Electronic supplementary information (ESI)

Ultra-sensitive Chemosensors for Fe(III) and Explosives Based on Highly Fluorescent

Oligofluoranthene

Xin-Gui Li,^{*‡a} Yaozu Liao,^{‡ab} Mei-Rong Huang,^{*a} Veronica Strong,^b and Richard B. Kaner^{*b}

^aInstitute of Materials Chemistry, Key Laboratory of Advanced Civil Engineering Materials, College of Materials Science and

Engineering, Tongji University, 1239 Si-Ping Road, Shanghai 200092, China. E-mail: adamxgli@yahoo.com;

huangmeirong@tongji.edu.cn; Fax: +86-21-65983871, Tel: +86-21-69582104

^bDepartment of Chemistry & Biochemistry and California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, USA. E-mail: kaner@chem.ucla.edu; Fax: +1 (310) 206-4038, Tel: +1 (310) 825-5346

‡ X.-G. Li and Y.Z. Liao contributed equally to this work.

Fig. S1. 500 MHz ¹H-NMR spectra of FA monomer and OFA synthesized with a FeCl₃/FA molar ratio of 5:1.

Fig. S2. MALDI-TOF mass spectrum of OFA synthesized with FeCl₃/FA molar ratio of 5:1.

Fig. S3. UV-vis absorption spectra of OFA solution in NMP upon addition of Fe^{III} with different concentrations from 0 to 312.5 µM.

Scheme S1. Orbital Electron Distribution of Some Metal Ions

Na⁺:
$$2S^22p^63s^0$$
 $2s$
 $2p$
 $3s$

 Al³⁺: $2s^22p^63s^03p^0$
 11
 11
 11
 11
 11

 K⁺: $3S^23p^64s^0$
 $3s$
 $3p$
 $4s$

 Ca²⁺: $3S^23p^64s^0$
 11
 11
 11
 11

 Ca²⁺: $3S^23p^64s^0$
 $3s$
 $3p$
 $4s$

 Ca²⁺: $3d^34s^0$
 11
 11
 11
 11

 Mn²⁺: $3d^54s^0$
 $3d$
 $4s$
 $3d$
 $4s$

 Fe³⁺: $3d^54s^0$
 11
 11
 11
 11
 11

 Ni²⁺: $3d^54s^0$
 $3d$
 $4s$
 $3d$
 $4s$

 Ni²⁺: $3d^94s^0$
 11
 11
 11
 11
 11
 11

 Hg²⁺: $5d^{10}6s^0$
 $5d$
 $6s$
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11
 11

m/e	Formulae	Structure
1000.5	C ₈₀ H ₄₀	

Table S1. Molecular structure of OFA Synthesized with An FeCl₃/FA Molar Ratio of 5:1 by MALDI-TOF Mass Spectrum

Electronic Supplementary Material (ESI) for Chemical Science This journal is O The Royal Society of Chemistry 2013

Metal ions	Na ⁺ /Na	Al ³⁺ /Al	K ⁺ /K	Ca ²⁺ /Ca	Cr ³⁺ /Cr ²⁺	Mn ²⁺ /Mn	$\mathrm{Fe}^{3+}/\mathrm{Fe}^{2+}$	Co ²⁺ /Co	Ni ²⁺ /Ni	Cu ²⁺ /Cu	Hg ²⁺ /Hg ⁺
SEP (V)	-2.71	-1.66	-2.93	-2.87	-0.41	-1.17	+0.77	-0.29	-0.25	+0.34	+0.91

Table S2. Standard Electrode Potentials (SEP) of Some Metal Ions

chemsensor	Fe ³⁺ solvent	detection limit (M)	linear region (M)	association constant (M ⁻¹)
OFA ^{This work}	water	6.25×10 ⁻¹¹	6.25×10 ⁻¹¹ -3.13×10 ⁻³	2.09×10^{6}
AD-SRhB/β-CD-DNS supramolecular-complex ²⁰	water	1.0×10 ⁻⁶	1.0×10 ⁻⁶ -5×10 ⁻⁵	-
$\begin{array}{ll} \mbox{rhodamine-modified} & \mbox{Fe}_3O_4 \\ \mbox{nanoparticles}^{21} \end{array}$	water	3.6×10 ⁻⁸	3.6×10 ⁻⁸ -7×10 ⁻⁷	5.0×10^{6}
alexa fluor 488 ²²	water	1.8×10 ⁻⁷	2.0×10 ⁻⁷ -1.5×10 ⁻⁵	2.7×10^4
meso-substituted boron- dipyrromethene derivative ²³	MOPS buffer	_	10 ⁻⁷ -10 ⁻⁴	2.7×10^4
azotobactin δ^{24}	buffer solution	8.95×10 ⁻⁹	1.85×10 ⁻⁹ -1.7×10 ⁻⁶	_
N,N-diethylsulfonate-1 - aminomethylnaphthalene ²⁵	buffer solution	2.0×10 ⁻⁶	1.6×10 ⁻⁵ -6.3×10 ⁻⁵	7.6×10 ⁴
modified-rhodamine ^{26,27}	buffer solution	1.4×10 ⁻⁸	6.0×10 ⁻⁸ -7.2×10 ⁻⁶	6.43×10 ³
PMBA-SBA ²⁸	ethanol/water(9:1)	1.98×10 ⁻⁶	1.0×10 ⁻⁵ -4.0×10 ⁻⁵	1.49×10 ⁴
dipodal schiff base ²⁹	THF/H ₂ O (9:1)	5.0×10 ⁻⁶	5.0×10 ⁻⁶ -8.0×10 ⁻⁵	3.8×10 ⁴
anthracene-based sensor with	CH ₃ CN/H ₂ O	1.0×10 ⁻⁶	_	1.6×10 ³
amide/ β -amino alcohol ³⁰	CH ₃ CN	3.0×10 ⁻⁸	_	
copolyacrylate of 4-amino-1,8-naphthalimide ²⁹	water	-	Two sections: 1.33×10 ⁻⁷ –6.67×10 ⁻⁷ ; 6.67×10 ⁻⁷ –4.00×10 ⁻⁴	9.12×10 ⁵ , 3.93×10 ⁴
water-soluble polymer based on 1,8-naphthalimide ³⁰	water	_	1.3×10 ⁻⁷ -1.0×10 ⁻⁵	3.63×10 ⁴
poly(HQPEMA) ³¹	DMF	5.0×10 ⁻⁵	$5.0 \times 10^{-5} - 7.5 \times 10^{-4}$	1.44×10^{4}

Table S3. Comparison of the OFA Fluorescent Chemosensor with Other Ones for Sensing ${\rm Fe}^{\rm III}$

_

chemosensors	PA solvent	detection limit (M)	linear region (M)	association constant (M ⁻¹)
OFA ^{This work}	water	1.0×10 ⁻¹²	1.0×10 ⁻¹² -5.0×10 ⁻⁴	6.1×10^{4}
Am-functionalized 1-ethynylpentaphenylsilole ^{a35}	water	8.7×10 ⁻⁷	8.7×10 ⁻⁷ -3.8×10 ⁻⁵	$8.0 imes 10^4$
polymetallole ^{a36}	toluene	1.0×10 ⁻⁵	1.0×10 ⁻⁵ -1.0×10 ⁻⁴	1.1×10^4
poly(trifluoropropylmethylsilane) ^{a37}	THF	2.6×10 ⁻⁵	10 ⁻⁵ -10 ⁻⁴	4.15×10^{4}
TPE-containing polytriazoles ^{a38}	THF/H ₂ O	2.5×10 ⁻⁷	4.4×10 ⁻⁷ -2.2×10 ⁻⁴	1.1× 10 ⁵
Eu ³⁺ -TTA complex ³⁹	water	2.0×10 ⁻⁶	4.0×10 ⁻⁵ -4.0×10 ⁻⁶	3.33×10^{3}
Pt(PEt ₃) ₂ (NO ₃) triphenylamine and clip-type amide ⁴⁰	CH ₂ Cl ₂ /DMF	1.0×10 ⁻⁶	1.0×10 ⁻⁶ -5.0×10 ⁻⁶	4.81×10^4
phosphole oxide ^{a41}	THF/H ₂ O	1.0×10 ⁻⁵	1.0×10 ⁻⁵ -4.0×10 ⁻⁵	2.03×10^{4}

Table S4. Comparison of the OFA Fluorescent Chemosensor with Others Used for Sensing Picric Acid (PA)

^a: The linear range and detection limit are obtained from the corresponding Figs. in the references.