Supporting Information for

Cross Couping of Thioether with Aryl Boroxines to Construct Biaryls via Rh Catalyzed C-S Activation

Fei Pan, Hui Wang, Peng-Xiang Shen, Jing Zhao, Zhang-Jie Shi

Table of Contents

General Experimental Section	S2
General Experimental Procedures	S2
Characterization of Products in Details	S3-S13
Reference	S14
NMR Spectra of Products	S15-S48

General Experimental Section

Analytic methods. All of the analytic methods: All of the analytic methods: GC, GC-MS, and HRMS were performed by State-Authorized Analytical Center at Peking University. The GC yields were obtained after amendment by standard curve, with *n*-dodecane as the internal standard. ¹H NMR and ¹³C NMR data were obtained on Varian 400 M nuclear resource spectrometers, with CDCl₃ as solvent and tetramethylsilane (TMS) as the internal standard (unless otherwise specified). Chemical shifts were reported in units (ppm) by assigning TMS resonance in the ¹H NMR spectrum as 0.00 ppm. The data of ¹H NMR were reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet and br = broad), coupling constant (*J* values) in Hz and integration. Chemical shifts for ¹³C NMR were recorded in ppm from tetramethylsilane using the central peak of CDCl₃ (77.0 ppm) as the internal standard. Flash chromatography was performed using 200-300 mesh silica gel with the indicated solvent system according to standard techniques. Analytical thin-layer chromatography (TLC) was performed on pre-coated, glass-backed silica gel plates. Visualization of the developed chromatogram was performed by UV absorbance (254 nm).

General preparation for chemicals. Palladium(II) acetate (trimer, Pd 45.9-48.4%) and Tetracarbonyldi-mu-chlorodirhodium(I) (Rh 50.1-52.9%) were purchased from Alfa Aesar. Arylboroxines were prepared by dehydration from corresponding aryl boronic acids refluxing in toluene. K_3PO_4 and boroxines were dried by heating (about 400 °C) under vacuum. The anhydrous tetrahydrofuran was prepared by refluxing with metal sodium.

General Experimental Procedures for Rh-Catalyzed Cross-Coupling of Different Methyl(phenyl)sulfanes 1 with arylboroxines 2:

The reactions were carried out in Schlenk tubes, which were dried by heating under vacuum. Under air atmosphere, $[Rh(CO)_2CI]_2$ (0.005 mmol, 1.9 mg), Ag₂CO₃ (0.30 mmol, 82.6 mg), and **1** (0.2 mmol) were added into a dried Schlenk tube. Then K₃PO₄ (0.3 mmol, 63.7 mg) and **2** (0.3 mmol) were added into tube in glove box under dry N₂ atmosphere. THF (1 ML) and DCE (0.5 ML) were added by syringe. The mixture was stirred under air atmosphere at 140 °C for 48 h (unless otherwise specified), and then cooled down to room temperature. The resultant mixture was filtered through a short plug of silica gel and then concentrated in vacuo. The product **3** or **4** was further purified through flash chromatography on silica gel with petroleum ether and ethyl acetate (v/v = 50/1) as the eluent.

Characterization of Product in Details:

1-([1,1'-biphenyl]-2-yl)ethanone (3aa). According to the general procedure, the reaction mixture was stirred for 48 h to afford compound **3aa** as light-yellow oil (30.3 mg, 78% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.59 – 7.47 (m, 2H), 7.47 – 7.37 (m, 5H), 7.37 – 7.32 (m, 2H), 2.00 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 204.95, 140.93, 140.75, 140.54, 130.74, 130.26, 128.88 (2C), 128.70 (2C), 127.91, 127.89, 127.47, 30.45. HRMS: m/z: [M+H]⁺ calculated for C₁₄H₁₃O 197.0961; found 197.0962. Data consistent with that previously reported.¹

1-(4'-methoxy-[1,1'-biphenyl]-2-yl)ethanone (3ab). According to the general procedure, the reaction mixture was stirred for 48 h to afford **3ab** as colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.49 (ddd, *J* = 15.0, 8.9, 1.5 Hz, 2H), 7.37 (t, *J* = 7.0 Hz, 2H), 7.26 (d, *J* = 8.7 Hz, 2H), 6.96 (d, *J* = 8.7 Hz, 2H), 3.84 (s, 3H), 2.01 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 205.19, 159.58, 140.93, 140.14, 133.03, 130.68, 130.17, 130.01(2C), 127.82, 127.06, 114.19(2C), 55.32, 30.44. Data consistent with that previously reported.²

1-(4'-(trifluoromethoxy)-[1,1'-biphenyl]-2-yl)ethanone (3ac). According to the general procedure, the reaction mixture was stirred for 48 h to afford **3ac** as colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.58 (d, *J* = 7.6 Hz, 1H), 7.53 (t, *J* = 7.5 Hz, 1H), 7.44 (t, *J* = 7.5 Hz, 1H), 7.36 (d, *J* = 8.3 Hz, 3H), 7.28 (d, *J* = 8.9 Hz, 2H), 2.09 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 204.00, 149.02, 140.62, 139.48, 139.08, 130.89, 130.37, 130.22(2C), 128.06, 127.89, 121.01(2C), 30.39.

1-(4'-butyl-[1,1'-biphenyl]-2-yl)ethanone (3ad). According to the general procedure, the reaction mixture was stirred for 48 h to afford compound **3ad** as yellow oil (26.8 mg, 57% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.51 (td, *J* = 8.9, 1.3 Hz, 2H), 7.43 – 7.35 (m, 2H), 7.23 (m, 4H), 2.70 – 2.62 (t, *J* = 7.9 Hz, 2H), 1.99 (s, 3H), 1.63 (ddd, *J* = 10.3, 7.2, 4.7 Hz, 2H), 1.38 (dq, *J* = 14.6, 7.3 Hz, 2H), 0.95 (t, *J* =

7.3 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 205.23, 142.82, 140.98, 140.58, 137.95, 130.66, 130.19, 128.75 (3C), 127.80, 127.20, 35.33, 33.55, 30.43, 22.36, 13.96. HRMS: *m/z*: [M+H]⁺ calculated for C₁₈H₂₁O 253.1587; found 253.1590.

1-([1,1':4',1''-terphenyl]-2-yl)ethanone (3ae). According to the general procedure, the reaction mixture was stirred for 48 h to afford compound **3ae** as yellow oil (28.8 mg, 55% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.66 – 7.56 (m, 5H), 7.56 – 7.47 (m, 2H), 7.47 – 7.40 (m, 4H), 7.39 – 7.30 (m, 2H), 2.06 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 204.84, 141.65, 141.27, 140.99, 140.53, 140.47, 130.81, 130.29, 129.17, 128.89 (2C), 127.96, 127.76, 127.68, 127.64, 127.62, 127.19 (2C), 126.67, 30.55. HRMS:*m/z*: [M+H]⁺ calculated for C₂₀H₁₇O 273.1240; found 273.1275. Data consistent with that previously reported.³

1-(4'-methyl-[1,1'-biphenyl]-2-yl)ethanone (3af). According to the general procedure, the reaction mixture was stirred for 48 h to afford compound **3af** as yellow oil (29.5 mg, 66% yield) ¹H NMR (400 MHz, CDCl₃): δ 7.50 (ddd, *J* = 9.5, 8.9, 4.6 Hz, 2H), 7.39 (dd, *J* = 11.9, 4.5 Hz, 2H), 7.24 (d, *J* = 8.1 Hz, 4H), 2.40 (s, 3H), 2.01 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 204.09, 139.89, 139.50, 136.78, 136.74, 129.65, 129.19, 128.39 (2C), 127.72 (2C), 126.80, 126.18, 76.32, 76.01, 75.69, 29.43, 20.17. HRMS:*m/z:* [M+Na]⁺ calculated for C₁₅H₁₄NaO 233.0937; found 233.0936. Data consistent with that previously reported.⁴

1-(4'-(trifluoromethyl)-[1,1'-biphenyl]-2-yl)ethanone (3ag). According to the general procedure, the reaction mixture was stirred for 48 h to afford compound **3ag** as yellow oil (32.1 mg, 61% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.69 (d, *J* = 8.1 Hz, 2H), 7.62 (dd, *J* = 7.6, 1.3 Hz, 1H), 7.55 (td, *J* = 7.5, 1.4 Hz, 1H), 7.51 – 7.42 (m, 3H), 7.37 (dd, *J* = 7.6, 1.0 Hz, 1H), 2.14 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 203.50, 144.59, 140.37, 139.21, 131.03, 130.46, 130.08, 129.76, 129.14 (2C), 128.22 (d, *J* = 3.4 Hz), 125.53 (dd, *J* = 7.4, 3.7 Hz), 122.78 30.36. HRMS:*m/z*: [M+H]⁺: calculated for C₁₅H₁₂F₃O 265.0835, found 265.0837. Data consistent with that previously reported.²

1-(4'-fluoro-[1,1'-biphenyl]-2-yl)ethanone (3ah). According to the general procedure, the reaction mixture was stirred for 48 h to afford compound **3ah** as yellow oil (32.5 mg, 76% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.58 – 7.47 (m, 2H), 7.42 (td, *J* = 7.5, 1.2 Hz, 1H), 7.36 (dd, *J* = 7.6, 0.9 Hz, 1H), 7.33 – 7.27 (m, 2H), 7.15 – 7.09 (m, 2H), 2.05 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 203.17, 141.28, 138.90 (d, *J* = 36.6 Hz), 133.62, 131.93, 131.66, 130.84, 128.37 (d, *J* = 2.3 Hz), 128.32, 127.59 (2C, d, *J* = 45.2 Hz), 125.92 (2C, dd, *J* = 85.1, 40.4 Hz), 29.74. HRMS:*m/z*: [M+Na]⁺: calculated for C₁₄H₁₁FNaO 237.0686, found 237.0690. Data consistent with that previously reported.²

1-(4'-chloro-[1,1'-biphenyl]-2-yl)ethanone (3ai). According to the general procedure, the reaction mixture was stirred for 48 h to afford compound **3ai** as yellow oil (31.2 mg, 68% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.56 (dd, *J* = 7.6, 1.1 Hz, 1H), 7.51 (td, *J* = 7.5, 1.4 Hz, 1H), 7.44 (dd, *J* = 7.5, 1.2 Hz, 1H), 7.42 – 7.37 (m, 2H), 7.35 (dd, *J* = 7.6, 0.8 Hz, 1H), 7.29 – 7.24 (m, 2H), 2.09 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 204.19, 140.63, 139.26 (2C), 134.11, 130.88, 130.27, 130.11 (2C), 128.87 (2C), 128.05, 127.80, 30.47. HRMS:*m/z*: [M+H]⁺: calculated for C₁₄H₁₂ClO 231.0571, found 231.0572. Data consistent with that previously reported.⁷

1-(4'-bromo-[1,1'-biphenyl]-2-yl)ethanone (3aj). According to the general procedure, the reaction mixture was stirred for 48h to afford compound **3aj** as yellow oil (30.4 mg, 56%). ¹H NMR (400 MHz, CDCl₃): δ 7.59 – 7.52 (m, 3H), 7.51 (dd, *J* = 7.5, 1.4 Hz, 1H), 7.43 (td, *J* = 7.5, 1.2 Hz, 1H), 7.34 (dd, *J* = 7.6, 0.8 Hz, 1H), 7.23 – 7.18 (m, 2H), 2.10 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 204.13, 140.56, 139.74, 139.28, 131.82 (2C), 130.90, 130.43, 130.23 (2C), 128.08, 127.83, 122.26, 77.36, 77.05, 76.73, 30.49.

1-(4'-iodo-[1,1'-biphenyl]-2-yl)ethanone (3ak). According to the general procedure, the reaction mixture was stirred for 48 h to afford compound **3ak** as yellow oil (36.3 mg, 55% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.79 – 7.73 (m, 2H),

7.59 – 7.48 (m, 2H), 7.43 (td, J = 7.5, 1.3 Hz, 1H), 7.36 – 7.33 (m, 1H), 7.10 – 7.06 (m, 2H), 2.10 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 204.13, 140.50, 140.34, 139.37, 137.78 (2C), 130.65 (2C), 130.59 (2C, d, J = 36.4 Hz), 128.78 (d, J = 18.4 Hz), 127.97 (d, J = 26.2 Hz), 93.81, 30.50. HRMS:m/z: [M+H]⁺: calculated for C₁₄H₁₂IO 322.9927, found 322.9933.

1-(3'-methyl-[1,1'-biphenyl]-2-yl)ethanone (3al). According to the general procedure, the reaction mixture was stirred for 48 h to afford compound **3al** as yellow oil (25.3 mg, 61% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.56 – 7.46 (m, 2H), 7.43 – 7.36 (m, 2H), 7.31 (t, *J* = 7.5 Hz, 1H), 7.23 – 7.18 (m, 1H), 7.18 – 7.11 (m, 2H), 2.40 (s, 3H), 2.00 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 205.06, 140.91, 140.72, 140.70, 138.40, 130.69, 130.21, 129.56, 128.66, 128.59, 127.85, 127.36, 126.04, 30.45, 21.43.

1-(3'-bromo-[1,1'-biphenyl]-2-yl)ethanone (3am). According to the general procedure, the reaction mixture was stirred for 48 h to afford compound **3am** as yellow oil (30.8 mg, 57% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.58 (dd, *J* = 7.6, 1.4 Hz, 1H), 7.55 – 7.48 (m, 3H), 7.44 (td, *J* = 7.5, 1.2 Hz, 1H), 7.35 (dd, *J* = 7.5, 1.0 Hz, 1H), 7.31 – 7.21 (m, 2H), 2.10 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 203.87, 142.91, 140.52, 139.01, 131.60, 130.93, 130.87, 130.33, 130.08, 128.13, 128.01, 127.66, 122.74, 30.45.

2'-acetyl-[1,1'-biphenyl]-3-carbaldehyde (3an). According to the general procedure, the reaction mixture was stirred for 48 h to afford compound **3an** as yellow oil (21.7 mg, 46% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.58 (dd, *J* = 7.6, 1.1 Hz, 1H), 7.53 (td, *J* = 7.5, 1.4 Hz, 1H), 7.44 (td, *J* = 7.5, 1.2 Hz, 1H), 7.36 (t, *J* = 5.5 Hz, 3H), 7.27 (d, *J* = 9.8 Hz, 2H), 2.09 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 204.03, 149.02, 140.62, 139.47, 139.08, 130.90, 130.37, 130.21 (2C), 128.06, 127.89, 121.76, 121.01, 119.20, 30.40. HRMS:*m/z*: [M+H]⁺: calculated for C₁₅H₁₄NaO₄ 281.0784, found 281.0788.

1-(3'-(trifluoromethoxy)-[1,1'-biphenyl]-2-yl)ethanone (3ao). According to the general procedure, the reaction mixture was stirred for 48 h to afford compound **3ao** as yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.59 (dd, *J* = 7.6, 1.1 Hz, 1H), 7.53 (td, *J* = 7.5, 1.4 Hz, 1H), 7.45 (dd, *J* = 11.0, 5.0 Hz, 2H), 7.39 – 7.36 (m, 1H), 7.28 – 7.23 (m, 2H), 7.22 (s, 1H), 2.10 (s, 3H).

1-(2'-methyl-[1,1'-biphenyl]-2-yl)ethanone (3ap). According to the general procedure, the reaction mixture was stirred for 48 h to afford compound **3ap** as yellow oil (27.0 mg, 65% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.68 (dd, *J* = 7.7, 1.1 Hz, 1H), 7.51 (td, *J* = 7.5, 1.4 Hz, 1H), 7.43 (td, *J* = 7.6, 1.3 Hz, 1H), 7.33 – 7.17 (m, 4H), 7.12 (d, *J* = 7.4 Hz, 1H), 2.13 (s, 3H), 1.97 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 203.09, 140.77, 140.50, 140.20, 135.59, 130.88, 130.67, 130.24, 129.53, 128.19, 128.00, 127.39, 125.85, 29.77, 20.12. HRMS:*m/z*: [M+H]⁺: calculated for C₁₅H₁₅O 211.1117, found 211.1120. Data consistent with that previously reported.⁵

1-(2'-(trifluoromethyl)-[1,1'-biphenyl]-2-yl)ethanone (3aq). According to the general procedure, the reaction mixture was stirred for 48 h to afford compound **3aq** as yellow oil (30.8 mg, 62% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.67 – 7.60 (m, 3H), 7.57 – 7.44 (m, 4H), 7.38 (dd, *J* = 7.5, 0.9 Hz, 1H), 2.12 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 203.39, 141.69, 140.38, 139.14, 132.26, 131.06, 130.52, 129.02, 128.29, 128.15, 125.48, 125.44, 125.41, 125.37, 125.33, 124.52, 124.48, 124.44, 122.62, 30.29.

1-(2'-fluoro-[1,1'-biphenyl]-2-yl)ethanone (3ar). According to the general procedure, the reaction mixture was stirred for 48 h to afford compound **3ar** as yellow oil (35.6 mg, 79% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.68 (dd, *J* = 7.7, 1.2 Hz, 1H), 7.54 (td, *J* = 7.5, 1.3 Hz, 1H), 7.49 – 7.42 (m, 1H), 7.40 – 7.26 (m, 3H), 7.21 (td, *J* = 7.5, 0.9 Hz, 1H), 7.14 – 7.06 (m, 1H), 2.29 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 202.15, 160.40, 157.96, 140.19, 134.28, 132.32, 131.41, 131.11, 131.06, 131.03, 129.69, 129.61, 128.71, 128.55, 128.02, 128.01, 124.91, 124.48, 124.44, 123.39, 115.68, 115.46, 29.08. HRMS: *m/z*: [M+H]⁺: calculated for C₁₄H₁₂FO 215.0867, found 215.0864.

1-(3',4',5'-trifluoro-[1,1'-biphenyl]-2-yl)ethanone (3as). According to the general procedure, the reaction mixture was stirred for 48 h to afford compound **3as** as yellow oil (29.0 mg, 54% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.62 (dd, J = 7.5, 1.3 Hz, 1H), 7.56 – 7.44 (m, 2H), 7.31 (dd, J = 7.5, 1.1 Hz, 1H), 6.99 – 6.89 (m, 2H), 2.25 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 202.72, 152.38, 152.33, 152.24, 149.88, 149.84, 149.78, 140.75, 139.93, 138.24, 137.71, 137.01, 136.96, 131.16, 130.38, 128.49, 128.37, 113.16, 113.10, 113.00, 112.94, 30.18.

1-(4'-fluoro-3'-methyl-[1,1'-biphenyl]-2-yl)ethanone (3at). According to the general procedure, the reaction mixture was stirred for 48 h to afford compound **3at** as yellow oil (32.6 mg, 72% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.56 – 7.46 (m, 2H), 7.40 (td, *J* = 7.5, 1.3 Hz, 1H), 7.35 (dd, *J* = 7.6, 0.9 Hz, 1H), 7.16 (dd, *J* = 7.2, 1.8 Hz, 1H), 7.11 (ddd, *J* = 7.4, 5.0, 2.2 Hz, 1H), 7.05 (t, *J* = 8.8 Hz, 1H), 2.05 (s, 3H). HRMS: *m/z*: [M+H]⁺: calculated for C₁₅H₁₄FO 229.1023, found 229.1026.

1-(3',5'-dimethyl-[1,1'-biphenyl]-2-yl)ethanone (3au). According to the general procedure, the reaction mixture was stirred for 48 h to afford compound **3au** as yellow oil (30.5 mg, 70% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.56 – 7.45 (m, 2H), 7.42 – 7.33 (m, 2H), 7.03 (s, 1H), 6.96 (s, 2H), 2.35 (s, 3H), 2.01 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 205.18, 140.88, 140.85, 140.70, 138.26 (2C), 130.64, 130.16, 129.54, 127.81, 127.25, 126.76 (2C), 30.45, 21.29 (2C). HRMS: m/z: [M+H]⁺: calculated for C₁₆H₁₇O 225.1274, found 225.1276.

1-(2-(naphthalen-1-yl)phenyl)ethanone (3av). According to the general procedure, the reaction mixture was stirred for 48 h to afford compound **3av** as yellow oil (45.8 mg, 87% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.89 (dd, *J* = 8.1, 4.4 Hz, 2H), 7.77 – 7.73 (m, 1H), 7.62 (d, *J* = 8.4 Hz, 1H), 7.56 (td, *J* = 7.4, 1.5 Hz, 1H), 7.49 (ddd, *J* = 8.0, 7.4, 4.1 Hz, 3H), 7.44 – 7.38 (m, 2H), 7.33 (dd, *J* = 7.0, 1.0 Hz, 1H), 1.78 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 203.14, 141.29, 139.10, 138.74,

133.64, 131.94, 131.67, 130.86, 128.40, 128.37, 128.34, 127.83, 127.38, 126.60, 126.12, 125.68, 125.35, 29.75. HRMS: m/z: [M+H]⁺ calculated for C₁₈H₁₅O 247.1117, found 247.1121. Data consistent with that previously reported.⁶

1-(2-(benzofuran-2-yl)phenyl)ethanone (3aw). According to the general procedure, the reaction mixture was stirred for 48 h to afford compound **3aw** as yellow oil (27.2 mg, 54% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.75 (d, *J* = 7.7 Hz, 1H), 7.62 (dd, *J* = 7.6, 0.6 Hz, 1H), 7.57 – 7.41 (m, 4H), 7.34 – 7.23 (m, 2H), 6.95 (s, 1H), 2.34 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 204.39, 155.18, 154.27, 140.40, 130.43, 128.96, 128.87, 128.52, 127.98, 127.32, 124.83, 123.26, 121.26, 111.35, 105.01, 30.06. HRMS:*m/z*: [M+H]⁺ calculated for C₁₆H₁₃O₂ 237.0910, found 237.0912. Data consistent with that previously reported.⁷

1-(2-(furan-2-yl)phenyl)ethanone (3ax). According to the general procedure, the reaction mixture was stirred for 48 h to afford compound **3ax** as yellow oil (24.7 mg, 61% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.56 (dtd, *J* = 5.7, 3.5, 1.3 Hz, 3H), 7.51 (dd, *J* = 7.5, 1.5 Hz, 1H), 7.43 (td, *J* = 7.5, 1.3 Hz, 1H), 7.35 (dd, *J* = 7.6, 0.9 Hz, 1H), 7.23 – 7.19 (m, 2H), 2.10 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 204.18, 140.55, 139.73, 139.28, 131.83, 130.91, 130.43, 130.23, 128.08, 127.83, 122.26, 30.50.

1-(2-(thiophen-2-yl)phenyl)ethanone (3ay). According to the general procedure, the reaction mixture was stirred for 48 h to afford compound **3ay** as yellow oil (27.8 mg, 69% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.47 (dd, *J* = 6.7, 4.7 Hz, 3H), 7.44 – 7.38 (m, 2H), 7.08 (dd, *J* = 5.1, 3.5 Hz, 1H), 7.00 (dd, *J* = 3.5, 1.1 Hz, 1H), 2.15 (s, 3H). HRMS: *m/z*: [M+H]⁺: calculated for C₁₂H₁₁OS 203.0525, found 203.0526.

1-([1,1'-biphenyl]-2-yl)propan-1-one (4a). According to the general procedure, the reaction mixture was stirred for 48 h to afford compound **4a** as yellow oil (25.0 mg, 60% yield). ¹³C NMR (125 MHz, CDCl₃): δ 212.80, 140.73,

140.61, 139.66, 130.16, 129.99, 128.83 (2C), 128.69 (2C), 128.00, 127.78, 127.35, 40.23, 18.64. HRMS: m/z: [M+H]⁺: calculated for C₁₅H₁₅O 211.1117, found 211.1123. Data consistent with that previously reported.⁸

1-([1,1'-biphenyl]-2-yl)-2-methylpropan-1-one (4b). According to the general procedure, the reaction mixture was stirred for 48 to afford **4b** compound as yellow oil (33.8 mg, 58% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.55 – 7.30 (m, 9H), 2.42 (dt, *J* = 13.7, 6.9 Hz, 1H), 0.87 (d, *J* = 6.9 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 212.79, 140.72, 140.61, 139.66, 130.15, 129.98, 128.83 (2C), 128.68 (2C), 128.00, 127.77, 127.34, 40.22, 18.63. HRMS: m/z: [M+H]⁺: calculated for C₁₆H₁₇O 225.1274, found 225.1276. Data consistent with that previously reported.⁹

1-([1,1'-biphenyl]-2-yl)heptan-1-one (4c). According to the general procedure, the reaction mixture was stirred for 48 h to afford **4c** compound as yellow oil (34.2 mg, 64% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.52 – 7.36 (m, 7H), 7.36 – 7.30 (m, 2H), 2.15 – 2.05 (m, 1H), 1.64 – 1.54 (m, 3H), 1.49 (dd, *J* = 14.3, 1.4 Hz, 3H), 1.30 – 1.15 (m, 3H), 1.07 (d, *J* = 12.6 Hz, 1H), 0.97 – 0.79 (m, 2H). ¹³C NMR (125 MHz, CDCl₃): δ 211.76, 140.79, 140.70, 139.79, 130.11, 129.91, 128.88 (2C), 128.62 (2C), 127.95, 127.73, 127.31, 77.30, 77.04, 76.79, 50.26, 28.96, 25.73 (2C), 25.64 (2C). HRMS: *m/z*: [M+H]⁺: calculated for C₁₉H₂₁O 265.1587, found 265.1594.

[1,1'-biphenyl]-2-yl(cyclohexyl)methanone (4d). According to the general procedure, the reaction mixture was stirred for 48 h to afford compound **4d** as yellow oil (30.7 mg, 58% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.53 – 7.45 (m, 1H), 7.45 – 7.35 (m, 6H), 7.35 – 7.30 (m, 2H), 2.10 (tt, *J* = 11.4, 3.3 Hz, 1H), 1.64 – 1.53 (m, 2H), 1.49 (d, *J* = 12.8 Hz, 3H), 1.29 – 1.16 (m, 2H), 1.14 – 1.00 (m, 1H), 0.93 – 0.80 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 211.71, 140.80, 140.70, 139.79, 130.09, 129.90, 128.87 (2C), 128.60 (2C), 127.94, 127.72, 127.30, 50.25, 28.95 (2C), 25.72, 25.64 (2C). Data consistent with that previously reported.¹⁰

[1,1'-biphenyl]-2-yl(phenyl)methanone (4e). According to the general procedure, the reaction mixture was stirred for 48 h to afford **4e** as yellow oil (29.4 mg, 44% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.67 – 7.61 (m, 2H), 7.60 – 7.54 (m, 1H), 7.54 – 7.42 (m, 3H), 7.43 – 7.35 (m, 1H), 7.30 – 7.22 (m, 4H), 7.22 – 7.10 (m, 3H). ¹³C NMR (126 MHz, CDCl₃): δ 198.81, 141.17, 140.19, 138.99, 137.41, 132.82, 130.38, 130.08, 129.91 (2C), 129.02, 128.79, 128.26 (2C), 128.08 (2C), 127.34, 127.08. HRMS: *m/z*: [M+H]⁺ calculated for C₁₉H₁₅O 259.1117, found 259.1122. Data consistent with that previously reported.¹¹

methyl [1,1'-biphenyl]-2-carboxylate (4f). According to the general procedure, the reaction mixture was stirred for 48 h to afford compound **4f** as yellow oil (33.0 mg, 70% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.82 (dd, J = 7.7, 1.0 Hz, 1H), 7.53 (td, J = 7.6, 1.3 Hz, 1H), 7.39 (dddd, J = 15.7, 7.2, 4.3, 1.9 Hz, 5H), 7.32 (dd, J = 5.2, 3.0 Hz, 2H), 3.63 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 169.17, 142.49, 141.33, 131.25, 130.89, 130.71, 129.78, 128.32 (2C), 128.04 (2C), 127.23, 127.16, 51.93. Data consistent with that previously reported.¹²

1-(5-fluoro-[1,1'-biphenyl]-2-yl)ethanone (4**g**). According to the general procedure, the reaction mixture was stirred for 48 h to afford compound 4**g** as yellow oil (24.8 mg, 59% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.55 (d, *J* = 8.2 Hz, 1H), 7.46 – 7.39 (m, 3H), 7.33 (dd, *J* = 7.4, 1.9 Hz, 2H), 7.25 (dd, *J* = 8.1, 1.6 Hz, 1H), 7.19 (d, *J* = 1.8 Hz, 1H), 2.53 (s, 3H), 1.98 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 203.33, 142.87, 141.60, 140.68, 136.89, 128.90, 128.79 (2C), 128.69 (2C), 128.08, 127.10, 124.26, 30.28, 15.05. HRMS: *m/z*: [M+H]⁺ calculated for C₁₉H₁₅O 259.1117, found 259.1122.

1-(5-(trifluoromethyl)-[1,1'-biphenyl]-2-yl)ethanone (**4h**). According to the general procedure, the reaction mixture was stirred for 48 h to afford compound **4h** as yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.65 (q, *J* = 7.8 Hz, 3H), 7.50 – 7.43 (m, 3H), 7.38 – 7.34 (m, 2H), 2.01 (s, 3H). HRMS: *m/z*: [M+H]⁺ calculated for C₁₅H₁₂F₃O 265.08348, found 265.08359. Data consistent with that previously reported.⁹

1-(5-methyl-[1,1'-biphenyl]-2-yl)ethanone (**4i**). According to the general procedure, the reaction mixture was stirred for 48 h to afford compound **4i** as yellow oil (26.7 mg, 64% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.50 (d, *J* = 7.8 Hz, 1H), 7.45 – 7.36 (m, 3H), 7.35 – 7.31 (m, 2H), 7.22 (d, *J* = 7.9 Hz, 1H), 7.19 (s, 1H), 2.42 (s, 3H), 1.99 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 205.28, 140.82, 140.72, 137.77, 137.39, 131.46, 130.21, 128.88 (2C), 128.65 (2C), 128.37, 127.69, 30.49, 20.98. HRMS: *m/z*: [M+H]⁺ calculated for C₁₅H₁₅O 211.11174, found 211.11189.

1-([1,1':3',1''-terphenyl]-4'-yl)ethanone (**4j**). According to the general procedure, the reaction mixture was stirred for 48 h to afford compound **4j** as yellow oil (39.3 mg, 72% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.64 (ddd, *J* = 14.3, 9.9, 4.6 Hz, 5H), 7.50 – 7.36 (m, 8H), 2.04 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 204.27, 143.67, 141.34, 140.89, 139.91, 139.43, 129.13, 128.96 (2C), 128.91 (2C), 128.81, 128.74 (2C), 128.09, 128.02, 127.29 (2C), 126.06, 30.44. HRMS: *m/z*: [M+H]⁺ calculated for C₂₀H₁₇O 273.12738, found 273.12778. Data consistent with that previously reported.¹³

1-(5-(methylthio)-[1,1'-biphenyl]-2-yl)ethanone (**4k**). According to the general procedure, the reaction mixture was stirred for 48 h to afford compound **4k** as yellow oil (36.0 mg, 71% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.55 (d, J = 8.2 Hz, 1H), 7.46 – 7.39 (m, 3H), 7.35 – 7.31 (m, 2H), 7.25 (dd, J = 8.0, 1.6 Hz, 1H), 7.19 (d, J = 1.9 Hz, 1H), 2.52 (s, 3H), 1.98 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 203.31,

142.87, 141.60, 140.69, 136.90, 128.89, 128.79 (2C), 128.68 (2C), 128.07, 127.11, 124.28, 30.26, 15.05. HRMS: m/z: [M+H]⁺ calculated for C₁₅H₁₅OS 243.08381, found 243.08346.

Reference

1) D. L. Clive, S.-Z. Kang, J. Org. Chem. 2001, 66, 6083.

2) K. Gao, P.-S. Lee, C. Long, N. Yoshikai, Org. Lett. 2012, 14, 4234.

3) R. Moreira, M. Havranek, D. Sames, J. Am. Chem. Soc. 2001, 123, 3927.

4) L. J. Goossen, N. Rodríguez, C. Linder, J. Am. Chem. Soc. 2008, 130, 15248.

5) S. Doherty, J. G. Knight, J. P. McGrady, A. M. Ferguson, N. A. B. Ward, R. S. Harrington, W. Clegg, *Adv. Synth. Catal.* **2010**, *352*, 201.

6) T. J. Korn, P. Knochel, Angew. Chem. 2005, 117, 3007; *Angew. Chem., Int. Ed.* **2005**, 44, 2947.

7) R. T. McBurney, A. M. Z. Slawin, L. A. Smart, Y.-P. Yu, J. C. Walton, *Chem. Commun.* **2011**, *47*, 7974.

8) N. Yoshikai, A. Matsumoto, J. Norinder, E. Nakamura, *Angew. Chem., Int. Ed.* **2009**, *48*, 2925.

9) P. Gandeepan, K. Parthasarathy, C.-H. Cheng, J. Am. Chem. Soc. 2010, 132, 8569.

10) A. S. Bailey, J. Chem. Soc. 1964, 5110.

11) J. J. Mousseau, F. Vallee, M. M. Lorion, A. B. Charette, J. Am. Chem. Soc. **2010**, 132, 14412.

12) A. B. Smith III, A. T. Hoye, D. Martinez-Solorio, W. Kim, R.-B. Tong, *J. Am. Chem. Soc.* **2012**, *134*, 4533.

13) I. V. Kuchurov, A. A. Vasil'Ev, S. G. Zlotin, *Meedeleev Commun.* **2010**, *20*, 140.

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -2 fl (ppm)

Electronic Supplementary Material (ESI) for Chemical Science This journal is The Royal Society of Chemistry 2013

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

110 100 f1 (ppm)

 -10

170 160 150 140 130

