SUPPORTING INFORMATION

Aromatic Reactivity Revealed: Beyond Resonance Theory & Frontier Orbitals

James J. Brown and Scott L. Cockroft*

EaStCHEM School of Chemistry, University of Edinburgh King's Buildings, West Mains Rd, Edinburgh, EH9 3JJ, UK

E-mail: scott.cockroft@ed.ac.uk

Contents:

Methods Supporting Figures S1 to S19 Supporting Tables S1 to S3 Supporting References 61 to 328

Methods

Minimised geometries and molecular surfaces were calculated using *Spartan '08* with DFT/B3LYP/6-311G*, unless otherwise indicated. ionisation energies and electrostatic potentials are plotted on the 0.002 electrons/bohr³ density surface. Ionisation energy surfaces emphasising minima are scaled from the average local ionisation energy minimum on the molecular surface, $\bar{I}_{S,min}$ (red) to $\bar{I}_{S,min}$ +0.4 eV (blue) of each molecule. A step-by-step guide describing how this was done is provided on the following page. $\bar{I}_{S meta}$ and $\bar{I}_{S para}$ values for the plots in Figures 3 and S17 were taken on the 0.002 electrons/bohr³ average local ionisation energy surface directly over the centre of the carbon atoms perpendicular to the plane of the aromatic ring as shown in Figure S1.

Step-by-step guide for calculating ionisation energy surfaces using Spartan '08:

1) Open the 'Model Kit' structure drawing tool by selecting 'New' from the 'File' menu, and draw a structure of interest. Using benzene as an example, click the "Rings" button and left click in the drawing window.

S SI	partar	n '08 - S	partan_1: <i>1</i>	10001												a) 🛛	R
File	Edit	Model	Geometry	Build	Setup	Display	y S	earch						Opt	tions	Hel	р
	È	>		+ >	< %	ж	Ě	?	∠ ?	`? \ ₽	¢	\odot	•	∠ ₽	»	ß	»
										Model Kit	t					5	×
										Orga	nic	Ino	rganio		Pept	ide	
										Nucleo	tide	Subs	tituen	nt 🗌	20)	
												1	\sim				
													ୢ୲				
										1							
										⇒c-		ÌN		¢₽	-	Н)
				•						<u>>c=</u>		`N=		`0-	-	F	
										-C=		≡N		=0		CI	
)C-		2N		`S-		Br	
										₂ SI-		,N-		=5		1	J
										Group	os A	lkenyl				~	
										Ring	s B	enzene	•			~]
										More	e p	yrrole			~]
										Clipbo	ard						

2) Click the 'Setup' menu and select 'Surfaces' to open the surfaces window.

S Spa	artan '	08 - S	partan_	1:M00	01													_	P	×
File B	Edit N	/lodel	Geomet	ry Bu	uild	Setup	Displ	ay S	earch								Opt	tions	He	зlр
	2 -	- } [′ +	- >	< م	%	Ĕ	! ?	∠ ?	` ? `	÷	¢	50) •	•	<u> </u>	»	ß	»
											ħ	/lodel K	ît						6	×
												Org	anic		Inorg	anic		Рер	tide	
												Nucle	otide	S	ubsti	tuen	t 🗌	2	D	
		S	Surface	s																
		s	urface		Pro	perty		Statu	s	IsoVa	alue		Reso	lution	n La	bel				
•	li e		Add		Del	ete	Globa	al Surfa	aces 🗸										-H -F -Cl -Br	
											_	Grou	une I	Alka	nvl					
												Rin	as	Benz	rene					
													re	nvrra	ale				16	
												Clipbo	oard	pjitt						

3) Click the 'Add' button and select 'ionization' from the 'Property' drop-down menu. Additionally, electrostatic surfaces can be added by selecting 'potential', while the HOMO and LUMO visualisations are available under the 'Surface' drop-down menu.

🕤 Spartan '08 - Spartan_1:M0(01	_ 7 🗙
File Edit Model Geometry B	ild Setup Display Search Op	otions Help
🗋 🚅 📂 🚼 🗸 🕂	• 🔆 % 🖌 🛓 🕂 🖓 🔏 🖉 👁 🚣	» 👔 »
	Model Kit	₽×
	Organic Inorganic	Peptide
	Nucleotide Substituent	2D
Surfaces		
Surface	S Add Surfaces	
t.	Surface: density	-н
Add	IsoValue: IUMO(+)) potential potential (charges) ionization density density (VDW)	-F -Cl -Br -I
	Groups Alkenyl Rings Benzene More pyrrole Clipboard	

4) Select 'Calculations' from the 'Setup' menu in the main program window. In the window that opens, select 'Density Functional' from the 'with' menu, then select the required functional and basis set. In this work, the B3LYP functional was used with the 6-311G* basis set. Click 'Submit' to save and start the calculation.

<mark>S</mark> Sparta	an '08 - Spartan_1:M0001	_ @ ×
File Edit	Model Geometry Build Setup Display Search	Options Help
🗋 🖻 🖻	ኛ 🚰 🛛 ∨ 🕂 🔆 % % 🛓 🕐 🔏 🔹 🛩 🔶 🐠	<u>∠</u> ∎ » 🚯 »
<mark>S</mark> Calcula	tions	? 🛛
Calculate:	Equilibrium Geometry v at Ground v state with Hartree-Fock v 3-216 v in Vacuum] Pseudopotential
Start From:	Current v geometry	
Subject To:	Constraints Frozen Atoms Symmetry Total Cl	harge: Neutral 👻
Compute:	IR NMR UV/vis Multi	plicity: Singlet 🚔
Print:	Orbitals & Energies Thermodynamics Vibrational Modes Atomi	ic Charges
Options:		Converge
	Global Calculations 🗸 🛛 OK Canc	el Submit
	More pyrrole Clipboard	

5) After the calculation is complete, open the surfaces window by selecting 'Surfaces' from the 'Setup' menu, and check the box to the left of the 'density' 'ionization' entry.

<mark>S</mark> S	partai	n '08 - B	enzene:M0	001									d 🔀
File	Edit	Model	Geometry	Build	Setup	Display	Sear	ch				Options	Help
	È	>		+ >	< %	% ∦		• ? • 🔏	? {	¢ () ••• <u>(</u>	• »	ß »
					<mark> S</mark> Su	irfaces							X
					Sur	face		Property	Status	IsoValue	Resolution	Label	
		1.1				density		potential	Complete	d 0.002	high	Surface1	
						density		ionization	Complete	d 0.002	high	Surface2	
						номо			Complete	d 0.032	high	Surface3	
						LUMO			Complete	d 0.032	high	Surface4	F I
						density		номој	Complete	d 0.002	high	Surface5	
						density		lumoj	Complete	d 0.002	high	Surface6	
						HOMO{-1}			Complete	d 0.032	high	Surface7	
						HOMO{-2}			Complete	d 0.032	high	Surface8	
						HOMO(-3)			Complete	d 0.032	nign	Surraces	· .
	-		-		<				1111				>
						Add		Delete	Global Su	irfaces 🔽			

6) To scale the surface appropriately, open the properties window by selecting 'Properties' from the Display menu in the main program, and left-click click anywhere on the surface of the molecule.

<mark>S</mark> S	partai	n '08 - B	enzene:M0	001								
File	Edit	Model	Geometry	Build	Setup	Display	Search				C	ptions He
D	È	📂 🍯		+ >	* %	%	?	<u> </u>	、 ⋕	ی ک	• • • <u>/</u> •	» 👔
					G	Surfaco D	roportio					2 🔽
						Surface P	roperties					Ľ 🔼
					l (Property	Range:				Style:	
						9.25103		14.3726	Res	et	Solid	~
			4	Ċ.		P Min.	P	Max.	🗌 Lege	end	Bands:	8 🗸
					Iso	Val: 0.002		98.9%			🗌 Acc. Area	
					P	Val: 11.6	44356				Р	
	-		1		P	Area: 11	2.86 Ų	P Vo	l: 97.13 ų		Global S	iurfaces 🔽
					Lat	el: Surface	e2					-

7) The surface can be scaled by changing the values in the 'Property Range' boxes. The procedure used in this work leaves the minimum value unchanged and the maximum value is adjusted to the min+0.4 eV. The surface can be made transparent by selecting this option from the 'Style' drop-down menu. Furthermore, the model can be changed to 'Ball and Spoke' via the 'Model' menu in the main program window. To read a value from a specific point on the surface, place the cursor over that point. The value at the cursor point is shown on the left of the properties window as "Val: 9.787659" eV in this example.

File Edit Model Geometry Build Setup Display Search Option Image: Second Condition Image: Second Conditin Conditin Image: Second Condition	Help
🗎 📂 🖬 🔽 🕂 端 % 🛓 🕂 🖓 🤱 🖉 💿 🖇 🛵 »	1
	ų.
S Surface Properties	
P Area: 112.86 Ų P Vol: 97.13 ų Global Surface Label: Surface2	• •

Method Selection:

We quickly established that average local ionisation energy calculations performed using Density Functional Theory (DFT) successfully rank the relative nucleophilicities of aromatic carbons and heteroatoms where previously used Hartree-Fock (HF) methods sometimes fail (Figure S2)^{25, 61-63}. Indeed, average local ionisation energies calculated using DFT have been shown to be theoretically robust,⁶¹ and were also employed in the most detailed assessment of local average ionisation energies prior to the present study (21 aromatic molecules)²⁰.

Correlations of average local ionisation energy minima calculated using DFT and various basis sets against experimental reactivity parameters were also found to be better than corresponding calculations performed using HF (Figures S16-S17).

Figure S1. Example showing the positions on the 0.002 electrons/bohr³ average local ionisation energy surface corresponding to $\bar{I}_{S meta}$ and $\bar{I}_{S para}$ in the example of trifluoromethyl benzene.

Figure S2. Experimental reactivity patterns for a range of aromatic substrates and corresponding average local ionisation energy surfaces at the 0.002 electrons/bohr³ surface calculated using the methods shown. Examples where the calculation correctly ranks the relative nucleophilicities of different reactive sites are highlighted with a green background. References for the observed reactivity patterns are given in the captions of other Supporting Figures.

Figure S3 (on preceding page). Comparison of surface-encoded ionisation energy surfaces, electrostatic potentials, HOMO and HOMO-1 lobes of monosubstituted benzenes in relation to their experimental reactivity in electrophilic aromatic substitution reactions. Surface-encoded ionisation energies account for the reactivity of monosubstituted benzenes and the magnitude of these minima correspond with the relative nucleophilicities of these molecules. There is no obvious link between purely electrostatic or orbital-based models and the reactive behaviour of this series of molecules. The ionisation energy surfaces emphasising the relative reactivity of different molecules in the second row are plotted on a standardised scale from 8.7 eV (red) to 10.7 eV (blue). Electrostatic potentials are scaled from the lowest potential on each aromatic ring (red) to this value plus 15 kJ mol⁻¹ (blue). HOMO and HOMO-1 lobes correspond to 0.032 electrons/bohr³. References for the observed reactivity patterns are given in the captions of the other Supporting Figures.

For a general review of nitration by electrophilic aromatic substitution⁶⁴

Phenoxide anion:

Reimer-Tiemann reaction^{32, 65} Allylation⁶⁶ Kolbe-Schmitt reaction³¹ Chlorination²⁹

Benzoate anion Chlorination³⁸ Bromination³⁹

Anisole Bromination^{30,35} Chlorination^{29, 30, 67} Iodination^{30, 68, 69} Nitration⁷⁰ Formylation⁷¹

Toluene Chlorination^{30, 67, 72-74} Bromination^{75,30, 35, 74, 76} Iodination^{30, 36}

Nitration^{70, 77, 78}

Trimethylphenyl silane

In Pd-catalysed cross coupling reactions⁷⁹ Review⁸⁰ Desilylation (reaction with H⁺)⁸¹ Bromination⁸ Chlorination⁸³ Iodination^{84, 85} Nitration⁸⁵ Fluorination⁸⁶

Phenylboronic acid Nitration⁸⁷

Chlorobenzene and other halobenzenes Nitration^{28, 70, 78} Chlorination^{29, 30, 67} Bromination ^{30,35} Iodination³⁶

Phenylacetonitrile Nitration^{42, 88}

Benzonitrile Nitration^{34, 37, 78} Bromination^{75,35} Chlorination³⁴ Iodination³⁶

Nitrobenzene

Nitration^{34, 78} Iodination^{89, 90 91} Bromination^{30, 75,35} Chlorination^{30, 34}

Benzyltrimethyl phosphonium cation Nitration⁹²

Trimethylphenyl phosphonium cation Nitration^{41,9}

Trimethyl anilinium cation Nitration^{41, 93}

Anilinium cation Nitration^{93, 94}

Figure S4. Experimental reactivity patterns and corresponding calculated average local ionisation energy surfaces and minimum values ($\bar{I}_{S, min}$) at the 0.002 electrons/bohr³ surface for cationic monosubstituted benzenes. Calculations were performed using the LACVP combination of basis sets where DFT/B3LYP/6-311G* was not supported. References for the observed reactivity patterns are given below.

Anilinium cation Nitration^{93, 94}

Trimethyl anilinium cation Nitration^{41, 93}

Trimethylphenyl phosphonium cation Nitration^{41,92}

Benzyltrimethyl phosphonium cation Nitration⁹²

Trimethylphenyl arsonium cation Nitration^{41,92} *Trimethylphenyl antimony(V) cation* Nitration⁹²

Triphenyl oxonium cation Nitration^{41, 95}

Triphenyl sulfonium cation Nitration⁹⁶

Dimethylphenyl sulfonium cation Nitration⁴¹

Dimethyl selenonium cation Nitration⁴¹

Metalated Aromatics Employed in ipso-Substitution & Cross-Coupling

Figure S5. Experimental reactivity patterns and corresponding calculated average local ionisation energy surfaces and minimum values ($\overline{I}_{S, \min}$) at the 0.002 electrons/bohr³ surface for phenyl derivatives used in metal-catalysed cross-coupling reactions and *ipso*-substitution reactions. Calculations were performed using the LACVP combination of basis sets where DFT/B3LYP/6-311G* was not supported. References for the observed reactivity patterns are given below.

General:

For excellent general overview of metalcatalysed cross coupling reactions^{14, 79}

For other more specific literature:

Phenyl lithium General⁹ *ipso*-Fluorination⁹⁷

Phenyl sodium

General⁹⁸ *Phenyl zinc chloride ipso*-Bromination⁹⁹

Phenyl mercury(II)chloride In Pd-catalysed cross coupling reactions¹⁰⁰ *ipso*-nitration and nitrosation¹⁰¹

Triphenyl indium In metal-catalysed cross-coupling reactions¹⁰²

Trimethylphenyl silane Review⁸⁰ Desilylation (reaction with H⁺)⁸¹ *ipso*-Bromination⁸² *ipso*-Chlorination⁸³ *ipso*-Iodination^{84, 85} *ipso*-Nitration⁸⁵ *ipso*-Fluorination⁸⁶

5-Phenyl-1-aza-5-germabicyclo[3.3.3]undecane In metal-catalysed cross-coupling reactions⁷⁹

Trimethylphenyl stannane ipso-Fluorination⁸⁶

ipso-Fluorination⁸⁰ *ipso*-Nitration, Nitrosation¹⁰¹ In Pd-catalysed cross coupling reactions¹⁰⁰

Tetraphenyl plumbane ipso-Nitration, Nitrosation¹⁰¹

Triphenyl bismuthine

ipso-Nitrosation¹⁰¹

Figure S6. Experimental reactivity patterns and corresponding calculated average local ionisation energy surfaces and minimum values ($\bar{I}_{S, min}$) at the 0.002 electrons/bohr³ surface for heterocycles used in metal-catalysed cross-coupling reactions. Calculations were performed using the LACVP combination of basis sets where DFT/B3LYP/6-311G* was not supported. References for the observed reactivity patterns are given below.

General

For an excellent overviews of metal-catalysed cross coupling reactions^{79, 103} *2-Furanyl lithium* Reaction with carbonyls¹⁰⁴

3-Furanyl lithium Reaction with aldehydes^{105 106-109} Reaction with ketones¹¹⁰ 2-Thienyl lithium Reaction with esters^{111, 112} Reaction with amides^{113, 114} Reaction with Weinreb amides¹¹⁵ Reaction with carbonyl¹¹⁶ Reaction with Vilsmeier reagent¹¹⁷⁻¹¹⁹ Reaction with carbon dioxide¹²⁰ Reaction with carbonates¹²¹

2-Thienyl sodium
General⁹⁸
2,5-Dimethyl, 3-thienyl lithium
With alkenes¹²²

2-Trimethylsilyl, 5-methylthiophene: *ipso*-substitution¹²³⁻¹²⁶

2-Furanylmagnesium bromide Reaction oxycarbenium ions¹²⁷

2-Thienylmagnesium bromide Reaction with carbonyls¹²⁸ ^{129, 130} Reaction with esters¹³¹

Reaction with esters ¹ Reaction with Weinreb amides¹³² Reaction with alkenes ^{133, 134}

2-Furanyl zinc bromide Negishi coupling^{135, 136} **2-Pyridylmagnesium chloride** Kumada coupling¹³⁷

2-Tributylstannyl thiophene: Stille coupling^{138, 139}

Methyl 1-(N,N-dimethylsulfamoyl)-3,4bis(trimethylsilyl)-1H-pyrrole-2-carboxylate ipso-substitution¹⁴⁰ *ipso*-Iodination during formal total synthesis of lukianol A¹⁴¹

3-Tributylstannyl 5-methoxybenzofuran Stille coupling¹³⁸

(*Acetato*)(*indol-3-yl*) *mercury* Pd-catalysed cross-coupling¹⁴²

Tri(2-furanyl) aluminium Reaction with an epoxide¹⁴³

Figure S7. Experimental reactivity patterns and corresponding calculated average local ionisation energy surfaces and minimum values ($\bar{I}_{S, min}$) at the 0.002 electrons/bohr³ surface for multiply-substituted benzenes. References for the observed reactivity patterns are given below.

p-Nitrotoluene Bromination^{144,35}

p-Fluorotoluene Nitration¹⁴⁵

p-Methylphenol Bromination¹⁴⁶

1,2,3-Trimethylbenzene Nitration⁴³

1,2,4-Trimethylbenzene Nitration⁴³

N,N-diethyl-2-(trimethylsilyl)benzamide Iodination, bromination, chlorination, *ipso*borodesilylation⁸³

2-(trimethylsilyl)phenyl diethylcarbamate Iodination, bromination, chlorination, nitrosation, *ipso*-borodesilylation⁸³ 4-nitro-2-(trimethylsilyl)phenyl diethylcarbamate Bromination⁸³

N,N-diethyl-2-methoxybenzamide Nitration⁸³

2-Methoxyphenyl diethylcarbamate Nitration⁸³

N,N-diethyl-2-methoxy-6-(*trimethylsilyl*)*benzamide* Nitration⁸³

2-Methoxy-6-(trimethylsilyl)phenyl diethylcarbamate Nitration⁸³

3,5-dinitrosalicylic acid Nitration¹⁴⁷

Figure S8. Experimental reactivity patterns and corresponding calculated average local ionisation energy surfaces and minimum values ($\bar{I}_{S, min}$) at the 0.002 electrons/bohr³ surface for 5-membered heterocyclic rings. References for the observed reactivity patterns are given below.

For a general review of the substitution of 5-membered rings¹⁴⁸

Pyrroles

Nitration^{77, 149, 150}

Nitration: reversal of 2- vs. 3-substitution ratio upon N-substitution of pyrroles¹⁵¹ Halogenation^{152, 153} Acetylation: mostly in the 2-position, 3-position minor product¹⁵⁴ Formylation in 2–position⁷¹

2- and 3-EDG pyrroles

Note that electron-rich pyrroles tend to be highly reactive and unstable. Formylation $(EDG = 2-Me)^{155}$

2-EWG-pyrroles

Bromination $(EWG = NO_2)^{49, 50}$ Nitration, halogenation and acetylation (EWG = COCCl₃)⁴⁸ Nitration $(EWG = COCH_3)^{51}$

3-EWG-pyrroles

Alkylation, halogenation $(EWG = COPh)^{156}$ Acylation (EWG = COPh-p-OMe)¹⁵⁷ Formylation $(EWG = COOEt)^{158}$

Thiophenes

Nitration^{77, 159, 160} Bromination, chlorination^{30, 67, 161} Acylation¹⁶² Formylation^{71, 163} Addition at sulfur (hashed arrow)¹⁶⁴

2-EDG thiophenes

Bromination, Chlorination (EDG = OMe)5position most reactive ¹⁶⁵⁻¹⁶⁷ 3- and 5positions^{139, 168} Iodination (EDG = Me, OMe, OC=OMe) $^{69, 169}$ Nitration $(EDG = Me)^{160}$ Formylation (EDG = OMe) 5-position most reactive⁷¹

2-EWG thiophene

(EWG = NO₂, CN and CHO) 5–position most reactive, 4–position 2^{nd} most reactive, 3–position 3^{rd} most reactive¹⁵⁹ Chlorination (EWG = Cl, Br)⁶⁷ Nitration (EWG = Cl, Br, I, CN, NO₂, CHO, COCH₃, CO₂CH₃)^{69, 169}

3-EDG thiophenes

Bromination (EDG = alkyl, OMe)^{170,167,171} Iodination (EDG = alkyl)¹⁷²

3-EWG thiophenes

 $(EWG = NO_2, CN and CHO)$ 5–position most reactive, 2–position 2nd most reactive, 4–position 3rd most reactive¹⁵⁹ Hydroxyalkylation $(EWG = Cl)^{173}$

Furans

Note that some of the substitution reactions of furans may not–proceed through a typical electrophilic aromatic substitution reaction mechanism, but through an addition–elimination mechanism, although the position of the initial attack of the incoming electrophile determines the regiochemistry of the final product as in a typical EAS reaction mechanism. Nitration^{77, 174} Formylation⁷¹ Bromination¹⁷⁵ Acetylation¹⁷⁶ Oxidation with osmium tetroxide (unfilled arrow)¹⁷⁷

2–EDG furans

Formylation (EDG = alkyl)¹⁷⁸ Michael addition (EDG = OMe)¹⁷⁹ ¹⁸⁰ Acylation (EDG = alkyl)¹⁸¹ Chlorination (EDG = t-Bu)¹⁵² **2–EWG furans** Nitration $(EWG = NO_2)^{182, 183}$

3-EDG furans

Formylation, acylation (EWG = OMe, alkyl)¹⁸⁴

3–EWG furans Formylation (EWG = COOMe)¹⁸⁶

Oxazole

 pK_a of conjugate acid = 0.8^{187} Oxazoles tend to undergo addition rather than substitution (unfilled arrow)¹⁸⁸

Imidazole and cation

 pK_a of conjugate acid = 7.1¹⁸⁹ Nitration¹⁹⁰ Bromination¹⁹¹ Oxidation with osmium tetroxide (unfilled arrow)¹⁹²

Thiazole

 pK_a of conjugate acid = 2.5^{187} Nitration¹⁹³

Pyrazole and cation

 pK_a of conjugate acid = 2.5^{194} Iodination^{195, 196} Bromination and Chlorination¹⁹⁷ Nitration^{190, 198}

Isothiazole

 pK_a of conjugate acid = -0.5^{187} Halogenation^{199, 200} Nitration²⁰⁰ *Isoxazole* pK_a of conjugate acid = -3.0^{187} Nitration²⁰¹⁻²⁰³ Bromination^{204, 205}

Figure S9. Experimental reactivity patterns and corresponding calculated average local ionisation energy surfaces and minimum values ($\bar{I}_{S, min}$) at the 0.002 electrons/bohr³ surface for fused 5-membered heterocycles. References for the observed reactivity patterns are given below.

Indole

Formylation^{71, 206} Mannich reaction²⁰⁷ Halogenation²⁰⁸ Nitration⁷⁷ Oxidation with osmium tetroxide (unfilled arrow)²⁰⁹

Benzofuran

Nitration^{77, 210, 211} Formylation²¹² Hydroxyalkylation¹⁷³ Addition at carbon (unfilled arrow)²¹³

Benzothiophene Halogenation²¹⁴⁻²¹⁷ Nitration^{77, 215, 218} Acetylation²¹⁹ Hydroxyalkylation¹⁷³ Addition at carbon (unfilled arrow)²¹³ Addition at sulfur (hashed arrow)¹⁶⁴ Indolisine Nitrosylation, formylation²²⁰

Acylation²²¹ Nitration²²²

Imidazo[1,2-a]pyridine and cation

 pK_a of conjugate acid = 8.3^{223} Bromination²² Chlorination²²⁴ Acylation²²⁵ Nitration²²⁴

Imidazo[1,5-a]pyridine and cation pK_a of conjugate acid = 5.5^{223} Acylation²²⁶ Nitration²²⁷

Pyrazolo[1,5-a]*pyridine* pK_a of conjugate acid = 1.4^{223} Formylation, acylation²²⁸

N-tert-Bu-BN-Indole Bromination, Mannich Reaction, Michael Addition, Deuteriation, Acylation⁵⁶

Figure S10. Experimental reactivity patterns and corresponding calculated average local ionisation energy surfaces and minimum values ($\bar{I}_{S, min}$) at the 0.002 electrons/bohr³ surface for biphenyl and naphthalene derivatives. References for the observed reactivity patterns are given below.

Carbazole

Bromination^{229, 230} Alkylation²³¹

Dibenzofuran

Halogenations, Friedel-Crafts and protodetritiation reactions (note that some nitration reactions follow a charge-transfer mechanism to gives the 3-product rather than the 2-product)⁵² Iodination^{232, 233} Alkylation, acylation²³⁴

Dibenzothiophene Halogenation²¹⁴

Biphenyl Nitration^{70, 235-237} Chlorination⁶⁷

Naphthalene

Nitration^{70, 235} Halogenation^{67, 214} Acvlation²³ Addition & oxidation reactions²³⁹ Reaction with ethyl diazoacetate (unfilled arrow)²⁴⁰ Oxidation with osmium tetroxide (unfilled arrow)²⁴¹

10,9–Borazaronaphthalene Bromination and deuteration²⁴²

1–Methoxynaphthalene Nitration²⁴³ Iodination⁶⁹

1-Nitronaphthalene Nitration^{46, 244, 245}

2–Methoxynaphthalene Nitration²⁴³ Bromination²⁴⁶ Iodination^{68, 69, 247}

2–Nitronaphthalene Nitration²⁴⁸

Figure S11. Experimental reactivity patterns and corresponding calculated average local ionisation energy surfaces and minimum values ($\bar{I}_{S, min}$) at the 0.002 electrons/bohr³ surface for pyridine derivatives. References for the observed reactivity patterns are given below.

Pyridine and cation

 pK_a of conjugate acid = 5.2^{249} Halogenation²⁵⁰ Nitration²⁵¹ ²⁵²

4–EDG pyridines Bromination (EDG = OMe, OH, NH_2)²⁵³ Nitration (EDG = OMe)²⁵⁴

3–EDG pyridines Bromination (EDG = OMe, OH, NH_2)²⁵³

2–EDG pyridines Bromination (EDG = OMe, OH, NH_2)^{253, 255} Chlorination (EDG = NH_2)²⁵⁶

Pyridine N–Oxide

 pK_a of conjugate acid = 0.8^{257} Bromination^{252, 258}

Pyridinium N–Oxide cation

Nitration²⁵² Chlorination²⁵⁹

4–Pyridone cation $pK_a = 3.3^{249}$ Nitration^{255, 260, 261}

Uracil Phenylsulfenylation²⁶² Bromination²⁶³ Iodination^{264, 265]{#338, 266, 267} Nitration¹⁶⁰

Figure S12.Experimental reactivity patterns and corresponding calculated average local ionisation energy surfaces and minimum values ($\bar{I}_{S, min}$) at the 0.002 electrons/bohr³ surface for quinoline derivatives. References for the observed reactivity patterns are given below.

Quinoline and cation

 pK_a of conjugate acid = 4.9^{249} Bromination²⁶⁸⁻²⁷¹ Chlorination²⁷² Iodination²⁷³ Nitration^{190, 252, 274-276} Fluorination²⁷⁷

Quinoline N–Oxide and cation pK_a of conjugate acid = 0.9^{278} Nitration^{252, 279, 280}

Nitration with N₂O₅²⁸¹

Isoquinoline and cation pK_a of conjugate acid = 5.5^{249} Nitration^{276, 282, 283}

Nitration^{276, 282, 283} Bromination^{270, 284, 285} in 5 and 8–positions in strong acid ²⁷¹

Isoquinoline N–Oxide pK_a of conjugate acid = 1.0^{286} Nitration²⁸⁷

Isoquinolinium N–oxide cation Nitration^{280, 288}

4–Quinolone (X = NH) p K_a of conjugate acid = 2.3²⁴⁹ Nitration²⁸⁹

Chromone (**X** = **O**) pK_a of conjugate acid = -2.0^{290} Bromination²⁹¹ Mannich reaction²⁹²

4–Hydroxyquinolin–1–ium cation (X = NH) Nitration²⁹³⁻²⁹⁵

4–Hydroxychromenylium cation (X =O) Nitration^{296, 297}

Figure S13. Experimental reactivity patterns and corresponding calculated average local ionisation energy surfaces and minimum values ($\bar{I}_{S, min}$) at the 0.002 electrons/bohr³ surface for 7-membered aromatics. References for the observed reactivity patterns are given below.

Azulene Iodination⁶⁸

Tropolone and cation

 pK_a of conjugate acid of tropolone = -0.9^{298} Azo-coupling, nitrosation, nitration, sulfonation, halogenation, hydroxylation, hydroxymethylation, Reimer–Tiemann reaction^{299, 300}

Dihydro-1,4-diazepinium cation

 $pK_a = 13.4 (5,7-dimethyl derivative)^{301}$ Bromination³⁰²⁻³⁰⁴ Nitration^{47, 305}

Figure S14. Experimental reactivity patterns and corresponding calculated average local ionisation energy surfaces and minimum values ($\bar{I}_{S, min}$) at the 0.002 electrons/bohr³ surface for polycyclic aromatics. Values in parentheses refer to the values taken over regions with double-bond character as discussed in the main text. References for the observed reactivity patterns are given below.

Phenanthrene Nitration²³⁵ Halogenation^{67, 214} Bromination³⁰⁶ Addition & oxidation reactions (unfilled arrow)^{240, 241, 307, 308}

10–Methyl–10,9–Borazarophenanthrene Bromination and chlorination⁵⁵

Nitration and chlorination⁵⁴ Acetylation⁵³ Steric congestion inhibits reaction at carbon 4⁵³

10-Hydroxy-10.9-Borazarophenanthrene

Bromination and chlorination⁵⁵ Nitration and chlorination⁵⁴ Acetylation⁵³

Benzo(c)phenanthrene

Acylation²³⁸ Bromination, nitration, acetylation³⁰⁹ Oxidation with osmium tetroxide (unfilled arrow)³¹⁰

Chrysene Nitration^{235, 311} Halogenation²¹⁴ Acetylation³¹² Acylation^{238, 313} Oxidation with osmium tetroxide (unfilled arrow)^{310,} $_{314}$

Triphenylene

Small electrophiles react preferentially in the most reactive 1-position, while larger electrophile react in the 2-position due to the steric hindrance in the 1position.

1-chlorination and 1-deuteriation³¹⁵ mostly 1-nitration, some 2-nitration^{316 311} mostly 2-nitration, some 1-nitration^{235, 311} 2–halogenation²¹⁴ 2-acylation²³⁸

Fluoranthene

mostly 3-nitration, some 8-nitration ³¹¹

Anthracene

Acylation²³⁸ Halogenation^{67, 214, 306} Nitration³¹⁷ Addition & Oxidation reactions (unfilled arrow)^{307,} 308, 318, 319 241 240, 320

Pyrene

Acylation²³⁸ Nitration^{235, 311} Halogenation^{67, 214} Oxidation with osmium tetroxide (unfilled arrow)³²¹ Reaction with ethyl diazoacetate (unfilled arrow)²⁴⁰

'Cyclohexatrine'

Epoxidation and hydrogenation {#1240}^{57, 59}

Figure S15. HOMOs and HOMO–1 orbitals and energies for theoretically challenging aromatic molecules calculated using DFT/B3LYP/6-311G*. The locations of the largest HOMO lobes indicate that the Frontier Molecular Orbital approximation for predicting nucleophilicity fails in many situations.

Figure S16. Correlations of experimental nucleophilicity parameters, *N* with average local ionisation energy minima $\bar{I}_{S,min}$ calculated using the methods indicated at the 0.002 electrons/bohr³ surface (Table S3).

Figure S17. Correlations of experimental reactivity parameters with average local ionisation energies calculated using HF/6-311G* at the 0.002 electrons/bohr³ surface: (**a**), Average local ionisation energies taken over the *meta* and *para* positions vs. the corresponding Hammett substituent constants. (**b**), Nucleophilicity parameters determined by Mayr and co-workers. (**c**), Experimental partial rate factors for a range of electrophilic substitution reactions at different carbon positions in substituted benzenes. (**d**), A scale of average local ionisation energies including representative examples. Tables S1-S3 contain the associated data and references. The main text contains a version of this figure plotted using DFT/B3LYP/6-311G* values.

Figure S18. Correlation of experimental partial rate factors for (**a**) bromination, (**b**) chlorination, and (**c**) nitration taken from individual experimental studies vs. average local ionisation minima taken over each reactive position calculated using DFT/B3LYP/6-311G* at the 0.002 electrons/bohr³ surface. Table S2 contains the associated data and references.

experimental % yield at position $j = \frac{n_j f_j}{\sum_j n_j f_j} \times 100\%$

predicted % yield at position $j = \frac{n_j \exp(m \bar{I}_{S,j})}{\sum_j n_j \exp(m \bar{I}_{S,j})} \times 100\%$

Figure S19. Correlation of experimental percentage yields (from Figure 4) and those derived from partial rate factors for a range of electrophilic aromatic substitution reactions (y-axis) vs. those predicted using the equation given above (x-axis). n_j is the number of equivalent aromatic positions *j* that are available for substitution, f_j is the experimental partial rate factor at each position *j* (Table S2), *m* is the gradient of the graph determined in Figure 3c (m = -21.194), and $\bar{I}_{S,j}$ is the average local ionisation energy taken over each position *j* (calculated using B3LYP/6-311G* at the 0.002 electrons/bohr³ surface). Figure 4 in the main text and Table S2 contain the associated data and references. In general, yields can be predicted with $\pm 25\%$ accuracy. The outliers marked with hollow circles correspond to examples where steric effects have an important influence on the observed product ratios (iodobenzene and some polymethylbenzenes), which are not taken into account in the ionisation energy model.

Table S1. Hammett σ_m and σ_p substituent constants and corresponding calculated average local ionisation energy values $\bar{I}_{S meta}$ and $\bar{I}_{S para}$ taken directly over the centre of the carbons in the *meta* and *para* positions when viewed perpendicular to the plane of the ring (as shown in Figure S1). ^a Entry numbers refer to Table I of reference ²⁶.

				DFT/B3LY	′P/6-311G*	HF/B3LYP	/6-311G*
Entry ^a	Substituent	$\sigma_{ m m}$	$\sigma_{ m p}$	Ī₅ meta /eV	^Ī s para /eV	^Ī s <i>meta</i> /eV	^Ī s para /eV
2	Br	0.39	0.23	9.69	9.61	12.63	12.56
5	Cl	0.37	0.23	9.71	9.60	12.64	12.53
7	SO ₂ CI	1.20	1.11	10.42	10.54	13.24	13.51
15	F	0.34	0.06	9.62	9.41	12.61	12.30
18	SO_2F	0.80	0.91	10.38	10.50	13.24	13.52
28	I	0.35	0.18	9.71	9.66	12.62	12.60
31	NO	0.62	0.91	9.98	10.14	12.74	12.93
32	NO ₂	0.71	0.78	10.13	10.24	13.02	13.26
37	N ₃	0.37	0.08	9.42	9.41	12.53	12.13
43	н	0.00	0.00	9.25	9.25	12.13	12.13
45	OH	0.12	-0.37	9.32	8.96	12.39	11.84
49	SH	0.25	0.15	9.49	9.27	12.46	12.19
50	B(OH) ₂	-0.01	0.12	9.31	9.43	12.17	12.34
51	NH_2	-0.16	-0.66	9.09	8.62	12.20	11.58
52	NHOH	-0.04	-0.34	9.18	8.87	12.21	11.76
53	SO_2NH_2	0.53	0.60	9.88	9.96	12.76	12.97
59	NHNH ₂	-0.02	-0.55	9.21	8.76	12.33	11.68
60	SiH ₃	0.05	0.10	9.43	9.48	12.27	12.37
61	CBr ₃	0.28	0.29	9.79	9.83	12.65	12.71
62	CCIF ₂	0.42	0.46	9.87	9.91	12.72	12.82
66	CCI ₃	0.40	0.46	9.86	9.92	12.69	12.79
70	CF_3	0.43	0.54	9.83	9.90	12.70	12.83
75	OCF ₃	0.38	0.35	9.81	9.74	12.73	12.64
76	SOCF ₃	0.63	0.69	9.99	10.08	12.95	13.11
78	SO_2CF_3	0.83	0.96	10.33	10.45	13.21	13.53
80	OSO_2CF_3	0.56	0.53	9.96	9.91	13.01	12.98
81	SCF_3	0.40	0.50	9.83	9.94	12.67	12.86
84	CN	0.56	0.66	10.06	10.10	12.94	13.05
85	NC	0.48	0.49	9.98	9.90	12.83	12.72
89	N=C=O	0.27	0.19	9.69	9.50	12.65	12.40
90	OCN	0.67	0.54	10.05	9.87	13.04	12.78
91	SO ₂ CN	1.10	1.26	10.51	10.64	13.38	13.67
92	N=C=S	0.48	0.38	9.87	9.71	12.98	12.81
93	SCN	0.51	0.52	10.04	10.09	12.89	13.04
94	SeCN	0.61	0.66	10.00	10.08	12.86	13.00
97	C(NO ₂) ₃	0.72	0.82	10.44	10.52	13.39	13.63
102	OCHCl ₂	0.38	0.26	9.89	9.79	12.75	12.61

103	CHF ₂	0.29	0.32	9.61	9.64	12.52	12.56
104	OCHF ₂	0.31	0.18	9.72	9.51	12.67	12.54
105	SOCHF ₂	0.54	0.58	9.95	9.99	12.89	13.03
106	SO ₂ CHF ₂	0.75	0.86	10.16	10.31	13.03	13.35
107	SCHF ₂	0.33	0.37	9.78	9.82	12.66	12.78
109	NHSO ₂ CF ₃	0.44	0.39	9.82	9.69	12.80	12.83
111	NHCN	0.21	0.06	9.72	9.40	12.76	12.28
117	СНО	0.35	0.42	9.78	9.89	12.58	12.75
118	СООН	0.37	0.45	9.63	9.78	12.47	12.71
119	CH₂Br	0.12	0.14	9.57	9.56	12.43	12.41
120	CH₂CI	0.11	0.12	9.58	9.58	12.44	12.43
121	OCH ₂ CI	0.25	0.08	9.56	9.28	12.61	12.17
122	CH₂F	0.12	0.11	9.37	9.32	12.34	12.23
123	OCH₂F	0.20	0.02	9.52	9.21	12.56	12.12
124	SCH₂F	0.23	0.20	9.73	9.78	12.59	12.70
125	CH ₂ I	0.10	0.11	9.59	9.58	12.45	12.40
126	NHCHO	0.19	0.00	9.41	9.21	12.40	12.01
127	CONH ₂	0.28	0.36	9.58	9.65	12.42	12.60
133	Me	-0.07	-0.17	9.19	9.11	12.09	11.96
139	NHCONH ₂	-0.03	-0.24	9.25	8.98	12.25	11.84
142	OMe	0.12	-0.27	9.24	8.91	12.28	11.79
143	CH₂OH	0.00	0.00	9.52	9.52	12.40	12.40
144	SOMe	0.52	0.49	9.72	9.73	12.64	12.70
147	S(O)OMe	0.50	0.54	9.70	9.76	12.56	12.75
148	SO ₂ Me	0.60	0.72	10.01	10.10	12.89	13.10
150	OSO ₂ Me	0.39	0.36	9.57	9.37	12.69	12.39
151	SMe	0.15	0.00	9.49	9.51	12.29	12.37
152	SSMe	0.22	0.13	9.61	9.62	12.49	12.56
154	NHMe	-0.21	-0.70	9.04	8.57	12.16	11.48
155	CH_2NH_2	-0.03	-0.11	9.10	9.08	12.02	11.95
158	N(COF) ₂	0.58	0.57	10.00	10.05	12.93	12.98
160	COCF ₃	0.63	0.80	10.00	10.17	12.80	13.06
161	SCOCF ₃	0.48	0.46	9.87	9.95	12.72	12.85
162	OCOCF ₃	0.56	0.46	9.89	9.81	12.81	12.68
165	CF ₂ CF ₃	0.47	0.52	9.86	9.94	12.74	12.90
166	OCF_2CF_3	0.48	0.28	9.78	9.61	12.80	12.50
167	$SO_2CF_2CF_3$	0.92	1.08	10.33	10.49	13.21	13.55
169	N(CF ₃) ₂	0.40	0.53	9.91	9.95	12.77	12.89
175	C≡CH	0.21	0.23	9.56	9.50	12.43	12.41
176	OCF ₂ CHFCI	0.35	0.28	9.77	9.69	12.68	12.58
177	NHCOCF ₃	0.30	0.12	9.69	9.52	12.70	12.33
179	OCF_2CHF_2	0.34	0.25	9.66	9.48	12.66	12.36
180	SCF ₂ CHF ₂	0.38	0.47	9.74	9.82	12.59	12.76
185	CH_2CF_3	0.12	0.09	9.51	9.50	12.41	12.42

186	CH_2SOCF_3	0.25	0.24	9.65	9.66	12.56	12.59	
187	$CH_2SO_2CF_3$	0.29	0.31	9.77	9.80	12.66	12.74	
188	CH_2SCF_3	0.12	0.15	9.45	9.50	12.41	12.38	
189	CH ₂ CN	0.16	0.18	9.67	9.65	12.58	12.55	
193	CH=CH ₂	0.06	-0.04	9.34	9.26	12.23	12.11	
198	oxiranyl	0.05	0.03	9.36	9.30	12.23	12.17	
199	OCH=CH ₂	0.21	-0.09	9.46	9.14	12.47	12.01	
200	COMe	0.38	0.50	9.61	9.74	12.46	12.61	
201	SCOMe	0.39	0.44	9.50	9.51	12.38	12.47	
202	OCOMe	0.39	0.31	9.50	9.39	12.43	12.25	
203	COOMe	0.37	0.45	9.55	9.66	12.37	12.61	
205	SCH=CH ₂	0.26	0.20	9.53	9.39	12.38	12.41	
210	NHCOOMe	-0.02	-0.17	9.32	9.03	12.30	11.89	
211	NHCOMe	0.21	0.00	9.30	9.09	12.25	11.89	
212	CONHMe	0.35	0.36	9.50	9.57	12.44	12.54	
214	CH ₂ CONH ₂	0.06	0.07	9.59	9.54	12.54	12.47	
219	Et	-0.07	-0.15	9.20	9.12	12.11	11.97	
221	OCH_2CH_3	0.10	-0.24	9.21	8.88	12.27	11.80	
222	CH(OH)Me	0.08	-0.07	9.34	9.29	12.21	12.14	
223	CH ₂ OMe	0.08	0.01	9.30	9.25	12.17	12.13	
224	SO ₂ Et	0.66	0.77	9.98	10.08	12.85	13.08	
225	SEt	0.18	0.03	9.48	9.50	12.34	12.43	
230	NHEt	-0.24	-0.61	9.03	8.55	12.13	11.50	
231	N(Me) ₂	-0.16	-0.83	8.99	8.54	12.10	11.43	
236	N=NNMe2	-0.05	-0.03	9.13	8.96	12.13	11.96	
239	PO(OMe) ₂	0.42	0.53	9.60	9.73	12.44	12.65	
250	C≡CF ₃	0.41	0.51	9.94	9.95	12.80	12.83	
251	$CF=CFCF_3-t$	0.39	0.46	9.88	9.89	12.73	12.84	
253	$CF_2CF_2CF_3$	0.44	0.48	9.88	9.97	12.75	12.92	
254	CF(CF ₃) ₂	0.37	0.53	9.85	9.91	12.75	12.88	
255	$SO_2CF_2CF_3$	0.92	1.09	10.33	10.48	13.21	13.57	
256	$SO_2CF(CF_3)_2$	0.92	1.10	10.33	10.48	13.19	13.55	
257	$SCF_2CF_2CF_3$	0.45	0.48	9.87	9.94	12.72	12.90	
258	SCF(CF ₃) ₂	0.48	0.51	9.88	9.95	12.70	12.89	
262	CH(CN) ₂	0.53	0.52	9.99	9.99	12.91	12.92	
263	CHC=HCF ₃ -c	0.16	0.17	9.61	9.63	12.43	12.43	
264	CH=HCF ₃ -t	0.24	0.27	9.74	9.71	12.59	12.55	
266	CH=HCN-t	0.24	0.17	9.91	9.90	12.77	12.75	
267	C=CMe	0.21	0.03	9.25	9.13	12.14	11.97	
268	N(Me)COCF ₃	0.41	0.39	9.81	9.82	12.68	12.72	
269	CH=CHCHO	0.24	0.13	9.80	9.80	12.62	12.60	
270	cyclopropyl	-0.07	-0.21	9.20	9.16	12.07	12.02	
272	$CH=CHCH_3$	0.02	-0.09	9.26	9.14	12.14	11.98	
276	COEt	0.38	0.48	9.53	9.65	12.35	12.59	

277	COOEt	0.37	0.45	9.60	9.71	12.42	12.60
278	CH ₂ OCOMe	0.04	0.05	9.46	9.47	12.34	12.30
288	isopropyl	-0.04	-0.15	9.18	9.12	12.06	11.95
294	$OCH_2CH_2CH_3$	0.10	-0.25	9.20	8.87	12.29	11.76
307	SiMe ₃	-0.04	-0.07	9.24	9.28	12.10	12.17
317	C(CF ₃) ₃	0.55	0.55	9.85	9.94	12.76	12.94
346	COCHMe ₂	0.38	0.47	9.61	9.72	12.41	12.60
348	NHCOCH(Me) ₂	0.11	-0.10	9.35	9.09	12.30	11.91
352	$(CH_2)_3CH_3$	-0.08	-0.16	9.18	9.11	12.09	11.96
360	N(Et) ₂	-0.23	-0.72	8.96	8.44	12.09	11.31
434	N(C ₃ H ₇) ₂	-0.26	-0.93	8.97	8.47	12.07	11.36
504	$N(C_6H_5)_2$	0.00	-0.22	9.31	9.10	12.23	11.93
527	$Si(C_6H_5)_3$	-0.03	0.10	9.25	9.33	12.08	12.21
529	C(C ₆ H ₅) ₃	-0.01	0.02	9.20	9.18	12.10	12.07

Table S2. Experimental partial rate factors for electrophilic substitution in different positions of aromatic substrates and their corresponding average local ionisation energies, $\bar{I}_{S, j}$. Average local ionisation energies were calculated using the methods indicated at the 0.002 electrons/bohr³ surface (as shown in Figure S1). % yields were calculated from DFT ionisation energies using the equations given in Figure S19. Predicted % yields are and are associated with an error of up to ±25% (Figure S19). Experimental partial rate factors are taken from references^{21,44, 74, 322, 323.}

		Ave. Local le Energy, l (predicted %	onisation _{s,j} /eV % yields)		In ((correspor	experimental p nding % yields	oartial rate fact where all parti	or), In(f ial rates	j) known)		
Compound	Position, <i>j</i>	DFT/B3LYP 6-311G*	HF/ 6-311G*	Bromination	Chlorination	Nitration	Benzylation	Solvolysis	Ethylation	Mercuration	Acetylation
Benzene	1	9.25 (100%)	12.12	0.0 (100%)	0.0 (100%)	0.0 (100%)	0.0 (100%)	0.0	0.0	0.0	0.0
Toluene	2	9.07 (70%)	11.94	6.40 (68%)	6.40 (60%)	-	-	-	-	-	-
	3	9.18 (7%)	12.10	1.70 (1%)	1.59 (0%)	0.74	-	0.67	0.39	0.81	1.57
	4	9.09 (23%)	11.98	7.78 (31%)	6.70 (40%)	3.89	-	3.21	1.75	3.15	6.61
1,2-dimethylbenzene	3	9.02 (60%)	11.91	8.06 (20%)	7.9 (43%)	-	-	-	-	-	-
	4	9.04 (40%)	11.94	9.44 (80%)	8.2 (57%)	-	-	-	-	-	-
1,3-dimethylbenzene	2	8.91 (48%)	11.78	12.66	12.6	-	-	-	-	-	-
	4	8.94 (51%)	11.78	14.05	12.9	-	-	-	-	-	-
	5	9.13 (0%)	12.07	-	-	-	-	-	-	-	-
1,4-dimethylbenzene	2	9.03 (100%)	11.92	8.29 (100%)	8.0 (100%)	-	-	-	-	-	-
1,2,3-trimethylbenzene	4	8.88 (95%)	11.76	15.43 (100%)	-	-	-	-	-	-	-
	5	8.99 (5%)	11.91	10.82 (0%)	-	-	-	-	-	-	-
1,2,4-trimethylbenzene	3	8.86 (52%)	11.76	14.51 (20%)	-	-	-	-	-	-	-
	5	8.87 (42%)	11.75	15.89 (80%)	-	-	-	-	-	-	-
	6	8.97 (5%)	11.88	9.67 (0%)	-	-	-	-	-	-	-
1,3,5-trimethylbenezene	2	8.77 (100%)	11.60	19.8 (100%)	17.9 (100%)	-	-	-	-	-	-
1,2,3,4-tetramethylbenzene	5	8.83 (100%)	11.72	17.27(100%)	-	-	-	-	-	-	-
1,2,3,5-tetramethylbenzene	4	8.73 (100%)	11.60	20.95 (100%)	-	-	-	-	-	-	-
1,2,4,5-tetramethylbenzene	3	8.82 (100%)	11.73	15.89 (100%)	15.4 (100%)	-	-	-	-	-	-
Pentamethylbenzene	6	8.67 (100%)	11.53	22.34 (100%)	20.5 (100%)	-	-	-	-	-	-
Nitrobenzene	2	10.31 (3%)	13.41	-	-	-18.3 (6%)	-	-	-	-	-
	3	10.14 (92%)	13.03	-	-	-15.6 (92%)	-	-	-	-	-
	4	10.24 (6%)	13.26	-	-	-18.7 (2%)	-	-	-	-	-
t-Butylbenzene	2	9.08 (66%)	11.91	-	-	-	-	-	-	-	-
	3	9.16 (17%)	12.03	1.80	1.68	1.34	-	0.62	-	1.22	2.56
	4	9.12 (17%)	11.95	6.70	5.99	4.05	-	2.67	-	2.86	6.49
Chlorobenzene	2	9.66 (28%)	12.66	-	-	-	-1.4 (33%)	-	-	-	-
	3	9.71 (10%)	12.65	-7.09	-8.11	-7.09	-5.4 (1%)	_ 4.17	-4.17	-2.28	-7.48
	4	9.59 (62%)	12.53	-1.93	-0.97	-2.05	0.0 (67%)	_ 1.20	-0.62	-1.01	-2.07
Bromobenzene	2	9.65 (31%)	12.70	-	-	-	-1.7 (33%)	-	-	-	-
	3	9.69 (13%)	12.64	-6.93	-1.24	-6.90	-5.6 (1%)	_ 4.17	-4.24	-2.44	-7.55

	4	9.59 (56%)	12.56	-	1.47	-2.30	-0.3 (67%)	- 1.57	-1.57	-	-
Fluorobenzene	2	9.47 (23%)	12.47	-2.79	-	-	–1.6 (14%)	-	-	-	-
	3	9.60 (1%)	12.61	1.52	-	-2.28	-5.9 (0%)	_ 3.68	-0.83	-1.31	-2.49
	4	9.38 (76%)	12.31	-	-	-0.25	0.9 (86%)	0.76	-0.30	1.08	0.41
lodobenzene	2	9.71 (26%)	12.73	-	-	-	–1.4 (31%)	-	-	-	-
	3	9.71 (26%)	12.64	-	-	-	-5.1 (1%)	-	-	-	-
	4	9.65 (47%)	12.60	-	-	-	0.1 (69%)	-	-	-	-

Table S3.Experimental nucleophilicity parameters, *N* and corresponding average local ionisation energy minima $I_{S,min}$ taken nearest to the carbons marked with arrows. Average local ionisation energies were calculated with the methods indicated and taken at the 0.002 electrons/bohr³ surface. This data is plotted graphically in Figures 3, S16 and S17. ^a n.s. denotes entries with atoms not supported by a particular basis set.

Structure	Nucleophilicity parameter, N	Solvent	DFT/B3LYP/ 6-31G*	DFT/B3LYP/ 6-31G**	DFT/B3LYP/ 6-31+G*	DFT/B3LYP/ 6-311G*	DFT/B3LYP/ 6-311+G**	DFT/B3LYP/ 6-311++G**	DFT/B3LYP/ LACVP	HF/6-31G*	HF/6-311G*	Reference
Me	-4.47	DCM	9.02	9.06	9.01	9.07	8.98	8.97	9.02	11.94	11.94	324
Me	-3.54	DCM	8.86	8.88	8.82	8.92	8.78	8.77	8.84	11.76	11.75	324
OMe	2.48	DCM	8.55	8.57	8.58	8.55	8.53	8.53	8.63	11.47	11.42	324
OMe Me	0.13	DCM	8.71	8.73	8.68	8.72	8.64	8.64	8.75	11.59	11.57	324
	6.66	ACN	8.34	8.37	8.32	8.38	8.29	8.28	8.28	10.93	10.93	325
OMe T	-1.18	DCM	8.86	8.89	8.87	8.88	8.83	8.82	8.91	11.78	11.75	326
Me	1.26	DCM	8.71	8.73	8.65	8.77	8.60	8.59	8.74	11.81	11.83	324
Me	3.61	DCM	8.36	8.39	8.37	8.44	8.38	8.38	8.52	11.30	11.32	324
N Me	5.85	DCM	7.83	7.87	7.87	7.89	7.86	7.86	7.80	10.74	10.72	324
	1.36	DCM	8.55	8.59	8.61	8.65	8.64	8.63	8.76	11.48	11.52	324
Me	10.67	ACN	7.68	7.70	7.65	7.68	7.63	7.63	7.61	10.57	10.50	325

Me Ne Me	8.69	ACN	7.66	7.68	7.60	7.70	7.59	7.59	7.60	10.53	10.52	325
Me Me	8.01	ACN	7.67	7.70	7.60	7.71	7.67	7.66	7.63	10.57	10.55	325
Me Me	11.63	ACN	7.68	7.70	7.60	7.68	7.59	7.60	7.60	10.56	10.48	325
Me NH OMe	6.22	DCM	8.05	8.08	8.05	8.07	8.05	8.05	8.04	10.97	10.95	327
	5.55	DCM	8.14	8.18	8.15	8.18	8.16	8.16	8.10	11.01	11.00	327
	5.75	DCM	8.12	8.15	8.14	8.16	8.07	8.07	8.05	10.98	10.97	327
Me ₃ Si O	2.16	DCM	8.33	8.35	8.47	8.48	8.51	8.50	8.44	11.16	11.24	326
Соон	3.97	ACN	8.50	8.53	8.47	8.53	8.53	8.53	8.50	11.36	11.33	327
Me OMe	7.26	ACN	7.93	7.95	7.91	7.96	7.89	7.89	7.90	10.82	10.82	327
Me Me	7.22	ACN	7.91	7.93	7.89	7.95	7.88	7.89	7.85	10.78	10.79	327
Me	6.91	ACN	7.97	7.99	7.96	8.01	7.97	7.96	7.91	10.83	10.84	327
	6.08	ACN	8.30	8.30	8.27	8.35	8.25	8.25	8.31	11.18	11.19	327
MeO NH H	5.41	ACN	8.00	8.04	8.02	8.03	8.03	8.02	7.96	10.87	10.84	327

	3.87	ACN	8.37	8.41	8.38	8.41	8.39	8.39	8.40	11.23	11.21	327
	2.83	ACN	8.76	8.80	8.76	8.80	8.78	8.78	8.71	11.63	11.62	327
Br NH H	4.38	ACN	8.44	8.46	8.44	8.49	8.44	8.44	8.46	11.36	11.33	327
CI CI	4.42	ACN	8.44	8.47	8.42	8.48	8.42	8.42	8.46	11.33	11.32	327
Et ₃ Si	2.20	DCM	8.36	8.38	8.52	8.50	8.52	8.51	8.45	11.20	11.25	326
Bu ₃ Si	2.37	DCM	8.40	8.42	8.51	8.49	8.53	8.52	8.53	11.21	11.25	326
√s ←	-1.01	DCM	8.86	8.89	8.83	8.92	8.80	8.79	8.92	11.97	12.00	326
Me ₃ Si S	-0.80	DCM	8.65	8.67	8.72	8.79	8.75	8.74	8.88	11.65	11.70	326
Bu ₃ Sn	3.63	DCM	ªn.s.	n.s.	n.s.	n.s.	n.s.	8.62	n.s.	n.s.	n.s.	326
Bu ₃ Sn	1.53	DCM	n.s.	n.s.	n.s.	n.s.	n.s.	8.85	n.s.	n.s.	n.s.	326
ZI	4.63	DCM	7.88	7.93	7.97	7.93	7.98	7.98	7.88	10.81	10.77	328
Me Ne	6.54	DCM	7.95	7.97	7.90	8.00	7.88	7.88	7.87	10.80	10.82	327
ОН	6.44	ACN	8.10	8.14	8.13	8.14	8.14	8.13	8.13	11.04	11.02	327
Me	6.00	ACN	8.08	8.12	8.07	8.12	8.07	8.08	8.04	10.97	10.96	327
NH ₂	7.22	ACN	7.95	7.97	7.96	7.96	7.97	7.97	7.80	10.90	10.88	327

Supporting References

1. to 60. are given in the main text.

- 5 61. P. Politzer, F. Abu-Awwad and J. S. Murray, Int. J. Quantum Chem., 1998, 69, 607-613.
- 62. J. S. Murray, T. Brinck and P. Politzer, J. Mol. Struct .: THEOCHEM, 1992, 87, 271-281.
- 63. P. Politzer, J. S. Murray and M. C. Concha, Int. J. Quantum Chem., 2002, 88, 19-27. 10
- 64. J. G. Hoggett, R. B. Moodie, J. R. Penton and K. Schofield, Nitration and aromatic reactivity, Cambridge University Press, Cambridge, 1971.
- H. Wynberg and E. W. Meijer, Org. React., 1982, 28, 1-36. 65.
- F. Bigi, G. Casiraghi, G. Casnati and G. Sartori, Synthesis, 15 66. 1981, 1981, 310-312.
- H. A. Muathen, Tetrahedron, 1996, 52, 8863-8866. 67.
- 68. T. Yamamoto, K. Toyota and N. Morita, Tetrahedron Lett., 2010, 51, 1364-1366.
- C.-Y. Zhou, J. Li, S. Peddibhotla and D. Romo, Org. Lett., 20 69. 2010, 12, 2104-2107.
- 70. R. B. Moodie, K. Schofield and A. R. Wait, J. Chem. Soc., Perkin Trans. 2, 1984, 921-926.
- 71. I. M. Downie, M. J. Earle, H. Heaney and K. F. Shuhaibar, Tetrahedron, 1993, 49, 4015-4034. 25
- J. L. O'Connell, J. S. Simpson, P. G. Dumanski, G. W. 72. Simpson and C. J. Easton, Org. Biomol. Chem., 2006, 4, 2716-2723.
- 73. L. M. Stock and A. Himoe, J. Am. Chem. Soc., 1961, 83, 4605-4609. 30
- 74. H. C. Brown and L. M. Stock, Journal of the American Chemical Society, 1957, 79, 1421-1425.
- 75. Y. Okada, M. Yokozawa, M. Akiba, K. Oishi, K. Okawa, T. Akeboshi, Y. Kawamura, S. Inokuma, Y. Nakamura and J. Nishimura, Org. Biomol. Chem., 2003, 1, 2506-2511.
- 76. L. Gavara, T. Boisse, B. Rigo and J.-P. Hénichart, Tetrahedron, 2008, 64, 4999-5004.
- 77. K. Tanemura, T. Suzuki, Y. Nishida, K. Satsumabayashi and T. Horaguchi, J. Chem. Res., Synop., 2003, 497-499.
- K. Smith, T. Gibbins, R. W. Millar and R. P. Claridge, J. 40 78. Chem. Soc., Perkin Trans. 1, 2000, 2753-2758.
- 79. J. Hassan, M. Sévignon, C. Gozzi, E. Schulz and M. Lemaire, Chem. Rev., 2002, 102, 1359-1470.
- B. Bennetau and J. Dunogues, Synlett, 1993, 171-176. 80.
- 45 81. C. Jia, D. Piao, J. Oyamada, W. Lu, T. Kitamura and Y. Fujiwara, Science, 2000, 287, 1992-1995. 82. G. Felix, J. Dunogues, F. Pisciotti and R. Calas, Angew.
- Chem., 1977, 89, 502-504.
- 83 Z. Zhao and V. Snieckus, Org. Lett., 2005, 7, 2523-2526.
- 50 84. K. Durka, J. Górka, P. Kurach, S. Lulinski and J. Serwatowski, J. Organomet. Chem., 2010, 695, 2635-2643.
- 85. G. Felix, J. Dunogues and R. Calas, Angew. Chem., 1979, 91, 439-432
- H. H. Coenen and S. M. Moerlein, J. Fluorine Chem. 86. 55, 1987, **36**, 63-75.
- 87.
- W. Seaman and J. R. Johnson, J. Am. Chem. Soc., 1931, 53, 711-723.
- J. R. Knowles and R. O. C. Norman, J. Chem. Soc., 1961, 88. 3888-3891.
- 60 89. L. Kraszkiewicz, M. Sosnowski and L. Skulski, Synthesis, 2006, 2006, 1195-1199.
- R. D. Chambers, C. J. Skinner, M. Atherton and J. S. Moilliet, 90. Chem. Commun., 1995, 19-19
- 91. J. Arotsky, R. Butler and A. C. Darby, Chem. Commun., 1966, 650. 65
- 92. A. Gastaminza, T. A. Modro, J. H. Ridd and J. H. P. Utley, J. Chem. Soc. B, 1968, 534-539.
- M. Brickman, J. H. P. Utley and J. H. Ridd, J. Chem. Soc., 93. 140 1965, 6851-6857.
- S. R. Hartshorn and J. H. Ridd, J. Chem. Soc. B, 1968, 1063-70 94. 1067.

- 95. L. I. Belen'kii, G. M. Zhidomirov and I. A. Abronin, Russ. Chem. Bull., 1974, 23, 28-31.
- 96. A. N. Nesmeyanov, T. P. Tolstaya, L. S. Isaeva and A. V. Grib, Dokl. Akad. Nauk. SSSR, 1960, 133, 602.

75

80

105

115

120

- 97. J. DeYoung, H. Kawa and R. J. Lagow, Chem. Commun., 1992, 811-812.
- 98. A. Gissot, J.-M. Becht, J. R. Desmurs, V. Pévère, A. Wagner and C. Mioskowski, Angew. Chem., Int. Ed., 2002, 41, 340-343
- 99. K. Menzel, E. L. Fisher, L. DiMichele, D. E. Frantz, T. D. Nelson and M. H. Kress, J. Org. Chem., 2006, 71, 2188-2191. 100 I. P. Beletskaya, J. Organomet. Chem., 1983, 250, 551-564.
- 101. S. Uemura, A. Toshimitsu and M. Okano, J. Chem. Soc., Perkin Trans. 1, 1978, 1076-1079.
- 102. V. Papoian and T. Minehan, J. Org. Chem., 2008, 73, 7376-7379.
- R. Chinchilla, C. Nájera and M. Yus, Chem. Rev., 2004, 104, 103. 2667-2722.
- 90 104. G. V. M. Sharma, V. G. Reddy and P. R. Krishna, Tetrahedron Lett., 1999, 40, 1783-1786.
 - N. Kanoh, J. Ishihara, Y. Yamamoto and A. Murai, Synthesis, 105. 2000, 2000, 1878, 1893.
 - 106. H. Okamura, K. Yamauchi, K. Miyawaki, T. Iwagawa and M. Nakatani, Tetrahedron Lett., 1997, 38, 263-266.
 - M. Müller, J. Schröder, C. Magg and K. Seifert, Tetrahedron 107. Lett., 1998, 39, 4655-4656.
 - 108. H. Watanabe, T. Onoda and T. Kitahara, Tetrahedron Lett., 1999, 40, 2545-2548.
- 100 109. N. Furuichi, T. Hata, H. Soetjipto, M. Kato and S. Katsumura, Tetrahedron, 2001, 57, 8425-8442.
 - 110. C. W. Hui, H. K. Lee and H. N. C. Wong, Tetrahedron Lett., 2002, 43, 123-126.
 - P. G. Lima, L. C. Sequeira and P. R. R. Costa, Tetrahedron 111. Lett., 2001, 42, 3525-3527.
 - 112. V. G. Nenajdenko, I. L. Baraznenok and E. S. Balenkova, J. Org. Chem., 1998, 63, 6132-6136.
 - 113. P. C. Hutchison, T. D. Heightman and D. J. Procter, Org. Lett., 2002, 4, 4583-4585.
- J. Ruiz, N. Sotomayor and E. Lete, Org. Lett., 2003, 5, 1115-110 114. 1117.
 - L. Calvo, A. González-Ortega and M. C. Sañudo, Synthesis, 115. 2002, 2002, 2450, 2456.
 - 116. C. Coindet, A. Comel and G. Kirsch, Tetrahedron Lett., 2001, 42. 6101-6104.
 - 117. G. M. Coppola, R. E. Damon and H. Yu, J. Heterocycl. Chem., 1996, 33, 687-696.
 - 118. P. Leriche, M. Turbiez, V. Monroche, P. Frère, P. Blanchard, P. J. Skabara and J. Roncali, Tetrahedron Lett., 2003, 44, 649-652
 - 119. M. M. M. Raposo and G. Kirsch, Tetrahedron, 2003, 59, 4891-4899.
 - 120. A. A. Kiryanov, A. J. Seed and P. Sampson, Tetrahedron Lett., 2001.42.8797-8800.
- K. C. Nicolaou, J. Renaud, P. G. Nantermet, E. A. 125 121. Couladouros, R. K. Guy and W. Wrasidlo, J. Am. Chem. Soc., 1995, 117, 2409-2420.
 - A. Peters, C. Vitols, R. McDonald and N. R. Branda, Org. 122. Lett., 2003, 5, 1183-1186.
- 130 123. H. Beck, C. B. W. Stark and H. M. R. Hoffmann, Org. Lett., 2000, 2, 883-886. 124.
 - A. Padwa and C. S. Straub, J. Org. Chem., 2002, 68, 227-239.
 - 125. C. A. Briehn, T. Kirschbaum and P. Bäuerle, J. Org. Chem., 1999, 65, 352-359.
- Y. Lee and R. B. Silverman, Tetrahedron, 2001, 57, 5339-135 126. 5352.
 - 127. X. Franck, R. Hocquemiller and B. Figadere, Chem. Commun., 2002, 160-161.
 - M. S. Vollmer, F. Effenberger, T. Stümpfig, A. Hartschuh, H. 128. Port and H. C. Wolf, J. Org. Chem., 1998, 63, 5080-5087.
 - 129. M. S. Vollmer, F. Effenberger, R. Stecher, B. Gompf and W. Eisenmenger, Chem. Eur. J., 1999, 5, 96-101.
 - 130. M. Yokoyama, H. Toyoshima, M. Shimizu and H. Togo, J. Chem. Soc. Perkin Trans. 1, 1997, 29-34.

- 131. P. Pigeon, A. c. Mamouni, J. Sikoraiova, S. Marchalin and B. Decroix, Tetrahedron, 2001, 57, 4939-4943.
- 132. M. P. Sibi, M. Marvin and R. Sharma, J. Org. Chem., 1995, 60, 5016-5023.
- 5 133. T. A. Grese and L. D. Pennington, Tetrahedron Lett., 1995, 36, 8913-8916.
- 134. L. Bianchi, C. Dell'Erba, A. Gabellini, M. Novi, G. Petrillo and C. Tavani, Tetrahedron, 2002, 58, 3379-3385.
- 135. D. Balachari, L. Quinn and G. A. O'Doherty, Tetrahedron Lett., 1999, 40, 4769-4773. 10
- J. Častulík and C. Mazal, Tetrahedron Lett., 2000, 41, 2741-136. 2744
- V. Bonnet, F. Mongin, F. Trecourt, G. Breton, F. Marsais, P. 137. Knochel and G. Queguiner, Synlett, 2002, 1008-1010.
- R. Benhida, F. Lecubin, J.-L. Fourrey, L. R. Castellanos and 15 138. L. Quintero, Tetrahedron Lett., 1999, 40, 5701-5703.
- Y. Zhang, A.-B. Hoernfeldt and S. Gronowitz, J. Heterocycl. 139. Chem., 1995, 32, 435-444.
- 140. E. Bures, P. G. Spinazze, G. Beese, I. R. Hunt, C. Rogers and 20 B. A. Keay, J. Org. Chem., 1997, 62, 8741-8749.
- J.-H. Liu, Q.-C. Yang, T. C. W. Mak and H. N. C. Wong, J. 141. Org. Chem., 2000, 65, 3587-3595.
- 142. M. C. Pirrung, Z. Li, K. Park and J. Zhu, J. Org. Chem., 2002, 67, 7919-7926.
- 25 143 J. D. Rainier and J. M. Cox, Org. Lett., 2000, 2, 2707-2709.
- P. J. Wagner and L. Wang, Org. Lett., 2006, 8, 645-647. 144.
- M. Bentov, A. Kaluszyner and Z. Pelchowicz, J. Chem. Soc., 145. 1962, 2825-2827.
- 146. P. K. Chhattise, A. V. Ramaswamy and S. B. Waghmode, Tetrahedron Lett., 2008, 49, 189 - 194. 30
- 147. R. Andreozzi, M. Canterino, V. Caprio, I. Di Somma and R. Sanchirico, Organic Process Research & Development, 2006, 10, 1199-1204.
- 148. G. Marino, A. R. Katritzky and A. J. Boulton, in Adv. Heterocycl. Chem., Academic Press, 1971, vol. Volume 13, pp. 235-314.
- 149. A. R. Cooksey, K. J. Morgan and D. P. Morrey, Tetrahedron, 1970, 26, 5101-5111.
- 150. N. Iranpoor, H. Firouzabadi, N. Nowrouzi and D. Firouzabadi, Tetrahedron Lett., 2006, 47, 6879-6881.
- 151. G. Doddi, P. Mencarelli, A. Razzini and F. Stegel, J. Org. Chem., 1979, 44, 2321-2323.
- G. A. Cordell, J. Org. Chem., 1975, 40, 3161-3169. 152
- 153. H. M. Gilow and D. E. Burton, J. Org. Chem., 1981, 46, 2221-2225. 45
- 154. A. G. Anderson and M. M. Exner, J. Org. Chem., 1977, 42, 3952-3955.
- 155. A. R. Butler and P. T. Shepherd, J. Chem. Soc., Perkin Trans. 2. 1980, 113-116.
- N. J. Gogan, R. McDonald, H. J. Anderson and C. E. Loader, 50 156. Can. J. Chem., 1989, 67, 433-436.
- 157. I. Nicolaou and V. J. Demopoulos, J. Med. Chem., 2003, 46, 125 417-426
- M. Krayer, M. Ptaszek, H.-J. Kim, K. R. Meneely, D. Fan, K. 158. 55 Secor and J. S. Lindsey, J. Org. Chem., 2010, 75, 1016-1039.
- 159. B. Ostman, Acta Chem. Scand., 1968, 22, 2754-2764.
- 160. C. D. Johnson, A. R. Katritzky, M. Kingsland and E. F. V. 130 Scriven, J. Chem. Soc. B, 1971, 1-4.
- 161. Y. Goldberg and H. Alper, J. Org. Chem., 1993, 58, 3072-3075
- 162. S. I. Pennanen, Heterocycles, 1976, 4, 1021-1024.
- 163. A. W. Weston and R. J. Michaels, Org. Synth. Coll. Vol. IV, 135 1963, 913.
- 164. R. M. Acheson and D. R. Harrison, J. Chem. Soc. C, 1970, 1764-1784. 65
- J. J. McNally, P. J. Sanfilippo, L. Fitzpatrick and J. B. Press, J. 165. Heterocycl. Chem., 1992, 29, 247-250. 140 203.
- 166. S. Gronowitz, A. Hallberg and C. Glennow, J. Heterocycl. Chem., 1980, 17, 171-174.
- 70 167. I. J. Turchi, J. B. Press, J. J. McNally, M. P. Bonner and K. L. Sorgi, J. Org. Chem., 1993, 58, 4629-4633.
- 168. K. Uchida, N. Izumi, S. Sukata, Y. Kojima, S. Nakamura and 145 206. M. Irie, Angew. Chem., Int. Ed., 2006, 45, 6470-6473.

- 169. M. D'Auria and G. Mauriello, Tetrahedron Lett., 1995, 36, 4883-4884.
- 170. K. J. Hoffmann and P. H. J. Carlsen, Synth. Commun., 1999, 29, 1607 - 1610.
- 171. S. Gronowitz and I. Ander, Chem. Scr., 1980, 15, 20-22.
- D. L. Pearson and J. M. Tour, J. Org. Chem., 1997, 62, 1376-172. 1387.
- 173. W. Zhang and P. G. Wang, J. Org. Chem., 2000, 65, 4732-4735
- J. G. Michels and K. J. Hayes, J. Am. Chem. Soc., 1958, 80, 174. 1114-1116.
- M. A. Keegstra, A. J. A. Klomp and L. Brandsma, Synth. 85 175. Commun., 1990, 20, 3371-3374.
 - G. Ciranni and S. Clementi, Tetrahedron Lett., 1971, 3833-176. 3836.
 - 177. R. F. Hartman and S. D. Rose, J. Org. Chem., 1981, 46, 4340-4345
 - 178. D. A. H. Taylor, J. Chem. Soc., 1953, 2767-2769.
 - 179. K. Itoh, S. Kishimoto and K. Sagi, Can. J. Chem., 2009, 87, 760-774.
 - K. Itoh and S. Kishimoto, New J. Chem., 2009, 33, 1127-1138. 180.
- Q. He, W. Chen and Y. Qin, Tetrahedron Lett. , 2007, 48, 95 181. 1899-1901.
 - 182. A. Padwa and A. G. Waterson, ARKIVOC, 2001, 29-42.
 - 183. G. Doddi, F. Stegel and M. T. Tanasi, J. Org. Chem., 1978, 43. 4303-4305.
- T. J. Donohoe, A. A. Calabrese, J.-B. Guillermin, C. S. 100 184. Frampton and D. Walter, J. Chem. Soc., Perkin Trans. 1, 2002, 1748-1756.
 - 185. P. A. Finan and G. A. Fothergill, J. Chem. Soc., 1963, 2723-2727.
- 105 186. G. Zwicky, P. G. Waser and C. H. Eugster, Helv. Chim. Acta, 1959, 42, 1177-1189.
 - 187. J. A. Zoltewicz and L. W. Deady, Adv. Heterocycl. Chem., 1978, 22, 71-121.
 - 188. A. Hassner and B. Fischer, Tetrahedron, 1989, 45, 6249-6262.
- H. Walba and R. W. Isensee, J. Org. Chem., 1961, 26, 2789-110 189. 2791
 - 190. M. W. Austin, J. R. Blackborow, J. H. Ridd and B. V. Smith, J. Chem. Soc., 1965, 1051-1057.
 - I. E. Balaban and F. L. Pyman, J. Chem. Soc., Trans., 1922, 191. 121. 947-958.
 - S. F. Kobs and E. J. Behrman, Inorg. Chim. Acta, 1987, 138, 192. 113 - 120.
 - 193. A. R. Katritzky, C. Ogretir, H. O. Tarhan, H. M. Dou and J. V. Metzger, J. Chem. Soc., Perkin Trans. 2, 1975, 1614-1620.
- 120 194. L. D. Hansen, E. J. Baca and P. Scheiner, J. Heterocycl. Chem., 1970, 7, 991-996.
 - 195. G. Zoppellaro, V. Enkelmann, A. Geies and M. Baumgarten, Org. Lett., 2004, 6, 4929-4932.
 - M. M. Kim, R. T. Ruck, D. Zhao and M. A. Huffman, 196. Tetrahedron Lett., 2008, 49, 4026-4028.
 - 197. Z.-G. Zhao and Z.-X. Wang, Synth. Commun., 2007, 37, 137-147.
 - R. S. Gross, Z. Guo, B. Dyck, T. Coon, C. Q. Huang, R. F. 198. Lowe, D. Marinkovic, M. Moorjani, J. Nelson, S. Zamani-Kord, D. E. Grigoriadis, S. R. J. Hoare, P. D. Crowe, J. H. Bu, M. Haddach, J. McCarthy, J. Saunders, R. Sullivan, T. Chen and J. P. Williams, J. Med. Chem., 2005, 48, 5780-5793.
 - 199. R. Raap and R. G. Micetich, J. Med. Chem., 1968, 11, 70-73.
 - 200. F. Hübenett, F. H. Flock, W. Hansel, H. Heinze and H. Hofmann, Angew. Chem., Int. Ed. Engl., 1963, 2, 714-719.
 - 201. A. R. Katritzky, E. F. V. Scriven, S. Majumder, R. G. Akhmedova, N. G. Akhmedov and A. V. Vakulenko, ARKIVOC, 2005, 179-191. 202
 - A. Pascual, Helv. Chim. Acta, 1989, 72, 556-569.
 - L. A. Reiter, J. Org. Chem., 1987, 52, 2714-2726.
 - N. K. Kochetkov and E. D. Khomutova, Zh. Obshch. Khim., 1959, 29, 535-539.
 - N. K. Kochetkov, S. D. Sokolov and N. M. Vagurtova, Zh. Obshch. Khim., 1962, 32, 325-326.
 - P. N. James and H. R. Snyder, Org. Synth., 1959, 39, 30-33.

204.

205.

115

207.	H. Heaney, G. Papageorgiou and R. F. Wilkins, Tetrahedron,	
	1997, 53 , 13361-13372.	

- 208. K. Piers, C. Meimaroglou, R. V. Jardine and R. K. Brown, *Can. J. Chem.*, 1963, **41**, 2399-2401.
- 5 209. D. W. Ockenden and K. Schofield, *Nature*, 1951, **168**, 603-603.
- 210. G. Bastian, R. Royer and R. Cavier, *Eur. J. Med. Chem.*, 1983, 8 18, 365-368
- 211. R. Stoermer and O. Richter, *Ber. Dtsch. Chem. Ges.*, 1897, **30**, 2094-2096.
- 212. A. Krutosikova, J. Kovac, M. Dandarova and M. Bobalova, *Collect. Czech. Chem. Commun.*, 1982, **47**, 3288-3296.
- 213. E. Baciocchi, S. Clementi and G. V. Sebastiani, J. Chem. Soc., Perkin Trans. 2, 1976, 266-271.
- 15 214. T. Sugiyama, Bull. Chem. Soc. Jpn., 1982, 55, 1504-1508.
- 215. G. Van Zyl, C. J. Bredeweg, R. H. Rynbrandt and D. C. Neckers, *Can. J. Chem.*, 1966, **44**, 2283-2289.
- 216. U. Berens, U. Englert, S. Geyser, J. Runsink and A. Salzer, *Eur. J. Org. Chem.*, 2006, **2006**, 2100-2109.
- 20 217. A. Heynderickx, A. Samat and R. Guglielmetti, *Synthesis*, 2002, 2002, 213-216.
- 218. K. J. Armstrong, M. Martin-Smith, N. M. D. Brown, G. C. Brophy and S. Sternhell, *J. Chem. Soc. C*, 1969, 1766-1775.
- T. Okuyama, Y. Tani, K. Miyake and Y. Yokoyama, J. Org.
 Chem., 2007, **72**, 1634-1638.
- 220. O. Fuentes and W. W. Paudler, J. Heterocycl. Chem., 1975, **12**, 379-383.
- 221. K. Sawada, S. Okada, A. Kuroda, S. Watanabe, Y. Sawada and H. Tanaka, *Chem. Pharm. Bull.*, 2001, **49**, 799-813.
- 30 222. E. T. Borrows, D. O. Holland and J. Kenyon, *J. Chem. Soc.*, 1946, 1077-1083.
- 223. J. A. Joule and K. Mills, *Heterocyclic Chemistry*, Chichester, UK, 2010.
- 224. J. P. Paolini and R. K. Robins, J. Org. Chem., 1965, **30**, 4085-35 4090.
- 225. S. Chayer, M. Schmitt, V. Collot and J.-J. Bourguignon, *Tetrahedron Lett.*, 1998, **39**, 9685-9688.
- P. V. Khodakovskiy, D. M. Volochnyuk, D. M. Panov, I. I. Pervak, E. V. Zarudnitskii, O. V. Shishkin, A. A. Yurchenko,
 A. Shivanyuk and A. A. Tolmachev, *Synthesis*, 2008, 948-956.
- 227. E. E. Glover and L. W. Peck, J. Chem. Soc., Perkin Trans. 1, 1980, 959-962.
- 228. K. Tanji, T. Sasahara, J. Suzuki and T. Higashino, *Heterocycles*, 1993, **35**, 915-924.
- 45 229. Y.-L. Yang, Y.-H. Lee, C.-J. Chang, A.-J. Lu, W.-C. Hsu, L. Wang, M.-K. Leung and C.-A. Dai, *J. Polym. Sci., Part A: Polym. Chem.*, 2010, **48**, 1607-1616.
- 230. N. Berton, I. Fabre-Francke, D. Bourrat, F. Chandezon and S. Sadki, *J. Phys. Chem. B*, 2009, **113**, 14087-14093.
- ⁵⁰ 231. Z. Zhao, X. Xu, X. Chen, X. Wang, P. Lu, G. Yu and Y. Liu, *Tetrahedron*, 2008, **64**, 2658-2668.
- 232. X. J. Feng, P. L. Wu, F. Bolze, H. W. C. Leung, K. F. Li, N. 125 270.
 K. Mak, D. W. J. Kwong, J.-F. Nicoud, K. W. Cheah and M. S. Wong, Org. Lett., 2010, 12, 2194-2197. 271.
- 55 233. R. Kaul, S. Deechongkit and J. W. Kelly, J. Am. Chem. Soc., 2002, **124**, 11900-11907.
- 234. W. G. Skene, V. Berl, H. Risler, R. Khoury and J.-M. Lehn, 130 273. *Org. Biomol. Chem.*, 2006, **4**, 3652-3663.
- 235. M. J. S. Dewar and E. W. T. Warford, *J. Chem. Soc.*, 1956, 3581-3585.
- 236. R. Taylor, *Tetrahedron Lett.*, 1972, **13**, 1755-1757.
- 237. R. G. Coombes and L. W. Russell, J. Chem. Soc. B, 1971, 135 276. 2443-2447.
- 238. P. H. Gore, *Chem. Rev.*, 1955, **55**, 229-281.
- 65 239. P. B. D. De la Mare, Acc. Chem. Res., 1974, 7, 361-368.
- 240. G. M. Badger, J. W. Cook and A. R. M. Gibb, *J. Chem. Soc.*, 278. 1951, 3456-3459. 140
 241. J. M. Wallis and J. K. Kochi, *J. Am. Chem. Soc.*, 1988, 110, 279.
- 241. J. M. Wallis and J. K. Kochi, J. Am. Chem. Soc., 1988, **110**, 8207-8223.
- 70 242. M. Dewar and R. Jones, J. Am. Chem. Soc., 1968, **90**, 2137-2144.
- 243. P. G. E. Alcorn and P. R. Wells, *Aust. J. Chem.*, 1965, **18**, 145 281. 1391-1396.

- 244. L. H. Klemm, J. W. Sprague and E. Y. K. Mak, J. Org. Chem., 1957, 22, 161-166.
- 245. E. R. Ward, C. D. Johnson and L. A. Day, J. Chem. Soc., 1959, 487-493.
- J. Nanclares, J. Gil, B. Rojano, J. Saez, B. Schneider and F. Otalvaro, *Tetrahedron Lett.*, 2008, 49, 3844-3847.
- 80 247. K. S. K. Reddy, N. Narender, C. N. Rohitha and S. J. Kulkarni, *Synth. Commun.*, 2008, **38**, 3894-3902.
 - 248. E. R. Ward and J. G. Hawkins, J. Chem. Soc., 1954, 2975.
 - 249. A. Albert and J. N. Phillips, J. Chem. Soc., 1956, 1294-1304.
 - D. E. Pearson, W. W. Hargrove, J. K. T. Chow and B. R. Suthers, J. Org. Chem., 1961, 26, 789-792.
 - G. A. Olah, J. A. Olah and N. A. Overchuk, J. Org. Chem., 1965, 30, 3373-3376.
 - 252. E. Ochiai, J. Org. Chem., 1953, 18, 534-551.

75

85

90

100

110

272.

274.

275.

277.

280.

- V. Cañibano, J. F. Rodríguez, M. Santos, M. A. Sanz-Tejedor, M. C. Carreño, G. González and J. L. García-Ruano, *Synthesis*, 2001, 2001, 2175-2179.
- 254. P. J. Brignell, A. R. Katritzky and H. O. Tarhan, *J. Chem. Soc. B*, 1968, 1477-1484.
- 255. A. R. Katritzky and C. D. Johnson, Angew. Chem., Int. Ed. Engl., 1967, 6, 608-615.
- T. J. Kress, L. L. Moore and S. M. Costantino, J. Org. Chem., 1976, 41, 93-96.
- 257. H. H. Jaffé, J. Am. Chem. Soc., 1955, 77, 4445-4448.
- M. v. Ammers, H. J. d. Hertog and B. Haase, *Tetrahedron*, 1962. 18, 227-232.
- B. Bobranski, L. Kochanska and A. Kowalewska, *Ber. Dtsch. Chem. Ges. B*, 1938, **71B**, 2385-2388.
- A. R. Katrizky and W. Q. Fan, *Heterocycles*, 1992, 34, 2179-2229.
- 105 261. A. R. Katritzky, B. Terem, E. V. Scriven, S. Clementi and H. O. Tarhan, J. Chem. Soc., Perkin Trans. 2, 1975, 1600-1609.
 - 262. C. H. Lee and Y. H. Kim, *Tetrahedron Lett.*, 1991, **32**, 2401-2404.
 - L. Glavas-Obrovac, I. Karner, M. Pavlak, M. Radacic, J. Kasnar-Samprec and B. Zinic, *Nucleosides, Nucleotides Nucleic Acids*, 2005, 24, 557-569.
 - 264. Z. Janeba, J. Balzarini, G. Andrei, R. Snoeck, E. De Clercq and M. J. Robins, *Can. J. Chem.*, 2006, **84**, 580-586.
 - 265. G. Sun, C. J. Fecko, R. B. Nicewonger, W. W. Webb and T. P. Begley, Org. Lett., 2006, 8, 681-683.
 - M. Jereb, M. Zupan and S. Stavber, *Chem. Commun.*, 2004, 2614-2615.
 - L. Paolini, E. Petricci, F. Corelli and M. Botta, *Synthesis*, 2003, 1039-1042.
- 120 268. P. B. D. De la Mare, M. Kiamuddin and J. H. Ridd, J. Chem. Soc., 1960, 561-565.
 - A. I. Tochilkin, I. R. Kovel'man, E. P. Prokof'ev, I. N. Gracheva and M. V. Levinskii, *Chem. Heterocycl. Compd.*, 1988, 24, 892-897.
 - M. Gordon and D. E. Pearson, J. Org. Chem., 1964, 29, 329-332.
 - W. D. Brown and A. H. Gouliaev, Synthesis, 2002, 2002, 0083,0086.
 - M. K. Din and A. K. Choudhury, Chem. Ind., 1963, 1840.
 - . M. Kiamuddin and M. E. Haque, *Chem. Ind.*, 1964, 1753-1754.
 - M. W. Austin and J. H. Ridd, J. Chem. Soc., 1963, 4204-4210.
 - D. H. G. Crout, J. R. Penton and K. Schofield, *J. Chem. Soc. B*, 1971, 1254-1256.
 - M. J. S. Dewar and P. M. Maitlis, J. Chem. Soc., 1957, 2521-2528.
 - R. D. Chambers, D. Holling, G. Sandford, A. S. Batsanov and J. A. K. Howard, *J. Fluorine Chem.*, 2004, **125**, 661-671.
 - B. R. Whyman, D. B. Copley and W. E. Hatfield, J. Am. Chem. Soc., 1967, 89, 3135-3141.
 - A. Yokoyama, T. Ohwada, S. Saito and K. Shudo, *Chem. Pharm. Bull.*, 1997, **45**, 279-283.
 - R. B. Moodie, K. Schofield and M. J. Williamson, *Chem. Ind.*, 1964, 1577.
 - B. Arnestad, J. M. Bakke, I. Hegbom and E. Ranes, *Acta Chem. Scand.*, 1996, **50**, 556-557.

- 282. A. R. Katritzky and M. Kingsland, J. Chem. Soc. B, 1968, 862-864.
- R. B. Moodie, E. A. Qureshi, K. Schofield and J. T. Gleghorn, 283. J. Chem. Soc. B, 1968, 312-315.
- 5 284. W. D. Brown and A. H. Gouliaev, Org. Synth., 2005, 81, 98-104
- 285. S.-Y. Sit, K. Xie, S. Jacutin-Porte, M. T. Taber, A. G. Gulwadi, C. D. Korpinen, K. D. Burris, T. F. Molski, E. Ryan, C. Xu, H. Wong, J. Zhu, S. Krishnananthan, Q. Gao, T. Verdoorn and G. Johnson, J. Med. Chem., 2002, 45, 3660-10 3668.
- J. H. Nelson, R. G. Garvey and R. O. Ragsdale, J. Heterocycl. 286. Chem., 1967, 4, 591-597.
- 287. M. Hamana and H. Saito, Heterocycles, 1977, 8, 403-409.
- E. Ochiai and M. Ikehara, J. Pharm. Soc. Japan, 1953, 73, 15 288. 666-669.
- 289 K. Schofield and T. Swain, J. Chem. Soc., 1949, 1367-1371.
- 290. O. S. Wolfbeis and A. Knierzinger, Z. Naturforsch., A, 1979, 34A, 510-515.
- 20 291. G. P. Ellis and I. L. Thomas, J. Chem. Soc., Perkin Trans. 1, 1973, 2781-2785.
- 292. P. F. Wiley, J. Am. Chem. Soc., 1952, 74, 4326-4328.
- A. Adams and D. H. Hey, J. Chem. Soc., 1949, 255-258. 293.
- 294. K. Schofield and T. Swain, Nature, 1948, 161, 690-691.
- 25 295 R. B. Moodie, J. R. Penton and K. Schofield, J. Chem. Soc. B, 1971, 1493-1498.
- 296. A. Clayton, J. Chem. Soc., Trans., 1910, 97, 2102-2112.
- P. P. Joshi, T. R. Ingle and B. V. Bhide, J. Indian Chem. Soc., 297. 1959, 36, 59-63.
- 30 298. H. Hosoya and S. Nagakura, Bull. Chem. Soc. Jpn., 1966, 39, 1414-1418.
- 299. M. K. Yusupov and A. S. Sadykov, Khim. Prir. Soedin., 1978, 3-26.
- 300. P. L. Pauson, Chem. Rev., 1955, 55, 9-136.
- 35 301. D. Lloyd, R. H. McDougall and D. R. Marshall, J. Chem. Soc. C. 1966, 780-782.
- 302. D. Lloyd and D. R. Marshall, J. Chem. Soc., 1958, 118-120.
- R. P. Bell and D. R. Marshall, J. Chem. Soc., 1964, 2195-303. 2201.
- 40 304. G. Ferguson, D. Lloyd, H. McNab, D. R. Marshall, B. L. Ruhl and T. Wieckowski, J. Chem. Soc., Perkin Trans. 2, 1991, 1563-1568.
- 305. D. Lloyd and H. McNab, Angew. Chem., Int. Ed. Engl., 1976, 15. 459-468.
- 45 306. L. Altschuler and E. Berliner, J. Am. Chem. Soc., 1966, 88, 5837-5845.
- 307. T. Okamoto, K. Shudo, N. Miyata, Y. Kitahara and S. Nagata, Chem. Pharm. Bull., 1978, 26, 2014-2026.
- 308 G. M. Badger and R. I. Reed, Nature, 1948, 161, 238.
- M. S. Newman and A. I. Kosak, J. Org. Chem., 1949, 14, 375-50 309. 378.
- 310. S. K. Balani, P. J. Van Bladeren, E. S. Cassidy, D. R. Boyd and D. M. Jerina, J. Org. Chem., 1987, 52, 137-144.
- 311. F. Radner, Acta Chem. Scand., Ser. B, 1983, B37, 65-67.
- W. Carruthers, J. Chem. Soc., 1953, 3486-3489. 55 312.
- 313. E. Clar, Polycyclic hydrocarbons, Academic, New York, 1964.
- 314. J. W. Cook and R. Schoental, J. Chem. Soc., 1948, 170-173.
- 315. G. Dallinga, A. A. V. Stuart, P. J. Smit and E. L. Mackor, Z. Elektrochem. Angew. Phys. Chem., 1957, 61, 1019-1027.
- 316. C. C. Barker, R. G. Emmerson and J. D. Periam, J. Chem. Soc., 1955, 4482-4485.
- 317. K. Hirano, S. Urban, C. Wang and F. Glorius, Org. Lett., 2009. 11. 1019-1022.
- 65 318. P. B. D. de la Mare and J. H. Ridd, Aromatic substitution, New York, 1959.
- 319. C. E. Braun, C. D. Cook, C. Merritt, Jr. and J. E. Rousseau, Org. Synth., 1951, 31, 77-79.
- 320. J. W. Cook and R. Schoental, Nature, 1948, 161, 237-238.
- 70 321. R. M. Moriarty, P. Dansette and D. M. Jerina, Tetrahedron Lett., 1975, 2557-2560.
- 322. H. C. Brown and L. M. Stock, Journal of the American Chemical Society, 1962, 84, 3298-3306.

- 323. A. D. Mesure and J. G. Tillett, Journal of the Chemical Society B: Physical Organic, 1966, 0, 669-670.
- 324. H. Mayr, T. Bug, M. F. Gotta, N. Hering, B. Irrgang, B. Janker, B. Kempf, R. Loos, A. R. Ofial, G. Remennikov and H. Schimmel, J. Am. Chem. Soc., 2001, 123, 9500-9512.
- 325. M. Kedziorek, P. Mayer and H. Mayr, Eur. J. Org. Chem., 2009, 1202-1206.
- 326. H. Mayr, B. Kempf and A. R. Ofial, Acc. Chem. Res., 2003, 36, 66-77.
- 327. S. Lakhdar, M. Westermaier, F. Terrier, R. Goumont, T. Boubaker, A. R. Ofial and H. Mayr, J. Org. Chem., 2006, 71, 9088-9095
- 328. B. Kempf, N. Hampel, A. R. Ofial and H. Mayr, Chem. Eur. J., 2003, 9, 2209-2218.

- 85

90

80