J_{5'',6b''}$ = 3.8 Hz, H-6b', 6b''), 2.20, 2.14, 2.13, 2.09, 2.07, 2.05, 2.03, 2.02 (24 H, 8s, 8 × CH₃CO) ppm; $\delta_{\rm C}$ (CDCl₃, 100MHz): 170.64, 170.62, 170.60, 170.34, 170.18, 169.79, 169.59, 169.52 (8 × CH₃**C**O), 143.34 (d, ${}^{4}J_{\rm F-C}$ = 2.9 Hz, C-1), 116.26 (d, ${}^{3}J_{\rm F-C}$ = 9.0 Hz, C-2), 104.86 (d, ${}^{2}J_{\rm F-C}$ = 26.0 Hz, C-3), 156.19 (d, ${}^{1}J_{\rm F-C}$ = 238.0 Hz, C-4), 110.98 (d, ${}^{2}J_{\rm F-C}$ = 22.3 Hz, C-5), 144.09 (d, ${}^{3}J_{F-C}$ = 10.4 Hz, C-6), 101.62 (C-1'), 102.85 (C-1''), 69.13 (C-2', 2''), 70.50 (C-3'), 70.61 (C-3''), 66.88 (C-4'), 66.90 (C-4''), 71.61 (C-5'), 71.70 (C-5''), 61.37 (C-6'), 61.58 (C-6''), 21.02, 20.77, 20.73, 20.70 (8 × CH₃CO) ppm; ESIMS: *m/z* 789 [M⁺] (25%), 790 [M+1] (11%).

Anal. Calcd. for C₃₄H₄₁O₂₀F (%): C, 51.78, H, 5.24; Found: C, 51.75, H, 5.20.

1,2-di-O-(β-*D*-galactopyranosyl)-3-fluorocatechol **FGD-3-FCAT** (774.36 mg, 90%), R_f 0.37 (1:4 EtOAc-MeOH), δ_{H} (DMSO-*d*₆, 400MHz): 6.92 (1 H, dd, ³J_{F3,H4} = 9.1 Hz, *J*_{4,5} = 3.8 Hz, H-4), 7.06 (1 H, ddd, ⁴J_{F3,H5} = 4.0 Hz, *J*_{5,6} = 8.2 Hz, H-5), 6.88 (1 H, d, H-6), 5.34 (2 H, d, *J* = 4.0 Hz, HO-2', 2", exchangeable with D₂O), 4.34 (2 H, br, HO-3', 3", exchangeable with D₂O), 4.90 (2 H, br, HO-4', 4", exchangeable with D₂O), 4.55 (2 H, br, HO-6', 6", exchangeable with D₂O), 4.83 (1 H, d, *J*_{1',2'} = 8.0 Hz, H-1'), 4.69 (1 H, d, *J*_{1'',2''} = 8.0 Hz, H-1''), 3.69 (1 H, dd, *J*_{2',3'} = 10.2 Hz, H-2'), 3.71 (1 H, dd, *J*_{2'',3''} = 10.0 Hz, H-2''), 3.38 (1 H, dd, *J*_{3',4''} = 3.2 Hz, H-3'), 3.42 (1 H, dd, *J*_{3'',4''} = 3.6 Hz, H-3''), 3.58 (2 H, m, H-4', 4''), 3.33 (2 H, m, H-5', 5''), 3.54 (4 H, m, H-6', 6'') ppm; δ_C (DMSO-*d*₆, 100MHz): 124.94 (d, ³*J*_{F-C} = 9.0 Hz, C-1), 110.86 (d, ²*J*_{F-C} = 20.0 Hz, C-2), 156.99 (d, ¹*J*_{F-C} = 245.0 Hz, C-3), 135.34 (d, ²*J*_{F-C} = 13.0 Hz, C-4), 152.37 (d, ³*J*_{F-C} = 4.0 Hz, C-5), 113.80 (C-6), 104.95 (C-1'), 103.57 (C-1''), 72.33 (C-2'), 71.59 (C-2''), 74.19 (C-3'), 73.64 (C-3''), 69.37 (C-4'), 69.30 (C-4''), 76.42 (C-5'), 76.13 (C-5''), 61.67 (C-6'), 61.17 (C-6'') ppm.

Anal. Calcd. for C₁₈H₂₅O₁₂F (%): C, 47.79, H, 5.57; Found: C, 47.74, H, 5.53.

1,2-di-*O*-(β-*D*-galactopyranosyl)-4-fluorocatechol **FGD-4-FCAT** (731.34 mg, 85%), R_f 0.42 (1:4 EtOAc-MeOH), δ_{H} (DMSO-*d*₆, 400MHz): 6.77 (1 H, dd, ${}^{3}J_{F4,H3}$ = 8.8 Hz, $J_{3,5}$ = 5.6 Hz, H-3), 6.67 (1 H, ddd, ${}^{3}J_{F4,H5} = 26.4$ Hz, $J_{5,6} = 8.4$ Hz, H-5), 6.95 (1 H, dd, ${}^{4}J_{F4,H6} = 3.2$ Hz, H-6), 5.90 - 5.10 (8H, br, HO-2', 2", 3', 3", 4', 4", 6', 6", exchangeable with D₂O), 4.53 (1 H, d, $J_{1',2'} = 7.6$ Hz, H-1'), 4.67 (1 H, d, $J_{1'',2''} = 7.6$ Hz, H-1"), 3.62 (2 H, dd, $J_{2',3'} = J_{2'',3''} = 10.0$ Hz, H-2', 2"), 3.42 (2 H, dd, $J_{3',4'} = J_{3'',4''} = 4.0$ Hz, H-3', 3"), 3.69 (1 H, d, $J_{4',5'} = J_{4'',5''} = 3.2$ Hz, H-4', 4"), 3.57 - 3.51 (6 H, m, H-5', 5", 6', 6") ppm; δ_{C} (DMSO- d_{6} , 100MHz): 143.42 (d, ${}^{4}J_{F-C} = 2.3$ Hz, C-1), 115.86 (d, ${}^{3}J_{F-C} = 9.7$ Hz, C-2), 104.22 (d, ${}^{2}J_{F-C} = 26.8$ Hz, C-3), 155.05 (d, ${}^{1}J_{F-C} = 232.9$ Hz, C-4), 108.18 (d, ${}^{2}J_{F-C} = 22.3$ Hz, C-5), 145.77 (d, ${}^{3}J_{F-C} = 10.4$ Hz, C-6), 102.82 (C-1'), 104.35 (C-1''), 70.34 (C-2'), 70.53 (C-2''), 72.62 (C-3'), 72.70 (C-3''), 68.13 (C-4'), 68.19 (C-4''), 75.78 (C-5'), 75.87 (C-5'), 60.48 (C-6'), 60.55 (C-6') ppm.

Anal. Calcd. for C₁₈H₂₅O₁₂F (%): C, 47.79, H, 5.57; Found: C, 47.75, H, 5.54.