Supporting Information

Ruthenium-Catalyzed *Ortho* C-H Bond Alkylation of Aromatic Amides with α,β-Unsaturated Ketones via a Bidentate-Chelation Assistance

Guy Rouquet and Naoto Chatani*

Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan

chatani@chem.eng.osaka-u.ac.jp

Contents

I.	General Information	S2
II.	Materials	S2
III.	Optimization Studies	S3-S6
IV.	Synthesis of Starting Amides	S7-S8
V.	Spectroscopic Data of Starting Amides	S8-S15
VI.	Synthesis of Starting α,β-Unsaturated Ketones	S15-S16
VII.	Spectroscopic Data of α,β-Unsaturated Ketones	
VIII.	General Procedure for the Ortho C-H Bond Directed Alkylation	
IX.	Spectroscopic Data of Alkylated Products	
X.	Removal of the 8-Aminoquinoline Directing Group	S58-S65
	a) Formation of aldehydes 10	
	b) Spectroscopic Data of Aldehydes 10	\$59-\$62
	c) Formation of carboxylic acid 12ja	S63-S64
XI.	Deuterium Labeling Experiments	S65-S81
XII.	Competition Experiments	S82
XIII.	Copies of ¹ H and ¹³ C NMR Spectra	S83

I. General Information

¹H NMR and ¹³C NMR spectra were recorded on a JEOL ECS-400 spectrometer in CDCl₃ or DMSO- d_6 with tetramethylsilane as the internal standard. Data are reported as follows: chemical shift in ppm, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, brs = broad singlet, td = triplet of doublets and m = multiplet), coupling constant (Hz), and integration. Infrared spectra (IR) were obtained using a Jasco FT/IR-4200 spectrometer; absorptions are reported in reciprocal centimeters with the following relative intensities: s (strong), m (medium), or w (weak). Mass spectra were obtained using Shimadzu GCMS-QP 2014 and Shimadzu GCMS-QP 5000 instruments instrument with ionization voltages of 70 eV. High resolution mass spectra (HRMS) were obtained on a JEOL JMS-DX303 instrument. Analytical gas chromatography (GC) was carried out on Shimadzu GC-14B, Shimadzu GC-2014 and Shimadzu GC-8A gas chromatographs, equipped with a flame ionization detector. Melting points were determined using a Yamato melting point apparatus. Column chromatography was performed with SiO₂ (Silicycle SiliaFlash F60 (230-400 mesh)). Some compounds were purified by LC-908 HPLC (GPC).

II. Materials

[RuCl₂(p-cymene)]₂, RuCl₂(PPh₃)₃, 3-Buten-2-one (2a), 3-pent-2-one (2e), vinyl magnesium bromide, methyl lithium, tributyl(vinyl)tin, tetrakis(triphenylphosphine)palladium, tetrachloroethane,¹ Bis(cyclopentadienyl)zirconium(IV) chloride hydride (Schwartz's reagent), methyl iodide and iodine were purchased from Sigma-Aldrich. NaOAc, and PPh₃ were purchased from Wako Pure Chemicals. 8-Aminoquinoline, o-toluoyl chloride, 2,5dimethylbenzoic acid, 3-(trifluoromethoxy)benzoic acid, 2-(trifluoromethyl)benzoyl chloride, 2,5-difluorobenzoyl chloride, 5-bromo-2-methylbenzoic acid, 2-methoxybenzoyl chloride, 3fluorobenzoic acid, 3-chlorobenzoyl chloride, 3-iodobenzoic acid, benzoyl chloride, cyclohexanecarboxaldehyde, 4-methoxybenzoyl chloride, 2-furoyl chloride. Methvl terephthalaldehydate, 4-(trifluoromethyl)benzaldehyde, 2-(methylthio)aniline, 4fluorobenzovl chloride, 2-naphthovl chloride, 1-octen-3one (2b), and cinnamaldehyde were purchased from Tokyo Kasei Kogyo Co., Ltd. These reagents were used as received. Triethvlamine² and sodium hydride (60 % oil suspension) were purchased from Nacalai Tesque Inc. Dess-Martin Periodinane was prepared according to a reported procedure.³ Sodium pivalate was prepared by stirring pivalic acid with 1 equivalent of sodium hydroxide in refluxing methanol for 3 h, the resulting solid was then washed with Et₂O/MeOH (99/1) and dried under vacuum. Toluene, THF and Et2O were dried on a Glass Contour solvent dispensing system (Nikko Hansen & Co., Ltd.).

¹ Distilled from CaH₂

² Distilled from KOH

³a) M. Frigerio, M. Santagostino, S. Sputore, J. Org. Chem. 1999, 64, 4537; b) R. K. Boeckman, Jr., P. Shao, J.

J. Mullins, Org. Synth. 2004, 10, 696.

III.Optimization Studies

Formation of 3aa: conditions screening

Catalyst ^[a]	Additive [mol %]	3aa [%]	4aa [%]	1a [%] ^[b]
RhCl(PPh ₃) ₃	-	0	0	90
ReBr(CO) ₅	-	0	0	90
[IrCl ₂ (Cp*)] ₂	-	0	0	94
RuH ₂ (CO)(PPh ₃) ₃	-	0	0	98
RuH ₂ (PPh ₃) ₄	-	0	0	95
Ru ₃ (CO) ₁₂	-	6	6	68
$[RuCl_2(Cp^*)]_2$	-	0	0	89
[RuCl ₂ (p-cymene)] ₂	-	10	0	84
[RuCl ₂ (p-cymene)] ₂	NaHCO ₂ [25]	12	0	78
[RuCl ₂ (p-cymene)] ₂	NaHCO ₂ [25]/PPh ₃ [30]	50	0	43
[RuCl ₂ (p-cymene)] ₂	NaOAc [25]/PPh ₃ [30]	90	0	0
[RuCl ₂ (p-cymene)] ₂	NaOAc [25]	91	0	0
RuCl ₂ (PPh ₃) ₃	NaOAc [25]	94	0	0
RuCl ₂ (PPh ₃) ₃	NaOAc [200]	93	0	0

[a] 10 mol % were used, but 5 mol % were used in the case of [RuCl₂(p-cymene)]₂ [b] recovered **1a**.

[RuCl₂(p-cymene)]₂ vs RuCl₂(PPh₃)₃

Entry	R	Catalyst	t [h]	Base [25 mol %]	3 [%]	6 [%]	Recovered 1 [%]
1 ^[a,e]	2-F	RuCl ₂ (PPh ₃) ₃	4	NaOAc	60	-	25
2 ^[b,e]	2-F	[RuCl ₂ (p-cymene)] ₂	4	NaOAc	58	-	25
3[c,e]	2-F	[RuCl ₂ (p-cymene)] ₂	4	NaOAc	62	-	21
4[a,e]	2-OMe	RuCl ₂ (PPh ₃) ₃	4	NaOAc	36	-	61
5[b,e]	2-OMe	[RuCl ₂ (p-cymene)] ₂	4	NaOAc	63	-	23
6 ^[c,e]	2-OMe	[RuCl ₂ (p-cymene)] ₂	4	NaOAc	38	-	55
7[a]	3-Me	RuCl ₂ (PPh ₃) ₃	6	NaOAc	77	17	0
8[b]	3-Me	[RuCl ₂ (p-cymene)] ₂	6	NaOAc	10	0	78
9[c]	3-Me	[RuCl ₂ (p-cymene)] ₂	6	NaOAc	58	22	17
10 ^[a]	3-Br	RuCl ₂ (PPh ₃) ₃	6	NaOPiv	65	24	0
11 ^[c]	3-Br	[RuCl ₂ (p-cymene)] ₂	6	NaOPiv	48	19	11
12 ^[a]	3-NMe ₂	RuCl ₂ (PPh ₃) ₃	6	NaOAc	61	0	22
13 ^[b]	3-NMe ₂	[RuCl ₂ (p-cymene)] ₂	6	NaOAc	19	0	66
14 ^[c]	3-NMe ₂	[RuCl ₂ (p-cymene)] ₂	6	NaOAc	49	0	39
15 ^[a,d]	4-Me	RuCl ₂ (PPh ₃) ₃	6	NaOAc	0	98	0
16 ^[b,d]	4-Me	$[RuCl_2(p-cymene)]_2$	6	NaOAc	0	10	80
17 ^[c,d]	4-Me	[RuCl ₂ (p-cymene)] ₂	6	NaOAc	0	93	4

 $\label{eq:model} \mbox{[a] 1 (0.5 mmol), MVK (1 mmol), RuCl_2(PPh_3)_3 (10 mol \%), base (25 mol \%), toluene (1 mL), 100 \ ^\circ C.$

[b] 1 (0.5 mmol), MVK (1 mmol), [RuCl₂(p-cymene)]₂ (5 mol %), base (25 mol %), toluene (1 mL), 100 ° C.

[c] 1 (0.5 mmol), MVK (1 mmol), [RuCl₂(p-cymene)]₂ (5 mol %), PPh₃ (30 mol %), base (25 mol %), toluene (1 mL), 100 ° C.

[d] MVK (1.5 mmol).

[e] 24 h reaction time or 140 °C reaction temperature didn't improve yields.

Catalyst loading with RuCl₂(PPh₃)₃

Cata [mol %]	t [h]	Yield 3aa [%]	Recovered 1a [%]
10	4	94	0
5	4	61	31
5	15	90	trace

Base screening with RuCl₂(PPh₃)₃

Solvent screening with RuCl₂(PPh₃)₃

Temperature screening with RuCl₂(PPh₃)₃

T [°C]	t [h]	Yield 3aa [%]	Recovered 1a [%]
100	3	85	12
100	4	94	0
120	0.5	90	Trace
120	1	90	0
80	4	12	80
80	24	97	0
60	24	8	86

Variation of MVK equivalents with RuCl₂(PPh₃)₃

MVK [equiv.]	t [h]	Yield 3aa [%]	Recovered 1a [%]
1.1	4	58	34
1.1	15	83	9
2	3	85	12
2	4	94	0
6	4	95	0
6	0.5	91	0

IV. Synthesis of Starting Amides

All amides bearing an 8-aminoquinoline moiety were synthesized by the reaction of 8aminoquinoline with the corresponding acyl chloride. Amides 1a, I, F, 1f, 1h, 1i, 1l, 1m, 1o, 1q, 7d, 7e, 7f⁴, amides 1j, 1k, 7h, 7g⁵, amides 1d and 1g⁶ were already described.

General Procedure 1 for the Preparation of Starting Amides (GP1)⁴

To an oven-dried 100 mL three-necked flask, the amine (22 mmol, 1.1 equiv.), Et₃N (4.1 mL, 30 mmol, 1.5 equiv.) and DCM (40 mL) were added. The acid chloride (20 mmol, 1 equiv.) was slowly added to this solution at 0 °C and the mixture was then warmed to room temperature. After stirring overnight, the reaction system was quenched with sat. aq. NaHCO₃ (30 mL) and the organic layer was separated. The aqueous layer was extracted with DCM (2 x 20 mL). The combined organic layers were washed with 1 M HCl aq. (20 mL) and brine (30 mL), dried over MgSO₄, filtered and evaporated *in vacuo*. The obtained crude amide was purified by column chromatography on silica gel (hexane/EtOAc) to afford the desired amide. If necessary, an additional purification by recrystallisation (hexane/EtOAc) may be possible.

General Procedure 2 for the Preparation of Starting Amides (GP2)⁴

To an oven-dried 100 mL three-necked flask, the benzoic acid (20 mmol), DMF (5 drops) and DCM (40 mL) were added under a N_2 atmosphere. Oxalyl chloride (2 mL, 24 mmol, 1.2 equiv.) was added dropwise at 0 °C resulting in vigorous bubbling. The mixture was stirred for 5 h at room temperature, and the solvent was then removed *in vacuo*. The resulting acid chloride was used immediately without further purification.

To another oven-dried 100 mL three-necked flask, 8-aminoquinoline (3.75 g, 26 mmol, 1.3 equiv.), Et₃N (5.6 mL, 40 mmol, 2 equiv.) and DCM (40 mL) were added. A solution of the acid chloride in DCM (20 mL) was added dropwise to the solution at 0 °C, and the solution was then warmed to room temperature. After stirring overnight, the reaction system was quenched with sat. aq. NaHCO₃ (30 mL) and the organic layer was separated. The aqueous layer was extracted with DCM (2 x 20 mL). The combined organic layers were washed with 1 M HCl aq. (40 mL) and brine (30 mL), dried over MgSO₄, filtered and evaporated *in vacuo*.

⁴ Ano, Y.; Tobisu, M.; Chatani, N. Org. Lett. 2012, 14, 354.

⁵ Y. Aihara, N. Chatani, *Chem. Sci.* **2013**, Advance Article.

⁶ H.-P. Bi, Z.-H. Guan and Y.-M. Liang, Org. Lett. 2009, 11, 5726

The obtained crude amide was purified by column chromatography on silica gel (hexane/EtOAc) to afford the desired amide. If necessary, an additional purification by recrystallisation (hexane/EtOAc) may be possible.

V. Spectroscopic Data for Starting Amides

2-methyl-N-(naphthalen-1-yl)benzamide (G)

Synthesized according to **GP1** from o-toluoyl chloride (20 mmol, 2.60 mL), 1naphthalenamine (22 mmol, 2.82 mL). Purification by column chromatography on silica gel (hexane/EtOAc = 85/15) followed by recrystallisation from hexane/EtOAc (80/20) afforded 4.17 g of **G** (80% yield).

Rf 0.2 (hexane/EtOAc = 90/10). White solid. **MP** = $190 \degree$ C.

¹**H** NMR (CDCl₃, 399.78 MHz) δ 2.58 (s, 3H), 7.32 (d, J = 6.4 Hz, 1H), 7.41 (t, J = 6.8 Hz, 1H), 7.51-7.55 (m, 3H), 7.63 (d, J = 5.2 Hz, 1H), 7.74 (d, J = 8Hz, 1H), 7.88-7.91 (m, 3H), 8.12 (d, J = 5.6 Hz, 1H).

¹³C NMR (CDCl₃, 100.53 MHz) δ 19.96, 120.47, 120.73, 125.75, 125.96 (2 overlapping peaks), 126.02, 126.38, 126.71, 127.00, 128.83, 130.35, 131.35, 132.24, 134.09, 136.33, 136.63, 168.56.

IR (neat) 3261 w, 2953 w, 1650 s, 1528 m, 1445 m, 1434 m, 1334 m, 1248 m, 1019 w, 839 s. **MS** m/z (relative intensity, %) 261 (M⁺, 34), 119 (100), 91 (33). **HRMS** Calcd for C₁₈H₁₅NO: 261.1154; Found: 261.1156.

2-methyl-N-(2-(methylthio)phenyl)benzamide (H)

Synthesized according to **GP1** from o-toluoyl chloride (20 mmol, 2.60 mL), 2-(methylthio)aniline (22 mmol, 2.75 mL). Purification by column chromatography on silica gel (hexane/EtOAc = 90/10) followed by recrystallisation from hexane/EtOAc (90/10) afforded 4.62 g of **H** (90% yield).

Rf 0.37 (hexane/EtOAc = 90/10). White solid. **MP** = 65 °C. ¹**H NMR** (CDCl₃, 399.78 MHz) δ 2.38 (s, 3H), 2.57 (s, 3H), 7.12 (dt, *J* = 8, 1.6 Hz, 1H), 7.29 (t, *J* = 7.2 Hz, 1H), 7.35 (d, *J* = 8.4 Hz, 1H), 7.39 (dt, *J* = 8.4, 1.2 Hz, 1H), 7.52 (dd, *J* = 8, 1.6 Hz, 1H), 7.57 (d, *J* = 7.6 Hz, 1H), 8.51 (d, *J* = 7.6 Hz, 1H), 8.65 (brs, 1H). ¹³C NMR (CDCl₃, 100.53 MHz) δ 18.99, 20.10, 120.61, 124.60, 125.64, 126.01, 126.80, 128.85, 130.40, 131.41, 132.85, 136.20, 136.70, 138.39, 167.89.
IR (neat) 3338 w, 3059 w, 2923 w, 1677 m, 1577 m, 1505 s, 1428 s, 1303 m, 1242 w, 1038 w, 894 w, 840 w.
MS *m*/*z* (relative intensity, %) 257 (M⁺, 17), 210 (37), 119 (100), 91 (39), 76 (16).
HRMS Calcd for C₁₅H₁₅NOS: 257.0874; Found:257.0874.

N,2-dimethyl-N-(quinolin-8-yl)benzamide (J)

To an oven-dried 1 neck round bottom flask, 2-methyl-N-(quinolin-8-yl)benzamide (1a) (2.62 g, 10 mmol) was dissolved in THF (20 mL) under a nitrogen atmosphere. At 0 °C, NaH (420 mg, 10.5 mmol, 1.05 equiv, 60 % oil dispersion) was added portionwise to this solution, then, the mixture was stirred 1 h at room temperature. MeI (2.49 mL, 40 mmol) was then added at room temperature and the reaction mixture was stirred overnight at room temperature. The reaction system was quenched with sat. aq. NaHCO₃ (20 mL) and the organic layer was separated. The aqueous layer was then extracted with Et₂O (2 x 20 mL) and the combined organic layers were dried over MgSO₄, filtered and evaporated *in vacuo*. The crude amide was purified by column chromatography on silica gel (hexane/EtOAc = 50/50) to afford the desired amide **J** as a brown solid (1.98 g, 72% yield).

Rf 0.32 (hexane/EtOAc = 50/50). White solid. **MP** = 100 °C.

¹**H** NMR (CDCl₃, 399.78 MHz) δ 2.46 (brs, 3H), 3.61 (brs, 3H), 6.61 (brs, 1H), 6.90 (brs, 3H), 7.30 (brs, 1H), 7.38 (d, J = 4 Hz, 1H), 7.40 (d, J = 4.4 Hz, 1H), 7.61 (d, J = 4.4 Hz, 1H), 8.06 (d, J = 6.4 Hz, 1H), 8.96 (dd, J = 4, 1.2 Hz, 1H).

¹³C NMR (CDCl₃, 100.53 MHz) δ 19.65, 37.47, 121.58, 124.22, 125.97, 126.63, 127.75, 128.25, 128.52, 128.98, 129.97, 135.51, 136.06, 136.62, 141.54, 144.00, 150.35, 171.90.

IR (neat) 3050 w, 2926 w, 1642 s, 1493 m, 1362 m, 1071 m, 912 w, 833 m.

MS m/z (relative intensity, %) 276 (M⁺, 17), 275 (35), 248 (30), 158 (20), 157 (100), 129 (11), 119 (81), 91 (58), 65 (11).

HRMS Calcd for C₁₈H₁₆N₂O: 276.1263; Found:276.1250.

N-(quinolin-8-yl)biphenyl-2-carboxamide (1b)

Synthesized according to **GP2** from biphenyl-2-carboxylic acid (20 mmol, 3.96 g). Purification by column chromatography on silica gel (hexane/EtOAc = 80/20) afforded 4.67 g of **1b** (72% yield).

Rf 0.26 (hexane/EtOAc = 80/20). White solid. **Mp** = 123 °C.

1H NMR (CDCl₃, 399.78 MHz) δ 7.16 (t, J = 8.0 Hz, 1H), 7.28 (t, J = 8.0 Hz, 2H), 7.33 (dd, J = 8.0, 4.0 Hz, 1H), 7.43-7.58 (m, 7H), 7.91 (d, J = 8.0 Hz, 1H), 8.06 (dd, J = 8.0, 1.2 Hz, 1H), 8.52 (dd, J = 4.4, 1.2 Hz, 1H), 8.81 (dd, J = 8.0, 1.2 Hz, 1H), 9.79 (brs, 1H).

¹³C NMR (CDCl₃, 100.53 MHz) δ 116.07, 121.26, 121.39, 127.09, 127.47, 127.53, 128.24, 128.83, 129.04, 130.39, 130.56, 134.37, 135.83, 135.97, 138.20, 139.86, 140.11, 147.61, 167.68.

IR (KBr) 3316 m, 3058 w, 1662 s, 1594 w, 1521 s, 1482 m, 1465 m, 1423 m, 1380 m, 1324 m, 1267 m, 1126 w, 894 w, 833m, 779 m, 742 m, 680 m.

MS m/z (relative intensity, %) 325 (10), 324 (M+, 41), 182 (14), 181 (100), 153 (23), 152 (27).

HRMS Calcd for C₂₂H₁₆N₂O: 324.1263; Found: 324.1265.

N-(quinolin-8-yl)-2-(trifluoromethyl)benzamide (1c)

Synthesized according to **GP1** from 2-(trifluoromethyl)benzoyl chloride (20 mmol, 2.9 mL) and 8-aminoquinoline (21 mmol, 3.02 g). Purification by column chromatography on silica gel (hexane/EtOAc = 80/20) followed by a recrystallisation from hexane/EtOAc (80/20) afforded 5.75 g of **1c** (91% yield).

Rf 0.34 (hexane/EtOAc = 80/20). White solid. **Mp** = 115 °C.

¹**H** NMR (CDCl₃, 399.78 MHz) δ 7.45 (dd, J = 6.4, 4.4 Hz, 1H), 7.58-7.64 (m, 3H), 7.68 (t, J = 7.2 Hz, 1H), 7.76 (d, J = 8 Hz, 1H), 7.8 (d, J = 8 Hz, 1H), 8.18 (dd, J = 8.4, 2 Hz, 1H), 8.75 (dd, J = 4, 1.6 Hz, 1H), 8.93 (dd, J = 6.8, 2 Hz, 1H), 10.17 (brs, 1H).

¹³**C NMR** (CDCl₃, 100.53 MHz) δ 116.73, 121.64, 122.22, 123.56 (q, *J* = 273 Hz), 126.53 (q, *J* = 4.7 Hz), 127.19, 127.44 (q, *J* = 31 Hz), 127.81, 128.33, 130.05, 132.08, 134.18, 135.98, 136.25, 138.26, 148.23, 165.81.

IR (neat) 3342 w, 1683 m, 1522 s, 1481 m, 1424 m, 1387 m, 1312 s, 1167 m, 1123 m, 1108 m,1035 m, 771 s.

MS *m/z* (relative intensity, %) 316 (M⁺, 64), 173 (100), 171 (59), 145 (49).

HRMS Calcd for C₁₇H₁₁F₃N₂O: 316.0823; Found:316.0822.

2-fluoro-N-(quinolin-8-yl)benzamide (1e)

Synthesized according to **GP2** from 2-Fluorobenzoic acid (20 mmol, 2.80 g). Purification by column chromatography on silica gel (hexane/EtOAc = 80/20) afforded 3.62 g of 1e (68% yield).

 $\mathbf{R}_{\mathbf{f}} 0.23$ (hexane/EtOAc = 5/1). White solid. $\mathbf{M}\mathbf{p} = 130^{\circ}$ C.

¹**H NMR** (CDCl₃, 399.78 MHz) δ 7.22-7.28 (m, 1H), 7.31-7.36 (m, 1H), 7.45-7.61 (m, 4H), 8.16-8.24 (m, 1H), 8.86-8.89 (m, 1H), 8.98 (dd, J = 7.6, 1.6 Hz, 1H), 11.16 (d, J = 12.0 Hz, 1H).

¹³C NMR (CDCl₃, 100.53 MHz) δ 116.30 (d, J = 24.8 Hz), 117.21、 121.64, 121.98(d, J = 8.6 Hz), 122.03, 124.81 (d, J = 2.9 Hz), 127.34, 127.92, 131.96, 133.54 (d, J = 8.6 Hz), 134.75, 136.26, 138.69, 148.43, 160. 44 (d, J = 234.8 Hz), 161.60.

IR (KBr) 3328 m, 1664 s, 1608 w, 1535 s, 1482 s, 1427 m, 1388 m, 1326 m, 1284 m, 1205 w, 823 m, 757 m.

MS *m*/*z* (relative intensity, %) 2674 (15), 266 (M⁺, 86), 171 (33), 123 (100), 95 (22). **HRMS** Calcd for C₁₆H₁₁FN₂O: 266.0855; Found: 266.0857.

N-(quinolin-8-yl)-3-(trifluoromethoxy)benzamide (1n)

Synthesized according to **GP2** from 3-(trifluoromethoxy)benzoic acid (20 mmol, 4.12 g). Purification by column chromatography on silica gel (hexane/EtOAc = 80/20) followed by a recrystallisation from hexane/EtOAc (99/1) afforded 4.64 g of **1n** (70% yield).

Rf 0.28 (hexane/EtOAc = 90/10). White solid. Mp = 70 °C.

¹**H NMR** (CDCl₃, 399.78 MHz) δ 7.38-7.59 (m, 5H), 7.93 (s, 2H), 8.08 (d, *J* = 8.4 Hz, 1H), 8.78 (s, 1H), 8.85 (d, *J* = 7.2 Hz, 1H), 10.66 (brs, 1H).

¹³**C** NMR (CDCl₃, 100.53 MHz) δ 116.46, 120.20, 120.37 (q, J = 258 Hz), 121.63, 121.93, 123.92, 124.95, 127.16, 127.78, 130.12, 133.96, 136.21, 137.04, 138.45, 148.24, 149.51, 163.42.

IR (neat) 3354 w, 2956 w, 1677 m, 1582 m, 1530 m, 1432 m, 1331 m, 1252 s, 1218 s, 1168 m, 836 m.

MS m/z (relative intensity, %) 332 (M⁺, 87), 304 (13), 189 (100), 171 (61), 161 (23), 95 (35). **HRMS** Calcd for C₁₇H₁₁F₃N₂O₂: 332.0773; Found: 332.0773.

3-iodo-N-(quinolin-8-yl)benzamide (1p)

Synthesized according to **GP2** from 3-iodobenzoic acid (20 mmol, 4.96 g). Purification by column chromatography on silica gel (hexane/EtOAc = 90/10) followed by a recrystallisation from hexane/EtOAc (95/5) afforded 5.98 g of **1p** (80% yield).

Rf 0.25 (hexane/EtOAc = 90/10). White solid. **MP** = 110 °C

¹**H NMR** (CDCl₃, 399.78 MHz) δ 7.29 (t, *J* = 7.6 Hz, 1H), 7.49 (dd, *J* = 8.4, 4 Hz, 1H), 7.56 (dd, *J* = 8, 1.6 Hz, 1H), 7.60 (t, *J* = 8 Hz, 1H), 7.91 (dt, *J* = 8, 1.2 Hz, 1H), 8.02 (dt, *J* = 8, 1.2 Hz, 1H), 8.2 (dd, *J* = 8.4, 1.6 Hz, 1H), 7.60 (t, *J* = 2 Hz, 1H), 8.86 (dd, *J* = 4, 1.2 Hz, 1H), 8.89 (dd, *J* = 7.2, 1.6 Hz, 1H), 10.67 (brs, 1H).

¹³C NMR (CDCl₃, 100.53 MHz) δ 94.61, 116.63, 121.75, 121.98, 126.18, 127.35, 127.89, 130.34, 134.16, 136.38, 136.44, 136.99, 138.59, 140.66, 148.36, 163.65.

IR (neat) 3347 w, 1674 m, 1529 s, 1487 m, 1425 m, 1387 m, 1328 m, 1258 m, 824 m. **MS** m/z (relative intensity, %) 374 (M⁺, 100), 231 (74), 203 (24), 171 (38), 76 (16).

HRMS Calcd for C₁₆H₁₁IN₂O: 373.9916; Found: 373.9919.

3-chloro-N-(quinolin-8-yl)benzamide (1r)

Synthesized according to **GP1** from 3-chlorobenzoyl chloride (20 mmol, 2.56 mL) and 8aminoquinoline (21 mmol, 3.02 g). Purification by column chromatography on silica gel (hexane/EtOAc = 90/10) followed by a recrystallisation from hexane/EtOAc (90/10) afforded 4.96 g of **1r** (88% yield).

Rf 0.25 (hexane/EtOAc = 90/10). White solid. **MP** = $90 \degree$ C.

¹**H** NMR (CDCl₃, 399.78 MHz) δ 7.46 (dd, J = 8, 2.8 Hz, 1H), 7.47 (d, J = 8 Hz, 1H), 7.53 (dd, J = 8.4, 0.8 Hz, 1H), 7.57 (t, J = 8.4 Hz, 1H), 7.93 (d, J = 7.6 Hz, 1H), 8.04 (t, J = 1.6 Hz, 1H), 8.17 (dd, J = 8, 1.2 Hz, 1H), 8.84 (dd, J = 4, 2 Hz, 1H), 8.88 (dd, J = 7.2, 1.6 Hz, 1H) 10.68 (brs, 1H).

¹³C NMR (CDCl₃, 100.53 MHz) δ 116.65, 121.74, 121.98, 125.21, 127.37, 127.66, 127.92, 130.04, 131.83, 134.18, 134.97, 136.41, 136.85, 138.63, 148.35, 163.95.

IR (neat) 3346 w, 1672 m, 1525 s, 1485 m, 1425 m, 1387 m, 1327 s, 1258 m, 1128 m, 1066 m 824 m.

MS m/z (relative intensity, %) 282 (M⁺, 82), 254 (13), 171 (65), 141 (34), 139 (100), 111 (43).

HRMS Calcd for C₁₆H₁₁ClN₂O: 282.0560; Found: 282.0558.

3-fluoro-N-(quinolin-8-yl)benzamide (1s)

Synthesized according to **GP2** from 3-fluorobenzoic acid (20 mmol, 2.8 g). Purification by column chromatography on silica gel (hexane/EtOAc = 90/10) followed by a recrystallisation from hexane/EtOAc (80/20) afforded 4 g of **1s** (75% yield).

Rf 0.25 (hexane/EtOAc = 90/10). Yellow solid. MP = $110 \degree$ C.

¹**H** NMR (CDCl₃, 399.78 MHz) δ 7.29 (dd, J = 8.4, 2.8 Hz, 1H), 7.47-7.61 (m, 4H), 7.78 (dt, J = 9.6, 2 Hz, 1H), 7.85 (d, J = 7.6 Hz, 1H), 8.19 (dd, J = 8.4, 2 Hz, 1H), 8.85 (dd, J = 4, 1.2 Hz, 1H), 8.90 (dd, J = 7.6, 1.6 Hz, 1H) 10.72 (brs, 1H).

¹³**C** NMR (CDCl₃, 100.53 MHz) δ 114.67 (d, J = 23 Hz), 116.63, 118.83 (d, J = 21 Hz), 121.75, 121.96, 122.69 (d, J = 2.9 Hz), 127.40, 127.93, 130.43 (d, J = 7.6 Hz), 134.21, 136.42, 137.36 (d, J = 7.2 Hz), 138.64, 148.34, 162.83 (d, J = 234 Hz), 164.13.

IR (neat) 3349 w, 1676 m, 1587 m, 1524 s, 1479 m, 1424 m, 1386 m, 1327 m, 1268 m, 848 m, 824 m.

MS m/z (relative intensity, %) 266 (M⁺, 100), 238 (12), 171 (53), 123 (95), 95 (43). **HRMS** Calcd for C₁₉H₁₁FN₂O: 266.0855; Found: 266.0854.

2,5-dimethyl-N-(quinolin-8-yl)benzamide (7a)

Synthesized according to **GP2** from 2,5-dimethylbenzoic acid (20 mmol, 3 g). Purification by column chromatography on silica gel (hexane/EtOAc = 80/20) followed by a recrystallisation from hexane/EtOAc (80/20) afforded 4.6 g of **7a** (83% yield).

Rf 0.34 (hexane/EtOAc = 90/10). White solid. **MP** = $85 \degree$ C.

¹**H** NMR (CDCl₃, 399.78 MHz) δ 2.40 (s, 3H), 2.55 (s, 3H), 7.20 (s, 2H), 7.45 (dd, J = 8.4, 4.8 Hz, 1H), 7.49 (s, 1H), 7.54 (d, J = 8 Hz, 1H), 7.60 (t, J = 8.4 Hz, 1H), 8.17 (dd, J = 8.4, 0.8 Hz, 1H), 8.78 (dd, J = 4, 1.2 Hz, 1H), 8.95 (d, J = 7.6 Hz, 1H), 10.18 (brs, 1H).

¹³C NMR (CDCl₃, 100.53 MHz) δ 19.69, 20.91, 116.49, 121.61, 121.67, 127.40, 127.81, 127.96, 130.98, 131.21, 133.28, 134.71, 135.56, 136.34, 136.50, 138.54, 148.20, 168.38.

IR (neat) 3357 w, 2957 w, 2919 w, 1675 m, 1520 s, 1480 m, 1422 m, 1378 m, 1320, 822 m, 774 s.

MS m/z (relative intensity, %) 276 (M⁺, 32), 259 (21), 133 (100), 132 (29), 105 (33). **HRMS** Calcd for C₁₈H₁₆N₂O: 276.1263; Found: 276.1262.

5-bromo-2-methyl-N-(quinolin-8-yl)benzamide (7b)

Synthesized according to **GP2** from 5-bromo-2-methylbenzoic acid (20 mmol, 4.3 g). Purification by column chromatography on silica gel (hexane/EtOAc = 90/10) followed by a recrystallisation from hexane/EtOAc (90/10) afforded 5.5 g of **7b** (81% yield).

Rf 0.31 (hexane/EtOAc = 90/10). White solid. Mp = 130 °C.

¹**H** NMR (CDCl₃, 399.78 MHz) δ 2.53 (s, 3H), 7.18 (d, *J* = 8 Hz, 1H), 7.47 (dd, *J* = 8, 4 Hz, 1H), 7.51 (dd, *J* = 8.4, 2 Hz, 1H), 7.57 (d, *J* = 8.8 Hz, 1H), 7.60 (t, *J* = 8 Hz, 1H), 7.79 (d, *J* = 2 Hz, 1H), 8.19 (d, *J* = 8.4 Hz, 1H), 8.80 (d, *J* = 4 Hz, 1H), 8.90 (d, *J* = 6 Hz, 1H), 10.16 (brs, 1H).

¹³C NMR (CDCl₃, 100.53 MHz) δ 19.64, 116.62, 119.37, 121.69, 122.05, 127.28, 127.89, 129.97, 132.89, 133.11, 134.27, 135.39, 136.35, 138.34, 138.40, 148.30, 166.47.

IR (neat) 3345 w, 1672 m, 1519 s, 1477 m, 1421 m, 1386 m, 1325 m, 1108 w, 902 w.

MS m/z (relative intensity, %) 340 (M⁺, 57), 323 (54), 296 (29), 199 (100), 197 (99), 169 (42), 144 (71), 116 (23), 90 (50).

HRMS Calcd for C₁₇H₁₃BrN₂O: 340.0211; Found: 340.0214.

2,5-difluoro-N-(quinolin-8-yl)benzamide (7c)

Synthesized according to **GP1** from 2,5-difluorobenzoyl chloride (20 mmol, 2.47 mL), 8aminoquinoline (21 mmol, 3.02 g). Purification by column chromatography on silica gel (hexane/EtOAc = 90/10) followed by a recrystallisation from hexane/EtOAc (90/10) afforded 4.37 g of **7c** (77% yield).

Rf 0.31 (hexane/EtOAc = 90/10). Yellow solid. **Mp** = 177 °C.

¹**H** NMR (CDCl₃, 399.78 MHz) δ 7.20-7.23 (m, 2H), 7.47 (dd, J = 7.6, 3.6 Hz, 1 H), 7.55-7.61 (m, 2H), 7.89-7.93 (m, 1H), (d, J = 8.18 Hz, 1 H), 8.86 (d, J = 4 Hz, 1 H), 8.94 (dd, J = 6.8, 2.4 Hz, 1 H), 11.18 (d, J = 12.4 Hz, 1 H).

¹³**C** NMR (CDCl₃, 100.53 MHz) δ 117.30, 117.69 (dd, J = 27.8, 7.7 Hz), 118.08 (dd, J = 26, 2 Hz), 120.13 (dd, J = 25, 10 Hz), 121.67, 122.28, 123.35 (dd, J = 14.4, 7.6 Hz), 127.26, 127.88, 134.44, 136.22, 138.64, 148.48, 156.39 (d, J = 244.4 Hz), 158.83 (d, J = 244.4 Hz), 160.14.

IR (neat) 3337 w, 1671 m, 1535 m, 1482 m, 1326 m, 1264 m, 1220 m, 1166 m, 771 s.

MS *m/z* (relative intensity, %) 284 (M⁺, 100), 171 (79), 141 (99), 113 (33).

HRMS Calcd for C₁₆H₁₀F₂N₂O: 284.0761; Found: 284.0763.

1-methyl-N-(quinolin-8-yl)-1H-indole-3-carboxamide (7i)

Synthesized according to **GP2** from 1-methylindole-3-carboxylic acid (20 mmol, 3.5 g). Purification by column chromatography on silica gel (EtOAc) afforded 4.27 g of **7i** (71% yield).

 $\mathbf{R}_{\mathbf{f}} 0.77$ (EtOAc). White solid. $\mathbf{M}\mathbf{p} = 187 \text{ °C}$.

¹**H NMR** (CDCl₃, 399.78 MHz) δ 3.91 (s, 3H), 7.35-7.43 (m, 3H), 7.47-7.62 (m, 3H), 7.95 (s, 1H), 8.20 (dd, J = 8.0, 1.6 Hz, 1H), 8.48 (dd, J = 8.0, 1.6 Hz, 1H), 8.90 (dd, J = 4.4, 1.6 Hz, 1H), 8.96 (dd, J = 8.0, 0.8 Hz, 1H), 10.56 (brs, 1H).

¹³C NMR (CDCl₃, 100.53 MHz) δ 33.32, 110.00, 111.61, 116.12, 120.64, 120.71, 121.45, 121.74, 122.59, 125.42, 127.48, 127.94, 132.91, 135.23, 136.25, 137.31, 138.49, 148.05, 163.16.

IR (neat) 3382 w, 3357 w, 3112 w, 1646 m, 1523 s, 1484 s, 1421 m, 1376 m, 1324 m, 1222 m, 1149m, 1108 m, 873 w, 825 w, 738 m.

MS *m*/*z* (relative intensity, %) 301 (M⁺, 25), 159 (11), 158 (100).

HRMS Calcd for C₁₉H₁₅N₃O: 301.1215; Found: 301.1214.

VI. Synthesis of α,β-Unsaturated Ketones

Two different procedures to synthesize not commercially available α,β -unsaturated ketones are suggested. The first one is a palladium catalyzed coupling with tributyl(vinyl)tin, which afforded α,β -unsaturated ketones in one step. However, sometimes some functional groups are not tolerated or products are contaminated by tin residues after purification. An alternative is proposed with a two steps procedure consisting in the synthesis of the corresponding alcohol, followed by a Dess-Martin oxidation.

General Procedure 3. Palladium catalyzed coupling (GP3)

To an oven-dried 100 mL one-necked round bottom flask, acyl chloride (10 mmol) and tributyl(vinyl)tin (3.32 g, 10.5 mmol) were mixed in THF (20 mL) under N_2 atmosphere. Tetrakis(triphenylphosphine)palladium (11.55 g, 0.01 mmol) was then added and the solution

was refluxed for 1h. The reaction was cooled to room temperature and THF was evaporated *in vacuo* to afford a yellow crude mixture, immediately purified by column chromatography on silica gel (if necessary silica can be mixed with KF (500 mg KF/100 g silica) to remove tin residues).

General Procedure 4. Vinylation-Oxidation (GP4)

<u>Step 1:</u> The aldehyde (20 mmol) was dissolved in THF (50 mL) under a nitrogen atmosphere and the solution was cooled to -78°C, then vinylmagnesium bromide (22 mL, 22 mmol, 1 M in THF) was slowly added to this solution. The reaction mixture was allowed to reach room temperature and was stirred for 1 h. Reaction was then quenched with saturated NH_4Cl_{aq} (15 mL) and the organic layer was separated. Aqueous layer was extracted with diethyl ether (3x20 mL), combined organic layers were dried over MgSO₄ and solvent was evaporated *in vacuo*. Purification by column chromatography on silica gel afforded the expected alcohol.

<u>Step 2</u>: The alcohol was dissolved in DCM (100 mL) and Dess-Martin reagent (12.72 g, 30 mmol) was added at 0°C. The reaction was stirred at room temperature for 2 h and saturated Na₂S₂O_{3aq} (20 mL) and saturated NaHCO_{3aq} (20 mL) were then added at room temperature. The biphasic mixture was stirred for 1 h and then the organic layer was separated off. The aqueous layer was extracted with DCM (3x20mL), combined organic layers were dried over MgSO₄ and solvent was evaporated *in vacuo*. Column chromatography on silica gel afforded the expected α , β -unsaturated ketone.

VII. Spectroscopic Data for α,β-Unsaturated Ketones

1-cyclohexylprop-2-en-1-one (2c)

Synthesized according to **GP4** from cyclohexanecarboxaldehyde (20 mmol, 2.42 mL). Intermediate 1-cyclohexylprop-2-en-1-ol⁷ was obtained in a quantitative yield and was used without further purifications. Filtration through a short path of silica (hexane/EtOAc = 95/5) followed by kugelrohr distillation (100 °C, 5 mmHg) afforded 1.65 g of **2c** (60% yield) as colorless liquid.

⁷ Z. Shi, Q. Tong, W. W. Y. Leong, G. Zhong, *Chem. Eur. J.* **2012**, *18*, 9802.

¹**H NMR** (CDCl₃, 399.78 MHz) δ 1.17-1.40 (m, 5H), 1.66-1.83 (m, 5H), 2.56-2.63 (m, 1H), 5.73 (dd, J = 10.4, 1.2 Hz, 1H), 6.23 (dd, J = 17.2, 1.2 Hz, 1H), 6.41 (dd, J = 17.2, 10.4 Hz, 1H).

¹³C NMR (CDCl₃, 100.53 MHz) δ 25.63, 25.81, 28.47, 48.11, 127.75, 134.90, 203.54.
IR (neat) 2928 s, 2854 m, 1695 s, 1673 s, 1610 m, 1449 m, 1402 m, 1146 w, 975 m.
MS *m*/*z* (relative intensity, %) 138 (M⁺, 27), 110 (14), 109 (19), 97 (27), 96 (31), 95 (12), 83 (75), 82 (15), 81 (17), 70 (17), 67 (22), 55 (100), 41 (38).
HRMS Calcd for C₉H₁₄O: 138.1045; Found:138.1041.

(E)-4-phenylbut-3-en-2-one (2f)

Intermediate alcohol was synthesized according to a reported procedure⁸ from Cinnamaldehyde (20 mmol, 2.6 g). The expected alcohol was obtained in a quantitative yield and used without further purification according to **GP4**. Column chromatography on silica gel afforded 2.6 g of **2f** (89% yield from step1).

Rf 0.26 (hexane/EtOAc = 90/10). Yellow solid. **MP** = 35 °C. ¹**H NMR** (CDCl₃, 399.78 MHz) δ 2.38 (s, 3H), 6.72 (d, *J* = 16.4 Hz, 1H), 7.38-7.40 (m, 3H), 7.40-7.55 (m, 4H). ¹³**C NMR** (CDCl₃, 100.53 MHz) δ 27.46, 127.08, 128.22, 128.93, 130.48, 134.35, 143.38, 198.33. **IR** (neat) 1666 s, 1608 s, 1449 m, 1358 m, 1254 s, 1174 m, 974 s. **MS** *m*/*z* (relative intensity, %) 146 (M⁺, 74), 145 (58), 132 (10), 131 (100), 103 (72), 77 (31), 51 (16). **HRMS** Calcd for C₁₀H₁₀O: 146.0732; Found: 146.0737.

1-phenylprop-2-en-1-one (2g)

Synthesized according to **GP3** from benzoyl chloride (10 mmol, 1.16 mL). Purification by column chromatography on silica gel (hexane/EtOAc = 95/5) afforded 1.05 g of **2g** (80% yield).

Rf 0.38 (hexane/EtOAc = 95/5). Colorless liquid.

⁸ A. Shuji, H. Ryosuke, F. Noboru, K. Yasuyuki, E. Masahiro, Org. Lett. 2010, 12, 4900.

¹**H NMR** (CDCl₃, 399.78 MHz) δ 5.92 (dd, J = 10.8, 2 Hz, 1H), 6.43 (dd, J = 16.8, 1.2 Hz, 1H), 7.158 (dd, J = 16.8, 10.8 Hz, 1H), 7.45-7.49 (m, 2H), 7.57 (tt, J = 6.8, 1.2 Hz, 1H), 7.93-7.96 (m, 2H). ¹³**C NMR** (CDCl₃, 100.53 MHz) δ 128.55, 128.63, 130.15, 132.28, 132.93, 137.17, 190.96. **IR** (neat) 1671 s, 1608 m, 11448 m, 1403 s, 1230 s, 992 s. **MS** m/z (relative intensity, %) 132 (M⁺, 48), 105 (100), 77 (55), 51 (16). **HRMS** Calcd for C₉H₈O: 132.0575; Found: 132.0574.

1-(4-methoxyphenyl)prop-2-en-1-one (2h)

Synthesized according to **GP3** from 4-methoxybenzoyl chloride (10 mmol, 1.35 mL). Purification by column chromatography on silica gel (hexane/EtOAc = 90/10) afforded 1.16 g of **2h** (72% yield).

Rf 0.25 (hexane/EtOAc = 90/10). White solid.

¹**H** NMR (CDCl₃, 399.78 MHz) δ 3.88 (s, 3H), 5.87 (dd, J = 10.4, 2 Hz, 1H), 6.42 (dd, J = 17.2, 1.6 Hz, 1H), 6.96 (d, J = 9.2 Hz, 2H), 7.17 (dd, J = 17.6, 10.8 Hz, 1H), 7.96 (d, J = 8.4 Hz, 2H).

¹³C NMR (CDCl₃, 100.53 MHz) δ 55.32, 113.70, 129.10, 130.02, 130.88, 131.95, 163.42, 189.02.

IR (neat) 1662 m, 1595 s, 1573 m, 1509 m, 1419 m, 1399 m, 1236 s, 1169 s, 991 m, 848 m. **MS** m/z (relative intensity, %) 162 (M⁺, 41), 135 (100), 92 (11), 77 (14).

HRMS Calcd for C₁₀H₁₀O₂: 162.0681; Found: 162.0683.

1-(furan-2-yl)prop-2-en-1-one (2i)

Synthesized according to **GP3** from 2-furoyl chloride (10 mmol, 0.98 mL). Purification by column chromatography on silica gel (hexane/EtOAc = 80/20) afforded 1.02 g of **2i** (84% yield).

Rf 0.37 (hexane/EtOAc = 80/20). White solid.

¹**H** NMR (CDCl₃, 399.78 MHz) δ 5.88 (dd, J = 10.8, 1.6 Hz, 1H), 6.53 (d, J = 1.2 Hz, 1H), 6.56-6.58 (m, 1H), 7.07 (dd, J = 17.6, 10.8 Hz, 1H), 7.27 (dd, J = 3.6, 0.8 Hz, 1H), 7.64 (dd, J = 2.4, 1.2 Hz, 1H).

¹³C NMR (CDCl₃, 100.53 MHz) δ 112.44, 118.27, 129.53, 131.25, 146.93, 152.91, 178.03. IR (neat) 1668 s, 1567 m, 1523 m, 1465 s, 1395 m, 1326 m, 1268 m, 1163 m, 1032 m, 882 m. MS *m*/*z* (relative intensity, %) 122 (M⁺, 58), 95 (100), 94 (11), 55 (10), 39 (12). HRMS Calcd for C₇H₆O₂: 122.0368; Found: 122.0370.

1-(naphthalen-2-yl)prop-2-en-1-one (2j)

Synthesized according to **GP3** from 2-naphthoyl chloride (10 mmol, 1.90 g). Purification by column chromatography on silica gel (hexane/EtOAc = 95/5) afforded 1.56 g of **2j** (86% yield).

Rf 0.42 (hexane/EtOAc = 90/10). White solid.

¹**H NMR** (CDCl₃, 399.78 MHz) δ 5.97 (dd, *J* = 10.4, 1.2 Hz, 1H), 6.51 (dd, *J* = 17.2, 1.6 Hz, 1H), 7.32 (dd, *J* = 17.2, 10.8 Hz, 1H), 7.53-7.62 (m, 2H), 7.86-7.97 (m, 3H), 8.04 (dd, *J* = 8.8, 2 Hz, 1H).

¹³C NMR (CDCl₃, 100.53 MHz) δ 124.35, 126.76, 127.75, 128.45, 128.55, 129.48, 130.06, 130.35, 132.26, 132.39, 134.51, 135.47, 190.73.

IR (neat) 1667 s, 1627 m, 1607 m, 1523 m, 1468 m, 1401 m, 1277 m, 1222 m, 1180 m, 1125 m, 979 w, 866 w.

MS m/z (relative intensity, %) 182 (M⁺, 61), 156 (12), 155 (100), 154 (18), 127 (78), 126 (12).

HRMS Calcd for C₁₃H₁₀O: 182.0732; Found: 182.0732.

1-(4-fluorophenyl)prop-2-en-1-one (2k)

Synthesized according to **GP3** from 4-fluorobenzoyl chloride (10 mmol, 1.18 mL). Purification by column chromatography on silica gel (hexane/EtOAc = 95/5) afforded 1.03 g of **2k** (69% yield).

Rf 0.28 (hexane/EtOAc = 95/5). White solid.

¹**H NMR** (CDCl₃, 399.78 MHz) δ 5.94 (d, *J* = 10.4 Hz, 1H), 6.44 (d, *J* = 16.8 Hz, 1H), 7.12-7.17 (m, 3H), 7.98 (dd, *J* = 8, 5.6 Hz, 2H).

¹³C NMR (CDCl₃, 100.53 MHz) δ 115.67 (d, J = 22 Hz), 130.28, 131.56 (d, J = 9.5 Hz), 131.85, 133.49 (d, J = 2.8 Hz), 165.60 (d, J = 255 Hz), 189.22.

IR (neat) 1670 m, 1594 m, 1410 m, 1227 s, 1156 m, 999 m, 853 m.

MS m/z (relative intensity, %) 150 (M⁺, 45), 123 (100), 95 (45), 75 (12).

HRMS Calcd for C₉H₇FO: 150.0481; Found: 150.0488.

methyl 4-acryloylbenzoate (2l)

Synthesized according to **GP4** from methyl terephthalaldehydate (20 mmol, 3.28 g). Purification by column chromatography on silica gel (hexane/EtOAc = 90/10) afforded 3.42 g of **2l** (90% yield).

Rf 0.34 (hexane/EtOAc = 90/10). White solid.

¹**H** NMR (CDCl₃, 399.78 MHz) δ 3.94 (s, 3H), 5.98 (dd, J = 8.8, 1.6 Hz, 1H), 6.44 (dd, J = 17.2, 1.6 Hz, 1H), 7.13 (dd, J = 17.6, 10.8 Hz, 1H), 7.97 (d, J = 8.4 Hz, 2H), 8.13 (d, J = 8.4 Hz, 2H).

¹³C NMR (CDCl₃, 100.53 MHz) δ 52.44, 128.53, 129.79, 131.16, 132.18, 133.67, 140.56, 166.18, 190.62.

IR (neat) 1723 s, 1670 s, 1604 m, 1411 m, 1276 s, 1227 s, 1108 s, 999 s.

MS m/z (relative intensity, %) 190 (M⁺, 24), 163 (100), 159 (20), 135 (18), 103 (13), 55 (10). **HRMS** Calcd for C₁₁H₁₀O₃: 190.0630; Found: 190.0631.

1-(4-(trifluoromethyl)phenyl)prop-2-en-1-one (2m)

Synthesized according to GP4 from:

Step 1: 4-(trifluoromethyl)benzaldehyde (20 mmol, 3.48 g). Purification by column chromatography on silica gel (hexane/EtOAc = 90/10) afforded 3.42 g of the intermediate 1-(4-(trifluoromethyl)phenyl)prop-2-en-1-ol **2'm** (90% yield).

Step 2: Dess-Martin periodinane (30 mmol, 12.7 g), $2^{\circ}m$ (17 mmol, 3.42g). Purification by column chromatography on silica gel (hexane/EtOAc = 95/5) afforded 2 g of 2m (59% yield from step 2).

1-(4-(trifluoromethyl)phenyl)prop-2-en-1-ol (2'm)

Rf 0.18 (hexane/EtOAc = 90/10). Yellow oil.

¹**H** NMR (CDCl₃, 399.78 MHz) δ 5.16 (d, J = 5.6 Hz, 1H), 5.2 (dd, J = 10.4, 0.8 Hz, 1H), 5.30 (dd, J = 16.8, 1.2 Hz, 1H), 5.91-5.99 (m, 1H), 7.43 (d, J = 8.4 Hz, 2H), 7.58 (d, J = 8.4 Hz, 2H).

¹³**C** NMR (CDCl₃, 100.53 MHz) δ 74.67, 115.98, 124.11 (q, J = 259 Hz), 125.29, 126.51, 129.71 (q, J = 32.6 Hz), 139.41, 146.31.

IR (neat) 3348 w, 1326 s, 1165 m, 1125 m, 1067 m, 1015 w, 926 w.

MS m/z (relative intensity, %) 202 (M⁺, 51), 183 (19), 175 (25), 173 (67), 160 (74), 159 (15), 146 (12), 145 (39), 133 (100), 127 (59), 115 (18), 105 (10), 91 (13), 77 (10), 55 (39). **HRMS** Calcd for C₁₀H₉F₃O: 202.0605; Found: 202.0603.

1-(4-(trifluoromethyl)phenyl)prop-2-en-1-one (2m)

Rf 0.28 (hexane/EtOAc = 95/5). Yellow oil.

¹**H** NMR (CDCl₃, 399.78 MHz) δ 6.01 (dd, J = 12.4, 1.6 Hz, 1H), 6.46 (dd, J = 17.2, 1.6 Hz, 1H), 7.12 (dd, J = 16.8, 10.4 Hz, 1H), 7.74 (d, J = 8.4 Hz, 2H), 8.02 (d, J = 8.4 Hz, 2H).

¹³**C** NMR (CDCl₃, 100.53 MHz) δ 123.33 (q, J = 225 Hz), 125.65 (q, J = 4 Hz), 128.95, 131.48, 132.01, 134.19 (q, J = 57 Hz), 140.00, 190.20.

IR (neat) 1678 m, 1609 m, 1413 m, 1319 s, 1227 m, 1167 m, 1124 s, 1065 s, 999 m, 979 m, 860 m.

MS m/z (relative intensity, %) 200 (M⁺, 32), 173 (100), 145 (61), 55 (13). **HRMS** Calcd for C₁₀H₇F₃O: 200.0449; Found: 200.0448.

VIII. General Procedures for the Ortho C-H Bond Directed Alkylation

General procedures are described for the reaction of 2-methyl-N-(quinolin-8-yl)benzamide **1a** with MVK **2a**.

Variations of the general procedures:

- m-substituted amides were stirred 6 h at 100 °C (108 °C bath temperature).
- p-substituted amides were stirred 6 h at 100 °C (108 °C bath temperature) and 3 equiv of MVK were used to optimize the formation of the di-alkylated product, but, 1 equiv of MVK may be used if the formation of the mono-alkylated products is desired.
- If NaOPiv was used, the same procedures were followed by replacing NaOAc with NaOPiv.
- With acceptors 2d, 2e and 2f reactions were run at 140°C (148 °C bath temperature).
- Amides **3ah-m** and products **9h-m** were isolated by HPLC.

General Procedure 5 (GP5) with RuCl₂(PPh₃)₃ as catalyst.

To an oven-dried 5 mL screw-capped vial, 2-methyl-N-(quinolin-8-yl)benzamide **1a** (131 mg, 0.5 mmol, 1 equiv.), MVK **2a** (70 mg, 1 mmol, 2 equiv.), RuCl₂(PPh₃)₃ (48 mg, 0.05 mmol, 10 mol %), sodium acetate (10.25 mg, 0.125 mmol, 25 mol %) and toluene (1 mL) were added under a gentle stream of nitrogen. The mixture was stirred for 4 h at 100 °C (108 °C bath temperature) then cooled to room temperature and concentrated *in vacuo*. Purification by column chromatography on silica gel (hexane/EtOAc = 70/30) afforded 156 mg of **3aa** as a yellow oil (94% yield).

General Procedure 6 (GP6) with [RuCl₂(*p*-cymene)]₂ as catalyst.

To an oven-dried 5 mL screw-capped vial, 2-methyl-N-(quinolin-8-yl)benzamide **1a** (131 mg, 0.5 mmol, 1 equiv.), MVK **2a** (70 mg, 1 mmol, 2 equiv.), $[RuCl_2(p-cymene)]_2$ (15.30 mg, 0.025 mmol, 5 mol %), sodium acetate (10.25 mg, 0.125 mmol, 25 mol %) and toluene (1 mL) were added under a gentle stream of nitrogen. The mixture was stirred for 4 h at 100 °C (108 °C bath temperature) then cooled to room temperature and concentrated *in vacuo*. Purification by column chromatography on silica gel (hexane/EtOAc = 70/30) afforded 151 mg of **3aa** as a yellow oil (91% yield).

General Procedure 7 (GP7) with PPh₃/[RuCl₂(*p*-cymene)]₂ as catalyst.

To an oven-dried 5 mL screw-capped vial, 2-methyl-N-(quinolin-8-yl)benzamide **1a** (131 mg, 0.5 mmol, 1 equiv.), MVK **2a** (70 mg, 1 mmol, 2 equiv.), $[RuCl_2(p-cymene)]_2$ (15.30 mg, 0.025 mmol, 5 mol %), PPh₃ (39.30 mg, 0.15 mmol, 30 mol %), sodium acetate (10.25 mg, 0.125 mmol, 25 mol %) and toluene (1 mL) were added under a gentle stream of nitrogen. The mixture was stirred for 4 h at 100 °C (108 °C bath temperature) then cooled to room temperature and concentrated *in vacuo*. Purification by column chromatography on silica gel (hexane/EtOAc = 70/30) afforded 149 mg of **3aa** as a yellow oil (90% yield).

IX. Spectroscopic Data for Alkylated Products

2-methyl-6-(3-oxobutyl)-N-(quinolin-8-yl)benzamide (3aa)

See also part X for the cleavage of the 8-aminoquinoline moiety.

Rf 0.37 (hexane/EtOAc = 70/30). Yellow oil.

¹**H** NMR (CDCl₃, 399.78 MHz) δ 2.05 (s, 3H), 2.43 (s, 3H), 2.85 (t, *J* = 8 Hz, 2H), 2.97 (t, *J* = 8 Hz, 2H), 7.13 (d, *J* = 7.2 Hz, 1H), 7.14 (d, *J* = 7.6 Hz, 1H), 7.27 (t, *J* = 8 Hz, 1H), 7.46 (dd, *J* = 8, 4 Hz, 1H), 7.57 (d, *J* = 6.4 Hz, 1H), 7.61 (t, *J* = 8 Hz, 1H), 8.19 (d, *J* = 8 Hz, 1H), 8.74 (d, *J* = 4 Hz, 1H), 8.95 (dd, *J* = 7.2, 2 Hz, 1H), 9.96 (brs, 1H).

¹³C NMR (CDCl₃, 100.53 MHz) δ 19.30, 27.43, 29.67, 45.39, 116.64, 121.55, 121.98, 126.75, 127.13, 127.81, 128.13, 129.09, 134.01, 134.44, 136.21, 137.64 (two overlapping peaks), 138.26, 148.15, 168.40, 207.54.

IR (neat) 3348 w, 1712 m, 1671 m, 1518 s, 1481 s, 1423 m, 1385 m, 1324 m, 1263 m, 1161 w, 1127 w, 896 w.

HRMS Calcd for C₂₁H₂₀N₂O₂: 332.1525; Found: 332.1522.

7-methyl-3-(2-oxopropyl)-2-(quinolin-8-yl)isoindolin-1-one (4aa)

To an oven-dried 5 mL screw-capped vial, 2-methyl-N-(quinolin-8-yl)benzamide **1a** (131 mg, 0.5 mmol, 1 equiv.), MVK **2a** (70 mg, 1 mmol, 2 equiv.), $Ru_3(CO)_{12}$ (32 mg, 0.05 mmol, 10 mol %) and toluene (1 mL) were added under a gentle stream of nitrogen. The mixture was stirred for 4 h at 100 °C (108 °C bath temperature) then cooled to room temperature and concentrated *in vacuo*. Purification by column chromatography on silica gel (hexane/EtOAc = 50/50) afforded 10 mg of **4aa** as a yellow oil (6 % yield).

Rf 0.26 (hexane/EtOAc = 50/50). Yellow oil

¹**H** NMR (CDCl₃, 399.78 MHz) δ 1.87 (s, 3H), 2.70 (dd, J = 17.2, 7.6 Hz, 1H), 2.76 (s, 3H), 2.86 (dd, J = 17.2, 4.8 Hz, 1H), 6.24 (dd, J = 8, 4.8 Hz, 1H), 7.25 (d, J = 8.8 Hz, 1H), 7.30 (d, J = 7.6 Hz, 1H), 7.41(t, J = 4 Hz, 1H), 7.44 (t, J = 7.6 Hz, 1H), 7.62 (t, J = 8 Hz, 1H), 7.80 (dd, J = 7.2, 1.2 Hz, 1H), 7.85 (dd, J = 8.4, 1.6 Hz, 1H), 8.19 (dd, J = 8.4, 1.6 Hz, 1H), 8.88 (dd, J = 4, 1.6 Hz, 1H).

¹³C NMR (CDCl₃, 100.53 MHz) δ 17.44, 30.52, 46.97, 58.23, 120.07, 121.52, 126.21, 128.08, 128.82, 129.32, 130.29, 131.52, 133.75, 136.29, 138.28, 144.77, 146.74, 150.37, 168.97, 205.83.

IR (neat) 2854 w, 1690 s, 1499 w, 1395 m, 1153 w, 891 w, 829 w. **MS** m/z (relative intensity, %) 330 (M⁺, 10), 288 (21), 287 (100). **HRMS** Calcd for C₂₁H₁₈N₂O₂: 330.1368; Found: 330.1366. 3-(3-oxobutyl)-N-(quinolin-8-yl)biphenyl-2-carboxamide (3ba)

Rf 0.34 (hexane/EtOAc = 70/30). brown solid. **MP** = 125 °C.

¹**H** NMR (CDCl₃, 399.78 MHz) δ 2.10 (s, 3H), 2.95 (t, *J* = 8 Hz, 2H), 3.07 (t, *J* = 8 Hz, 2H), 7.07 (t, *J* = 7.2 Hz, 1H), 7.20 (t, *J* = 7.2 Hz, 2H), 7.32-7.37 (m, 3H), 7.43-7.51 (m, 5H), 8.08 (dd, *J* = 8.4, 1.6 Hz, 1H), 8.59 (dd, *J* = 4.4, 1.2 Hz, 1H), 8.70 (dd, *J* = 6.8, 1.6 Hz, 1H), 9.60 (brs, 1H).

¹³C NMR (CDCl₃, 100.53 MHz) δ 27.80, 29.80, 45.61, 116.42, 121.35, 121.72, 127.04, 127.21, 127.61, 128.06, 128.50, 128.79, 129.39, 134.05, 136.03, 136.51, 138.10, 139.05, 139.73, 140.09, 147.81, 167.92, 207.81.

IR (neat) 3340 w, 3058 w, 1714 w, 1670 m, 1520 s, 1482 m, 1424 m, 1326 m, 1262 w, 1129 w, 826 m.

HRMS Calcd for C₂₆H₂₂N₂O₂: 394.1681; Found: 394.1679

Anal. Calcd for C₂₆H₂₂N₂O₂: C, 79.16; H, 5.62; N, 7.10. Found: C, 78.94; H, 5.55; N, 7.09.

2-(3-oxobutyl)-N-(quinolin-8-yl)-6-(trifluoromethyl)benzamide (3ca)

Rf 0.31 (hexane/EtOAc = 70/30). Brown solid. MP = 127 °C.

¹**H** NMR (CDCl₃, 399.78 MHz) δ 2.06 (s, 3H), 2.88 (m, 2H), 3.02 (m, 2H), 7.46 (dd, J = 8.4, 4.4 Hz, 1H), 7.50-7.56 (m, 2H), 7.59-7.63 (m, 3H), 8.20 (dd, J = 8.4, 1.6 Hz, 1H), 8.74 (dd, J = 4.4, 1.6 Hz, 1H), 8.90 (dd, J = 6, 2.8 Hz, 1H), 10.03 (brs, 1H).

¹³**C** NMR (CDCl₃, 100.53 MHz) δ 27.23, 29.76, 45.13, 116.97, 121.70, 122.43, 123.71 (q, J = 274 Hz), 124.17 (q, J = 5.02 Hz), 127.25, 127.31 (q, J = 31.16 Hz), 127.92, 129.48, 133.63 (d, J = 1.0 Hz), 133.92, 135.22 (q, J = 2.01 Hz), 136.32, 138.32, 139.98, 148.32, 165.40, 207.11. **IR** (neat) 3335 w, 1714 m, 1677 m, 1522 s, 1484 m, 1318 s, 1220 m, 1161 m, 1124 s, 827 m. **HRMS** Calcd for C₂₁H₁₇F₃N₂O₂: 386.1242; Found: 386.1241.

Anal. Calcd for C₂₁H₁₇F₃N₂O₂: C, 65.28; H, 4.43; N, 7.25. Found: C, 65.08; H, 4.40; N, 7.23.

2-methoxy-6-(3-oxobutyl)-N-(quinolin-8-yl)benzamide (3da)

Rf 0.2 (hexane/EtOAc = 70/30). White solid. **MP** = $90 \degree$ C.

¹**H** NMR (CDCl₃, 399.78 MHz) δ 2.07 (s, 3H), 2.87 (t, *J* = 7.6 Hz, 2H), 2.99 (t, *J* = 7.6 Hz, 2H), 3.84 (s, 3H), 6.87 (d, *J* = 8.4 Hz, 1H), 6.90 (d, *J* = 7.6 Hz, 1H), 7.33 (t, *J* = 8 Hz, 1H), 7.44 (dd, *J* = 8, 4 Hz, 1H), 7.19 (d, *J* = 7.6 Hz, 2H), 7.59 (t, *J* = 8 Hz, 1H), 8.17 (dd, *J* = 8.0, 1.2 Hz, 1H), 8.75 (dd, *J* = 4, 1.6 Hz, 1H), 8.95 (dd, *J* = 7.6, 1.2 Hz, 1H), 10.13 (brs, 1H).

¹³C NMR (CDCl₃, 100.53 MHz) δ 25.59, 29.78, 45.41, 55.74, 109.02, 116.70, 121.50, 121.71, 122.01, 126.67, 127.31, 127.91, 130.39, 134.55, 136.23, 138.42, 140.56, 148.08, 156.37, 166.09, 207.86.

IR (neat) 3354 w, 1714 m, 1670 m, 1520 s, 1483 m, 1325 m, 1261 m, 1081 m, 896 m, 826 m. HRMS Calcd for $C_{21}H_{20}N_2O_3$: 348.1474; Found: 348.1472.

2-fluoro-6-(3-oxobutyl)-N-(quinolin-8-yl)benzamide (3ea)

Rf 0.28 (hexane/EtOAc = 80/20). Yellow solid. MP = 65 °C.

¹**H** NMR (CDCl₃, 399.78 MHz) δ 2.10 (s, 3H), 2.89 (t, *J* = 7.2 Hz, 2H), 3.05 (t, *J* = 7.6 Hz, 2H), 7.05 (t, *J* = 8.0 Hz, 1H), 7.12 (d, *J* = 8.0 Hz, 1H), 7.36 (td, *J* = 8, 5.6 Hz, 1H), 7.45 (dd, *J* = 8.4, 4.8 Hz, 1H), 7.57 (d, *J* = 6.8 Hz, 1H), 7.60 (t, *J* = 8.4 Hz, 1H), 8.18 (dd, *J* = 8, 1.6 Hz, 1H), 8.77 (dd, *J* = 4.4, 2 Hz, 1H), 8.92 (dd, *J* = 6.4, 2.4 Hz, 1H), 10.17 (brs, 1H).

¹³**C** NMR (CDCl₃, 100.53 MHz) δ 27.42 (d, *J* = 1.9 Hz), 29.84, 45.18, 113.79 (d, *J* = 22 Hz), 116.83, 121.68, 122.24, 125.14 (d, *J* = 17.2 Hz), 125.73 (d, *J* = 2.8 Hz), 127.24, 127.91, 131.03 (d, *J* = 8.6 Hz), 134.13, 136.31, 138.32, 141.98 (d, *J* = 1.9 Hz), 148.30, 159.25 (d, *J* = 247 Hz), 163.25, 207.50.

IR (neat) 3342 w, 3049 w, 1714 w, 1673 m, 1523 s, 1484 m, 1326 m, 1247 w, 826 w. **HRMS** Calcd for $C_{20}H_{17}FN_2O_2$: 336.1274; Found: 336.1272.

2-(3-oxobutyl)-N-(quinolin-8-yl)benzamide (3fa)

Rf 0.4 (hexane/EtOAc = 70/30); Yellow solid; **MP** = $90 \degree$ C.

¹**H NMR** (CDCl₃, 399.78 MHz) δ 2.10 (s, 3H), 2.91 (t, *J* = 7.6 Hz, 2H), 3.15 (t, *J* = 7.2 Hz, 2H), 7.30-7.34 (m, 2H), 7.39-7.43 (m, 2H), 7.52 (dd, *J* = 8.4, 2 Hz, 1H), 7.56 (t, *J* = 8 Hz, 1H), 7.65-7.67 (m, 1H), 8.13 (dd, *J* = 8.8, 1.2 Hz, 1H), 8.74 (dd, *J* = 4, 1.2 Hz, 1H), 8.90 (dd, *J* = 7.6, 1.6 Hz, 1H), 10.21 (brs, 1H).

¹³C NMR (CDCl₃, 100.53 MHz) δ 27.69, 29.77, 45.54, 116.34, 121.57, 121.79, 126.40, 127.08, 127.16, 127.81, 130.43, 130.68, 134.45, 136.23, 136.28, 138.34, 140.07, 148.14, 167.80, 207.87.

IR (neat) 3349 w, 3056 w, 1713 m, 1672 m, 1521 s, 1480 m, 1264 m, 826 m, 756 m.

MS *m*/*z* (relative intensity, %) 318 (M⁺, 34), 276 (18), 275 (87), 175 (34), 145 (11), 144 (18), 133 (11), 132 (20), 131 (100), 103 (14), 77 (12), 43 (28).

HRMS Calcd for C₂₀H₁₈N₂O₂: 318.1368; Found: 318.1371.

Anal. Calcd for C₂₀H₁₈N₂O₂: C, 75.45; H, 5.70; N, 8.80. Found: C, 75.37; H, 5.61; N, 8.73.

2,6-bis(3-oxobutyl)-N-(quinolin-8-yl)benzamide (6fa)

Rf 0.38 (hexane/EtOAc = 50/50); Yellow oil.

¹**H** NMR (CDCl₃, 399.78 MHz) δ 2.00 (s, 6H), 2.82 (t, *J* = 7.6 Hz, 4H), 2.95 (t, *J* = 8 Hz, 4H), 7.12 (d, *J* = 7.2 Hz, 2H), 7.27 (t, *J* = 8 Hz, 1H), 7.40 (dd, *J* = 8.4, 4.4 Hz, 1H), 7.53 (d, *J* = 6 Hz, 1H), 7.55 (t, *J* = 8.4 Hz, 1H), 8.14 (dd, *J* = 8.0, 1.2 Hz, 1H), 8.70 (dd, *J* = 4, 1.2 Hz, 1H), 8.88 (dd, *J* = 6.4, 2.8 Hz, 1H), 9.95 (brs, 1H).

¹³C NMR (CDCl₃, 100.53 MHz) δ 27.31, 29.64, 45.25, 116.72, 121.57, 122.13, 127.09, 127.26, 127.80, 129.32, 133.81, 136.23, 137.42, 137.71, 148.14, 168.09, 207.39.

IR (neat) 3339 w, 3058 w, 1712 m, 1669 m, 1519 s, 1481 m, 1423 m, 1325 m, 1161 m, 1125 m, 895 w, 826 m.

MS *m*/*z* (relative intensity, %) 388 (M⁺, 41), 345 (74), 262 (19), 245 (62), 201 (100), 185 (13), 183 (12), 159 (17), 144 (36), 117 (15), 43 (46).

HRMS Calcd for C₂₄H₂₄N₂O₃: 388.1787; Found: 388.1788.

4-methyl-2,6-bis(3-oxobutyl)-N-(quinolin-8-yl)benzamide (6ga)

Rf 0.41 (hexane/EtOAc = 50/50). Yellow oil

¹**H** NMR (CDCl₃, 399.78 MHz) δ 2.02 (s, 6H), 2.32 (s, 3H), 2.80-2.85 (m, 4H), 2.90-2.94 (m, 4H), 6.95 (s, 2H), 7.41 (dd, J = 4, 8.4 Hz, 1H), 7.53-7.58 (m, 2H), 8.15 (dd, J = 1.2, 8 Hz, 1H), 8.71 (dd, J = 1.2, 4 Hz, 1H), 8.88 (dd, J = 2, 4.4 Hz, 1H), 9.93(brs, 1H).

¹³C NMR (CDCl₃, 100.53 MHz) δ 21.14, 27.38, 29.70, 45.43, 116.73, 121.61, 122.10, 127.20, 127.88, 128.06, 133.99, 134.84, 136.30, 137.80, 138.30, 139.23, 148.18, 168.46, 207.62.

IR (neat) 3348 w, 2951 w, 1713 m, 1670 m, 1518 s, 1482 m, 1324 m, 1160 m, 826 m. HRMS Calcd for $C_{25}H_{26}N_2O_3$: 402.1943; Found: 402.1940.

methyl 3,5-bis(3-oxobutyl)-4-(quinolin-8-ylcarbamoyl)benzoate (6ha)

Rf 0.31 (hexane/EtOAc = 50/50). White solid. **MP** = $170 \degree$ C

¹**H** NMR (CDCl₃, 399.78 MHz) δ 2.04 (s, 6H), 2.85 (t, *J* = 8.4 Hz, 2H), 2.98 (t, *J* = 7.6 Hz, 2H), 3.92 (s, 3H), 7.44 (dd, *J* = 8, 4 Hz, 1H), 7.58 (d, *J* = 4.4 Hz, 2H), 7.82 (s, 2H), 8.17 (dd, *J* = 8.4, 1.6 Hz, 1H), 8.72 (dd, *J* = 4.4, 1.6 Hz, 1H), 8.86 (quintet_{app}, *J* = 4.4 Hz, 1H), 9.98(brs, 1H).

¹³C NMR (CDCl₃, 100.53 MHz) δ 27.25, 29.74, 45.03, 52.26, 117.07, 121.74, 122.51, 127.20, 127.94, 128.44, 130.91, 133.68, 136.41, 138.32, 138.42, 141.45, 148.35, 166.37, 167.35, 207.08.

IR (neat) 3342 w, 1712 m, 1669 m, 1519 s, 1481 m, 1424 m, 1323 m, 1263 m, 1219 s, 1132 m, 827 m.

HRMS Calcd for C₂₆H₂₆N₂O₅: 446.1842; Found: 446.1839;

Anal. Calcd for C₂₆H₂₆N₂O₅: C, 69.94; H, 5.87; N, 6.27. Found: C, 69.84; H, 5.86; N, 6.23.

4-methoxy-2,6-bis(3-oxobutyl)-N-(quinolin-8-yl)benzamide (6ia)

Rf 0.32 (hexane/EtOAc = 50/50). Brown solid. MP = $110 \degree$ C.

¹**H** NMR (CDCl₃, 399.78 MHz) δ 2.01 (s, 6H), 2.83 (t, *J* = 9.6 Hz, 2H), 2.83 (t, *J* = 7.2 Hz, 2H), 2.93 (t, *J* = 9.2 Hz, 2H), 2.93 (t, *J* = 6.8 Hz, 2H), 3.79 (s, 3H), 6.67 (s, 2H), 7.41 (dd, *J* = 8.4, 4 Hz, 1H), 7.53 (d, *J* = 6.4 Hz, 1H), 7.56 (t, *J* = 8.4 Hz, 1H), 8.14 (dd, *J* = 8.4, 1.6 Hz, 1H), 8.71 (dd, *J* = 4.4, 1.6 Hz, 1H), 8.87 (dd, *J* = 6.8, 2.4 Hz, 1H), 9.92 (brs, 1H).

¹³C NMR (CDCl₃, 100.53 MHz) δ 27.63, 29.69, 45.27, 55.11, 112.65, 116.65, 121.60, 122.05, 127.18, 127.85, 130.44, 134.01, 136.28, 138.26, 139.76, 148.16, 159.88, 168.25, 207.44.

IR (neat) 3345 w, 1669 m, 1601 m, 1517 s, 1323 m, 1157 m, 824 m.

MS *m*/*z* (relative intensity, %) 418 (M⁺, 17), 276 (17), 275 (100), 231 (23), 43 (13).

HRMS Calcd for C₂₅H₂₆N₂O₄: 418.1893; Found: 418.1898.

5-methyl-2-(3-oxobutyl)-N-(quinolin-8-yl)benzamide (3ja)

See also part X for the cleavage of the 8-aminoquinoline moiety.

Rf 0.31 (hexane/EtOAc = 80/20). Yellow oil.

¹**H** NMR (CDCl₃, 399.78 MHz) δ 2.10 (s, 3H), 2.40 (s, 3H), 2.89 (t, *J* = 7.6 Hz, 2H), 3.10 (t, *J* = 8 Hz, 2H), 7.23 (s, 2H), 7.45-7.48 (m, 2H), 7.56 (dd, *J* = 4.4, 2 Hz, 1H), 7.59 (t, *J* = 8.4 Hz, 1H), 8.19 (dd, *J* = 8.4, 1.6 Hz, 1H), 8.78 (dd, *J* = 4, 1.6 Hz, 1H), 8.90 (d, *J* = 6.8 Hz, 1H), 10.18 (brs, 1H).

¹³C NMR (CDCl₃, 100.53 MHz) δ 20.96, 27.39, 29.90, 45.77, 116.58, 121.65, 121.86, 127.35, 127.75, 127.96, 130.67, 131.23, 134.58, 136.20, 136.35, 136.41, 136.89, 138.47, 148.22, 168.21, 208.25.

IR (neat) 3351 w, 2923 w, 1713 m, 1672 m, 1521 s, 1482 m, 1424 m, 1385 m, 1326 m, 826 m.

HRMS Calcd for C₂₁H₂₀N₂O₂: 332.1525; Found: 332.1522.

3-methyl-2,6-bis(3-oxobutyl)-N-(quinolin-8-yl)benzamide (6ja)

Rf 0.41 (hexane/EtOAc = 50/50). Yellow oil.

¹**H** NMR (CDCl₃, 399.78 MHz) δ 2.02 (s, 6H), 2.31 (s, 3H), 2.80-2.83 (m, 4H), 2.90-2.94 (m, 4H), 7.07 (d, *J* = 7.6 Hz, 1H), 7.17 (d, *J* = 8.0 Hz, 1H), 7.44 (dd, *J* = 8, 4.4 Hz, 1H), 7.56 (d, *J* = 6 Hz, 1H), 7.59 (t, *J* = 8.4 Hz, 1H), 8.18 (dd, *J* = 8.4, 1.6 Hz, 1H), 8.72 (dd, *J* = 4.4, 2.0 Hz, 1H), 8.88 (dd, *J* = 6.4, 2.4 Hz, 1H), 9.91 (brs, 1H)

¹³C NMR (CDCl₃, 100.53 MHz) δ 19.09, 24.91, 27.28, 29.64, 29.82, 44.18, 45.49, 116.97, 121.68, 122.23, 127.36, 127.99, 131.38, 133.98, 134.62, 135.33, 135.82, 136.47, 138.16, 138.34, 148.21, 168.75, 207.78 (two overlapping peaks)

IR (neat) 3345 w, 2955 w, 1714 m, 1672 m, 1520 s, 1482 m, 1424 m, 1385 m, 1326 m, 1270 w, 116 w, 827 m.

HRMS Calcd for C₂₅H₂₆N₂O₃: 402.1943; Found: 402.1946.

4-(3-oxobutyl)-N-(quinolin-8-yl)biphenyl-3-carboxamide (3ka)

Rf 0.28 (hexane/EtOAc = 80/20). White solid. **MP** = 100 °C.

¹**H** NMR (CDCl₃, 399.78 MHz) δ 2.14 (s, 3H), 2.96 (t, *J* = 7.6 Hz, 2H), 3.17 (t, *J* = 7.6 Hz, 2H), 7.35-7.48 (m, 5H), 7.57-7.65 (m, 5H), 7.88 (s, 1H), 8.20 (d, *J* = 8.4 Hz, 1H), 8.77 (d, *J* = 4.0 Hz, 1H), 8.93 (d, *J* = 7.20 Hz, 1H), 10.28 (brs, 1H).

¹³C NMR (CDCl₃, 100.53 MHz) δ 27.30, 29.76, 45.41, 116.43, 121.56, 121.87, 125.61, 126.82, 127.13, 127.44, 127.78, 128.74, 128.88, 131.13, 134.38, 136.21, 136.90, 138.30, 138.85, 139.30, 139.74, 148.17, 167.80, 207.75

IR (KBr) 3345 w, 3016 w, 1738 m, 1716 m, 1669 m, 1519 m, 1480 m, 1219 s.

HRMS Calcd for C₂₆H₂₂N₂O₂: 394.1681; Found: 394.1676

Anal. Calcd for C₂₆H₂₂N₂O₂: C, 79.16; H, 5.62; N, 7.10. Found: C, 78.90; H, 5.53; N, 7.04.

2-(3-oxobutyl)-N-(quinolin-8-yl)-5-(trifluoromethyl)benzamide (3la)

Rf 0.28 (hexane/EtOAc = 80/20). White solid. MP = 130 °C.

¹**H NMR** (CDCl₃, 399.78 MHz) δ 2.11 (s, 3H), 2.93 (t, *J* = 7.2 Hz, 2H), 3.17 (t, *J* = 7.6 Hz, 2H), 7.46 (dd, *J* = 8.4, 4 Hz, 1H), 7.48 (d, *J* = 7.2 Hz, 1H), 7.56-7.61(m, 2H), 7.66 (dd, *J* = 8.4, 1.2 Hz, 1H), 7.89 (s, 1H), 8.18 (dd, *J* = 8.4, 1.6 Hz, 1H), 8.78 (dd, *J* = 4.4, 1.6 Hz, 1H), 8.87 (dd, *J* = 6, 2.8 Hz, 1H), 10.22 (brs, 1H)

¹³**C NMR** (CDCl₃, 100.53 MHz) δ 27.51, 29.82, 45.00, 116.79, 121.77, 122.34, 123.71 (q, *J* = 272.2 Hz), 124.07 (q, *J* = 2.8 Hz), 127.00 (q, *J* = 2.8 Hz), 127.20, 127.92, 128.83 (q, *J* = 32.5 Hz), 131.34, 134.11, 136.41, 137.14, 138.37, 144.13, 148.39, 166.55, 207.22

IR (neat) 3339 w, 3058 w, 1715 m, 1675 m, 1523 s, 1484 m, 1326 m, 1168 m, 1125 s, 1080 m, 826 m.

HRMS Calcd for C₂₁H₁₇F₃N₂O₂: 386.1242; Found: 386.1242

Anal. Calcd for C₂₁H₁₇F₃N₂O₂: C, 65.28; H, 4.43; N, 7.25. Found: C, 65.14; H, 4.38; N, 7.25.

5-methoxy-2-(3-oxobutyl)-N-(quinolin-8-yl)benzamide (3ma), 3-methoxy-2-(3-oxobutyl)-N-(quinolin-8-yl)benzamide (3'ma).

mixture 3/1 : **3ma/3'ma**

Rf 0.18 (hexane/EtOAc = 80/20). Yellow oil. ¹**H** NMR (CDCl₃, 399.78 MHz) δ 2.09 (s, 3H_{ma}), 2.13 (s, 1H'ma), 2.88 (t, J = 7.6 Hz, 2H_{ma}+0.7H'ma), 3.07 (t, J = 7.6 Hz, 2H_{ma}+0.7H'ma), 3.84 (s, 3H_{ma}), 3.86 (s, 1H'ma), 6.96 (dd, J = 8.4, 2.4 Hz, 1H_{ma}+0.3H'ma), 7.19 (d, J = 2.4 Hz, 1H_{ma}), 7.23-7.26 (m, 1H_{ma}+0.7H'ma), 7.31 (t, J = 8 Hz, 0.3H'ma), 7.45 (dd, J = 4.4, 8.4 Hz, 1H_{ma}+0.3H'ma), 7.52-7.61 (m, 2H_{ma}+0.7H'ma), 8.17 (dd, J = 8.4, 1.6 Hz, 1H_{ma}+0.3H'ma), 8.77 (dd, J = 4.4, 2 Hz, 1H_{ma}+0.3H'ma), 8.89 (dd, J = 7.6, 2 Hz, 1Hma+0.3H'ma), 10.19 (brs, 1H_{ma}), 10.14 (brs, 1H'ma). ¹³C NMR 3ma (CDCl₃, 100.53 MHz) δ 26.93, 28.85, 45.76, 55.40, 112.77, 115.86, 116.49, 121.64, 121.89, 127.23, 127.90, 131.69, 131.83, 134.46, 136.28, 137.27, 138.45, 148.24, 157.85, 167.69, 208.14.

¹³C NMR 3'ma (CDCl₃, 100.53 MHz) δ 21.97, 29.58, 43.99, 55.52, 111.97, 118.93, 121.57, 121.80, 127.40, 128.16, 134.51, 138.25, 138.42, 148.14, 157.93, 167.81, 208.62, four peaks overlapped with A.

IR (neat) 3346 w, 2937 w, 1712 m, 1672 m, 1521 s, 1483 m, 1385 m, 1326 m, 1263 m, 1041 m, 826 m.

MS 3ma *m/z* (relative intensity, %) 348 (M⁺, 26), 306 (12), 305 (54), 205 (19), 162 (17), 161 (100), 145 (12), 144 (15), 43 (11).

MS 3'ma *m/z* (relative intensity, %) 348 (M⁺, 32), 306 (13), 305 (54), 290 (11), 205 (37), 163 (16), 162 (35), 161 (100), 145 (21), 144 (31), 43 (18).

HRMS 3ma Calcd for C₂₁H₂₀N₂O₃: 348.1474; Found: 348.1478.

HRMS 3'ma Calcd for C₂₁H₂₀N₂O₃: 348.1474; Found: 348.1468.

5-methoxy-2-(3-oxobutyl)benzaldehyde (10ma), 3-methoxy-2-(3-oxobutyl)benzaldehyde (10'ma)

8-aminoquinoline directing group was cleaved from the mixture 3ma+3'ma to make the interpretation of the spectrum easier (see part X for a procedure) in order to have confirmation of the major regioisomer.

mixture 3/1 : 10ma/10'ma

Rf 0.28 (hexane/EtOAc = 80/20). Yellow oil.

¹**H** NMR (CDCl₃, 399.78 MHz) δ 2.12 (s, 3H_{ma}), 2.16 (s, 1H'_{ma}), 2.66 (t, J = 7.2 Hz, 0.7H'ma), 2.73 (t, J = 7.6 Hz, 2Hma), 3.2 (t, J = 7.2 Hz, 2H_{ma}), 3.29 (t, J = 7.6 Hz, 0.7H'ma), 3.83 (s, 3H_{ma}), 3.85 (s, 1H'ma), 7.05 (dd, J = 8, 2.8 Hz, 1H_{ma}), 7.08 (d, J = 8 Hz, 0.33H'ma), 7.08 (d, J = 8 Hz, 1H_{ma}), 7.31 (d, J = 2.8 Hz, 1Hma), 7.34 (t, J = 8 Hz, 0.33H'ma), 7.41 (d, J = 7.6 Hz, 0.33H'ma), 10.18 (s, 1H_{ma}), 10.24 (s, 0.33H'ma).

¹³C NMR 10ma (CDCl₃, 100.53 MHz) δ 25.83, 29.95, 45.31, 55.48, 116.28, 120.40, 132.46, 134.37, 135.73, 158.36, 192.15, 207.66.

¹³C NMR 10'ma (CDCl₃, 100.53 MHz) δ 19.10, 29.68, 43.51, 55.77, 115.38, 124.10, 127.34, 131.96, 134.87, 157.81, 192.71, 208.23.

IR (neat) 2934 w, 1686 s, 1498 m, 1261 s, 1162 s, 1037 m, 871 w, 825 w.

MS 10ma *m/z* (relative intensity, %) 206 (M⁺, 21), 188 (100), 163 (36), 149 (21), 148 (25), 145 (51), 121 (72), 105 (19), 91 (24), 77 (18), 43 (34).

MS 10°ma *m/z* (relative intensity, %) 206 (M⁺, 11), 188 (100), 163 (30), 149 (17), 148 (42), 145 (44), 135 (25), 120 (28), 105 (22), 91 (50), 77 (24), 43 (33).

HRMS 10ma Calcd for C₁₂H₁₄O₃: 206.0943; Found: 206.0945.

HRMS 10'ma Calcd for C₁₂H₁₄O₃: 206.0943; Found: 206.0949.

3-methoxy-2,6-bis(3-oxobutyl)-N-(quinolin-8-yl)benzamide (6ma)

Rf 0.18 (hexane/EtOAc = 60/40). Yellow oil

¹**H** NMR (CDCl₃, 399.78 MHz) δ 2.01 (s, 3H), 2.01 (s, 3H), 2.76-2.82 (m, 4H), 2.87-2.91 (m, 4H), 3.81 (s, 3H), 6.85 (d, *J* = 8.4 Hz, 1H), 7.12 (d, *J* = 8.8 Hz, 1H), 7.42 (dd, *J* = 8.4, 4.4 Hz, 1H), 7.54 (d, *J* = 5.6 Hz, 1H), 7.57 (t, *J* = 8 Hz, 1H), 8.16 (dd, *J* = 8.4, 1.6 Hz, 1H), 8.71 (dd, *J* = 4.4, 1.6 Hz, 1H), 8.87 (dd, *J* = 6.4, 2.8 Hz, 1H), 9.91 (brs, 1H).

¹³C NMR (CDCl₃, 100.53 MHz) δ 22.43, 26.85, 29.49, 29.80, 43.87, 45.58, 55.44, 111.09, 116.89, 121.63, 122.19, 126.08, 127.25, 127.92, 128.40, 129.24, 133.91, 136.39, 138.29, 138.70, 148.17, 155.89, 167.89, 207.94, 208.30.

IR (neat) 3351 w, 1711 m, 1671 m, 11669m, 1519 s, 1480 m, 1323 m, 1271 m, 1092 w.

HRMS Calcd for C₂₅H₂₆N₂O₄: 418.1893; Found: 418.1896.

2-(3-oxobutyl)-N-(quinolin-8-yl)-5-(trifluoromethoxy)benzamide (3na)

Rf 0.28 (hexane/EtOAc = 80/20). White solid. **MP** = $108 \degree$ C.

¹**H** NMR (CDCl₃, 399.78 MHz) δ 2.11 (s, 3H), 2.91 (t, *J* = 7.6 Hz, 2H), 3.12 (t, *J* = 7.2 Hz, 2H), 7.27-7.29 (m, 1H), 7.39 (d, *J* = 8.4 Hz, 1H), 7.47 (dd, *J* = 8, 4 Hz, 1H), 7.50 (d, *J* = 2.4 Hz, 1H), 7.57-7.59 (m, 2H), 8.19 (dd, *J* = 8.4, 2 Hz, 1H), 8.79 (dd, *J* = 4, 1.2 Hz, 1H), 8.86 (dd, *J* = 6.0, 2.4 Hz, 1H), 10.20 (brs, 1H).

¹³C NMR (CDCl₃, 100.53 MHz) δ 27.07, 29.86, 45.31, 116.72, 119.90, 120.39 (q, *J* = 258 Hz), 121.79, 122.29, 122.77, 127.25, 127.95, 132.38, 134.19, 136.41, 137.92, 138.45, 138.79, 147.34 (d, *J* = 2 Hz), 148.42, 166.35, 207.51.

IR (neat) 3348 w, 1721 m, 1671 m, 1524 m, 1277 m, 1257 m, 1221 s, 1108 m, 999 m. **HRMS** Calcd for $C_{21}H_{17}F_3N_2O_3$: 402.1191; Found: 402.1192.

COSY

2,6-bis(3-oxobutyl)-N-(quinolin-8-yl)-3-(trifluoromethoxy)benzamide (6na)

Rf 0.48 (hexane/EtOAc = 50/50); Yellow oil

¹**H** NMR (CDCl₃, 399.78 MHz) δ 2.04 (s, 3H), 2.05 (s, 3H), 2.80-2.86 (m, 4H), 2.95-2.98 (m, 4H), 7.20-7.27 (m, 2H), 7.48 (dd, J = 8.0, 4.0 Hz, 1H), 7.61 (d, J = 4.4 Hz, 2H), 8.22 (d, J = 8.0 Hz, 1H), 8.76 (d, J = 3.2 Hz, 1H), 8.86 (quintet_{app}, J = 4.4 Hz, 1H), 9.99 (brs, 1H)

¹³**C** NMR (CDCl₃, 100.53 MHz) δ 22.28, 27.03, 29.58, 29.87, 43.84, 45.14, 120.13 (q, J = 177 Hz), 120.93, 120.95, 121.80, 122.69, 127.44, 128.10, 129.00, 130.53, 133.61, 136.50, 136.81, 138.21, 139.63, 146.27 (d, J = 2 Hz), 148.26, 166.74, 207.02, 207.27

IR (neat) 3342 w, 2956 w, 1715 m, 1674 m, 1523 s, 1484 m, 1326 m, 1255 s, 1211 m, 1163 m, 827 m.

HRMS Calcd for C₂₅H₂₃F₃N₂O₄: 472.1610; Found: 472.1606.

5-(dimethylamino)-2-(3-oxobutyl)-N-(quinolin-8-yl)benzamide (3oa)

Rf 0.25 (hexane/EtOAc = 70/30). Brown solid. **Mp** = 112 °C.

¹**H** NMR (CDCl₃, 399.78 MHz) δ 2.09 (s, 3H), 2.86 (t, *J* = 7.2 Hz, 2H), 2.96 (s, 3H), 3.04 (t, *J* = 5.2 Hz, 1H), 6.79 (dd, *J* = 8.4, 2.8 Hz, 1H), 6.99 (d, *J* = 2.8 Hz, 1H), 7.18 (d, *J* = 8.4 Hz, 1H), 7.43 (dd, *J* = 8, 4 Hz, 1H), 7.53 (dd, *J* = 8, 1.2 Hz, 1H), 7.58 (t, *J* = 8 Hz, 1H), 8.15 (dd, *J* = 8.8, 1.6 Hz, 1H), 8.75 (dd, *J* = 4, 1.2 Hz, 1H), 8.91 (dd, *J* = 7.2, 0.8 Hz, 1H), 10.21 (brs, 1H).

¹³C NMR (CDCl₃, 100.53 MHz) δ 26.79, 29.85, 40.52, 45.95, 111.02, 114.50, 116.34, 121.56, 121.68, 126.87, 127.21, 127.85, 131.30, 134.60, 136.22, 137.01, 138.43, 148.15, 148.87, 168.63, 208.51.

IR (neat) 3345 w, 2924 w, 1711 m, 1672 m, 1608 m, 1519 s, 1481 s, 1325 m, 1220 m, 826 m. **MS** m/z (relative intensity, %) 361 (M⁺, 49), 218 (13), 217 (16), 189 (17), 175 (14), 174 (100), 146 (11).

HRMS Calcd for C₂₂H₂₃N₃O₂: 361.1790; Found: 361.1791.

5-iodo-2-(3-oxobutyl)-N-(quinolin-8-yl)benzamide (3pa)

Rf 0.37(hexane/EtOAc = 70/30). White solid. **Mp** = 131° C.

¹**H** NMR (CDCl₃, 399.78 MHz) δ 2.10 (s, 3H), 2.88 (t, *J* = 7.6 Hz, 2H), 3.05 (t, *J* = 7.6 Hz, 1H), 7.09 (d, *J* = 8 Hz, 1H), 7.47 (dd, *J* = 8.4, 4 Hz, 1H), 7.58 (s_{app}, 1H), 7.59 (d_{app}, *J* = 3.2 Hz, 1H), 7.72 (dd, *J* = 8, 2 Hz, 1H), 7.95 (d, *J* = 1.6 Hz, 1H), 8.19 (dd, *J* = 8.4, 1.6 Hz, 1H), 8.80 (dd, *J* = 4, 1.6 Hz, 1H), 8.85 (dd, *J* = 6.4, 2.8 Hz, 1H), 10.16 (brs, 1H).

¹³C NMR (CDCl₃, 100.53 MHz) δ 27.27, 29.90, 45.23, 91.09, 116.84, 121.75, 122.24, 127.30, 127.95, 132.64, 134.18, 135.73, 136.52, 138.32, 138.60, 139.35, 139.61, 148.30, 166.26, 207.55.

IR (neat) 3332 w, 1711 w, 1671 m, 1520 s, 1483 m, 1325 m, 1165 w, 1042 w, 815 m.

MS m/z (relative intensity, %) 444 (M⁺, 37), 401 (100), 301 (13), 257 (69), 144 (19), 102 (14), 43 (16)

HRMS Calcd for C₂₀H₁₇IN₂O₂: 444.0335; Found: 444.0337.

3-iodo-2,6-bis(3-oxobutyl)-N-(quinolin-8-yl)benzamide (6pa)

Rf 0.31(hexane/EtOAc = 60/40). Yellow oil.

¹**H** NMR (CDCl₃, 399.78 MHz) δ 2.03 (s, 3H), 2.05 (s, 3H), 2.81-3.06 (m, 8H), 6.88 (d, J = 8.4 Hz, 1H), 7.45 (dd, J = 8.4, 4 Hz, 1H), 7.58 (d, J = 4.8 Hz, 2H), 7.82 (d, J = 8.4 Hz, 1H), 8.18 (dd, J = 8, 1.2 Hz, 1H), 8.73 (dd, J = 4.4, 1.6 Hz, 1H), 8.83 (quintet_{app}, J = 4.8 Hz, 1H), 9.91 (brs, 1H).

¹³C NMR (CDCl₃, 100.53 MHz) δ 27.05, 29.59, 29.81, 32.65, 43.63, 44.99, 98.45, 117.08, 121.76, 122.51, 127.27, 127.96, 129.37, 133.66, 136.47, 138.31 (two overlapping peaks), 138.67, 139.85, 140.51, 148.31, 167.15, 206.99, 207.17.

IR (neat) 3348 w, 1711 m, 1670 m, 1519 s, 1482 m, 1424 w, 1325 m, 1221 m, 1072 w, 893 w, 821 w.

MS m/z (relative intensity, %) 514 (M⁺, 12), 471 (43), 456 (14), 371 (10), 327 (25), 200 (28), 182 (12), 157 (11), 144 (52), 116 (13), 43 (100). **HRMS** Calcd for C₂₄H₂₃IN₂O₃: 514.0753; Found: 514.0759.

5-bromo-2-(3-oxobutyl)-N-(quinolin-8-yl)benzamide (3qa)

Rf 0.25 (hexane/EtOAc = 80/20). White solid. MP = $120 \degree$ C.

¹**H** NMR (CDCl₃, 399.78 MHz) δ 2.11 (s, 3H), 2.89 (t, *J* = 7.6 Hz, 2H), 3.07 (t, *J* = 7.6 Hz, 2H), 7.23 (d, *J* = 8.0 Hz, 1H), 7.48 (dd, *J* = 8.0, 4.0 Hz, 1H), 7.54 (dd, *J* = 8.0, 2.0 Hz, 1H), 7.58 (s_{app}, 1H), 7.59 (d_{app}, *J* = 3.2 Hz, 1H), 7.77 (d, *J* = 2.4 Hz, 1H), 8.19 (dd, *J* = 8.4, 1.6 Hz, 1H), 8.80 (dd, *J* = 4.4, 2.0 Hz, 1H), 8.85 (dd, *J* = 6.0, 2.8 Hz, 1H), 10.16 (brs, 1H).

¹³C NMR (CDCl₃, 100.53 MHz) δ 27.19, 29.90, 45.25, 116.69, 119.98, 121.78, 122.23, 127.25, 127.93, 129.97, 132.52, 133.40, 134.24, 136.39, 138.29, 138.45, 139.03, 148.40, 166.38, 207.61.

IR (neat) 3339 w, 1715 m, 1671 m, 1521 s, 1476 m, 1325 m, 823 m, 774 m.

HRMS Calcd for C₂₀H₁₇BrN₂O₂: 396.0473; Found: 396.0471

Anal. Calcd for C₂₀H₁₇BrN₂O₂: C, 60.47; H, 4.31; N, 7.05. Found: C, 60.36; H, 4.17; N, 7.09. **COSY**

3-bromo-2,6-bis(3-oxobutyl)-N-(quinolin-8-yl)benzamide (6qa)

Rf 0.31(hexane/EtOAc = 60/40); Yellow oil

¹**H** NMR (CDCl₃, 399.78 MHz) δ 2.02 (s, 6H), 2.31 (s, 3H), 2.80-2.83 (m, 4H), 2.90-2.94 (m, 4H), 7.07 (d, J = 8.0 Hz, 1H), 7.17 (d, J = 8.0 Hz, 1H), 7.44 (dd, J = 4.0, 8.4 Hz, 1H), 7.57-7.59 (m, 2H), 8.18 (dd, J = 1.6, 8.0 Hz, 1H), 8.72 (dd, J = 2.0, 4.4 Hz, 1H), 8.88 (dd, J = 2.4, 6.4 Hz, 1H), 9.91(brs, 1H).

¹³C NMR (CDCl₃, 100.53 MHz) δ 19.09, 24.91, 27.28, 29.64, 28.92, 44.18, 45.50, 116.98, 121.69, 122.24, 127.35, 127.37, 127.99, 131.39, 133.99, 134.63, 135.34, 135.83, 136.48, 138.17, 138.34, 148.21, 168.75, 207.79.

IR (neat) 3339 w, 2961 w, 1714 m, 1667 m, 1597 m, 1520 s, 1483 s, 1423 m, 1325 m, 1241 m, 1170 m, 897 m.

HRMS Calcd for C₂₄H₂₃BrN₂O₃: 466.0892; Found: 466.0893.

5-chloro-2-(3-oxobutyl)-N-(quinolin-8-yl)benzamide (3ra)

Rf 0.42 (hexane/EtOAc = 70/30). White solid. **MP** = 60 °C.

¹**H** NMR (CDCl₃, 399.78 MHz) δ 2.10 (s, 3H), 2.89 (t, J = 7.6 Hz, 1H), 3.08 (t, J = 7.6 Hz, 1H), 7.28 (d, J = 8.4 Hz, 1H), 7.38 (dd, J = 8, 1.6 Hz, 2H), 7.46 (dd, J = 8.8.4.8 Hz, 1H), 7.57 (s_{app}, 1H), 7.58 (d_{app}, J = 4.4 Hz, 1H), 7.62 (d, J = 2.4 Hz, 1H), 8.18 (dd, J = 8, 1.2 Hz, 1H), 8.73 (dd, J = 4.4, 1.6 Hz, 1H), 8.83 (t_{app}, J = 4.8 Hz, 1H), 8.18 (dd, J = 8.4, 2 Hz, 1H), 8.79 (dd, J = 4.4, 2 Hz, 1H), 8.85 (dd, J = 6.4, 2.8 Hz, 1H), 10.17 (brs, 1H).

¹³C NMR (CDCl₃, 100.53 MHz) δ 27.11, 29.89, 45.32, 116.67, 121.75, 122.20, 127.12, 127.23, 127.91, 130.43, 132.11, 132.23, 134.20, 136.40, 137.88, 138.39, 138.52, 148.35, 166.49, 207.62.

MS m/z (relative intensity, %) 352 (M⁺, 30), 309 (100), 311 (33), 291 (12), 209 (11), 165 (86), 144 (25), 43 (26).

IR (neat) 3341 w, 3055 w, 1713 m, 1673 m, 1522 s, 1481 m, 1326 m, 1162 w, 914 w, 825 m. **HRMS** Calcd for $C_{20}H_{17}ClN_2O_2$: 352.0979; Found: 352.0979.

3-chloro-2,6-bis(3-oxobutyl)-N-(quinolin-8-yl)benzamide (6ra)

Rf 0.47 (hexane/EtOAc = 50/50). Yellow oil.

¹**H** NMR (CDCl₃, 399.78 MHz) δ 2.03 (s, 3H), 2.04 (s, 3H), 2.80-3.03 (m, 8H), 7.12 (d, J = 8 Hz, 1H), 7.36 (d, J = 8.4 Hz, 1H), 7.45 (dd, J = 8.4, 4 Hz, 1H), 7.58 (d, J = 4.4 Hz, 2H), 8.18 (d, J = 8 Hz, 1H), 8.73 (d, J = 4.4 Hz, 1H), 8.851 (quintet_{app}, J = 4.8 Hz, 1H), 9.93 (brs, 1H).

¹³C NMR (CDCl₃, 100.53 MHz) δ 27.05, 29.59, 29.81, 32.65, 43.63, 44.99, 98.45, 117.08, 121.76, 122.51, 127.27, 127.96, 129.37, 133.66, 136.47, 138.31 (two overlapping peaks), 138.67, 139.85, 140.51, 148.31, 167.15, 206.99, 207.17.

IR (neat) 3338 w, 2963 w, 1713 m, 1671 m, 1519 s, 1482 m, 1454 w, 1325 m, 1163 w, 912 w, 826 m.

MS *m/z* (relative intensity, %) 422 (M⁺, 40), 379 (100), 364 (16), 279 (19), 235 (80), 219 (14), 193 (12), 177 (21), 144 (56), 116 (11), 43 (56).

HRMS Calcd for C₂₄H₂₃ClN₂O₃: 422.1397; Found: 422.1395.

3-fluoro-2-(3-oxobutyl)-N-(quinolin-8-yl)benzamide (3'sa)

See also part X for the cleavage of the 8-aminoquinoline moiety.

Rf 0.45(hexane/EtOAc = 70/30). White solid. **Mp** = 110 °C.

¹**H** NMR (CDCl₃, 399.78 MHz) δ 2.14 (s, 3H), 2.92 (t, J = 8.8 Hz, 1H), 3.12 (t, J = 6.8 Hz, 1H), 7.18 (t, J = 8.8 Hz, 1H), 7.33 (dt, J = 8, 5.2 Hz, 1H), 7.46 (d, J = 8.4 Hz, 1H), 7.47 (d, J = 8 Hz, 1H), 7.56 (dd, J = 8.4, 2.4 Hz, 1H), 7.59 (t, J = 8.8 Hz, 1H), 7.62 (d, J = 2.4 Hz, 1H), 8.18 (dd, J = 8, 1.2 Hz, 1H), 8.73 (dd, J = 4.4, 1.6 Hz, 1H), 8.83 (t_{app}, J = 4.8 Hz, 1H), 8.18 (dd, J = 8.4, 2 Hz, 1H), 8.79 (dd, J = 4.4, 2 Hz, 1H), 8.85 (dd, J = 6.4, 2.8 Hz, 1H), 10.17 (brs, 1H).

¹³C NMR (CDCl₃, 100.53 MHz) δ 20.86 (d, J = 2.8 Hz), 29.68, 44.12, 116.75, 117.35 (d, J = 23 Hz), 121.72, 122.14, 122.79 (d, J = 2.9 Hz), 127.34, 127.43 (d, J = 19 Hz), 127.89, 127.94 (d, J = 8.5 Hz), 134.30, 136.50, 138.39, 138.84 (d, J = 3.8 Hz), 148.26, 161.55 (d, J = 246 Hz), 166.61 (d, J = 3.9 Hz), 207.61.

IR (neat) 3342 w, 1712 m, 1672 m, 1521 s, 1484 m, 1424 w, 1326 m, 1265 m, 1161 w.

MS m/z (relative intensity, %) 336 (M⁺, 37), 293 (100), 275 (15), 193 (14), 149 (97), 144 (25), 101 (12), 43 (21).

HRMS Calcd for C₂₀H₁₇FN₂O₂: 336.1274; Found: 336.1270. **COSY**

3-fluoro-2,6-bis(3-oxobutyl)-N-(quinolin-8-yl)benzamide (6sa)

Rf 0.45(hexane/EtOAc = 50/50); Yellow oil.

¹**H** NMR (CDCl₃, 399.78 MHz) δ 2.03 (s, 6H), 2.80-2.96 (m, 8H), 7.04 (t, J = 9.2 Hz, 1H), 7.14 (dd, J = 8.8, 5.6 Hz, 1H), 7.45 (dd, J = 8, 4 Hz, 1H), 7.58 (d, J = 4.4 Hz, 2H), 8.2 (dd, J = 8.4, 2 Hz, 1H), 8.74 (dd, J = 4.4, 2 Hz, 1H), 8.86 (quintet, J = 4.4 Hz, 1H), 9.96 (brs, 1H). ¹³C NMR (CDCl₃, 100.53 MHz) δ 21.37, 26.91, 29.56, 29.83, 43.97, 45.32, 116.18 (d, J = 22 Hz), 117.12, 121.74, 122.49, 125.10 (d, J = 17.2 Hz), 127.28, 127.98, 129.12 (d, J = 7.7 Hz), 133.54 (d, J = 3.8 Hz), 133.70, 136.51, 138.28, 139.22 (d, J = 3.8 Hz), 148.28, 159.60 (d, J = 245 Hz), 166.76 (d J = 2.9 Hz), 207.19, 207.44.

IR (neat) 3335 w, 1712 m, 1671 m, 1519 s, 1478 s, 1421 w, 1325 m, 1266 m, 1163 m, 826 m. **MS** m/z (relative intensity, %) 406 (M⁺, 39), 363 (100), 263 (13), 219 (81), 203 (12), 159 (20), 144 (35), 43 (36).

HRMS Calcd for C₂₄H₂₃FN₂O₃: 406.1693; Found: 406.1694.

3,6-dimethyl-2-(3-oxobutyl)-N-(quinolin-8-yl)benzamide (8aa)

Rf 0.35 (hexane/EtOAc = 70/30). Yellow oil.

¹**H** NMR (CDCl₃, 399.78 MHz) δ 2.05 (s, 3H), 2.31 (s, 3H), 2.38 (s, 3H), 2.78-2.82 (m, 2H), 2.94 (t, *J* = 8.4 Hz, 2H), 7.05 (d, *J* = 8.0 Hz, 1H), 7.14 (d, *J* = 7.6 Hz, 1H), 7.44 (dd, *J* = 8.4, 4.4 Hz, 1H), 7.56 (d, *J* = 8 Hz, 1H), 7.60 (t, *J* = 8.4 Hz, 1H), 8.18 (dd, *J* = 8 Hz, 1H), 8.73 (d, *J* = 4 Hz, 1H), 8.93 (d, *J* = 7.2 Hz, 1H), 9.90 (brs, 1H).

¹³C NMR (CDCl₃, 100.53 MHz) δ 19.03, 19.15, 24.95, 29.65, 44.30, 116.84, 121.64, 122.03, 127.34, 127.96, 128.19, 131.10, 132.05, 133.89, 134.18, 135.70, 136.37, 138.38, 138.40, 148.21, 169.04, 207.92

IR (neat) 3345 w, 2953 w, 1715 w, 1673 m, 1520 s, 1483 m, 1424 w, 1326 w, 1163 w, 827 w.

HRMS Calcd for C₂₂H₂₂N₂O₂: 346.1681; Found: 346.1677.

3-bromo-6-methyl-2-(3-oxobutyl)-N-(quinolin-8-yl)benzamide (8ba)

Rf 0.25 (hexane/EtOAc = 70/30). White solid. **MP** = $120 \degree$ C

¹**H** NMR (CDCl₃, 399.78 MHz) δ 2.06 (s, 3H), 2.36 (s, 3H), 2.85-2.89 (m, 2H), 3.05 (t, *J* = 8 Hz, 2H), 7.00 (d, *J* = 8.4 Hz, 1H), 7.43 (dd, *J* = 8, 4 Hz, 1H), 7.50 (d, *J* = 8.4 Hz, 1H), 7.56-7.60 (m, 2H), 8.16 (dd, *J* = 8.4, 1.6 Hz, 1H), 8.73 (dd, *J* = 4, 1.2 Hz, 1H), 8.88 (dd, *J* = 6, 2.8 Hz, 1H), 9.90 (brs, 1H)

¹³C NMR (CDCl₃, 100.53 MHz) δ 19.08, 28.16, 29.55, 43.49, 116.91, 121.68, 122.11, 122.31, 127.20, 127.88, 129.84, 133.40, 133.77, 134.02, 136.36, 136.75, 138.28, 139.53, 148.28, 167.27, 207.21.

IR (neat) 3339 w, 1715 m, 1669 m, 1597 m, 1518 s, 1482 m, 1423 m, 1325 m, 1241 m, 1169 m, 826 m.

HRMS Calcd for C₂₁H₁₉BrN₂O₂: 410.0630; Found: 410.0627.

Anal. Calcd for C₂₁H₁₉BrN₂O₂: C, 61.33; H, 4.66; N, 6.81. Found: C, 61.32; H, 4.55; N, 6.80.

3,6-difluoro-2-(3-oxobutyl)-N-(quinolin-8-yl)benzamide (8ca)

Rf 0.2 (hexane/EtOAc = 70/30). White solid. **MP** = $132 \degree C$

¹**H** NMR (CDCl₃, 399.78 MHz) δ 2.09 (s, 3H), 2.87-2.89 (m, 2H), 3.01 (t, *J* = 7.2 Hz, 2H), 7.00 (td, *J* = 9.2, 4.4 Hz, 1H), 7.08 (td, *J* = 8.8, 4.4 Hz, 1H), 7.41 (dd, *J* = 8.4, 4.4 Hz, 1H), 7.53-7.57 (m, 2H), 8.13 (dd, *J* = 8.0, 1.2 Hz, 1H), 8.74 (dd, *J* = 4.4, 1.6 Hz, 1H), 8.86 (dd, *J* = 5.2, 3.2 Hz, 1H), 10.18 (brs, 1H)

¹³**C** NMR (CDCl₃, 100.53 MHz) δ 21.28, 29.54, 43.63, 114.84 (dd, J = 25.1, 9.0 Hz), 116.87, 117.47 (dd, J = 26.1, 9.0 Hz), 121.68, 122.41, 126.45 (dd, J = 20.1, 4.0 Hz), 127.12, 127.83, 128.49 (dd, J = 19.1, 3.0 Hz), 133.81, 136.29, 138.19, 148.29, 154.83 (dd, J = 221.1, 3.0 Hz), 157.2 (dd, J = 220.1, 2.0 Hz), 161.81 (d, J = 3.0 Hz), 207.02.

IR (neat) 3336 w, 1672 m, 1523 s, 1472 m, 1325 m, 1261 m, 824 m.

HRMS Calcd for C₂₀H₁₆F₂N₂O₂: 354.1180; Found: 354.1180.

Anal. Calcd for C₂₀H₁₆F₂N₂O₂: C, 67.79; H, 4.55; N, 7.91. Found: C, 67.92; H, 4.54; N, 7.86.

2-methyl-4-(3-oxobutyl)-3-(quinolin-8-ylcarbamoyl)phenyl acetate (8da)

Rf 0.34 (hexane/EtOAc = 60/40). White solid. **MP** = $130 \degree$ C.

¹**H** NMR (CDCl₃, 399.78 MHz) δ 2.04 (s, 3H), 2.23 (s, 3H), 2.33 (s, 3H), 2.84 (t, *J* = 7.2 Hz, 2H), 2.95 (t, *J* = 7.2 Hz, 2H), 7.05 (d, *J* = 8.0 Hz, 1H), 7.17 (d, *J* = 8.4 Hz, 1H), 7.45 (dd, *J* = 8.4, 4.4 Hz, 1H), 7.56-7.62 (m, 2H), 8.17 (d, *J* = 8.4 Hz, 1H), 8.74 (dd, *J* = 3.4, 0.8 Hz, 1H), 8.92 (dd, *J* = 6.0, 2.4 Hz, 1H), 9.97 (brs, 1H).

¹³C NMR (CDCl₃, 100.53 MHz) δ 13.24, 20.79, 27.19, 29.84, 45.44, 116.88, 121.74, 122.28, 122.93, 127.03, 127.24, 127.94, 128.12, 134.00, 135.65, 136.31, 138.41, 139.20, 147.68, 148.37, 167.45, 169.36, 207.62.

IR (neat) 3342 w, 3016 w, 1760 m, 1714 m, 1672 m, 1520 s, 1483 m, 1424 m, 1325 m, 1201 s, 897 w, 826 w.

HRMS Calcd for C₂₃H₂₂N₂O₄: 390.1580; Found: 390.1580

Anal. Calcd for C₂₃H₂₂N₂O₄: C, 70.75; H, 5.68; N, 7.17. Found: C, 70.64; H, 5.61; N, 7.12.

4-fluoro-2-methyl-6-(3-oxobutyl)-N-(quinolin-8-yl)benzamide (8ea)

Rf 0.28 (hexane/EtOAc = 70/30). Yellow oil.

¹**H** NMR (CDCl₃, 399.78 MHz) δ 2.06 (s, 3H), 2.42 (s, 3H), 2.82-2.87 (m, 2H), 2.92-2.97 (m, 2H), 6.82 (s, 1H), 6.85 (s, 1H), 7.45 (dd, J = 8.0, 4.0 Hz, 1H), 7.57-7.60 (m, 2H), 8.18 (dd, J = 8.0, 1.6 Hz, 1H), 8.75 (dd, J = 4.0, 1.6 Hz, 1H), 8.91 (dd, J = 6.4, 2.0 Hz, 1H), 9.93 (brs, 1H) ¹³**C** NMR (CDCl₃, 100.53 MHz) δ 19.62, 27.45, 29.85, 45.10, 113.63 (d, J = 21.1 Hz), 115.02 (d, J = 21.1 Hz), 116.86, 121.74, 122.24, 127.31, 127.99, 134.00, 134.03, 136.42, 137.54 (d, J = 9.0 Hz), 138.41, 140.70 (d, J = 8.0 Hz), 148.34, 162.62 (d, J = 247.3 Hz), 167.84, 207.30 **IR** (neat) 3344 w, 2925 w, 1714 m, 1671 m, 1598 m, 1519 s, 1482 m, 1325 m, 1140 m, 979 w, 826 m.

HRMS Calcd for C₂₁H₁₉FN₂O₂: 350.1431; Found: 350.1430.

2-(3-oxobutyl)-N-(quinolin-8-yl)-1-naphthamide (8fa)

Rf 0.25 (hexane/EtOAc = 70/30). White solid. **MP** = $140 \degree C$

¹**H** NMR (CDCl₃, 399.78 MHz) δ 2.08 (s, 3H), 2.95 (t, *J* = 7.6 Hz, 2H), 3.16 (t, *J* = 7.6 Hz, 2H), 7.40-7.50 (m, 4H), 7.60 (dd, *J* = 8.4, 1.2 Hz, 1H), 7.65 (t, *J* = 8 Hz, 1H), 7.84-7.89 (m, 2H), 7.98-8.02 (m, 1H), 8.17 (dd, *J* = 8.4, 1.6 Hz, 1H), 8.66 (dd, *J* = 4.4, 2.0 Hz, 1H), 9.10 (dd, *J* = 7.6, 1.6 Hz, 1H), 10.16 (brs, 1H).

¹³C NMR (CDCl₃, 100.53 MHz) δ 27.95, 29.84, 45.43, 116.94, 121.67, 122.22, 124.77, 125.82, 127.11, 127.34, 127.39, 127.98, 127.98, 129.56, 130.17, 131.98, 134.22, 134.27, 135.57, 136.34, 138.37, 148.23, 168.06, 207.54.

IR (neat) 3343 w, 3049 w, 1714 m, 1670 m, 1518 s, 1482 m, 1423 m, 1325 m, 1155 w, 889 w, 825 m.

HRMS Calcd for C₂₄H₂₀N₂O₂: 368.1525; Found: 368.1528.

Anal. Calcd for C₂₄H₂₀N₂O₂: C, 78.24; H, 5.47; N, 7.60. Found: C, 78.21; H, 5.37; N, 7.59.

3-(3-oxobutyl)-N-(quinolin-8-yl)quinoline-4-carboxamide (8ga)

Rf 0.28 (EtOAc). Yellow solid. **MP** = $167 \degree$ C.

¹**H** NMR (CDCl₃, 399.78 MHz) δ 2.08 (s, 3H), 2.95 (t, *J* = 7.6 Hz, 2H), 3.16 (t, *J* = 7.6 Hz, 2H), 7.42 (dd, *J* = 8.4, 4 Hz, 1H), 7.53-7.55 (m, 1H), 7.60-7.72 (m, 3H), 7.97 (dd, *J* = 8, 0.8 Hz, 1H), 8.14 (d, *J* = 8 Hz, 1H), 8.18 (dd, *J* = 8.4, 2 Hz, 1H), 8.66 (dd, *J* = 4.4, 2.0 Hz, 1H), 8.91 (s, 1H), 9.01 (dd, *J* = 6.8, 2.4 Hz, 1H), 10.19 (brs, 1H).

¹³C NMR (CDCl₃, 100.53 MHz) δ 25.26, 29.87, 44.90, 117.18, 121.88, 122.77, 124.22, 124.68, 127.29, 127.81, 128.01, 129.40, 129.60, 129.86, 133.78, 136.42, 138.37, 141.18, 146.89, 148.50, 152.31, 165.46, 206.80.

IR (neat) 3060 w, 2953 w, 1583 m, 1523 m, 1461 m, 1425 m, 1266 m, 1128 m, 839 s, 754 s. **HRMS** Calcd for $C_{23}H_{19}N_3O_2$: 369.1477; Found: 369.1479

Anal. Calcd for C₂₃H₁₉N₃O₂: C, 74.78; H, 5.18; N, 11.37. Found: C, 74.46; H, 5.17; N, 11.35.

2,4-bis(3-oxobutyl)-N-(quinolin-8-yl)thiophene-3-carboxamide (8ha)

Rf 0.4 (hexane/EtOAc = 50/50). Yellow oil.

¹**H** NMR (CDCl₃, 399.78 MHz) δ 2.02 (s, 3H), 2.05 (s, 3H) 2.77 (t, *J* = 7.2 Hz, 2H), 2.88 (t, *J* = 7.2 Hz, 2H), 3.00 (t, *J* = 7.6 Hz, 2H), 3.25 (t, *J* = 7.6 Hz, 2H), 6.80 (s, 1H), 7.39 (dd, *J* = 8.0, 4.0 Hz, 1H), 7.48-7.54 (m, 2H), 8.11 (dd, *J* = 8.0, 1.6 Hz, 1H), 8.72 (dd, *J* = 4.0, 1.6 Hz, 1H), 8.83 (dd, *J* = 6.8, 1.6 Hz, 1H), 10.06 (brs, 1H).

¹³C NMR (CDCl₃, 100.53 MHz) δ 22.89, 23.52, 29.59, 43.66, 44.87, 116.46, 119.33, 121.53, 121.86, 127.01, 127.74, 133.98, 134.73, 136.16, 138.26, 139.78, 144.94, 148.12, 163.81, 206.43, 207.49.

IR (neat) 3353 w, 2922 w, 1714 m, 1665 m, 1520 s, 1483 m, 1424 m, 1326 m, 1163 w, 827 w.

HRMS Calcd for C₂₂H₂₂N₂O₃S: 394.1351; Found: 394.1353.

1-methyl-2-(3-oxobutyl)-N-(quinolin-8-yl)-1H-indole-3-carboxamide (8ia)

A further recrystallisation from EtOAc was done to remove trace of impurity.

Rf 0.44 (hexane/EtOAc = 50/50). brown solid. **MP** = $145 \text{ }^{\circ}\text{C}$

¹**H NMR** (CDCl₃, 399.78 MHz) δ 2.19 (s, 3H), 3.03 (t, J = 8 Hz, 2H), 3.50 (t, J = 8 Hz, 2H), 3.80 (s, 3H), 7.29-7.50 (m, 5H), 7.58 (t, J = 7.6 Hz, 1H), 8.16 (dd, J = 8, 1.6 Hz, 1H), 8.36 (d, J = 7.6 Hz, 1H), 8.84 (dd, J = 4, 1.2 Hz, 1H), 8.93 (dd, J = 7.2, 0.8 Hz, 1H), 10.62 (brs, 1H). ¹³**C NMR** (CDCl₃, 100.53 MHz) δ 19.81, 29.64, 29.88, 43.09, 108.14, 109.90, 116.03, 119.24, 120.76, 121.47, 121.72, 122.00, 124.78, 127.41, 128.00, 135.47, 136.22, 136.54, 138.70, 146.42, 148.13, 164.05, 207.69.

IR (neat) 3372 w, 3052 w, 1714 m, 1648 m, 1518 s, 1472 m, 1325 m, 1108 m, 824 m. **HRMS** Calcd for C₂₃H₂₁N₃O₂: 371.1634; Found: 371.1632.

1-methyl-2,5-bis(3-oxobutyl)-N-(quinolin-8-yl)-1H-indole-3-carboxamide (8'ia)

Obtained as side product of product 8ia

Rf 0.25 (hexane/EtOAc = 50/50). Yellow oil.

¹**H** NMR (CDCl₃, 399.78 MHz) δ 1.84 (s, 3H), 2.11 (s, 3H), 2.76 (t, *J* = 8.0 Hz, 2H), 2.97 (t, *J* = 8.4 Hz, 2H), 3.25 (t, *J* = 8.4 Hz, 2H), 3.27 (t, *J* = 9.2 Hz, 2H), 3.76 (s, 3H), 7.00 (dd, *J* = 6.4, 1.2 Hz, 1H), 7.19 (t, *J* = 8.8 Hz, 1H), 7.23 (dd, *J* = 8.4, 2 Hz, 1H), 7.44 (dd, *J* = 8, 4 Hz, 1H), 7.55 (dd, *J* = 8.4, 1.6 Hz, 1H), 7.60 (t, *J* = 8 Hz, 1H), 8.18 (dd, *J* = 8, 1.2 Hz, 1H), 8.70 (dd, *J* = 4, 1.6 Hz, 1H), 8.94 (d, *J* = 7.6 Hz, 1H), 10.07 (brs, 1H).

¹³C NMR (CDCl₃, 100.53 MHz) δ 19.39, 28.38, 29.48, 29.89 (two overlapping peaks), 43.57, 44.63, 107.71, 111.28, 116.59, 121.60, 121.71, 121.98, 122.28, 123.44, 127.58, 128.06, 133.25, 134.47, 136.68, 136.92, 138.14, 140.25, 147.97, 166.07, 206.81, 208.43.

IR (neat) 3359 w, 230 w, 1714 m, 1659 m, 1518 s, 1481 m, 1425 w, 1324 w, 1161 w, 828 w. **MS** m/z (relative intensity, %) 441 (M⁺, 21), 298 (100), 254 (47), 212 (11), 196 (13), 170 (37), 43 (12)

HRMS Calcd for C₂₇H₂₇N₃O₃: 441.2052; Found: 441.2053.

2-methyl-6-(3-oxooctyl)-N-(quinolin-8-yl)benzamide (3ab)

Rf 0.42 (hexane/EtOAc = 80.20). Yellow oil.

¹**H** NMR (CDCl₃, 399.78 MHz) δ 0.81 (t, J = 8.0 Hz, 3H), 1.09-1.22 (m, 4H), 1.45 (quintet, J = 7.6 Hz, 2H), 2.27 (t, J = 7.6 Hz, 2H), 2.43 (s, 3H), 2.81 (t, J = 7.8 Hz, 2H), 2.97 (t, J = 8 Hz, 2H), 7.19 (d, J = 7.2 Hz, 1H), 7.19 (d, J = 7.2 Hz, 1H), 7.27 (t, J = 7.6 Hz, 1H), 7.45 (dd, J = 8.4 Hz, 1H), 7.57 (dd, J = 8.4, 2.0 Hz, 1H), 7.60 (t, J = 8.4 Hz, 1H), 8.18 (dd, J = 8.4, 2 Hz, 1H), 8.73 (dd, J = 4.0, 1.6 Hz, 1H), 8.95 (dd, J = 7.2, 2.0 Hz, 1H), 9.94 (brs, 1H).

¹³C NMR (CDCl₃, 100.53 MHz) δ 13.84, 19.44, 22.31, 23.40, 27.73, 31.25, 42.74, 44.61, 116.83, 121.67, 122.07, 126.98, 127.35, 127.99, 128.22, 129.21, 134.19, 134.64, 136.37, 137.79, 137.96, 138.44, 148.26, 168.59, 210.31.

IR (neat) 3346 w, 2953 w, 2929 w, 1712 m, 1674 m, 1520 s, 1482 m, 1325 m, 1127 m, 826 m.

HRMS Calcd for C₂₅H₂₈N₂O₂: 388.2151; Found: 388.2154.

2-(3-cyclohexyl-3-oxopropyl)-6-methyl-N-(quinolin-8-yl)benzamide (3ac)

Rf 0.42 (hexane/EtOAc = 80.20). Yellow oil.

¹**H** NMR (CDCl₃, 399.78 MHz) δ 1.06-1.22 (m, 5H), 1.55-1.69 (m, 5H), 2.19 (tt, *J* = 10.8, 3.2 Hz, 1H), 2.43 (s, 3H), 2.83 (t, *J* = 7.6 Hz, 2H), 2.95 (t, *J* = 8.4 Hz, 2H), 7.13 (d, *J* = 7.2 Hz, 1H), 7.13 (d, *J* = 7.2 Hz, 1H), 7.27 (t, *J* = 7.6 Hz, 1H), 7.45 (dd, *J* = 8.4, 4.4 Hz, 1H), 7.55-7.62 (m, 2H), 8.18 (dd, *J* = 8.4, 1.6 Hz, 1H), 8.73 (dd, *J* = 4.4, 2 Hz, 1H), 8.95 (dd, *J* = 7.2, 1.6 Hz, 1H), 9.95 (brs, 1H).

¹³C NMR (CDCl₃, 100.53 MHz) δ 19.40, 25.48, 25.69, 27.82, 28.19, 42.61, 50.69, 116.79, 121.64, 122.03, 126.97, 127.32, 127.96, 128.16, 129.18, 134.19, 134.59, 136.33, 137.79, 138.12, 138.40, 148.23, 168.59, 213.00.

IR (neat) 3348 w, 2929 w, 2849 w, 1673 m, 1519 s, 1481 m, 1325 m, 1263 w, 1127 w, 826 w.

HRMS Calcd for C₂₆H₂₈N₂O₂: 400.2151; Found: 400.2148.

2-methyl-6-(2-methyl-3-oxobutyl)-N-(quinolin-8-yl)benzamide (3ad)

Rf 0.28 (hexane/EtOAc = 80/20). Yellow oil.

¹**H** NMR (CDCl₃, 399.78 MHz) δ 1.04 (d, J = 6.8 Hz, 3H), 2.02 (s, 3H), 2.43 (s, 3H), 2.60 (dd, J = 14.0, 8.0 Hz, 1H), 3.03 (sextet, J = 6.8 Hz, 1H), 3.17 (dd, J = 13.6, 6.0 Hz, 1H), 7.08 (d, J = 7.6 Hz, 1H), 7.15 (d, J = 7.6 Hz, 1H), 7.27 (t, J = 7.6 Hz, 1H), 7.46 (dd, J = 8.0, 4.0 Hz, 1H), 7.57-7.64 (m, 2H), 8.19 (dd, J = 8.4, 1.6 Hz, 1H), 8.74 (dd, J = 4.4, 1.6 Hz, 1H), 8.97 (dd, J = 7.2, 1.6 Hz, 1H), 9.96 (brs, 1H)

¹³C NMR (CDCl₃, 100.53 MHz) δ 16.05, 19.43, 28.76, 36.22, 48.11, 116.65, 121.65, 122.05, 127.24, 127.63, 127.90, 128.38, 128.88, 134.10, 134.60, 136.29, 136.37, 137.93, 138.34, 148.26, 168.46, 212.02.

IR (neat) 3345 w, 2975 w, 1672 m, 1519 s, 1481 m, 1325 m, 12220 w, 1127 w, 826 w. **HRMS** Calcd for $C_{22}H_{22}N_2O_2$: 346.1681; Found: 346.1681.

2-methyl-6-(4-oxopentan-2-yl)-N-(quinolin-8-yl)benzamide (3ae)

Rf 0.20 (hexane/EtOAc = 80/20). Yellow oil.

¹**H** NMR (CDCl₃, 399.78 MHz) δ 1.29 (d, J = 6.8 Hz, 3H), 2.00 (s, 3H), 2.42 (s, 3H), 2.63 (dd, J = 16.4, 8.0 Hz, 1H), 2.94 (dd, J = 16.0, 6.0 Hz, 1H), 3.53 (sextet, J = 6.8 Hz, 1H), 7.12 (d, J = 7.6 Hz, 1H), 7.16 (d, J = 7.16 Hz, 1H), 7.31 (t, J = 7.6 Hz, 1H), 7.42 (dd, J = 8.0, 4.0 Hz, 1H), 7.56 (dd, J = 8.4, 1.2 Hz, 1H), 7.60 (t, J = 8.4 Hz, 1H), 8.16 (dd, J = 8.4, 1.6 Hz, 1H), 8.74 (dd, J = 4.4, 1.6 Hz, 1H), 9.00 (dd, J = 7.6, 1.6 Hz, 1H), 10.06 (brs, 1H).

¹³C NMR (CDCl₃, 100.53 MHz) δ 19.46, 22.12, 29.76, 32.32, 51.92, 116.83, 121.60, 122.00, 123.11, 127.28, 127.94, 128.19, 129.27, 134.24, 134.54, 136.25, 137.27, 138.46, 142.62, 148.24, 168.61, 207.35.

IR (neat) 3339 w, 2965 w, 1671 m, 1519 s, 1482 m, 1325 m, 1218 w, 1165 w, 827 w.

MS m/z (relative intensity, %) 346 (M⁺, 31), 303 (55), 288 (29), 203 (57), 159 (100), 143 (85), 128 (12), 115 (16), 91 (14), 43 (36).

HRMS Calcd for C₂₂H₂₂N₂O₂: 346.1681; Found: 346.1681.

2-(4-oxopentan-2-yl)-N-(quinolin-8-yl)-5-(trifluoromethyl)benzamide (3ce)

Rf 0.25 (hexane/EtOAc = 80/20). Yellow oil.

¹**H** NMR (CDCl₃, 399.78 MHz) δ 1.34 (d, *J* = 6.8 Hz, 3H), 2.07 (s, 3H), 2.72 (dd, *J* = 16.4, 7.6 Hz, 1H), 2.99 (dd, *J* = 16.8, 6.8 Hz, 1H), 3.9 (sextet, *J* = 7.6 Hz, 1H), 7.45 (dd, *J* = 8, 4 Hz, 1H), 7.49 (d, *J* = 8 Hz, 1H), 7.57-7.62 (m, 2H), 7.69 (dd, *J* = 8.4, 1.2 Hz, 1H), 7.85 (s, 1H), 8.18 (dd, *J* = 8.4, 2.0 Hz, 1H), 8.78 (dd, *J* = 4, 1.2 Hz, 1H), 8.92 (dd, *J* = 6.4, 2.4 Hz, 1H), 10.30 (brs, 1H).

¹³**C NMR** (CDCl₃, 100.53 MHz) δ 21.80, 29.89, 31.51, 51.50, 116.97, 116.97, 121.73, 122.32, 123.70 (q, J = 271 Hz), 124.16 (d, J = 4 Hz), 126.98 (d, J = 2.8 Hz), 127.22, 127.96, 128.64 (q, J = 32.5 Hz), 134.27, 136.36, 137.30, 138.48, 148.38, 148.45, 166.96, 206.79.

IR (neat) 3341 w, 2966 w, 1715 m, 1675 m, 1524 s, 1485 m, 1335m, 1326 m, 1170 m, 1124 m, 826 m.

MS m/z (relative intensity, %) 400 (M⁺, 25), 357 (100), 213 (64), 145 (53), 116 (10), 43 (25). **HRMS** Calcd for C₂₃H₁₉F₃N₂O₂: 400.1399; Found: 400.1401. 2-methyl-6-(3-oxo-1-phenylbutyl)-N-(quinolin-8-yl)benzamide (3af)

Rf 0.25 (hexane/EtOAc = 70/30). Yellow oil.

¹**H** NMR (CDCl₃, 399.78 MHz) δ 2.03 (s, 3H), 2.42 (s, 3H), 3.19 (dd, *J* = 16.4, 8.4 Hz, 1H), 3.27 (dd, *J* = 17.2, 7.6 Hz, 1H), 4.89 (t, *J* = 11.6 Hz, 1H), 6.96-7.30 (m, 8H), 7.42 (dd, *J* = 8, 4.4 Hz, 1H), 7.57 (dd, *J* = 5.6, 1.2 Hz, 1H), 7.64 (t, *J* = 3.6 Hz, 1H), 8.16 (dd, *J* = 8.0, 1.2 Hz, 1H), 8.6 (d, *J* = 2.8 Hz, 1H), 9.02 (dd, *J* = 8, 1.6 Hz, 1H), 9.88 (brs, 1H).

¹³C NMR (CDCl₃, 100.53 MHz) δ 19.51, 29.79, 42.91, 50.07, 116.80, 121.50, 121.98, 124.73, 126.18, 127.27, 127.60, 127.86, 128.31, 128.48, 129.17, 134.20, 134.81, 136.16, 137.66, 138.38, 140.44, 142.61, 148.07, 168.41, 206.47.

IR (neat) 3342 w, 3061 w 2953 w, 1714 m, 1672 m, 1521 s, 1483 m, 1326 m, 1161 w, 898 w, 827 m.

MS m/z (relative intensity, %) 408 (M⁺, 36), 365 (35), 221 (100), 207 (86), 178 (15), 145 (16).

HRMS Calcd for C₂₇H₂₄N₂O₂: 408.1838; Found: 408.1842.

2-methyl-6-(3-oxo-3-phenylpropyl)-N-(quinolin-8-yl)benzamide (3ag)

Rf 0.3 (hexane/EtOAc = 85/15). White solid. **MP** = $130 \degree$ C.

¹**H** NMR (CDCl₃, 399.78 MHz) δ 2.45 (s, 3H), 3.14 (t, *J* = 8.4 Hz, 2H), 3.40 (t, *J* = 7.6 Hz, 2H), 7.16 (d, *J* = 7.6 Hz, 1H), 7.21 (d, *J* = 7.6 Hz, 1H), 7.28-7.33 (m, 3H), 7.44-7.47 (m, 2H), 7.56-7.63 (m, 2H), 7.82 (d, *J* = 7.2 Hz, 1H), 8.19 (dd, *J* = 8.4, 1.6 Hz, 1H), 8.71(dd, *J* = 4.4, 1.6 Hz, 1H), 8.97 (dd, *J* = 7.2, 2.0 Hz, 1H), 10.02 (brs, 1H)

¹³C NMR (CDCl₃, 100.53 MHz) δ 19.47, 28.47, 41.14, 116.95, 121.66, 122.11, 127.16, 127.35, 127.98, 128.09, 128.33, 128.38, 129.31, 132.90, 134.16, 134.66, 136.41, 136.51, 137.88, 138.03, 138.38, 148.26, 168.69, 199.21

IR (neat) 3345 w, 3060 w, 1675 m, 1520 s, 1482 m, 1325 m, 1127 w, 898 w, 826 m.

HRMS Calcd for C₂₆H₂₂N₂O₂: 394.1681; Found: 394.1680

Anal. Calcd for C₂₆H₂₂N₂O₂: C, 79.16; H, 5.62; N, 7.10. Found: C, 78.89; H, 5.58; N, 7.31.

2-methylene-1,5-diphenylpentane-1,5-dione (9g)

Rf 0.42 (hexane/EtOAc = 85/15). Yellow oil ¹**H** NMR (CDCl₃, 399.78 MHz) δ 2.91 (t, *J* = 7.2 Hz, 2H), 3.24 (t, *J* = 7.2 Hz, 2H), 5.67 (s, 1H), 5.96 (d, *J* = 0.8 Hz, 1H), 7.41-7.47 (m, 4H), 7.51-7.57 (m, 2H), 7.73 (d, *J* = 8.4 Hz, 2H), 7.97 (d, *J* = 8.4 Hz, 2H). ¹³**C** NMR (CDCl₃, 100.53 MHz) δ 27.32, 37.18, 127.30 (vinylic CH₂), 128.06, 128.18, 128.59, 129.46, 132.21, 133.08, 136.70, 137.71, 146.71, 198.11, 199.23. **IR** (neat) 1683 s, 1652 s, 1447 m, 1274 m, 1177 w, 973 m, 824 m. **HRMS** Calcd for C₁₈H₁₆O₂: 264.1150; Found: 264.1150.

2-(3-oxo-3-phenylpropyl)-N-(quinolin-8-yl)-5-(trifluoromethyl)benzamide (3cg)

Rf 0.34 (hexane/EtOAc = 85/15). White solid. **MP** = $140 \degree C$

¹**H** NMR (CDCl₃, 399.78 MHz) δ 3.37 (t, *J* = 8 Hz, 2H), 3.50 (t, *J* = 7.6 Hz, 2H), 7.37 (t, *J* = 7.6 Hz, 2H), 7.44 (dd, *J* = 8.4, 4.4 Hz, 1H), 7.50 (t, *J* = 7.2 Hz, 1H), 7.56-7.59 (m, 3H), 7.69 (d, *J* = 8 Hz, 1H), 7.93 (s, 2H), 7.95 (s, 1H), 8.17 (dd, *J* = 8.4, 1.2 Hz, 1H), 8.74 (dd, *J* = 4, 1.2 Hz, 1H), 8.90 (dd, *J* = 6.8, 2.8 Hz, 1H), 10.26 (brs, 1H).

¹³C NMR (CDCl₃, 100.53 MHz) δ 28.14, 40.39, 116.80, 121.75, 122.33, 123.74 (q, *J* = 271 Hz), 124.10(d, *J* = 3.8 Hz), 127.02 (d, *J* = 2.8 Hz), 127.20, 127.90, 128.02, 128.44, 128.87 (q, *J* = 33 Hz), 131.48, 133.03, 134.15, 136.35, 136.46, 137.33, 138.41, 144.21, 148.40, 166.64, 198.63.

IR (neat) 3348 w, 3061 w, 1664 m, 1597 m, 1524 m, 1325 m, 1239 s, 1169 s, 1124 m, 992 m, 827 m.

HRMS Calcd for C₂₆H₁₉F₃N₂O₂: 448.1399; Found: 448.1400.

Anal. Calcd for C₂₆H₁₉F₃N₂O₂: C, 69.64; H, 4.27; N, 6.25. Found: C, 69.73; H, 4.19; N, 6.33.

2-(3-(4-methoxyphenyl)-3-oxopropyl)-6-methyl-N-(quinolin-8-yl)benzamide (3ah)

Rf 0.2 (hexane/EtOAc = 80/20). White solid. **Mp** = 143 °C.

¹**H** NMR (CDCl₃, 399.78 MHz) δ 2.45 (s, 3H), 3.12 (t, J = 8.4 Hz, 2H), 3.33 (t, J = 7.2 Hz, 1H), 3.79 (s, 3H), 6.75 (d, J = 8.4 Hz, 2H), 6.16 (d, J = 7.6 Hz, 1H), 7.21 (d, J = 7.6 Hz, 1H), 7.30 (t, J = 8 Hz, 1H), 7.43 (dd, J = 8.4, 4.8 Hz, 1H), 7.57 (d, J = 6.8 Hz, 1H), 7.60 (t, J = 8.4 Hz, 2H), 7.87 (d, J = 8.8 Hz, 2H), 8.18 (d, J = 8 Hz, 1H), 8.71 (d, J = 4.8 Hz, 1H), 8.98 (d, J = 7.2 Hz, 1H), 10.00 (s, 1H).

¹³C NMR (CDCl₃, 100.53 MHz) δ 19.46, 28.81, 40.88, 55.34, 113.47, 116.94, 121.67, 122.08, 127.18, 127.35, 127.99, 128.28, 129.31, 129.63, 130.40, 134.22, 134.64, 136.38, 137.86, 138.14, 138.42, 148.29, 163.25, 168.76, 197.90.

IR (neat) 3335 w, 1672 m, 1598 m, 1520 s, 1482 m, 1259 m, 826 m.

MS m/z (relative intensity, %) 424 (M⁺, 20), 289 (34), 281 (47), 145 (42), 144 (18), 135 (100).

HRMS Calcd for C₂₇H₂₄N₂O₃: 424.1787; Found: 424.1788.

(E)-1,6-bis(4-methoxyphenyl)hex-2-ene-1,6-dione (9h)

Isolated by HPLC in 8 % yield as a side product of the reaction of **2h** with **1a**.

Rf 0.24 (hexane/EtOAc = 80/20). Green solid. Mp = 70 °C.

¹**H** NMR (CDCl₃, 399.78 MHz) δ 2.88 (t, *J* = 7.2 Hz, 2H), 3.16 (t, *J* = 7.6 Hz, 1H), 3.85 (s, 3H), 3.86 (s, 3H), 5.57 (s, 1H), 5.84 (d, *J* = 0.8 Hz, 1H), 6.91 (d, *J* = 9.2 Hz, 4H), 7.78 (d, *J* = 12 Hz, 2H), 7.95 (d, *J* = 9.2 Hz, 2H).

¹³C NMR (CDCl₃, 100.53 MHz) δ 28.04, 36.82, 55.43, 113.47, 113.69, 124.85, 129.83, 130.16, 130.37, 131.97, 147.00, 163.14, 163.43, 196.98, 197.88.

IR (neat) 2929 w, 2837 w, 1673 m, 1597 s, 1508 m, 1254 s, 1219 m, 1167 s, 1027 m, 980 w.

MS *m*/*z* (relative intensity, %) 324 (M⁺, 15), 189 (55), 135 (100), 77 (12).

HRMS Calcd for C₂₀H₂₀O₄: 324.1362; Found: 324.1360.

2-(3-(furan-2-yl)-3-oxopropyl)-6-methyl-N-(quinolin-8-yl)benzamide (3ai)

Rf 0.17 (hexane/EtOAc = 80/20). White solid. **Mp** = $120 \degree$ C.

¹**H NMR** (CDCl₃, 399.78 MHz) δ 2.44 (s, 3H), 3.11-3.16 (m, 2H), 3.20-3.25 (m, 2H), 6.34-6.36 (m, 1H), 7.10-7.19 (m, 3H),7.24-7.29 (m, 1H), 7.36-7.41 (m, 2H), 7.53-7.59 (m, 2H), 8.11-8.14 (m, 1H), 8.67-8.70 (m, 1H), 8.97 (dd, *J* = 7.2, 1.6 Hz, 1H), 10.00 (brs, 1H).

¹³C NMR (CDCl₃, 100.53 MHz) δ 19.33, 28.18, 40.58, 111.85, 116.63, 117.34, 121.55, 121.99, 126.97, 127.10, 127.80, 128.25, 129.17, 134.05, 134.45, 136.19, 137.47, 137.68, 138.26, 146.17, 148.16, 152.10, 168.44, 188.04.

IR (neat) 3343 w, 1671 s, 1520 s, 1482 m, 1468 m, 1326 m, 1127 w, 898 w, 826 m.

MS *m*/*z* (relative intensity, %) 384 (M⁺, 55), 289 (38), 274 (23), 241 (65), 197 (10), 145 (70), 129 (14), 115 (11), 95 (100).

HRMS Calcd for C₂₄H₂₀N₂O₃: 384.1474; Found: 384.1477.

1,5-di(furan-2-yl)-2-methylenepentane-1,5-dione (9i)

Isolated by HPLC in 23 % yield as a side product of the reaction of 2i with 1a.

Rf 0.17 (hexane/EtOAc = 80/20). Yellow oil

¹**H** NMR (CDCl₃, 399.78 MHz) δ 2.82 (t, J = 7.2 Hz, 2H), 3.01 (t, J = 7.2 Hz, 2H), 5.82 (s, 1 H), 5.98 (s, 1H), 7.09 (d, J = 3.6 Hz, 1H), 6.48 (dd, J = 4, 2 Hz, 1H), 6.49 (dd, J = 3.6, 2 Hz, 1H), 7.17 (d, J = 3.6 Hz, 1H), 7.53 (d, J = 0.8 Hz, 1H), 7.61 (d, J = 3.6 Hz, 1H).

¹³C NMR (CDCl₃, 100.53 MHz) δ 19.33, 28.18, 40.58, 111.85, 116.63, 117.34, 121.55, 121.99, 126.97, 127.10, 127.80, 128.25, 129.17, 134.05, 134.45, 136.19, 137.47, 137.68, 138.26, 146.17, 148.16, 152.10, 168.44, 188.04.

IR (neat) 3133 w, 2924 w, 1672 s, 1645 m, 1466 s, 1392 m, 1159 w, 1027 m, 883 m.

MS m/z (relative intensity, %) 244 (M⁺, 12), 149 (36), 95 (100).

HRMS Calcd for C₁₄H₁₂O₄: 244.0736; Found: 244.0736.

2-methyl-6-(3-(naphthalen-2-yl)-3-oxopropyl)-N-(quinolin-8-yl)benzamide (3aj)

Rf 0.44 (hexane/EtOAc = 80/20). Brown solid. **Mp** = 147 °C.

¹**H** NMR (CDCl₃, 399.78 MHz) δ 2.48 (s, 3H), 3.22 (t, *J* = 8.4 Hz, 2H), 3.55 (dt, *J* = 7.2, 3.6 Hz, 2H), 7.18 (d, *J* = 7.2 Hz, 1H), 7.26 (d, *J* = 6.8 Hz, 1H), 7.32 (t, *J* = 7.2 Hz, 1H), 7.38 (dd, *J* = 8.4, 4.4 Hz, 1H), 7.49-7.58 (m, 4H), 7.77 (d, *J* = 8.4 Hz, 2H), 7.81 (t, *J* = 7.6 Hz, 1H), 7.97 (dd, *J* = 8, 1.2 Hz, 1H), 8.13 (dd, *J* = 8, 1.2 Hz, 1H), 8.45 (s, 1H), 8.68 (dd, *J* = 4, 2.0 Hz, 1H), 8.99 (dd, *J* = 6.8, 1.6 Hz, 1H), 10.04 (brs, 1H)

¹³C NMR (CDCl₃, 100.53 MHz) δ 19.47, 28.66, 41.18, 116.93, 121.60, 122.08, 123.75, 126.50, 127.20, 127.28, 127.59, 127.93, 128.16, 128.24, 128.34, 129.32, 129.48, 129.91, 132.38, 133.82, 134.12, 134.63, 135.40, 136.33, 137.86, 138.09, 138.33, 148.20, 168.72, 199.12.

IR (neat) 3343 w, 3061 w, 1675 s, 1521 s, 1483 m, 1326 m, 1124 w, 826 w.

MS m/z (relative intensity, %) 444 (M⁺, 43), 301 (34), 289 (52), 257 (11), 155 (100), 144 (27), 145 (54), 127 (46).

HRMS Calcd for C₃₀H₂₄N₂O₂: 444.1838; Found: 444.1836.

2-methylene-1,5-di(naphthalen-2-yl)pentane-1,5-dione (9j)

Isolated by HPLC in 23 % yield as a side product of the reaction of 2j with 1a.

Rf 0.45 (hexane/EtOAc = 80/20). Brown solid. Mp = $127 \degree$ C.

¹**H** NMR (CDCl₃, 399.78 MHz) δ 3.05(t, *J* = 7.2 Hz, 2H), 3.43 (t, *J* = 7.2 Hz, 2H), 5.76 (s, 1H), 6.04 (s, 1H), 7.53 (t, *J* = 7.2 Hz, 2H), 7.59 (t, *J* = 6.4 Hz, 2H), 7.85-7.90 (m, 6H), 7.94 (d, *J* = 8.4 Hz, 1H), 8.06 (dd, *J* = 8.4, 1.6 Hz, 1H), 8.24 (s, 1H), 8.51 (s, 1H).

¹³C NMR (CDCl₃, 100.53 MHz) δ 27.76, 37.26, 123.81, 125.35, 126.71, 126.73, 127.17, 127.72 (two overlapping peaks), 128.16, 128.22, 128.43, 128.47, 129.34, 129.57, 129.86, 131.14, 132.16, 132.50, 134.06, 134.89, 135.16, 135.57, 146.90, 198.12, 199.27.

IR (neat) 1714 w, 1677 m, 1651 m; 1520 m, 1326 w, 1278 w, 1220 s, 1121 m, 863 w.

MS m/z (relative intensity, %) 364 (M⁺, 25), 209 (56), 194 (14), 166 (18), 155 (100), 127 (70).

HRMS Calcd for C₂₆H₂₀O₂: 364.1463; Found: 364.1462.

2-(3-(4-fluorophenyl)-3-oxopropyl)-6-methyl-N-(quinolin-8-yl)benzamide (3ak)

Rf 0.28 (hexane/EtOAc = 80/20). Yellow oil

¹**H** NMR (CDCl₃, 399.78 MHz) δ 2.47 (s, 3H), 3.15 (t, *J* = 8 Hz, 2H), 3.37 (t, *J* = 7.2 Hz, 2H), 6.94 (t, *J* = 8.8 Hz, 2H), 7.16 (d, *J* = 8 Hz, 1H), 7.21 (d, *J* = 7.2 Hz, 1H), 7.30 (d, *J* = 8 Hz, 1H), 7.40 (dd, *J* = 8.4, 4.4 Hz, 1H), 7.55 (dd, *J* = 8.4, 1.2 Hz, 1H), 7.59 (t, *J* = 8 Hz, 1H), 7.88-7.92 (m, 2H), 8.14 (dd, *J* = 8, 1.2 Hz, 1H), 8.69 7.40 (dd, *J* = 4, 1.6 Hz, 1H), 8.99 (dd, *J* = 7.2, 1.2 Hz, 1H), 10.02 (s, 1H).

¹³**C** NMR (CDCl₃, 100.53 MHz) δ 19.36, 28.50, 40.94, 115.29 (d, *J* = 21 Hz), 116.71, 121.59, 122.07, 127.13 (d, *J* = 10 Hz), 127.85, 128.30, 129.24, 130.56, 130.66, 132.83 (d, *J* = 3 Hz), 134.05, 134.53, 136.25, 137.75 (two overlapping peaks), 138.28, 148.20, 165.40 (d, *J* = 254 Hz), 168.57, 197.46.

IR (neat) 3344 w, 3066 w, 1681 m, 1597 m, 1521 s, 1483 m, 1326 m, 1229 m, 1156 m, 980 w, 827 w.

MS m/z (relative intensity, %) 412 (M⁺, 36), 289 (46), 269 (50), 145 (50), 123 (100), 95 (15). **HRMS** Calcd for C₂₆H₂₁FN₂O₂: 412.1587; Found: 412.1586.

1,5-bis(4-fluorophenyl)-2-methylenepentane-1,5-dione (9k)

Isolated by HPLC in 30 % yield as a side product of the reaction of 2k with 1a.

Rf 0.4 (hexane/EtOAc = 80/20). Brown solid. **Mp** = 92 °C.

¹**H** NMR (CDCl₃, 399.78 MHz) δ 2.87 (t, *J* = 6.8 Hz, 2H), 3.19 (t, *J* = 7.2 Hz, 2H), 5.62 (s, 1H), 5.93 (s, 1H), 7.07-7.12 (m, 4H), 7.75-7.78 (m, 2H), 7.96-8.00 (m, 2H).

¹³**C** NMR (CDCl₃, 100.53 MHz) δ 27.35, 37.01, 115.31 (d, J = 22 Hz), 115.64 (d, J = 22 Hz), 126.79, 130.65 (d, J = 9.6 Hz), 131.02 (d, J = 9.6 Hz), 133.02 (d, J = 2.8 Hz), 133.73 (d, J = 2.9 Hz), 146.49, 165.22 (d, J = 254 Hz), 165.67 (d, J = 255 Hz), 196.50, 197.46.

IR (neat) 2926 w, 1683 m, 1656 m, 1598 s, 1523 m, 1506 m, 1484 w, 1411 w, 1228 m, 1156 m, 847 m.

MS *m/z* (relative intensity, %) 300 (M⁺, 6), 177 (58), 123 (100), 95 (29).

HRMS Calcd for C₁₈H₁₄F₂O₂: 300.0962; Found: 300.0963.

methyl 4-(3-(3-methyl-2-(quinolin-8-ylcarbamoyl)phenyl)propanoyl)benzoate (3al)

Rf 0.28 (hexane/EtOAc = 80/20). White solid. **Mp** = 122 °C.

¹**H** NMR (CDCl₃, 399.78 MHz) δ 2.45 (s, 3H), 3.14 (t, *J* = 8.4 Hz, 2H), 3.42 (t, *J* = 7.2 Hz, 2H), 3.92 (s, 3H), 7.17 (d, *J* = 8 Hz, 1H), 7.21 (d, *J* = 7.2 Hz, 1H), 7.30 (t, *J* = 7.6 Hz, 1H), 7.43 (dd, *J* = 8, 4 Hz, 1H), 7.57 (dd, *J* = 8, 2 Hz, 1H), 7.60 (t, *J* = 8.4 Hz, 1H), 7.92 (d, *J* = 8.8 Hz, 2H), 7.97 (d, *J* = 8.8 Hz, 2H), 8.17 (dd, *J* = 8, 1.2 Hz, 1H), 8.70 (dd, *J* = 4, 1.6 Hz, 1H), 8.95 (dd, *J* = 6.8, 2 Hz, 1H), 9.98 (brs, 1H).

¹³C NMR (CDCl₃, 100.53 MHz) δ 19.48, 28.38, 41.48, 52.39, 116.92, 121.69, 122.18, 127.20, 127.35, 128.00, 128.46, 129.36, 129.63, 133.60, 134.13, 134.73, 136.41, 137.76 (two overlapping peaks), 137.88, 138.41, 139.73, 148.29, 166.18, 168.65, 198.72.

IR (neat) 3348 w, 1682 s, 1522 s, 1328 m, 1279 m, 1109 w, 823 m.

MS m/z (relative intensity, %) 452 (M⁺, 24), 309 (47), 289 (66), 274 (10), 163 (100), 145 (65), 135 (14).

HRMS Calcd for C₂₈H₂₄N₂O₄: 452.1736; Found: 452.1741.

2-methylene-1,5-bis(4-(methylester)phenyl)pentane-1,5-dione (9l)

Isolated by HPLC in 29 % yield as a side product of the reaction of 2l with 1a.

Rf 0.22 (hexane/EtOAc = 80/20). White solid. **Mp** = $175 \degree$ C.

¹**H** NMR (CDCl₃, 399.78 MHz) δ 2.91 (t, *J* = 7.6 Hz, 2H), 3.28 (t, *J* = 6.8 Hz, 2H), 3.94 (s, 3H), 5.70 (s, 1H), 6.05 (s, 1H), 7.74 (d, *J* = 8 Hz, 2H), 8.02 (d, *J* = 8.8 Hz, 2H), 8.09 (d, *J* = 8.8 Hz, 2H), 8.11 (d, *J* = 10.4 Hz, 2H).

¹³C NMR (CDCl₃, 100.53 MHz) δ 26.85, 37.54, 52.43, 52.46, 127.97, 128.93, 129.20, 129.42, 129.86, 133.03, 133.91, 139.81, 141.46, 146.38, 166.16, 166.25, 197.34, 198.58. **IR** (neat) 1678 s, 1514 s, 1255 m, 1101 w, 820 m.

MS m/z (relative intensity, %) 380 (M⁺, 8), 349 (14), 217 (65), 163 (100), 135 (17), 103 (11). **HRMS** Calcd for C₂₂H₂₀O₆: 380.1260; Found: 380.1264. 2-methyl-6-(3-oxo-3-(4-(trifluoromethyl)phenyl)propyl)-N-(quinolin-8-yl)benzamide (3am)

Rf 0.45 (hexane/EtOAc = 80/20). Yellow oil

¹**H** NMR (CDCl₃, 399.78 MHz) δ 2.46 (s, 3H), 3.14 (t, *J* = 8 Hz, 2H), 3.42 (t, *J* = 7.6 Hz, 2H), 7.18 (d, *J* = 14 Hz, 1H), 7.20 (d, *J* = 14.8 Hz, 1H), 7.31 (t, *J* = 8 Hz, 1H), 7.43 (dd, *J* = 8, 4 Hz, 1H), 7.53-7.6 (m, 4H), 7.98 (d, *J* = 8.4 Hz, 2H), 8.18 (dd, *J* = 8, 1.2 Hz, 1H), 8.70 (dd, *J* = 4.4, 1.6 Hz, 1H), 8.96 (dd, *J* = 7.6, 2 Hz, 1H), 10.00 (s, 1H).

¹³**C** NMR (CDCl₃, 100.53 MHz) δ 19.47, 28.52, 41.41, 116.89, 121.70, 122.22, 123.51 (q, J = 271 Hz), 125.42 (q, J = 3.8 Hz), 127.21, 127.32, 128.00, 128.43, 128.52, 129.38, 134.09 (q, J = 129.5 Hz), 134.12, 134.74, 136.41, 137.62, 137.86, 138.39, 139.10, 148.30, 168.65, 198.28. **IR** (neat) 3348 w, 1672 s, 1520 s, 1482 m, 1323 s, 1167 m, 1126 s, 1065 m, 826 m.

MS m/z (relative intensity, %) 462 (M⁺, 42), 319 (65), 289 (66), 275 (11), 173 (100), 145 (85).

HRMS Calcd for C₂₇H₂₁F₃N₂O₂: 462.1555; Found: 462.1554.

2-methylene-1,5-bis(4-(trifluoromethyl)phenyl)pentane-1,5-dione (9m)

Isolated by HPLC in 38 % yield as a side product of the reaction of **2m** with **1a**.

Rf 0.54 (hexane/EtOAc = 80/20). White solid. Mp = 102 °C.

¹**H** NMR (CDCl₃, 399.78 MHz) δ 2.91 (t, J = 7.2 Hz, 2H), 3.28 (t, J = 7.6 Hz, 2H), 5.70 (s, 1H), 6.06 (s, 1H), 7.67 (d, J = 8.4 Hz, 1H), 7.67 (d, J = 8.4 Hz, 1H), 7.79 (d, J = 8 Hz, 1H), 8.06 (d, J = 8 Hz, 1H.

¹³C NMR (CDCl₃, 100.53 MHz) δ 26.76, 37.42, 123.51 (q, *J* = 272 Hz), 123.57 (q, *J* = 272 Hz), 125.22 (q, *J* = 3.8 Hz), 125.67 (q, *J* = 3.8 Hz), 128.36, 128.99, 129.56, 133.49 (q, *J* = 23 Hz), 134.38 (q, *J* = 23 Hz), 139.21, 140.77, 146.22, 196.77, 198.00.

IR (neat) 2932 w, 1685 m, 1644 m, 1409 m, 1326 s, 1173 m, 1131 s, 1067 m, 996 w, 852 m. **MS** m/z (relative intensity, %) 400 (M⁺, 6), 227 (62), 173 (100), 145 (43).

HRMS Calcd for $C_{20}H_{14}F_6O_2$: 400.0896; Found: 400.0898.

X. Removal of the 8-Aminoquinoline Directing Group

a) General procedure for the formation of the aldehyde (GP8)

Step 1: Alkylated amine **3** (1 mmol, 1 equiv.), ethylene glycol (620 mg, 10 mmol, 10 equiv.) and trimethyl orthoformate (424 mg, 4 mmol, 4 equiv.) were dissolved in 5 mL of DCM. Then p-toluenesulfonic acid (9.5 mg, 0.05 mmol, 5 mol %) was added at room temperature. The solution was stirred overnight at room temperature then satNaHCO₃aq (10 mL) was added and the organic layer was separated. Aqueous layer was extracted with DCM (2 x 10 mL) and the combined organic layers evaporated *in vacuo*. The intermediate dioxolane **10**' was purified by column chromatography through silica gel (hexane/EtOAc) then put to react in step 2.

Step 2: In an oven-dried one neck round bottom flask, dioxolane **10'** (1 mmol) was dissolved in THF (10 mL) and Bis(cyclopentadienyl)zirconium(IV) chloride hydride (ZrHClCp₂) (515 mg, 2 mmol, 2 equiv.) was added at 0 °C.⁹ The solution was then stirred 1 h 30 at room temperature until forming a clear and limpid solution. HCl 1M (5 mL) was then added, the biphasic mixture was stirred 10 min and the organic layer separated. Aqueous layer was then extracted with Et₂O (2 x 10 mL) and combined organic layers evaporated in vacuo.

Then, the resulting oil was dissolved in dried acetone (10 mL) and iodine (13 mg, 0.1 mmol, 10 mol %) was added. A reported procedure was followed.¹⁰ The solution was refluxed 2 h to ensure the complete cleavage of the dioxolane protecting group. If the reaction doesn't go at completion, then iodine (10%) can be added again. Aldehyde **10** was purified by column chromatography through silica gel (hexane/EtOAc).

⁹ If the amide is not sterically hindered, formation of a small amount of the corresponding benzylic alcohol may be observed if too much equivalents of zirconium reagent are used.

¹⁰ J. Sun, Y. Dong, L. Cao, X. Wang, S. Wang, Y. Hu, J. Org. Chem. 2004, 69, 8932.

b) Spectroscopic Data of Aldehydes 10

2-methyl-6-(2-(2-methyl-1,3-dioxolan-2-yl)ethyl)-N-(quinolin-8-yl)benzamide (10'aa)

Synthesized according to **GP8** (step 1) from amide **3aa** (1mmol, 332 mg). Purification by column chromatography through silica gel (hexane/EtOAc = 80/20) afforded 375 mg of **10'aa** (quantitative yield).

Rf 0.24 (hexane/EtOAc = 80/20). Yellow oil

¹**H** NMR (CDCl₃, 399.78 MHz) δ 1.22 (s, 3H), 2.02 (td, *J* = 8.8, 4.4 Hz, 2H), 2.43 (s, 3H), 2.82 (td, *J* = 8.4, 4.4 Hz, 2H), 3.69-3.80 (m, 4H), 7.12 (d, *J* = 7.6 Hz, 1H), 7.15 (d, *J* = 7.2 Hz, 1H), 7.27 (t, *J* = 8 Hz, 1H), 7.42 (dd, *J* = 8, 4 Hz, 1H), 7.55 (d, *J* = 7.6 Hz, 1H), 7.60 (t, *J* = 7.6 Hz, 1H), 8.16 (dd, *J* = 8.4, 1.2 Hz, 1H), 8.72 (dd, *J* = 4, 1.2 Hz, 1H), 8.99 (d, *J* = 7.2 Hz, 1H), 9.94 (brs, 1H).

¹³C NMR (CDCl₃, 100.53 MHz) δ 19.40, 23.41, 28.29, 40.92, 64.35, 109.32, 116.68, 121.57, 121.84, 126.79, 127.32, 127.83, 127.86, 129.06, 134.27, 134.50, 136.24, 137.71, 138.38, 138.76, 148.16, 168.58.

IR (neat) 3345 w, 2879 w, 1673 m, 1519 s, 1481 s, 1325 m, 1127 w, 1054 m, 908 m, 826 m. **MS** *m*/*z* (relative intensity, %) 376 (M⁺, 15), 289 (15), 189 (22), 145 (26), 144 (23), 87 (100), 43 (18).

HRMS Calcd for C₂₃H₂₄N₂O₃: 376.1787; Found: 376.1785.

2-methyl-6-(3-oxobutyl)benzaldehyde (10aa)

10'aa (1 mmol) was put to react according to **GP8** (step 2). Purification by column chromatography through silica gel (hexane/EtOAc = 80/20) afforded 152 mg of **10aa** (80 % yield).

Rf 0.27 (hexane/EtOAc = 85/15). Yellow oil ¹**H** NMR (CDCl₃, 399.78 MHz) δ 2.09 (s, 3H), 2.56 (s, 3H), 2.70 (t, *J* = 8 Hz, 2H), 3.11 (t, *J* = 7.6 Hz, 2H), 7.05 (d, *J* = 4.8 Hz, 1H), 7.07 (d, *J* = 4.4 Hz, 1H), 7.29 (t, *J* = 8 Hz, 1H), 10.52 (s, 1H). ¹³C NMR (CDCl₃, 100.53 MHz) δ 20.03, 27.63, 29.69, 45.20, 129.13, 129.94, 131.91, 133.07, 141.49, 143.60, 193.13, 207.56. IR (neat) 2961 w, 1714 s, 1467 m, 1239 m, 1120 w, 1075 w. HRMS Calcd for C₁₂H₁₄O₂: 190.0994; Found: 188.0839 (M⁺-2H)

5-methyl-2-(2-(2-methyl-1,3-dioxolan-2-yl)ethyl)-N-(quinolin-8-yl)benzamide (10'ja)

Synthesized according to **GP8** (step 1) from amide **3ja** (1mmol, 332 mg). Purification by column chromatography through silica gel (hexane/EtOAc = 80/20) afforded 375 mg of **10'ja** (quantitative yield).

Rf 0.28 (hexane/EtOAc = 80/20). Brown solid. **Mp** = $115 \degree$ C.

¹**H** NMR (CDCl₃, 399.78 MHz) δ 1.30 (s, 3H), 2.01 (td, *J* = 8.8, 4.8 Hz, 2H), 2.39 (s, 3H), 2.96 (td, *J* = 8.8, 5.2 Hz, 2H), 3.81-3.89 (m, 4H), 7.23 (d, *J* = 0.8 Hz, 2H), 7.44 (s, 1H), 7.46 (dd, *J* = 8, 4 Hz, 1H), 7.55 (dd, *J* = 8.4, 2 Hz, 1H), 7.60 (t, *J* = 8.4 Hz, 1H), 8.19 (dd, *J* = 8.4, 1H), 8.78 (dd, *J* = 4, 1.6 Hz, 1H), 8.95 (d, *J* = 6.8 Hz, 1H), 10.14 (brs, 1H).

¹³C NMR (CDCl₃, 100.53 MHz) δ 20.91, 23.58, 27.82, 40.80, 64.48, 109.58, 116.54, 121.57, 121.65, 127.39, 127.75, 127.91, 130.27, 131.00, 134.71, 135.74, 136.33, 136.61, 137.52, 138.46, 148.13, 168.32.

IR (neat) 3353 w, 2878 w, 1673 m, 1520 s, 1482 m, 1325 m, 1053 m, 826 m.

MS *m*/*z* (relative intensity, %) 376 (M⁺, 30), 331 (13), 289 (22), 189 (12), 145 (38), 144 (22), 87 (100), 43 (15).

HRMS Calcd for C₂₃H₂₄N₂O₃: 376.1787; Found: 376.1780.

5-methyl-2-(3-oxobutyl)benzaldehyde (10ja)

10'ja (1 mmol) was put to react according to **GP8** (step 2). Purification by column chromatography through silica gel (hexane/EtOAc = 80/20) afforded 138 mg of **10ja** (80 % yield).

Rf 0.34 (hexane/EtOAc = 80/20). Yellow oil. ¹**H** NMR (CDCl₃, 399.78 MHz) δ 2.13 (s, 3H), 2.38 (s, 3H), 2.73 (t, *J* = 7.6 Hz, 2H), 3.23 (t, *J* = 7.2 Hz, 2H), 7.19 (d, *J* = 8 Hz, 1H), 7.31 (dd, *J* = 8, 1.6 Hz, 1H), 7.59 (s, 1H), 10.14 (s, 1H). ¹³C NMR (CDCl₃, 100.53 MHz) δ 20.71, 26.68, 29.90, 45.00, 131.31, 133.53, 134.18, 134.62, 136.62, 140.46, 193.04, 207.79. IR (neat) 2925 w, 1713 s, 1690 s, 1612 w, 1361 w, 1161w, 823 w. MS *m*/*z* (relative intensity, %) 190 (M⁺, 8), 172 (100), 147 (75), 132 (68), 119 (36), 105 (40), 91 (30), 77 (19), 43 (51). HRMS Calcd for C₁₂H₁₄O₂: 190.0994; Found: 190.0986.

3-fluoro-2-(2-(2-methyl-1,3-dioxolan-2-yl)ethyl)-N-(quinolin-8-yl)benzamide (10'sa)

Synthesized according to **GP8** (step 1) from amide **3'sa** (1mmol, 336 mg). Purification by column chromatography through silica gel (hexane/EtOAc = 80/20) afforded 334 mg of **10'sa** (quantitative yield).

Rf 0.34 (hexane/EtOAc = 80/20). White solid. **Mp** = 95 °C.

¹**H** NMR (CDCl₃, 399.78 MHz) δ 1.34 (s, 3H), 2.04 (td, J = 8.8, 5.2 Hz, 2H), 2.98-3.02 (m, 2H), 3.82-3.89 (m, 4H), 7.16 (td, J = 9.6, 0.8 Hz, 1H), 7.29 (td, J = 7.6, 4.8 Hz, 1H), 7.42 (d, J = 2.8 Hz, 1H), 7.44 (t, J = 4 Hz, 1H), 7.54 (dd, J = 8.4, 1.2 Hz, 1H), 7.58 (t, J = 8.4 Hz, 1H), 8.16(dd, J = 8.4, 2 Hz, 1H), 8.76 (dd, J = 4, 1.6 Hz, 1H), 8.95 (d, J = 6.8 Hz, 1H), 10.14 (brs, 1H).

¹³C NMR (CDCl₃, 100.53 MHz) δ 21.21 (d, J = 3 Hz), 23.38, 38.94, 64.40, 109.43, 116.55, 117.11 (d, J = 23 Hz), 121.65, 121.92, 122.68 (d, J = 3.8 Hz), 127.29, 127.53 (d, J = 8.6 Hz), 127.86, 128.17 (d, J = 17.2 Hz), 134.39, 136.31, 138.37, 138.85 (d, J = 4 Hz), 148.23, 161.47 (d, J = 246 Hz), 166.72 (d, J = 2.8 Hz).

IR (neat) 3345 w, 2982 w, 2881 w, 1674 m, 1520 s, 1485 m, 1384 m, 1326 m, 1265 m, 1049 m, 865 m, 825 m.

MS *m/z* (relative intensity, %) 380 (M⁺, 36), 335 (33), 293 (24), 149 (29), 144 (25), 87 (100), 43 (23).

HRMS Calcd for C₂₂H₂₁FN₂O₃: 380.1536; Found: 380.1536.

3-fluoro-2-(3-oxobutyl)benzaldehyde (10sa)

10'sa (1 mmol) was put to react according to **GP8** (step 2). Purification by column chromatography through silica gel (hexane/EtOAc = 80/20) afforded 135 mg of **10sa** (70 % yield).

Rf 0.28 (hexane/EtOAc = 80/20). Yellow oil

¹**H** NMR (CDCl₃, 399.78 MHz) δ 2.16 (s, 3H), 2.72 (t, J = 8.4 Hz, 2H), 3.29 (td, J = 8, 1.2 Hz, 2H), 7.27 (td, J = 9.2, 0.8 Hz, 1H), 7.37 (td, J = 7.6, 4.8 Hz, 1H), 7.61 (d, J = 7.2 Hz, 1H). ¹³**C** NMR (CDCl₃, 100.53 MHz) δ 18.47 (d, J = 4.8 Hz), 29.68, 43.43, 120.65 (d, J = 24 Hz), 127.89 (d, J = 8.6 Hz), 128.73 (d, J = 2.8 Hz), 130.07 (d, J = 16.3 Hz), 135.64 (d, J = 3.8 Hz), 161.30 (d, J = 246 Hz), 191.78 (d, J = 2.8 Hz), 207.23.

IR (neat) 2898 w, 1699 s, 1462 m, 1245 s, 1164 m, 824 w.

MS *m*/*z* (relative intensity, %) 194 (M⁺, 2), 176 (26), 151 (45), 136 (36), 134 (14), 133 (19), 123 (12), 109 (25), 108 (11), 103 (19), 43 (100).

HRMS Calcd for C₁₁H₁₁FO₂: 194.0743; Found: 194.0741

COSY

c) Synthesis of the carboxylic acid: representative procedure.

Methylation of 10'ja: 10'ja was synthesized as described above (see **GP8**). **10'ja** (1.37 mmol, 518 mg) was dissolved in THF (15 mL), then NaH (1.64 mmol, 1.2 equiv.) was added at 0°C to this solution. The mixture was then stirred at room temperature for 1 h. MeI (6.85 mmol, 0.42 mL) was added at 0°C and the solution stirred for 4 h at room temperature. H₂O (10 mL) was then added, the organic layer was separated and the aqueous layer extracted with Et₂O (3X). Combined organic layers were dried over Na₂SO₄ and solvent evaporated under vacuum. **11ja** was purified by column chromatography through silica gel (hexane/EtOAc: 30/70) and obtained as a yellow foam (480 mg, 90%).

Saponification+deprotection of 11ja: **11ja** (1 mmol, 390 mg) was dissolved in EtOH (10 mL) and NaOH (15 mmol, 600 mg) was added. The solution was heated for 15 h at 120 °C. After cooling at room temperature H₂O (15 mL) was added followed by DCM (10 mL). The DCM layer was separated (it contains the methylated aminoquinoline part). HCl_{aq} (10 mL, 4M) was added to the aqueous layer and the mixture of protected and deprotected caroboxylic acid **12ja** was extracted with DCM (3X). This mixture was dried over Na₂SO₄ and solvent was evaporated under vacuum. Then, the resulting oil was dissolved in dried acetone (10 mL) and iodine (13 mg, 0.1 mmol, 10 mol %) was added. A reported procedure was followed.¹⁰ The solution was refluxed 2 h to ensure the complete cleavage of the dioxolane protecting group. If the reaction doesn't go at completion, then iodine (10%) can be added again. The reaction was cooled to room temperature and solvent evaporated under reduced pressure. **12ja** was purified by column chromatography through silica gel (hexane/EtOAc: 50/50) and was obtained as a yellow solid (171 mg, 83%).

N,5-dimethyl-2-(2-(2-methyl-1,3-dioxolan-2-yl)ethyl)-N-(quinolin-8-yl)benzamide (11ja)

Rf 0.2 (hexane/EtOAc = 30/70). Yellow foam

¹**H NMR** (CDCl₃, 399.78 MHz) δ 1.43 (s, 3H), 1.83-2.87 (massif of broad m, 7H), 3.60 (broad s, 3H), 4.00 (broad s, 4H), 6.72-6.81 (broad m, 2H), 7.29-7.82 (massif of broad m, 5H), 8.8 (broad s, 1H), 9.00 (dd, J = 3.6, 1.2 Hz, 1H).

¹³C NMR (CDCl₃, 100.53 MHz) δ 20.16, 23.55, 27.27, 37.26, 40.07, 64.36, 109.51, 121.28, 125.68, 127.19, 127.64, 128.20, 128.54, 128.75, 128.96, 133.55, 135.88, 136.24, 141.27, 143.84, 150.08, 171.50.

IR (neat) 2981 w, 2880 w, 1640 s, 1362 m, 1054 s, 911 m, 795, m, 684 s.

HRMS Calcd for C₂₄H₂₈N₂O₃: 390.1943; Found: 390.1946.

5-methyl-2-(3-oxobutyl)benzoic acid (12ja)

Rf 0.2 (hexane/EtOAc = 50/50). Yellow solid. **Mp** = 82 °C. ¹**H NMR** (CDCl₃, 399.78 MHz) δ 2.15 (s, 3H), 2.36 (s, 3H), 2.80 (t, *J* = 8 Hz, 2H), 3.21 (t, *J* = 8 Hz, 2H), 7.19 (d, *J* = 8 Hz, 1H), 7.29 (dd, *J* = 8, 0.8 Hz, 1H), 7.87 (d, *J* = 0.8 Hz, 1H). ¹³**C NMR** (CDCl₃, 100.53 MHz) δ 20.77, 28.51, 29.90, 45.36, 127.80, 131.39, 132.27, 134.00, 136.17, 140.85, 172.79, 208.68. **IR** (neat) 2925 w, 1712 s, 1686 s, 1272 m, 1193 m, 734 m. **HRMS** (CI+) Calcd for C₁₂H₁₅O₃ (M+H⁺): 207.1021; Found: 207.1019

XI. Deuterium Labeling Experiments

Preparation of starting materials.

13 was prepared according to a reported procedure.¹¹

14 was prepared according to the following procedure: 1a (1 mmol, 262 mg) was dissolved in 5 mL of THF, then NaH (1.2 mmol) was added at 0°C. The solution was allowed to reach room temperature and was stirred for 1 h. D₂O (0.5 mL) was then added at 0 °C and the solution was stirred 10 min at room temperature. Et₂O (dry, 10 mL) was added and the organic layer and the D₂O layer were then separated. Then, the organic layer washed with 0.5 mL of D₂O. Organic layer was then dried over Na₂SO₄ and the solvent evaporated under reduced pressure. The resulting solid (184 mg, 70%) was dried under vacuum for 10 h. According to ¹H NMR, the nitrogen contains 95% of deuterium. 14 was directly used without further purification.

White solid. **Mp** = 100 °C. ¹**H NMR** (CDCl₃, 399.78 MHz) δ 2.61 (s, 3H), 7.33 (t, 15.2 Hz, 2H), 7.40-7.48 (m , 2H), 7.55-7.63 (m, 2H), 7.69 (d, J = 7.6 Hz, 1H), 8.19 (dd, J = 8.4 , 2.0 Hz), 8.78 (dd, J = 4.0, 2.0 Hz, 1H), 8.95 (d, J = 7.6 Hz). ¹³**C NMR** (CDCl₃, 100.53 MHz) δ 20.23, 116.41, 121.66, 121.77, 126.00, 127.23, 127.38, 127.96, 130.32, 131.37, 134.61, 136.33, 136.54, 136.67, 138.52, 148.26, 168.08. **IR** (neat) 2925 w, 1666 s, 1500 s, 1471 s, 1405 s, 1359 s, 824 m, 790 m, 735 s. **HRMS** Calcd for C₁₇H₁₃DN₂O: 263.1169; Found: 263.1142

15 was prepared according to the following procedure: **13** (1 mmol, 269 mg) was dissolved in 5 mL of THF, then NaH (1.2 mmol) was added at 0°C. The solution was allowed to reach room temperature and was stirred for 1 h. D₂O (0.5 mL) was then added at 0 °C and the solution was stirred 10 min at room temperature. Et₂O (dry, 10 mL) was added and the organic layer and the D₂O layer were then separated. Then the organic layer washed with 0.5 mL of D₂O. Organic layer was then dried over Na₂SO₄ and the solvent evaporated under reduced pressure. The resulting solid (200 mg, 74%) was dried under vacuum for 10 h. According to ¹H NMR, the nitrogen contains 95% of deuterium. **15** was directly used without further purification.

White solid. **Mp** = 100 °C. ¹**H NMR** (CDCl₃, 399.78 MHz) δ ¹³**C NMR** (CDCl₃, 100.53 MHz) δ 19.33 (septet, J = 19.2 Hz), 116.36, 121.61, 121.71, 125.45 (t, J = 24.4 Hz), 126.81 (t, J = 24.5 Hz), 127.35, 127.92, 129.78 (t, J = 24.0 Hz), 130.89 (t, J = 24.0 Hz), 134.64, 136.27 (two overlapping peaks), 136.43, 138.50, 148.22, 168.04. **IR** (neat) 2924 w, 1668 s, 1518 s, 1415 s, 1167 w, 825 m, 791 m. **HRMS** Calcd for C₁₇H₆D₈N₂O: 270.1608; Found: 270.1607

Deutrium labeling experiment: representative procedure.

To an oven-dried 5 mL screw-capped vial, 2-methyl-N-(quinolin-8-yl)benzamide- d_7 11¹¹ (134.5 mg, 0.5 mmol, 1 equiv.), MVK 2a (70 mg, 1 mmol, 2 equiv.), RuCl₂(PPh₃)₃ (48 mg, 0.05 mmol, 10 mol %), sodium acetate (10.25 mg, 0.125 mmol, 25 mol %) and toluene (1 mL) were added under a gentle stream of nitrogen. The mixture was stirred for the appropriate time at 100 °C (108 °C bath temperature) then cooled to room temperature and concentrated *in vacuo*. Purification by column chromatography on silica gel afforded 13' (hexane/EtOAc = 90/10) as a white solid, then 13a as a yellow oil (hexane/EtOAc = 70/30). NMR ¹H of pure 13' and 13a gave an estimation of the rate of the H/D exchange.

Experiments without 2a were conducted in a similar way.

¹¹ Synthesis of **11** : Ano, Y.; Tobisu, M.; Chatani, N. Org. Lett. **2012**, *14*, 354.

Preliminary studies

HMBC of 3aa

Reference ¹H NMR spectra for estimations of deuterium incorporation into the alkylated product.

Deuterium Labeling Experiments: estimation of deuterium and hydrogen incorporation.

 $\begin{array}{l} C_a: 1.87/1.91{=}0.98. \ D{-}content = 2\% \\ C_b: 1.85/1.90{=}0.97. \ D{-}content = 3\% \end{array}$

Electronic Supplementary Material (ESI) for Chemical Science This journal is The Royal Society of Chemistry 2013

 $\begin{array}{l} C_a: 1.87/1.91{=}0.98. \ D{-}content = 2\% \\ C_b: 1.84/1.90{=}0.97. \ D{-}content = 3\% \end{array}$

C_a: 1.92/1.91>1. D-content = 0% C_b: 1.91/1.90>1. D-content = 0%

 C_a : 1.85/1.91=0.97. D-content = % C_b : 1.84/1.90=0.97. D-content = 3%

C_a: 1.72/1.91=0.90. D-content = 10% C_b: 1.69/1.90=0.89. D-content = 11%

XII. Competition Experiments

To an oven-dried 5 mL screw-capped vial, amide $\mathbf{1}_A$ (1 mmol), amide $\mathbf{1}_B$ (1 mmol), MVK $\mathbf{2}_a$ (49 mg, 0.7 mmol, 0.7 equiv), RuCl₂(PPh₃)₃ (96 mg, 0.1 mmol, 10 mol %), sodium acetate (20.5 mg, 0.25 mmol, 25 mol %) and toluene (2 mL) were added under a gentle stream of nitrogen. The mixture was stirred for 4 h at 100 °C (108 °C bath temperature) then cooled to room temperature and concentrated *in vacuo*. Yields were determined by NMR ¹H on the crude mixture with tetrachloroethane as internal standard.

Entry	$1_{\mathbf{A}}, \mathbf{R}_{1}$	1 _{B} , R ₂	Run	3 _A [%]	3 _B [%]
1a	11, CF ₃	1 j , Me	run 1	3la , 81	3ja , <6
1b			run 2	3la , 78	3ja , <6
1c			run3	3la , 82	3ja , <6
<mark>1d</mark>			<mark>average</mark>	<mark>3la,</mark> 80	<mark>3ja, <6</mark>
2a	1k , Ph	1j, Me	run 1	3ka , 56	3ja , 15
2b			run 2	3ka , 62	3ja , 14
2c			run3	3ka , 60	3ja , 14
<mark>2d</mark>			<mark>average</mark>	<mark>3ka, 59</mark>	<mark>3ja</mark> , 14
3a	11 , CF ₃	1m , OMe	run 1	3la , 85	3ma , <6
3b			run 2	3la , 82	3ma , <6
3c			run3	3la , 76	3ma , <6
<mark>3d</mark>			<mark>average</mark>	<mark>3la,</mark> 81	<mark>3ma, <6</mark>
4a	11 , CF ₃	10 , NMe ₂	run 1	3la , 75	30a , <6
4b			run 2	3la , 66	30a , <6
4c			run3	3la , 73	30a , <6
<mark>4d</mark>			<mark>average</mark>	<mark>3la</mark> , 71	<mark>30a, <6</mark>
5a	10 , NMe ₂	1j, Me	run 1	30a , 27	3ja , 33
5b			run 2	30a , 21	3ja , 38
5c			run3	30a , 24	3ja , 30
5d			<mark>average</mark>	<mark>30a,</mark> 24	<mark>3ja,</mark> 34

XIII. Copies of ¹H and ¹³C NMR Spectra

Electronic Supplementary Material (ESI) for Chemical Science This journal is The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Chemical Science This journal is © The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Chemical Science This journal is © The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Chemical Science This journal is © The Royal Society of Chemistry 2013

1-(4-fluorophenyl)prop-2-en-1-one (2k)		
F		
210.0200.0 190.0 180.0 170.0 160.0 150.0 140.0 13	130.0 120.0 110.0 100.0 90.0 80.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0	Ó
$\begin{array}{c ccccc} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ X : parts per Million : Carbon 13 \end{array} \qquad $	$\begin{array}{c} 133.483 \\ 131.852 \\ 131.852 \\ 131.185 \\ 130.289 \\ 115.787 \\ 772.315 \\ 77.315 \\ 76.676 \\ 76.676 \\ \end{array}$	

Electronic Supplementary Material (ESI) for Chemical Science This journal is © The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Chemical Science This journal is © The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Chemical Science This journal is © The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Chemical Science This journal is © The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Chemical Science This journal is © The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Chemical Science This journal is © The Royal Society of Chemistry 2013

2-(3-oxobutyl)-N-(quinolin-8-yl)benzamide (3fa)	
\downarrow	
	leginalis işleratına yaşında dek dişmadı yaşılaşıdır. Ba
220.0210.0 200.0 190.0 180.0 170.0 160.0 150.0 140.0 130.0 120.0 110.0 100.0 90.0 80.0 70.0 60.0 50.0 40.0 30.0 20.0) 10.0 0 -10.0
X : barts bet Williou : Carpoul3 271.545 167.807 167.807 167.807 167.807 167.807 138.345 136.238 136.2386 13	

Electronic Supplementary Material (ESI) for Chemical Science This journal is © The Royal Society of Chemistry 2013 2.6-bis(3-oxobutyl)-N-(quinolin-8-yl)benza)

2,6-bis(3-oxobutyl)-N-(quinolin-8-yl)benzamide (6fa)			
220.0210.0 200.0 190.0 180.0 170.0 160.0 150.0 140.0 130.0 120.0 110.0 100.0 90.0 80.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0 (0		
X : barts bet Williou : Carpoul3 29.642 27.315 27.315 27.315 27.315 29.642 27.315 29.642 27.315 77.315			

Electronic Supplementary Material (ESI) for Chemical Science This journal is © The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Chemical Science This journal is © The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Chemical Science This journal is © The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Chemical Science This journal is © The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Chemical Science This journal is © The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Chemical Science This journal is © The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Chemical Science This journal is © The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Chemical Science This journal is © The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Chemical Science This journal is © The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Chemical Science This journal is © The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Chemical Science This journal is © The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Chemical Science This journal is © The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Chemical Science This journal is © The Royal Society of Chemistry 2013

3-bromo-2,6-bis(3-oxobutyl)-N-(quinolin-8-yl)benzamide (6qa)	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Electronic Supplementary Material (ESI) for Chemical Science This journal is © The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Chemical Science This journal is © The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Chemical Science This journal is © The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Chemical Science This journal is © The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Chemical Science This journal is © The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Chemical Science This journal is © The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Chemical Science This journal is © The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Chemical Science This journal is © The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Chemical Science This journal is © The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Chemical Science This journal is © The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Chemical Science This journal is © The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Chemical Science This journal is © The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Chemical Science This journal is © The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Chemical Science This journal is © The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Chemical Science This journal is © The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Chemical Science This journal is © The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Chemical Science This journal is © The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Chemical Science This journal is © The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Chemical Science This journal is © The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Chemical Science This journal is © The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Chemical Science This journal is © The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Chemical Science This journal is © The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Chemical Science This journal is © The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Chemical Science This journal is © The Royal Society of Chemistry 2013

