Supporting Information

MegaStokes BODIPY-Triazoles as Environmentally-Sensitive Turn-on Fluorescent Dyes

Jun Cheng Er, Mui Kee Tang, Chee Geng Chia, Huimin Liew, Marc Vendrell*, and Young-Tae Chang*

Department of Chemistry, National University of Singapore, 3 Science Drive 2, Singapore 117543, Singapore

Table of Contents

A. In vitro screening of BODIPY triazoles	2
B. Supporting Experiments	4
C. Chemical Structures and Characterization Data for BODIPY triazoles	9
D. NMR Spectra ······1	0

A. In vitro screening of BODIPY triazoles

Table S1. List of bio-molecules selected for unbiased *in vitro* screening. Buffer: HEPES, 10 mM, pH 7.4

Analyte class	Individual analyte molecules	Concentrations
Control	HEPES	10mM, pH 7.4
Viscosity	Glycerol	Volume %: 20%, 10%, 5%, 2.5%
рН	pH 2, 3, 4, 5, 6, 7, 8, 9, 10, 11	
Nucleotides	ATP,	100 μM, 50 μM, 25 μM, 12.5μM
and	CIP,	
nucleosides	GTP,	
	UTP, avalia AMB, avalia CMB	
Nucleic acide	Single strand DNA (scDNA)	1 ma/ml 0.5 ma/ml 0.25 ma/ml 0.12
	double strand DNA (dsDNA)	mg/mL, 0.5 mg/mL, 0.25 mg/mL, 0.12
	transfer RNA (t-RNA)	ing/ine
	total RNA	
Peptides	HA tag (YPYDVPDYA)	100 µg/mL, 50 µg/mL, 25 µg/mL, 12.5
•	HA12ČA5 tag (CYPYDVPDYA)	µg/mL
	His tag (HHHHHH)	
	HisG tag (HHHHHG)	
	VSV-G tag (YTDIEMNRLGK)	
	V5 tag (CGKPIPNPLLGLDST)	
	IQ tag (IQSPHFF)	
	AP tag (KKKGPGGLNDIFEAQKIEWH)	
	FLAG tag (DYKDDDK)	
Drotoin	CMYC IAG (EQALISEEDL)	0.5 mg/ml 0.25 mg/ml 0.12 mg/ml
FIOLEIN		0.06 mg/mL, 0.25 mg/mL, 0.12 mg/mL,
	Insulin, Ubiquitin	0.2 mg/mL, 0.1 mg/mL, 0.05 mg/mL,
		0.025 mg/mL
	Human Immunoglobulin G (human IgG)	1 mg/mL, 0.5 mg/mL, 0.25 mg/mL, 0.12
	Bovine Immunoglobulin G (bovine IgG)	mg/mL
	Human serum albumin (HSA)	
	Bovine serum albumin (BSA)	
	Holo-I ransferrin	
	Apo-Iransferrin	
	Catalase	
	Pananin	
	Cytochrome C bovine heart	
	Haemoglobin	
	Fibrinogen	
Metal ions	NaCl, KCl	1 mM, 0.5 mM, 0.25 mM, 0.12mM
	MgCl ₂ , ZnCl ₂ , FeCl ₂ , CaCl ₂	100 μM, 50 μM, 25 μM, 12.5 μM
Oxido-	Ascorbic acid	2 mM, 1 mM, 0.5 mM, 0.25 mM
reduction	DL-dithiothreitol (DTT)	
related	L-Glutathione reduced form (GSH)	
molecules	L-Glutathione oxidized form (GSSG)	
	Nicotinamide adenine dinucleotide (NAD)	

	Nicotinamide adenine dinucleotide reduced form (NADH) Nicotinamide adenine dinucleotide phosphate reduced form (NADPH) Sodium hypochlorite (NaOCI) Potassium dioxide (KO ₂) Hydrogen peroxide (H ₂ O ₂) Iron (II) with hydrogen peroxide (Fe ²⁺ + H ₂ O ₂) 2,2-azobis(2-methylpropionamidine) dibudroablecide (AADH)	
Miscellaneous molecules	Glycogen Dextran Chrontroitin Heparin Malachite green Sudan I Melamine	1 mg/mL, 0.5 mg/mL, 0.25 mg/mL, 0.12 mg/mL
	Glucose, Glucose phosphate Fructose, Fructose phosphate Caffeine Acetylcholine chloride Gamma.aminobutyric acid (GABA) Gamma butyrolactone (GHB) L-Glutamine Monosodium glutamate (MSG) Sarcosine, Histamine, Dopamine	2 mM, 1 mM, 0.5 mM, 0.25 mM

B. Supporting Experiments

i) Solvatochromic effects

Fig. S1. Effect of solvent polarity on the absorbance and fluorescence of **BDC-9** (100 μ M) at rt. (a) Normalized absorption spectra in different ratios of cyclohexane and ethanol. (b) Corresponding emission spectra of **BDC-9** in various ratios of cyclohexane and ethanol.

Fig. S2. Effect of solvent viscosity on the fluorescence intensity of **BDC-9** (100 μ M) at rt. Intensity of **BDC-9** systematically increased in more viscous (and less polar) alcohols exceeding that of cyclohexane when in *n*-octanol and *n*-hexanol.

Fig. S3. Major resonance structures of BDC compounds

ii) Fluorescence and absorbance response of BDC-9 to HSA

Fig. S4. Fluorescence and absorbance response of **BDC-9** (10 μ M) upon incubation with 4.0, 1.0, 0.25, 0.063, 0.016, 0.0039 and 0 mg/mL HSA in 10 mM phosphate buffer (pH = 7.3). (a) Normalized emission spectra; λ_{exc} : 460 nm. (b) Absorbance spectra. Values are represented as means (n = 3). Measurements were taken at rt.

iii) Limit-of-detection and linear dynamic range of BDC-9

Fig. S5. Fluorescence emission response of **BDC-9** (10 μ M) upon incubation with serial dilutions of HSA in 10 mM phosphate buffer (pH = 7.3); $\lambda_{exc.}$: 460 nm, $\lambda_{em.}$: 575 nm. Values are represented as means and error bars as standard deviations (n = 3). Measurements were taken at rt. LOD = 0.3 μ g/mL; linear range = 0.37 to 31 μ g/mL, $R^2 = 0.999$.

iv) Job plot analysis of BDC-9 with HSA

Fig. S6. Job plot analysis. **BDC-9** was mixed with HSA (fatty acid free) at different ratios in 10 mM phosphate buffer (pH = 7.3) while maintaining total concentration at 20 μ M; $\lambda_{exc.}$: 460 nm, $\lambda_{em.}$: 575 nm. Values are represented as means and error bars as standard deviations (n = 3). Measurements were taken at rt.

v) Determination of dissociation constant for BDC-9 with HSA

500

at rt; $\tilde{K}_{\rm D} = 12.7 \pm 0.4 \,\mu\text{M}$ (one-site specific binding model).

C. Chemical Structures and Characterization Data for BODIPY triazoles

Fig. S8. Chemical structures of the BDC, BDCAC and BDCCA library.

Fig. S9. Absorbance maximum trend of the BDC, BDCAC and BDCCA compounds. Concentration = 100μ M in DMSO.

Fig. S10. Fluorescence emission trend of the BDC, BDCAC and BDCCA compounds. Concentration = 100μ M in DMSO.

Fig. S11. Percentage quantum yield trend of the BDC, BDCAC and BDCCA compounds. Concentration = 100μ M in DMSO.

Table S2. Chemical structures and characterization data for the **BDC** library. Concentration = 100μ M in DMSO.

Code	Structure	Purity (254 nm)	m/z Calculat ed	m/z Experim ental	λ _{max} Abs. (nm)	λ _{max} Em. (nm)	¢ (%)
BDC-1	NH2 N, B, N, N, F2 N,	95%	489.3	490.0	475	580	0.25
BDC-2	NH ₂ N, B, N,	95%	490.3	491.0	474	590	0.08
BDC-3	$ \begin{array}{c} $	98%	503.3	504.3	475	579	0.22
BDC-4		95%	473.2	474.2	475	581	0.17
BDC-5	NH2 N B2 N N P2 N N N	99%	501.3	502.2	476	580	0.12
BDC-6	NH ₂ N B ^N ₂ N B ^N ₂ N N	86%	515.4	516.2	473	582	0.12

BDC-30	NH ₂	92%	645.2	646 1	465	548	0.19
DDC 00	\bigcirc	270	010.2	010.1	105	510	0.19
	N B N N						
	N CF3						
	F ₃ Ċ						
BDC-31		96%	527.2	528.2	470	580	0.11
	N F2 N F						
	NH						
BDC-36		98%	503.3	504.1	476	583	0.18
	N B ^N _F ^N _N N N						
BDC-37	NH ₂	96%	513.3	514.2	473	582	0.11
BDC-42	NH ₂	92%	489.3	490.2	473	583	0.23
	N F2 N N N N N N N N N N N N N N N N N N						
BDC-43	NH ₂	95%	489.3	490.2	476	586	0.19
1		1			1		

BDC-50	NH ₂ N _B N F ₂ N	93%	531.3	532.2	475	575	0.25
BDC-67	NH2 NB2 NB2 NB2 ND0H	100%	517.3	518.1	478	589	0.15
BDC-69	NH ₂ N B ^N ₂ N N B ^N ₂ N N J OH	92%	533.3	534.2	476	584	0.15
BDC-70		100%	463.3	464.2	474	585	0.16

Table S3.	Chemical	structures	and cha	racterization	data fo	r the	BDCAC	library.	Concentration
$= 100 \ \mu M$	in DMSO.								

Code	Structure	Purity (254 nm)	m/z Calculat ed	m/z Experi mental	λ _{max} Abs.	λ_{max} Em.	¢ (%)
BDCAC-1	0	95%	531.4	532.3	465	575	1 29
	NH NH NH NH NH NH NH NH NH NH			002.0		575	1.27
BDCAC-2		98%	532.4	533.3	465	580	0.82
BDCAC-3	O NH S N F ₂ N N N N	97%	545.4	546.3	465	576	1.09
BDCAC-4		97%	515.4	516.2	465	569	1.32
BDCAC-5		99%	543.4	544.3	468	570	1.15

	•						
BDCAC-6	NH NH N P ₂ N N	93%	557.5	558.1	467	574	1.16
BDCAC-7		98%	557.5	558.3	465	582	1.25
BDCAC-8		98%	571.5	572.3	465	570	1.17
BDCAC-9		97%	551.4	552.1	465	573	1.07
BDCAC-10	O NH NH F ₂ N N N	91%	565.4	566.2	464	572	1.11
BDCAC-11	NH NH N, B, N, N, F ₂ N, N, N, N, N, N	96%	607.5	608.3	465	571	1.01

BDCAC-12	0	89%	607.5	608.3	464	580	1.04
BDCAC-13	NH N, B, N,	98%	594.5	595.2	467	612	0.09
BDCAC-14	O NH NH N F ₂ N N N N N N N N N N N N N N N N N N N	98%	611.5	612.3	464	570	0.92
BDCAC-15	O NH N F ₂ N N N V C C F ₃	84%	635.4	636.2	462	542	1.47
BDCAC-16	O NH N N F ₂ N N F ₂ N N F	93%	587.4	588.2	462	563	0.60
BDCAC-17		99%	581.4	582.2	465	576	1.06

PDCAC 19	Q	000/	609 5	600.3	165	591	0.08
BDCAC-18		88%	608.5	609.3	465	581	0.98
BDCAC-19	O NH S N, B, N,	98%	579.5	580.3	465	577	0.50
BDCAC-22		98%	631.5	632.2	465	582	1.11
BDCAC-23	NH NH N N F ₂ N N N N	99%	627.4	628.3	465	570	1.15
BDCAC-26	O NH NH N F ₂ N F ₂ N F ₂ F	91%	587.4	588.2	465	559	0.62
BDCAC-27	$ \begin{array}{c} $	89%	581.4	582.2	464	570	1.21

BDCAC-29	0	95%	621.5	622.3	465	574	1 20
	NH						
BDCAC-30	$ \begin{array}{c} $	93%	687.4	688.2	459	546	1.54
BDCAC-31		97%	569.4	570.1	463	558	0.62
BDCAC-36	O NH NH F ₂ N N N	99%	545.4	546.2	465	578	0.79
BDCAC-37		95%	555.4	556.3	466	569	0.91
BDCAC-42		98%	531.4	532.2	465	571	0.74

BDCAC-43	0	95%	531.4	532.2	465	576	0.76
	NH K N K K K K K K K K K K K K K						
BDCAC-44	NH NH N, p, N,	95%	587.5	588.4	465	565	0.73
BDCAC-45		87%	565.4	566.2	463	573	1.28
BDCAC-46	O NH N N N N N N N N N N N N N N N N N N	99%	579.5	580.3	465	576	1.22
BDCAC-47		81%	559.5	560.3	465	568	0.78
BDCAC-48		95%	517.4	518.1	465	570	0.77

BDCAC-49	O NH	96%	615.6	616.4	465	567	0.64
	\bigcirc						
	N B ^r F ₂						
BDCAC-50	O NH	94%	573.5	574.3	465	562	0.68
	$\widehat{\mathbf{P}}$						
	N B ['] F ₂ N						
	V "N						
BDCAC-67	o ↓ _{NH}	97%	559.4	560.3	468	582	1.04
	NH HO						
BDCAC-69	O NH Å	92%	575.5	576.3	467	582	1.10
	N P N						
	HO						
BDCAC-70	O NH NH	99%	505.3	506.0	467	577	1.09
	$\hat{\mathbf{Q}}$						
	N F ₂ N						
	№он						

Table S4	. Chemical	structures	and cha	racterization	data for	r the	BDCCA	library.	Concentration
$= 100 \ \mu M$	1 in DMSO								

Code	Structure	Purity (254	m/z Calculat	m/z Experim	λ _{max} Abs.	λ _{max} Em.	¢ (%)
		nm)	ed	ental	(nm)	(nm)	
BDCCA-1		93%	565.9	566.2	468	572	1.26
BDCCA-2		52%	566.8	567.1	463	579	0.81
BDCCA-3		97%	579.9	580.2	467	578	1.10
BDCCA-4		92%	549.8	550.1	465	570	1.41
BDCCA-5		98%	577.9	578.3	467	572	1.13

BDCCA-6	CI. L	80%	591.9	592.3	465	570	1.30
	NH N, B, N, N F2 N, N N						
BDCCA-7		99%	591.9	592.3	466	578	1.23
BDCCA-8		79%	605.9	606.3	466	575	1.20
BDCCA-9		97%	585.8	586.1	464	576	1.25
BDCCA- 10		90%	599.9	600.2	463	570	1.13
BDCCA- 11	$(\mathbf{N}, \mathbf{B}, \mathbf{N}, \mathbf{N})$	90%	642.0	642.3	464	572	1.08

BDCCA-	0	91%	642.0	642.3	464	574	1 19
12		9170	042.0	042.5	404	574	1.19
BDCCA-		98%	628.9	629.3	467	611	0.17
13	NH N, B, N, N, F ₂ , N, N, N, N, N, N, N, N, N, N						
BDCCA- 14		97%	645.9	646.2	463	568	1.01
BDCCA- 15	CI NH CI	82%	669.8	670.2	462	545	1.33
BDCCA- 16		93%	621.8	622.1	463	563	0.60
BDCCA- 17		98%	615.9	616.2	464	579	1.11

BDCCA	Q	870/	642.0	612.2	165	578	1 1 5
BDCCA- 18		87%	642.9	643.3	465	578	1.15
BDCCA- 19		96%	613.9	614.2	466	572	0.89
BDCCA- 22		97%	665.9	666.3	464	580	1.20
BDCCA- 23	CI NH KN BR N N F2 N N N	96%	661.9	662.2	464	570	1.16
BDCCA- 26		89%	621.8	622.2	465	562	0.82
BDCCA- 27	$C^{I} \xrightarrow{V_{N}} N_{N}$	81%	615.9	616.2	463	569	1.16

BDCCA-	cı, L.	90%	656.0	656.3	464	572	1.20
29	, Z						
	N F2 N						
	Ň N						
PDCCI	0	070/	701.0	722.2	450	5.42	1.4.4
BDCCA-	CINH	8/%	/21.8	122.2	458	543	1.44
30	\bigcirc						
	S N B						
	F₃Ć						
BDCCA-	0	94%	603.8	604.2	462	554	0.68
31							
	Ý						
	N F						
BDCCA-	CI LINI	99%	579.9	580.3	466	576	0.96
36							
	L L						
	N. P.N.						
	$\begin{pmatrix} N & F_2 & N \\ N & N & N \end{pmatrix}$						
	V N-L						
	0	0.51					
BDCCA-	CI NH	95%	589.9	590.2	465	569	1.10
37	\bigcirc						
	N.B.N.						
	$\begin{pmatrix} N & 1^2 & N \\ N & N & N \end{pmatrix}$						
BDCCA	0	000/	5(5.0	5((1	166	570	0.07
BDCCA-		89%	565.9	566.1	466	572	0.86
42	\square						
	N B N						
	~ ~ ~ ~						

BDCCA-	0	94%	565.9	566.2	466	572	0.98
43							
	\bigcirc						
	S N B N						
BDCCA-	0	95%	621.3	622.3	466	566	1.07
44	NH L						
	\bigcirc						
	S N. B. N.						
	$\langle \rangle$ N_{N}						
BDCCA-	o ci, L	81%	599.9	600.2	462	573	1.33
45							
	\square						
	N'N						
	0	000/	(12.0	(1.4.1	161	571	1.0.4
BDCCA-	CI NH	99%	613.9	614.1	464	571	1.24
46							
	Y .						
	Ň-						
BDCCA-	0	89%	593.9	594.3	465	566	0.92
47						2.00	
	\bigcirc						
	- · · · · ·						
BDCCA-	o cl、↓	95%	551.8	552.2	467	567	0.85
48	→ `NH						
	\square						
	$N_{F_2}^{N}$						
	⟨) ^N N						
	``						

BDCCA-	90%	649.3	650.3	466	566	0.96
49						
BDCCA- 50	87%	607.9	608.3	465	563	0.91
BDCCA- 67	87%	593.2	594.2	468	582	1.05
BDCCA- 69	89%	609.9	610.3	468	583	1.08
BDCCA- 70	93%	539.8	540.0	465	573	1.15

Electronic Supplementary Material (ESI) for Chemical Science This journal is $\ensuremath{\mathbb{O}}$ The Royal Society of Chemistry 2013

Fig. S12 HPLC-MS characterization of **BDC-9** a) chromatograms at 254, 365 and 500 nm; HPLC conditions: A: $H_2O(0.1\% \text{ HCOOH})$, B: $CH_3CN(0.1\% \text{ HCOOH})$; gradient 5% B to 95% B (10 min), isocratic 95% B (2 min). Reverse-phase Phenomenex C_{18} Luna column (4.6 x 50 mm², 3.5 µm particle size), flow rate: 1 mL/min. b) absorbance spectrum (200 – 600 nm); c) ESI-MS positive spectrum; d) ESI-MS negative spectrum.

BDC Core 1 - 2,2'-((4-nitrophenyl)methylene)bis(1H-pyrrole) 300 MHz, 1H, CD Cl3

85	2 6 26	4488
യ്യ്	NN	ග්ග්ග්
\mathbf{v}	\sim	SE

BDC Core 2 - 1,1'-Dichloro-5-(4-nitrophenyl)dipyrromethene 300MHz, 1H, CDCl3

BDC Core 2 - 1,1'-Dichloro-5-(4-nitrophenyl)dipyrromethene 75 MHz, 13C, CDCl3

> -147.92 -148.02 -148.12 -148.22

uwa <mark>hlan)kan</mark> anna	unnan da miland	aj (1941) jana port	la an air an	havan <mark>b</mark>ika yi kawa	ninger at ward fil	ti hlio matikasiji	novanitetta (1)))	Hanatherandria	((Abana)(energy	renn form tione	tilen varjan servar ser	anatority) i windur	van fester van de server v	unalimpina (nanj	ýrinsponstjurn	erete konstrije	undranskýdimy)	ntunia takselata	(jasteljeter)(jet	u(thamas/acca	mpimaklicu	anga anga ang ang ang ang ang ang ang an	(bend)
	· · ·		' '		' '	· · ·	· ·		· ·		· ·	· · ·	· ·	· · ·				' '		· · ·	· · ·		_
10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100 f1 (ppm S39	-110)	-120	-130	-140	-150	-160	-170	-180	-190	-200	-210	

2123	66 66 66 7	3933
0 4 6 0 7 6	3233	2,0,4,
~~~	~~~	
151	$\leq l \geq$	111

BDC Core 4 - 3,5-Dichloro-8-(4'-aminophenyl)-BODIPY 75 MHz, 13C, CDCl3





BDC Core 4 - 3,5-Dichloro-8-(4'-aminophenyl)-BODIPY 282 MHz, 19F, CDCI3





S42





> BDC9 282 MHz, 19F, CDCl3





