Supplementary Data for :

Electronic effects of triarylphosphines in the metal-free hydrogen activation: A kinetic and computational study

Lutz Greb,^a Sebastian Tussing,^a Birgitta Schirmer,^b Pascual Oña-Burgos,^c Karl Kaupmees,^d Märt Lõkov,^d Ivo Leito,^d Stefan Grimme,^e Jan Paradies^{*a}

^a Karlsruhe Institute of Technology, Institute of Organic Chemistry, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany. Fax: +49 721 608 45637; Tel: +49 721 608 45344; E-mail: jan.paradies@kit.edu
^b Westfälische Wilhelms-Universität Münster, Institute of Organic Chemistry, Corrensstrasse 40, 48149 Münster. E-mail:

⁶ Karlsruhe Institute of Technology, Institute of Inorganic Chemistry, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany. E-

mail: pob081@ual.es

^d University of Tartu, Institute of Chemistry Ravila 14a, Tartu 50411, Estonia. E-mail: ivo.leito@ut.ee

^e Unsiversität Bonn, Mulliken Center for Theoretical Chemistry, Institute of Physical and Theoretical Chemistry, Beringstr. 4, D-53115 Bonn, Germany. E-mail: grimme@thch.uni-bonn.de

General Information	2
Determination of pK_a of the corresponding acids of $PR_{3-n}Ph_n$ ($R = (2-F-C_6H_4)$ or $(2,6-F_2-C_6H_3)$), $P(C_6F_5)Ph_2$ and $P(naple)$	ht-1-
<i>i</i> ,	3
Synthesis of intermediate $[C_6H_5-C(CH_3)_2-P(C_6H_4F)_2Ph][HB(C_6F_5)_3]$ (12)	6
Variable Temperature H ₂ -Activation with PR _{3-n} Ph _n (R = (2-F-C ₆ H ₄) (n=2,3) or (2,6-F ₂ -C ₆ H ₃) (n=1-3)) and B(C ₆ F ₅) ₃	6
$H^{-19}E^{-31}P^{-11}B$ and $H^{3}C$ NMR spectra of intermediate 12	9 30
11 , 12 F 31 P and 11 B NMR spectra of low temperature H ₂ -activation with phosphines 3-7	
$P(2-F-C_6H_4)_2Ph$ (3) and $B(C_6F_5)_3$ (1).	42
[HP(2-F-C ₆ H ₄) ₂ Ph][HB(C ₆ F ₅) ₃] ([3 H][H 1] at 213 K	44
VT series for $P(2-F-C_6H_4)_2Ph(3)$ and $B(C_6F_5)_3(1)$	48
¹¹ B NMR spectrum at highest measured temperature with detectable $HB(C_6F_5)_3$ species with 3 ("activation temperature")	49
P(2-F-C ₆ H ₄) ₃ (4) and B(C ₆ F ₅) ₃ (1)	49
$[HP(2-F-C_6H_4)_2Ph][HB(C_6F_5)_3] ([4H][H1])$	51
VT series for $P(2-F-C_6H_4)_3(4)$ and $B(C_6F_5)_3(1)$	54
¹¹ B NMR spectrum at highest measured temperature with detectable $HB(C_6F_5)_3$ species with 4 ("activation temperature")	55
$P(2,6-F_2-C_6H_3)Ph_2(5)$ and $B(C_6F_5)_3(1)$	56
$[HP(2,6-F_2C_6H_3)Ph_2][HB(C_6F_5)_3] ([5H][H1]) \dots$	58
VT series for P(2,6-F ₂ -C ₆ H ₃)Ph ₂ (5) and B(C ₆ F ₅) ₃ (1)	61
¹¹ B NMR spectrum at highest measured temperature with detectable $HB(C_6F_5)_3$ species with 5 ("activation	
temperature")	62
$P(2,6-F_2C_6H_3)_2Ph(6)$ and $B(C_6F_5)_3(1)$	62
$[HP(2,6-F_2C_6H_3)_2Ph][HB(C_6F_5)_3] ([6H][H1]) \dots$	64
VT series for P(2,6-F ₂ C ₆ H ₃) ₂ Ph (6) and B(C ₆ F ₅) ₃ (1)	68
¹¹ B NMR spectrum at highest measured temperature with detectable $HB(C_6F_5)_3$ species with 6 ("activation temperature")	69
P(2,6-F ₂ C ₆ H ₃) ₃ (7) and B(C ₆ F ₅) ₃ (1)	69
Results of quantum chemical calculations	72

General Information

Synthesis and techniques

All preparations were done in oven dried (140 °C) glassware under an atmosphere of dry, O₂-free Ar employing both Schlenk line techniques and a MBraun inert atmosphere glove box. Experiments on NMR tube scale were carried out in Teflon cap sealed *J* Young NMR tubes. Toluene, hexane and pentane were purified with a Grubbs-type column system manufactured by MBraun and dispensed into thick-walled glass Schlenk bombs equipped with Young –type Teflon valve stop-cocks. THF and Et₂O were distilled from Na-benzophenone ketal. Dichloromethane was distilled from CaH₂ (followed by 3 freeze-pump-thaw cycles). All solvents were stored over 4 Å molecular sieves in the glove box. Molecular sieves (4 Å) were dried at 140 °C under vacuum for 24 h prior to use. Deuterated solvents were vacuum transferred from sodium/benzophenone (C₆D₆ / C₇D₈) or CaH₂ (CD₂Cl₂), degassed by 3 freeze-pump-thaw cycles and stored over 4 Å molecular sieves for usage in a glove box. Solvents for chromatography were used as received from commercial sources and were analytical grade. Silica gel 60 (particle size 0.040 – 0.063 mm) was purchased from Sigma Aldrich. TLC's were run on silica gel coated aluminum plates with UV indicator (F254) obtained by Merck and analyzed by UV/VIS and stained using a cerium ammonium molybdate solution.

Reagents and materials

Reagents for substrate synthesis and substrates for the catalytic hydrogenation were used as received without further purification unless noted otherwise. Liquid substrates were stored over 4 Å molecular sieves in a glove box. Hydrogen 5.0 was purchased from AirLiquide and purified through a Johnson Matthey Model HIG $35XL^{TM}$ gas purifier. Tris(pentafluorophenyl)borane (1), P(napht-1-yl)₃ and P(C₆F₅)Ph₂ (8) was purchased from Sigma Aldrich and used as received. P(2-F-C₆H₄)Ph₂ (2), P(2-F-C₆H₄)₂Ph (3), P(2-F-C₆H₄)₃ (4), P(2,6-F₂-C₆H₃)Ph₂ (5), P(2,6-F₂-C₆H₃)₂Ph (6) and P(2,6-F₂-C₆H₃)₃ (7) were prepared using modified literature methods.^[1]

Characterization

¹H, ¹³C, ¹¹B, ¹⁹F and ³¹P-NMR spectra were recorded on a *Bruker* AC 300 (300 MHz), *Bruker* AM 400 (400 MHz) or a *Bruker* DRX 500 (500 MHz) spectrometer as solutions in non-spinning mode. Chemical shifts are expressed in parts per million (ppm, δ) downfield from tetramethylsilane (TMS) and are referenced to CDCl₃ (2.26 ppm) or CD₂Cl₂ (5.32 ppm) as internal standards. ³¹P, ¹¹B and ¹⁹F NMR spectra are referenced to 85% H₃PO₄, BF₃(OEt₂) and CFCl₃ respectively. All coupling constants are absolute values and *J* values are expressed in Hertz (Hz). The description of signals include: s = singlet, br. s = broad singlet, d = doublet, t = triplet, q = quartet, m = multiplet, dd = doublet of doublets, etc. The spectra were analyzed according to first order.

Determination of pK_a of the corresponding acids of PR_{3-n}Ph_n (R = $(2-F-C_6H_4)$ or $(2,6-F_2-C_6H_3)$), P(C₆F₅)Ph₂ and P(napht-1-yl)₃ *via* non-aqueous titration.

The results of the pK_a measurements in MeCN are presented in Table 1. Due to experimental difficulties – insolubility of P(naph)₃ in MeCN and very low basicity of $(2,6-F_2-C_6H_3)_3P - 1,2$ -dichloroethane (DCE) was used to predict the pK_a values of P(naph)₃ and $(2,6-F_2-C_6H_3)_3P$ in acetonitrile (MeCN). For that, a small basicity scale was constructed in DCE, which incorporated compounds $(2-F-C_6H_4)(Ph)_2P$, $(2-F-C_6H_4)_2(Ph)P$ and $(C_6F_5)(Ph)_2P$ for which also the MeCN pK_a values were measured. For the construction of basicity scale altogether 19 individual measurements were made (See Figure 1 and Table 1). The consistency standard deviation of the scale is $s = 0.05 pK_{ip}$ units. As is customary among organic chemists, the term " pK_a of base X" is used in this paper with the actual meaning of pK_a of the conjugate acid of base X.

Base	Reference Base	p <i>K</i> _a (reference) ^a	ΔpK _a	$s(\Delta pK_a)^b$	p <i>K</i> a (Base)	Assigned p <i>K</i> a	
$(2 \in C \cup V(Dh))$	2,6-Cl ₂ -Aniline	5.06	-1.04	0.01	6.10	(11	
$(2-F-C_6H_4)(Pn)_2P$	2-Cl-Pyridine	6.79	0.68	0.01	6.11	0.11	
$(2 \in C \mid I \mid) (\mathbb{D}h)\mathbb{D}$	2,6-Cl ₂ -Aniline	5.06	0.50	0.01	4.56	4.55	
$(2-F-C_6H_4)_2(Pn)P$	2-NO ₂ -Aniline	4.80	0.25	0.02	4.55	4.55	
$(2 \in \mathbf{E} \cap \mathbf{U})(\mathbf{D})$	2,6-Cl ₂ -Aniline	5.06	-0.11	0.01	5.17	5 16	
$(2,0-F_2-C_6H_3)(PH)_2P$	2-NO ₂ -Aniline	4.80	-0.36	0.04	5.16	5.10	
	2,3,5,6-Cl ₄ -Aniline	2.73	-0.30	0.04	3.03	2.02	
$(2-F-C_6\Pi_4)_3P$	5-Cl-2-NO ₂ -Aniline	3.22	0.19	0.02	3.03	3.03	
	2,3,5,6-Cl ₄ -Aniline	2.73	0.28	0.02	2.45		
$(2,6-F_2-C_6H_3)_2(Ph)P$	5-Cl-2-NO ₂ -Aniline	3.22	0.64	0.05	2.58	2.52	
	2,3,4,5,6-Cl ₅ -Aniline	2.35	-0.19	0.02	2.54		
	2,3,5,6-Cl ₄ -Aniline	2.73	0.24	0.02	2.49		
$(C_6F_5)(Ph)_2P$	5-Cl-2-NO ₂ -Aniline	3.22	0.63	0.01	2.59	2.56	
	2,3,4,5,6-Cl ₅ -Aniline	2.35	-0.26	0.03	2.61		
	2,3,4,5,6-Cl ₅ -Aniline	2.35	0.61	0.03	1.74	1 72	
$(2,0-Cl_2-C_6\Pi_3)_3P$	$2,3,5,6-Cl_4$ -Aniline	2.73	1.03	0.03	1.70	1./2	
$(2,6-F_2-C_6H_3)_3P$	Estimated	d from correlation	with DCE	E data		0.7	
P(naph) ₃	Estimated	d from correlation	with DCE	E data		6.8	

Table 1 pKa values of the studied phosphines, including all individual measurements in acetonitrile.

^a experimental values from reference ^[2]; ^b experimental standard deviation of ΔpK_a allows evaluating the within-series agreement of ΔpK_a values.

Determination of pK_a values in acetonitrile (and pK_{ip} in case of 1,2-dichloroethane) is based on measurements of relative difference in basicities of two bases, the phosphine and a reference base. This method has been previously used in measurements of acidity and basicity of different compounds in acetonitrile,^[3] tetrahydrofuran^[4] and 1,2-dichloroethane.^[5] In short, this method is bases on spectrophotometric titration of mixture of two compounds. Knowing the spectra of neutral and ionic form of both compounds allows the calculation of degree of protonation/deprotonation in the mixtures formed during titration, which in turn can be used to calculate the differences in pK_a (or pK_{ip}) values of the studied compounds according to the following formula.

$$\Delta pK_{a} = pK_{a}(B_{2}) - pK_{a}(B_{1}) = \log \frac{\left|B_{1}^{z}\right| \cdot \left|HB_{2}^{z+1}\right|}{\left|HB_{1}^{z+1}\right| \cdot \left|B_{2}^{z}\right|}$$
(1)

The mixture is titrated, the degree of dissociation of both species is changed and a number of $\Delta p K_a$ (or $\Delta p K_{ip}$)values are obtained, which can be averaged. If a compound is measured against different reference compounds and the results are averaged then an absolute pK_a value can be assigned. In MeCN t-BuP(pyrr) as basic and triflic acid as acidic titrant was used. In DCE CF₃SO(=NTf)NHTf had to be used as acidic titrant, because triflic acid was found to be too weak to protonate the investigated bases. A more detailed description of measurement and details about the apparatus can be found in references^[5] and^[2].

Assigning zero as absolute pK_{ip} for $(2,6-F_2-C_6H_3)_3P$ in the constructed scale, the pK_{ip} values for all the phosphines can be calculated. Knowing their pK_a values in acetonitrile allows the construction of a correlation equation (See Graph 1) which can be used to predict the pK_a values in acetonitrile for compounds $P(naph)_3$ and $(2,6-F_2-C_6H_3)_3P$. Alternatively, the directly measured ΔpK_{ip} values between two phosphines in DCE can be used to describe the changes in basicity.

Compound	рК _{ip}	Individual measurements
P(naph) ₃	6.86	
$P(2-F-C_6H_4)Ph_2$	5.91	0.91
2,6-MeO Pyridine	5.90	$-\frac{0.03}{4}$ $\frac{2.01}{2.33}$
4-Br Aniline	4.81	0.96
P(2-F-C ₆ H ₄) ₂ Ph	4.55	0.22
4-CF ₃ Aniline	3.47	1.06
4-F-3-NO ₂ Aniline	2.66	0.82 1.50
$P(C_6F_5)Ph_2$	1.96	
2-NO ₂ Aniline	0.49	
$P(2,6-F_2C_6H_3)_3$	0	
NPh ₃	-0.61	0.56

Figure 1 Constructed basicity scale in DCE together with the assigned pK_{ip} values.

Base	Reference Base	$\Delta \mathbf{p} \mathbf{K}_{ip}$	$s(\Delta p K_{ip})^{a}$
	P(naph) ₃	0.91	0.05
$(2-F-C_6H_4)(Ph)_2P$	2,6-MeO Pyridine	0.03	0.04
	4-Br Aniline	-1.10	0.01
	P(naph) ₃	2.33	0.06
	2,6-MeO Pyridine	1.38	0.02
$(2-F-C_6H_4)_2(Ph)P$	4-Br Aniline	0.22	0.04
	4-CF ₃ Aniline	-1.06	0.03
	4-F-3-NO ₂ Aniline	-1.90	0.03
P(nonh)	2,6-MeO Pyridine	-1.02	0.02
r (napn)3	4-Br Aniline	-2.01	0.03
2,6-MeO Pyridine	4-Br Aniline	-0.96	0.04
	4-CF ₃ Aniline	1.50	0.04
	4-F-3-NO ₂ Aniline	0.72	0.03
$(C_6F_5)(Ph)_2P$	2-NO ₂ Aniline	-1.39	0.03
	NPh ₃	-2.62	0.03
	$(2,6-F_2-C_6H_3)_3P$	-1.98	0.02
	2-NO ₂ Aniline	0.41	0.05
$(2,0-\Gamma_2-C_6\Pi_3)_3P$	NPh ₃	-0.56	0.04
4-CF ₃ Aniline	4-F-3-NO ₂ Aniline	-0.82	0.06

Tabel 2 Individual $\Delta p K_{ip}$ measurements in DCE.

^a experimental standard deviation of $\Delta p K_{ip}$ allows evaluating the within-series agreement of $\Delta p K_{ip}$ values,

Graph 1 Correlation between pK_a values in acetonitrile and pK_{ip} values in DCE.

Synthesis of intermediate $[C_6H_5-C(CH_3)_2-P(C_6H_4F)_2Ph][HB(C_6F_5)_3]$ (12)

In a glove box, $B(C_6F_5)_3$ (1) (0.17 mmol, 86.0 mg), $P(C_6H_4F)_2Ph$ (3) (0.17 mmol, 50.0 mg) and α -methylstyrene (11) (0.17 mmol) was dissolved in CH_2Cl_2 (5 ml) and transferred to a *J* Young glass bomb. The solution was freeze-pump-thawed, charged at 77 K with H_2 and stirred at room temperature for 5 h. The product was precipitated as yellow oil by addition of pentanes (10 ml), washed rapidly with pentanes (2 x 3 ml), dried in vacuum for 15 min and directly subjected to NMR spectroscopy. All attempts to crystalize the intermediate failed due to the conversion to the hydrogenation product and the free FLP.

¹**H-NMR** (400 MHz, CD₂Cl₂, 298 K): δ/ppm = 7.97 – 7.85 (m, 3H, H_o and H_p / P(C₆H₅)), 7.72 – 7.63 (m, 2 H, H_p / C₆H₄F), 7.58 – 7.27 (m, 11H, C₆H₅, H_m / P(C₆H₅) and C₆H₄F), 7.22 – 7.14 (m, 2H, H_o / C₆H₄F), 3,63 (q, ¹J_{H-B} = 86 Hz, 1H, B*H*), 2.12 (d, ³J_{H-P} = 20 Hz, 6H, C*H*₃). - ¹**H**{³¹**P**}-**NMR** (400 MHz, CD₂Cl₂, 298 K): δ/ppm = 7.97 – 7.85 (m, 3H, H_o and H_p / P(C₆H₅)), 7.72 – 7.63 (m, 2 H, H_p / C₆H₄F), 7.58 – 7.27 (m, 11H, C₆H₅, H_m / P(C₆H₅) and C₆H₄F), 7.22 – 7.14 (m, 2H, H_o / C₆H₄F), 3,63 (q, ¹J_{H-B} = 80 Hz, 1H, B*H*), 2.12 (s, 6H, C*H*₃). – ¹³**C-NMR** (100 MHz, CD₂Cl₂): δ/ppm = 163.3 (d, ¹J_{C-F} = 253 Hz, CF), 148.1 (d, ¹J_{C-F} = 234 Hz, o-C₆F₅), 138.62 (dd, J = 9.7, 2.3 Hz, CH), 137.1 (d, J = 2 Hz, C_{ipso} / C₆H₅), 136.4 (d, ¹J_{C-F} = 245 Hz, *m*- C₆F₅), 135.70 (d, J = 3.0 Hz, CH), 135.4 (d, ¹J_{C-F} = 233 Hz, *p*-C₆F₅), 134.9 (d, J = 5.6 Hz, CH), 134.2 (d, J = 8.9 Hz, CH), 130.2 (d, J = 12.3 Hz, CH), 129.7 (d, J = 3.8 Hz, CH), 128.9 (d, J = 3.0 Hz, CH), 128.4 (d, J = 5.3 Hz, CH), 126.4 (dd, J = 10.9, 3.0 Hz, CH), 118.15 (dd, J = 22.8, 5.8 Hz, CH), 115.2 (d, ¹J_{C-P} = 81 Hz, C_{ipso} / P(C₆H₅)), 106.5 (dd, ¹J_{C-P} = 81, ²J_{C-F} = 16 Hz, C_{ipso} / C₆H₄F), 46.3 (d, ¹J_{C-P} = 36 Hz, C_{quart}), 26.1 (d, J = 6 Hz, CH₃) – ¹⁹F-NMR (377 MHz, CD₂Cl₂, 298 K): c₁/2, perfect and a set and a s

Variable Temperature H₂-Activation with $PR_{3-n}Ph_n$ (R = (2-F-C₆H₄) (n=2,3) or (2,6-F₂-C₆H₃) (n=1-3)) and B(C₆F₅)₃

General Procedure: A solution of 0.01 mmol (1.0 equiv.) of the corresponding phosphine (2-7) and 0.01 mmol (5.1 mg, 1.0 equiv.) $B(C_6F_5)_3(1)$ in CD_2Cl_2 (0.45 ml) was transferred in a glove box in a sealable NMR tube with *J* Young Teflon tap. The solution was freeze-pump thawed for 2 cycles and charged with H_2 at 77 K (the NMR tube was immersed into the liquid N_2 in a controlled depth of 15 cm to create reproducible pressures). The solution was subjected to variable temperature NMR and every temperature was hold for 30 min before taking the spectra to ensure full equilibration (no change of the spectra as a function of time was observed). All preparations and measurements were repeated twice to ensure consistency. In all cases, the reversible formation of a phosphonium-borate was established by the inerrable detection of PH couplings, the characteristic ¹¹B resonance of $H(BC_6F_5)_3$ and the complete recurrence to the parent FLP at room temperature. All combinations were measured in the absence of dihydrogen gas at both room- and low temperature and compared with the analog H_2 pressurized sample. In contrast to the samples charged with hydrogen, no significant change (apart from the temperature dependent shift and adduct formation) was observed. The determined temperatures for the reversible H_2

activation were defined as the highest measured temperatures, at which in the ¹¹B NMR spectra the presence of the hydridoborate species (-25 ppm) was detectable (NMR spectra at pages S50, S56, S63, S70). All combinations were homogeneous solutions at room temperature and precipitation was observed to some extent while lowering the temperature, but in all cases the precipitation started below the determined activation temperature. Hence, low solubility of the formed phosphonium-borates at lower temperature cannot be ruled out but does not interfere with the herein determined equilibriums and temperatures of the H₂ activation. Due to highly dynamic processes of the formed phosphonium borates in solution at low temperature no BH coupling could be detected in some cases (**4**, **6**).

P(2-F-C₆H₄)₂Ph (3) and B(C₆F₅)₃ (NMR spectra page S44-51)

FLP + H₂ at rt: ¹H-NMR (400 MHz, CD₂Cl₂, 298 K): δ/ppm = 7.58 – 7.37 (m, 7 H, H_{Ar}), 7.25 – 7.12 (m, 4 H, H_{Ar}), 7.03 – 6.92 (m, 2 H, H_{Ar}). – ¹⁹F-NMR (377 MHz, CD₂Cl₂, 298 K): -103.9 (m, 2 F, P-*o*-FC₆H₄), -127.9 (m, 6 F, B-*o*-C₆F₅), -143.7 (m, 3 F, B-*p*-C₆F₅), -160.8 (m, 6 F, B-*m*-C₆F₅). – ³¹P{¹H}-NMR (162 MHz, CD₂Cl₂, 298 K): δ/ppm = -29.1. – ¹¹B-NMR (128 MHz, CD₂Cl₂, 298 K): δ/ppm = 58.1.

[HP(2-F-C₆H₄)₂Ph][HB(C₆F₅)₃]: ¹H-NMR (400 MHz, CD₂Cl₂, 213 K): δ/ppm = 8.80 (d, ¹J_{P-H} = 527 Hz, 1 H, P*H*), 8.10 – 7.00 (m, 13 H, H_{Ar}), 3.90 – 3.10 (br m, 1 H, B*H*). - ¹H{³¹P}-NMR (400 MHz, CD₂Cl₂, 213 K): δ/ppm = 8.80 (s, 1 H, P*H*), 8.14 – 7.05 (m, 13 H, H_{Ar}), 3.90 – 3.10 (br m, 1 H, B*H*). - ¹⁹F-NMR (377 MHz, CD₂Cl₂, 213 K): -99.1 (m, 2 F, P-o-FC₆H₄), -133.9 (m, 6 F, B-o-C₆F₅), -163.1 (m, 3 F, B-p-C₆F₅), -166.2 (m, 6 F, B-m-C₆F₅). - ³¹P-NMR (162 MHz, CD₂Cl₂, 213 K): δ/ppm = -11.0 (d, ¹J_{P-H} = 525 Hz). - ³¹P{¹H}-NMR (162 MHz, CD₂Cl₂, 213 K): δ/ppm = -11.0. - ¹¹B-NMR (128 MHz, CD₂Cl₂, 213 K): δ/ppm = -25.7 (d, ¹J_{B-H} = 83.6). - ¹¹B{¹H}-NMR (128 MHz, CD₂Cl₂, 213 K): δ/ppm = -25.7.

P(2-F-C₆H₄)₃ (4) and B(C₆F₅)₃ (NMR spectra page S51-57)

FLP + **H**₂ at rt: ¹**H-NMR** (400 MHz, CD₂Cl₂, 298 K): δ /ppm = 7.54 – 7.42 (m, 3 H, H_{Ar}), 7.26 – 7.11 (m, 6 H, H_{Ar}), 7.08 – 6.96 (m, 3 H, H_{Ar}). – ¹⁹**F-NMR** (377 MHz, CD₂Cl₂, 298 K): -104.2 (m, 3 F, P-*o*-FC₆H₄), -127.9 (m, 6 F, B-*o*-C₆F₅), -143.6 (m, 3 F, B-*p*-C₆F₅), -160.8 (m, 6 F, B-*m*-C₆F₅). – ³¹**P**{¹**H**}-**NMR** (162 MHz, CD₂Cl₂, 298 K): δ /ppm = -42.8 (q, *J*_{P-F} = 57 Hz). – ¹¹**B**{¹**H**}-**NMR** (128 MHz, CD₂Cl₂, 298 K): δ /ppm = 59.0.

[HP(2-F-C₆H₄)₃][HB(C₆F₅)₃]: ¹H-NMR (400 MHz, CD₂Cl₂, 213 K): δ/ppm = 8.48 (d, ¹J_{P-H} = 540 Hz, 1 H, PH), 8.10 – 6.80 (m, 12 H, H_{Ar}), 3.90 – 3.10 (br m, 1 H, BH). - ¹H{³¹P}-NMR (400 MHz, CD₂Cl₂, 213 K): δ/ppm = 8.45 (s, 1 H, PH), 8.10 – 6.80 (m, 12 H, H_{Ar}), 3.90 – 3.10 (br m, 1 H, BH). - ¹⁹F-NMR (377 MHz, CD₂Cl₂, 213 K): -104.6 (m, 3 F, P-*o*-FC₆H₄), -134.0 (m, 6 F, B-*o*-C₆F₅), -163.1 (m, 3 F, B-*p*-C₆F₅), -166.2 (m, 6 F, B-*m*-C₆F₅). - ³¹P-NMR (162 MHz, CD₂Cl₂, 213 K): δ/ppm = -15.3 (d, ¹J_{P-H} = 540 Hz). - ³¹P{¹H} }-NMR (162 MHz, CD₂Cl₂, 213 K): δ/ppm = -15.3. - ¹¹B-NMR (128 MHz, CD₂Cl₂, 213 K): δ/ppm = -25.6.

P(2,6-F₂-C₆H₃)Ph₂ (5) and B(C₆F₅)₃ (NMR spectra page S58-64)

FLP + **H**₂ **at rt:** ¹**H-NMR** (400 MHz, CD₂Cl₂, 298 K): δ/ppm = 8.90 (br s, ~5% [HP(2,6-F₂C₆H₃)Ph₂]), 7.70 – 7.45 (m, 11H, H_{Ar}), 7.09 (dt, $J_{\text{H-H}} = 8.4$ Hz, $J_{\text{H-F}} = 2.2$ Hz, 2H, $H_m / C_6H_3F_2$) – ¹⁹**F-NMR** (377 MHz, CD₂Cl₂, 298 K): δ/ppm = -98.0 (m, 2 F, P-*o*-FC₆H₄), -128.3 (m, 6 F, B-*o*-C₆F₅), -145.0 (m, 3 F, B-*p*-C₆F₅), -161.2 (m, 6 F, B-*m*-C₆F₅). – ³¹P{¹H}-NMR (162 MHz, CD₂Cl₂, 298 K): δ/ppm = -22.6. – ¹¹B{¹H}-NMR (128 MHz, CD₂Cl₂, 298 K): δ/ppm = -53.9.

[HP(2,6-F₂C₆H₃)Ph₂][HB(C₆F₅)₃] (60 %): ¹H-NMR (400 MHz, CD₂Cl₂, 233 K): δ/ppm = 9.50 – 7.50 (br s, 1H, P*H*), 8.00 – 7.00 (m, 13H, H_{Ar}), 4.00 – 3.00 (br m, 1H, B*H*). $^{-1}$ H{³¹P}-NMR (400 MHz, CD₂Cl₂, 213 K): δ/ppm = 8.90 (s, 1H, P*H*), 8.00 – 7.00 (m, 13H, H_{Ar}), 4.00 – 3.00 (br m, 1H, B*H*). 19 F-NMR (377 MHz, CD₂Cl₂, 233 K): δ/ppm = -96.5 (m, 2 F, P-o-FC₆H₄), -134.0 (m, 6 F, B-o-C₆F₅), -162.7 (m, 3 F, B-p-C₆F₅), -166.5 (m, 6 F, B-m-C₆F₅). $^{-31}$ P-NMR (162 MHz, CD₂Cl₂, 213 K): δ/ppm = -13.8 (d, ¹*J*_{P-H} = 513 Hz). $^{-31}$ P{¹H} }-NMR (162 MHz, CD₂Cl₂, 213 K): δ/ppm = -13.8 - 11 B{¹H} }-NMR (128 MHz, CD₂Cl₂, 233 K): δ/ppm = -25.5.

P(2,6-F₂C₆H₃)₂Ph (6) and B(C₆F₅)₃ (NMR spectra page S64-71)

FLP + **H**₂ **at rt:** ¹**H-NMR** (400 MHz, CD₂Cl₂, 298 K): δ /ppm = 7.56 (t, $J_{\text{H-H}}$ = 7.9 Hz, 2H, $H_p / C_6H_3F_2$), 7.48 – 7.32 (m, 5H), 6.93 (t, $J_{\text{H-H}}$ = 7.9 Hz, 4H, $H_m / C_6H_3F_2$). – ¹⁹**F-NMR** (377 MHz, CD₂Cl₂, 298 K): δ /ppm = -99.9 (m, 4 F, P-*o*-F₂C₆H₃), -127.9 (m, 6 F, B-*o*-C₆F₅), -143.6 (m, 3 F, B-*p*-C₆F₅), -160.8 (m, 6 F, B-*m*-C₆F₅). – ³¹**P-NMR** (162 MHz, CD₂Cl₂, 298 K): δ /ppm = -51.0. – ¹¹**B-NMR** (128 MHz, CD₂Cl₂, 298 K): δ /ppm = 59.3.

[HP(2,6-F₂C₆H₃)₂Ph][HB(C₆F₅)₃]: ¹H-NMR (400 MHz, CD₂Cl₂, 233 K): δ/ppm = 9.00 (br s, 1H, P*H*), 7.44 (m, 7H, H_{Ar}), 6.96 (m, 4H, H_{Ar}), 4.00 – 3.00 (br m, 1H, B*H*). - ¹H{³¹P}-NMR (400 MHz, CD₂Cl₂, 233 K): δ/ppm = 9.01 (s, 1H, P*H*), 7.44 (m, 7H, H_{Ar}), 6.96 (m, 4H, H_{Ar}), 4.00 – 3.00 (br m, 1H, B*H*). - ¹⁹F-NMR (377 MHz, CD₂Cl₂, 298 K): δ/ppm = -99.9 (m, 4 F, P-*o*-F₂C₆H₃), -133.8 (m, 6 F, B-*o*-C₆F₅), -163.5 (m, 3 F, B-*p*-C₆F₅), -166.4 (m, 6 F, B-*m*-C₆F₅). - ³¹P-NMR (162 MHz, CD₂Cl₂, 298 K): δ/ppm = -8.83 (d, ¹J_{P-H} = 505 Hz). - ¹¹B-NMR (128 MHz, CD₂Cl₂, 298 K): δ/ppm = -25.5. - ¹¹B{¹H} - NMR (128 MHz, CD₂Cl₂, 298 K): δ/ppm = -25.5.

Activation product besides excess of free FLP.

P(2,6-F₂C₆H₃)₃ (7) and B(C₆F₅)₃ (NMR spectra page S71-73)

FLP + **H**₂ **at rt:** ¹**H-NMR** (400 MHz, CD₂Cl₂, 298 K): δ/ppm = 7.48 – 7.35 (m, 3H, H_{*p*}), 6.99 – 6.87 (m, 6H, H_{*m*}). – ¹⁹**F-NMR** (377 MHz, CD₂Cl₂, 298 K): -101.5 (m, 6 F, P-*o*-F₂C₆H₃), -127.9 (m, 6 F, B-*o*-C₆F₅), -143.5 (m, 3 F, B-*p*-C₆F₅), -160.8 (m, 6 F, B-*m*-C₆F₅). – ³¹**P**{¹**H**}-**NMR** (162 MHz, CD₂Cl₂, 298 K): δ/ppm = -78.3. – ¹¹**B**{¹**H**}-**NMR** (128 MHz, CD₂Cl₂, 298 K): δ/ppm = 59.2.

No significant change was observed upon lowering the temperature to - 110 °C.

Kinetics of the hydrogenation of 1,1-diphenylethylene (9) and trimethyl(methallyl)silane (10) with phosphines 3 - 8

General procedure for the kinetic runs of the catalytic hydrogenations

In a glove box, $B(C_6F_5)_3(1)$ (20 mol%), the phosphine (20 mol%) and the substrate (0.05 mmol, by micro syringe) were dissolved in CD_2Cl_2 (0.50 ml). The solution was transferred to a sealable J Young NMR tube (standard-size) equipped with a Teflon tap. The solution was measured by ¹H NMR to verify the substrate to catalyst ratio by signal integration. The solution was frozen (without freeze-pump-thaw), charged with H_2 at 77 K (the NMR tube was immersed into the liquid N_2 in a controlled depth (15 cm) and time (10 seconds) to create reproducible pressure) and subjected to continuous rotation in a modified rotary evaporator with 10 rpm for the given time at room temperature (room temperature was measured during runs and was in the range of 21 °C to 23 °C).^[6] Due to the direct and loss-free substrate to product conversion (as determined by NMR with internal standard mesitylene and GC-MS) the relative signal integration ratio between the substrate and product (normalized CH_2 / CH_3 in case of 1,1-diphenyl ethylene, CH_2 / CH_2 in case of trimethyl(methallyl)silane) could be used as direct probe for the conversion. Every kinetic run was repeated at least three times to ensure consistency for a qualitative discussion of the reaction profile. Vide infra for representative runs (two runs for each phosphine) and mean data for every investigated phosphine (tables, time vs. conversion plot, linearized plot). Data analysis was performed using Microsoft Excel 2010; linear regression analysis was performed using the Data Analysis Tool pack. Mean graphs and relative rate constants were determined by fitting over all determined data points (determined over at least 2 runs with analogue conditions), logarithmical linearization (in case of first order behavior) and linear regression. Trivial error analysis (standard deviation, standard error of the mean, error bars) was not performed, due to the collection of conversion values (y-values) at variable times (x-values) for repeated runs, but considered to be dispensable for a qualitative discussion of the reaction profiles. All NMR measurements were performed with the common acquisition parameters (d1 =1.0 sec, elongated relaxation delays proved to have no influence on the relative substrate to product signal ratio).

Hydrogenation of 1,1-Diphenyl ethylene (9, DPE)

Figure 2: Hydrogenation of 1,1-diphenyl ethylene (representative example run with P(2,6-F₂-C₆H₃)₂Ph).

1,1-Diphenylethane: ¹H NMR (400 MHz, CD₂Cl₂): δ = 7.31–7.15 (m, 10H, H_{Ar}), 4.16 (q, *J* = 7.3 Hz, 1H, C*H*), 1.64 (d, *J* = 7.3 Hz, 3H, CH₃) ppm. GC/MS (70 eV) = 182 (45), 167 (100), 152 (19), 77 (4).

Representative runs (two runs for each phosphine) and average data (determined from at least 2 runs) for every investigated phosphine (tables, time vs. conversion plot, linearized plot)

Run	DPE [mg, mmol]	P(2-F-C ₆ H ₄) ₂ Ph [mg, mmol]	B(C ₆ F ₅) ₃ [mg, mmol]	CD ₂ Cl ₂ [ml]
II 1	9.0, 0.050	3.1, 0.010	5.1, 0.010	0.45
II 2	9.0, 0.050	3.0, 0.010	5.2, 0.010	0.45

Hydrogenation with $P(2-F-C_6H_4)_2Ph$ (3)

	Substr. ¹ H	Prod. ¹ H	Substr. ¹ H	Prod. ¹ H Integral	conv.	time	
run ID	Integral	Integral	Integral normalized	normalized	[%]	[h]	"-In(Int _{Substr.} /Int _{Substr.} +Int _{Prod.})"
ll run 1-1	7,050	0,601	3,525	0,200	5,4	2,02	0,0553
ll run 1-2	6,205	2,323	3,103	0,774	20,0	6,97	0,2228
ll run 1-3	4,900	3,385	2,450	1,128	31,5	11,32	0,3788
ll run 1-4	3,427	6,893	1,713	2,298	57,3	25,27	0,8506
ll run 1-5	2,063	7,192	1,031	2,397	69,9	34,10	1,2013
ll run 1-6	1,139	10,498	0,570	3,499	86,0	52,00	1,9663
ll run 2-1	14,817	1,000	7,408	0,333	4,3	1,47	0,0440
ll run 2-2	5,125	1,000	2,562	0,333	11,5	3,80	0,1223
ll run 2-3	2,672	1,000	1,336	0,333	20,0	6,75	0,2227
ll run 2-4	1,632	1,000	0,816	0,333	29,0	9,95	0,3426
ll run 2-5	1,176	1,000	0,588	0,333	36,2	13,08	0,4491
ll run 2-6	0,578	1,000	0,289	0,333	53,6	22,62	0,7669
ll run 2-7	0,492	1,000	0,246	0,333	57,5	25,08	0,8565
ll run 2-8	0,351	1,000	0,176	0,333	65,5	30,75	1,0645
ll run 2-9	0,267	1,000	0,134	0,333	71,4	35,87	1,2513
ll run 2-10	0,151	1,000	0,075	0,333	81,6	47,49	1,6903

Hydrogenation with $P(2-F-C_6H_4)_3$ (4)

Run	DPE [mg, mmol]	P(2-F-C ₆ H₄)₃ [mg, mmol]	B(C₅F₅)₃ [mg, mmol]	CD ₂ Cl ₂ [ml]
III 1	6.4, 0.050	3.2, 0.010	5.2, 0.010	0.45
III 2	6.4, 0.050	3.1, 0.010	5.0, 0.010	0.45

	Substr. ¹ H	Prod. ¹ H	Substr. ¹ H	Prod. ¹ H Integral	conv.	time	
run ID	Integral	Integral	Integral normalized	normalized	[%]	[h]	"-In(Int _{Substr.} /Int _{Substr.} +Int _{Prod.})"
III run 1-1	8,9102	4,3031	4,455	1,434	24,4	2,4	0,2791
III run 1-2	4,0298	9,3164	2,015	3,105	60,6	6,13	0,9327
III run 1-3	4,1451	20,6878	2,073	6,896	76,9	8,8	1,4649
III run 1-4	1,5095	26,9042	0,755	8,968	92,2	13,6	2,5558
III run 1-5	0,2388	38,6606	0,119	12,887	99,1	22,75	4,6907
lll run 2-1	2,9256	1,0000	1,463	0,333	18,6	2,00	0,2053
III run 2-2	0,9535	1,0000	0,477	0,333	41,1	4,33	0,5301
III run 2-3	0,5290	1,0000	0,265	0,333	55,8	6,13	0,8155
III run 2-4	0,2958	1,0000	0,148	0,333	69,3	8,18	1,1798
III run 2-5	0,1832	1,0000	0,092	0,333	78,4	10,05	1,5345
III run 2-6	0,1276	1,0000	0,064	0,333	83,9	11,62	1,8285
III run 2-7	0,0767	1,0000	0,038	0,333	89,7	13,93	2,2713
III run 2-8	0,0078	1,0000	0,004	0,333	98,8	24,18	4,4598

<u>Hydrogenation with $P(2,6-F_2-C_6H_3)Ph_2$ (5)</u>

	Run	DF	PE [mg, mmc	0I] P(2,6-F ₂ -C ₆ H ₃)	Ph ₂ [mg, mmol]	B(C ₆ F ₅) ₃	[mg, mm	nol]	$CD_2Cl_2[ml]$	
	IV 1		9.0, 0.0	50	2.9, 0.010		5.0, 0.	010	0.45	
	IV 2		9.0, 0.0	50	2.8, 0.010		5.0, 0.	010	0.45	
	Substr.	¹ H	Prod. ¹ H	Substr. ¹ H	Prod. ¹ H Integral	conv.	time			
run ID	Integra	I	Integral	Integral normalized	normalized	[%]	[h]	"-In	(Int _{Substr.} /Int _{Su}	_{bstr.} +Int _{Prod.})"
IV run 1-1	13,13	318	0,9748	6,566	0,325	5 4,7	2,4			0,0483
IV run 1-2	13,63	345	2,9368	6,817	0,979	9 12,6	6,13			0,1342
IV run 1-3	11,04	431	3,6068	5,522	1,202	2 17,9	8,8			0,1970
IV run 1-4	12,8	529	7,0694	6,426	2,356	5 26,8	13,6			0,3124
IV run 1-5	11,3	141	11,4744	5,657	3,825	5 40,3	22,75			0,5165
IV run 1-6	4,6	616	7,9877	2,331	2,663	53,3	33,42			0,7619
IV run 1-7	2,84	436	9,1623	1,422	3,054	68,2	48,68			1,1468
IV run 2-1	19,58	805	1,0000	9,790	0,333	3,3	1,467			0,0335
IV run 2-2	7,0	673	1,0000	3,534	0,333	8 8,6	3,8			0,0901
IV run 2-3	3,70	073	1,0000	1,854	0,333	3 15,2	6,75			0,1654
IV run 2-4	2,52	223	1,0000	1,261	0,333	3 20,9	9,95			0,2345
IV run 2-5	1,82	274	1,0000	0,914	0,333	3 26,7	13,067			0,3110
IV run 2-6	1,03	153	1,0000	0,508	0,333	39,6	22,617			0,5048
IV run 2-7	0,89	970	1,0000	0,449	0,333	42,6	25,367			0,5557
IV run 2-8	0,69	931	1,0000	0,347	0,333	49,0	30,767			0,6739
IV run 2-9	0,5	502	1,0000	0,275	0,333	54,8	35,833			0,7938
IV run 2-10	0,30	021	1,0000	0,165	0,333	66,9	47,867			1,1053

Run	DPE [mg, mmol]	P(2,6-F ₂ -C ₆ H ₃) ₂ Ph [mg, mmol]	B(C ₆ F ₅)₃ [mg, mmol]	$CD_2Cl_2[ml]$
V 1	9.0, 0.050	3.3, 0.010	5.2, 0.010	0.45
V 2	9.0, 0.050	3.4, 0.010	5.1, 0.010	0.45

<u>Hydrogenation with $P(2,6-F_2-C_6H_3)_2Ph$ (6)</u>

	Substr. ¹ H	Prod. ¹ H	Substr. ¹ H	Prod. ¹ H Integral	conv.	time	
run ID	Integral	Integral	Integral normalized	normalized	[%]	[h]	"-In(Int _{Substr.} /Int _{Substr.} +Int _{Prod.})"
V run 1-1	9,151	1,083	4,575	0,361	7,3	2,3	0,0759
V run 1-2	11,031	2,771	5,515	0,924	14,3	5,6	0,1548
V run 1-3	11,313	14,828	5,657	4,943	46,6	22,7	0,6279
V run 1-4	5,428	25,459	2,714	8,486	75,8	45,7	1,4175
V run 1-5	1,832	26,963	0,916	8,988	90,8	69,5	2,3806
V run 2-1	17,566	1,000	8,783	0,333	3,7	0,9	0,0372
V run 2-2	6,423	1,000	3,212	0,333	9,4	3,4	0,0987
V run 2-3	3,032	1,000	1,516	0,333	18,0	7,1	0,1987
V run 2-4	2,121	1,000	1,061	0,333	23,9	9,9	0,2733
V run 2-5	1,564	1,000	0,782	0,333	29,9	12,8	0,3550
V run 2-6	0,723	1,000	0,362	0,333	48,0	22,7	0,6533
V run 2-7	0,612	1,000	0,306	0,333	52,1	25,6	0,7367
V run 2-8	0,410	1,000	0,205	0,333	61,9	32,8	0,9651
V run 2-9	0,303	1,000	0,152	0,333	68,7	37,9	1,1623
V run 2-10	0,183	1,000	0,092	0,333	78,4	47,9	1,5345

Hydrogenation with $P(2,6-F_2-C_6H_3)_3$ (7)

Run	DPE [mg, mmol] P(2,6-F ₂ -C ₆ H ₃) ₃ [mg, mmol] B(C ₆ F ₅) ₃ [mg,		B(C ₆ F ₅) ₃ [mg, mmol]	$CD_2Cl_2[ml]$
VI 1	9.0, 0.050	3.8, 0.010	5.2, 0.010	0.45
VI 2	9.0, 0.050	3.7, 0.010	5.1, 0.010	0.45

	Substr. ¹ H	Prod. ¹ H	Substr. ¹ H	Prod. ¹ H	conv.	time	"(Int _{Prod} /Int _{Substr.} +Int _{Prod.})"
run ID	Integral	Integral	Integral normalized	Integral normalized	[%]	[h]	
VI run 1-1	12,7965	1,3806	6,398	0,460	6,7	2,4	0,0671
VI run 1-2	13,8360	4,5756	6,918	1,525	18,1	6,13	0,1806
VI run 1-3	11,3542	6,0619	5,677	2,021	26,2	8,8	0,2625
VI run 1-4	10,6267	11,1515	5,313	3,717	41,2	13,6	0,4116
VI run 1-5	8,5324	25,4377	4,266	8,479	66,5	22,75	0,6653
VI run 1-6	0,8385	16,0613	0,419	5,354	92,7	33,42	0,9274
VI run 2-1	11,6887	1,0045	5,844	0,335	5,4	1,98	0,0542
VI run 2-2	11,7839	4,4324	5,892	1,477	20,0	6,97	0,2005
VI run 2-3	9,1248	6,5113	4,562	2,170	32,2	11,32	0,3224
VI run 2-4	4,5853	14,8920	2,293	4,964	68,4	25,27	0,6841
VI run 2-5	1,6515	22,0783	0,826	7,359	89,9	34,1	0,8991

Hydrogenation with $P(C_6F_5)Ph_2$ (8)

Run	DPE [mg, mmol]	P(C ₆ F ₅)Ph ₂ [mg, mmol]	B(C ₆ F₅)₃ [mg, mmol]	CD ₂ Cl ₂ [ml]
VII 1	9.0, 0.050	3.5, 0.010	5.1, 0.010	0.45
VII 2	9.0, 0.050	3.5, 0.010	5.1, 0.010	0.45

	Substr. ¹ H	Prod. ¹ H	Substr. ¹ H	Prod. ¹ H	conv.	time	"(Int _{Prod} /Int _{Substr.} +Int _{Prod.})"
run ID	Integral	Integral	Integral normalized	Integral normalized	[%]	[h]	
VII run 1-1	8,021	1,000	4,011	0,333	7,7	1,23	0,0767
VII run 1-2	1,478	1,000	0,739	0,333	31,1	5,00	0,3109
VII run 1-3	0,668	1,000	0,334	0,333	49,9	8,10	0,4994
VII run 1-4	0,267	1,000	0,133	0,333	71,4	12,27	0,7144
VII run 2-1	7,835	1,000	3,917	0,333	7,8	1,25	0,0784
VII run 2-2	1,457	1,000	0,728	0,333	31,4	4,97	0,3140
VII run 2-3	0,653	1,000	0,326	0,333	50,5	8,10	0,5053
VII run 2-4	0,262	1,000	0,131	0,333	71,8	12,27	0,7179

<u>Comparison of all phosphines in the hydrogenation of 1,1-diphenyl ethylene</u>

Hydrogenation of trimethyl(methallyl)silane (10, TMAS)

Isobutyltrimethylsilane:¹H NMR (300 MHz, CD_2Cl_2): $\delta = 1.76$ (m, 1H, CH), 0.93 (d, J = 6.5 Hz, 6H, CH₃), 0.52 (d, J = 6.7

Hz, 2H, CH₂), 0.00 (s, 9H, SiMe₃) ppm. GC/MS (70 eV) = 130 (5), 115 (100), 73 (40).

Representative runs (two runs for each phosphine) and mean data (determined from at least 2 runs) for every investigated phosphine (tables, time vs. conversion plot)

Run	TMAS [mg, mmol]	P(2-F-C ₆ H ₄)Ph ₂ [mg, mmol]	B(C ₆ F₅)₃ [mg, mmol]	$CD_2Cl_2[ml]$
II 1	6.4, 0.050	2.9, 0.010	5.0, 0.010	0.45
II 2	6.4, 0.050	3.0, 0.010	5.1, 0.010	0.45

run ID	Substrate ¹ H Integral	Product ¹ H Integral	conv. [%]	time [h]	"(Int _{Prod} /Int _{Substr.} +Int _{Prod.})"			
ll run 1-1	1,0000	0,1277	11,3	0,73	0,1132			
ll run 1-2	1,0000	1,0802	51,9	3,42	0,5193			
ll run 1-3	1,0000	5,8782	85,5	6,28	0,8546			
ll run 2-1	1,0000	0,2622	20,8	1,23	0,2077			
ll run 2-2	1,0000	0,6039	37,7	2,32	0,3765			
ll run 2-3	1,0000	1,4328	58,9	3,83	0,5890			
ll run 2-4	1,0000	3,1135	75,7	5,22	0,7569			
ll run 2-5	1,0000	12,0672	92,3	6,80	0,9235			

Hydrogenation with $P(2-F-C_6H_4)_2Ph$ (3)

.SiMe₃

Hydrogenation with $P(2-F-C_6H_4)_3$ (4)

Run	TMAS [mg, mmol]	P(2-F-C ₆ H ₄) ₃ [mg, mmol]	B(C ₆ F ₅)₃ [mg, mmol]	$CD_2Cl_2[ml]$
III 1	6.4, 0.050	3.0, 0.010	5.0, 0.010	0.45
III 2	6.4, 0.050	3.2, 0.010	5.1, 0.010	0.45

run ID	Substrate ¹ H Integral	Product ¹ H Integral	conv. [%]	time [h]	"(Int _{Prod} /Int _{Substr.} +Int _{Prod.})"
lll run 1-1	1,0000	0,0684	6,4	0,8	0,06402
III run 1-2	1,0000	0,5177	34,1	3,43	0,34111
III run 1-3	1,0000	2,0095	66,8	6,33	0,66772
III run 1-4	1,0000	5,7227	85,1	7,93	0,85125
III run 2-1	1,0000	0,0836	7,7	0,88	0,07715
III run 2-2	1,0000	0,4214	29,6	2,92	0,29647
III run 2-3	1,0000	0,9066	47,6	4,47	0,47551
III run 2-4	1,0000	2,9175	74,5	6,68	0,74474

Hydrogenation with $P(2,6-F_2-C_6H_3)Ph_2$ (5)

Run	TMAS [mg, mmol]	P(2,6-F ₂ -C ₆ H ₃)Ph ₂ [mg, mmol]	B(C ₆ F₅)₃ [mg, mmol]	$CD_2Cl_2[ml]$
IV 1	6.4, 0.050	2.8, 0.010	5.2, 0.010	0.45
IV 2	6.4, 0.050	2.9, 0.010	5.1, 0.010	0.45

run ID	Substrate ¹ H Integral	Product ¹ H Integral	conv. [%]	time [h]	"(Int _{Prod} /Int _{Substr.} +Int _{Prod.})"
IV run 1-1	1,0000	0,2372	19,2	0,88	0,19172
IV run 1-2	1,0000	1,5058	60,1	2,92	0,60093
IV run 1-3	1,0000	6,8315	87,2	4,47	0,87231
IV run 2-1	1,0000	0,3614	26,5	1,23	0,26546
IV run 2-2	1,0000	0,8957	47,2	2,30	0,47249
IV run 2-3	1,0000	2,8130	73,8	3,82	0,73774
IV run 2-4	1,0000	12,3742	92,5	5,12	0,92523

Hydrogenation with $P(2,6-F_2-C_6H_3)_2Ph$ (6)

Run	TMAS [mg, mmol]	$P(2,6-F_2-C_6H_3)_2Ph [mg, mmol]$	B(C ₆ F ₅)₃ [mg, mmol]	$CD_2Cl_2[ml]$
V 1	6.4, 0.050	3.2, 0.010	5.1, 0.010	0.45
V 2	6.4, 0.050	3.4, 0.010	5.1, 0.010	0.45

run ID	Substrate ¹ H Integral	Product ¹ H Integral	conv. [%]	time [h]	"(Int _{Prod} /Int _{Substr.} +Int _{Prod.})"
V run 1-1	1,0000	0,1063	9,6	1,73	0,09609
V run 1-2	1,0000	0,4002	28,6	3,88	0,28582
V run 1-3	1,0000	0,7260	42,1	5,32	0,42063
V run 1-4	1,0000	1,3441	57,3	7	0,57340
V run 1-5	1,0000	3,3639	77,1	9,23	0,77085
V run 2-1	1,0000	0,0867	8,0	1,233	0,07978
V run 2-2	1,0000	0,1943	16,3	2,317	0,16269
V run 2-3	1,0000	0,3699	27,0	3,817	0,27002
V run 2-4	1,0000	1,0814	52,0	6,817	0,51955
V run 2-5	1,0000	3,9420	79,8	10,200	0,79765
V run 2-6	1,0000	60,0000	98,4	12,500	0,98361

<u>Hydrogenation with $P(2,6-F_2-C_6H_3)_3$ (7)</u>

Run	TMAS [mg, mmol]	P(2,6-F ₂ -C ₆ H ₃) ₃ [mg, mmol]	B(C ₆ F ₅)₃ [mg, mmol]	$CD_2Cl_2[ml]$
VI 1	6.4, 0.050	3.7, 0.010	5.2, 0.010	0.45
VI 2	6.4, 0.050	3.7, 0.010	5.2, 0.010	0.45

run ID	Substrate ¹ H Integral	Product ¹ H Integral	conversion [%]	time [h]	"(Int _{Prod} /Int _{Substr.} +Int _{Prod.})"
VI run 1-1	1,0000	0,0235	2,3	0,83	0,02296
VI run 1-2	1,0000	0,1353	11,9	3,43	0,11918
VI run 1-3	1,0000	0,2892	22,4	6,28	0,22433
VI run 1-4	1,0000	0,4126	29,2	7,93	0,29209
VI run 1-5	1,0000	4,9640	83,2	23,47	0,83233
VI run 2-1	1,0000	0,0319	3,1	0,88	0,03091
VI run 2-2	1,0000	0,1104	9,9	2,92	0,09942
VI run 2-3	1,0000	0,1900	16,0	4,47	0,15966
VI run 2-4	1,0000	0,3193	24,2	6,68	0,24202
VI run 2-5	1,0000	0,6304	38,7	10,33	0,38665
VI run 2-6	1,0000	4,9846	83,3	23,5	0,83290

Hydrogenation with $P(C_6F_5)Ph_2$ (8)

Run	TMAS [mg, mmol]	P(C ₆ F ₅)Ph ₂ [mg, mmol]	B(C ₆ F ₅) ₃ [mg, mmol]	$CD_2Cl_2[ml]$
VII 1	6.4, 0.050	3.6, 0.010	5.3, 0.010	0.45
VII 2	6.4, 0.050	3.4, 0.010	5.1, 0.010	0.45

run ID	Substrate ¹ H Integral	Product ¹ H Integral	conversion [%]	time [h]	"(Int _{Prod} /Int _{Substr.} +Int _{Prod.})"
VII run 1-1	1,0000	0,0091	0,9	0,45	0,00902
VII run 1-2	1,0000	0,0879	8,1	2,833	0,08080
VII run 1-3	1,0000	0,1913	16,1	5,383	0,16058
VII run 1-4	1,0000	0,3762	27,3	8,967	0,27336
VII run 1-5	1,0000	6,0897	85,9	28,633	0,85895
VII run 2-1	1,0000	0,0112	1,1	0,45	0,01108
VII run 2-2	1,0000	0,1011	9,2	2,833	0,09182
VII run 2-3	1,0000	0,2356	19,1	5,383	0,19068
VII run 2-4	1,0000	0,4563	31,3	8,983	0,31333
VII run 2-5	1,0000	26,9384	96,4	28,6	0,96421

Comparison of all phosphines in the hydrogenation of trimethyl(methallyl)silane

$^{1}\text{H},\,^{19}\text{F},\,^{31}\text{P},\,^{11}\text{B}$ and ^{13}C NMR spectra of intermediate 12

Electronic Supplementary Material (ESI) for Chemical Science This journal is O The Royal Society of Chemistry 2013

 1 H, 19 F, 31 P and 11 B NMR spectra of low temperature H₂-activation with phosphines 3-7

 $P(2-F-C_6H_4)_2Ph$ (3) and $B(C_6F_5)_3$ (1) FLP + H₂ at rt

Electronic Supplementary Material (ESI) for Chemical Science This journal is O The Royal Society of Chemistry 2013

[HP(2-F-C₆H₄)₂Ph][HB(C₆F₅)₃] ([3H][H1] at 213 K

Electronic Supplementary Material (ESI) for Chemical Science This journal is C The Royal Society of Chemistry 2013

VT series for $P(2-F-C_6H_4)_2Ph$ (3) and $B(C_6F_5)_3$ (1)

 ^{11}B NMR spectrum at highest measured temperature with detectable HB(C_6F_5)_3 species with 3 ("activation temperature")

$P(2-F-C_6H_4)_3$ (4) and $B(C_6F_5)_3$ (1) FLP + H₂ at rt

[HP(2-F-C₆H₄)₂Ph][HB(C₆F₅)₃] ([4H][H1])

VT series for P(2-F-C₆H₄)₃ (4) and B(C₆F₅)₃ (1)

 ^{11}B NMR spectrum at highest measured temperature with detectable HB(C_6F_5)_3 species with 4 ("activation temperature")

 $P(2,6-F_2-C_6H_3)Ph_2$ (5) and $B(C_6F_5)_3$ (1) FLP + H₂ at rt

[HP(2,6-F₂C₆H₃)Ph₂][HB(C₆F₅)₃] ([5H][H1])

VT series for $P(2,6-F_2-C_6H_3)Ph_2(5)$ and $B(C_6F_5)_3(1)$

^{11}B NMR spectrum at highest measured temperature with detectable HB(C_6F_5)_3 species with 5 ("activation temperature")

 $P(2,6-F_2C_6H_3)_2Ph$ (6) and $B(C_6F_5)_3$ (1) FLP + H₂ at rt

[HP(2,6-F₂C₆H₃)₂Ph][HB(C₆F₅)₃] ([6H][H1])

VT series for P(2,6-F₂C₆H₃)₂Ph (6) and B(C₆F₅)₃ (1)

55 50 45 40 35 30 25 20 15 10 5 0 -5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 f1 (ppm)

^{11}B NMR spectrum at highest measured temperature with detectable HB(C_6F_5)_3 species with 6 ("activation temperature")

$P(2,6-F_2C_6H_3)_3$ (7) and $B(C_6F_5)_3$ (1) FLP + H₂ at rt

- a) H. B. Stegmann, H. M. Kühne, G. Wax, K. Scheffler, *Phosphorous and Sulfur and the Related Elements* 1982, *13*, 331-336; b) J. A. S. Howell, N. Fey, J. D. Lovatt, P. C. Yates, P. McArdle, D. Cunningham, E. Sadeh, H. E. Gottlieb, Z. Goldschmidt, M. B. Hursthouse, M. E. Light, *Journal of the Chemical Society, Dalton Transactions* 1999, 3015-3028; c) C. Corcoran, J. Fawcett, S. Friedrichs, J. H. Holloway, E. G. Hope, D. R. Russell, G. C. Saunders, A. M. Stuart, *Journal of the Chemical Society, Dalton Transactions* 2000, 161-172; d) G. P. Schiemenz, *Phosphorus Sulfur* 2000, *163*, 185-202.
- [2] K. Haav, J. Saame, A. Kütt, I. Leito, European Journal of Organic Chemistry 2012, 2012, 2167-2172.
- [3] I. Kaljurand, A. Kütt, L. Sooväli, T. Rodima, V. Mäemets, I. Leito, I. A. Koppel, *The Journal of Organic Chemistry* 2005, *70*, 1019-1028.
- [4] A. A. Kolomeitsev, I. A. Koppel, T. Rodima, J. Barten, E. Lork, G.-V. Röschenthaler, I. Kaljurand, A. Kütt, I. Koppel, V. Mäemets, I. Leito, Journal of the American Chemical Society 2005, 127, 17656-17666.
- [5] A. Kütt, T. Rodima, J. Saame, E. Raamat, V. Mäemets, I. Kaljurand, I. A. Koppel, R. Y. Garlyauskayte, Y. L. Yagupolskii, L. M. Yagupolskii, E. Bernhardt, H. Willner, I. Leito, *The Journal of Organic Chemistry* 2010, *76*, 391-395.
- [6] L. Greb, P. Oña-Burgos, B. Schirmer, S. Grimme, D. W. Stephan, J. Paradies, Angewandte Chemie 2012, 124, 10311-10315.

Collection of calculated thermodynamical data

All calculations have been performed with the TURBOMOLE 6.3 suite of programs¹. The structures have been optimized on TPSS-D3 level² applying the new D3-dispersion correction with Becke-Johnson damping^{3,4}. Subsequent single point calculations have been carried out at B2PLYP-D3 level^{5,6}. For both calculations the large Gaussian-AO basis set def2-TZVP⁷ and the RI approximation^{8,9} have been used. The final level of theory can therefore be abbreviated as B2PLYP-D3(BJ)/def2-TZVP//TPSS-D3(BJ)/def2-TZVP and has an estimated accuracy of about 1-2 kcal/mol.

The thermodynamic corrections are based on harmonic vibrational frequencies calculated at TPSS-D3 level with very tight convergence criteria (energy: 10^{-9} , gradient 10^{-6}) and the big numerical quadrature grid m5. For these calculations the TURBOMOLE version 6.4^{10} was used since recently the frequency calculation module of the earlier release was found out to contain a bug. Low-lying frequencies (effectively those below 100 cm^{-1}) are treated in a quasy-free-rotor approximation in order to avoid errors in the entropy calculation¹¹. These (free) enthalpy values are denoted $\Delta H(G)$, ΔE marks electronic energies (i.e., not including ZPVE).

For a more detailed description of solvent effects and the accurate treatment of thermodynamic corrections in solvent - here (free) enthalpies of solvation - the COSMO-RS program in the parametrization for dichloromethane has been used^{12,13,14,15,16}.

All energy values are given in kcal/mol.

References

- [1] TURBOMOLE, verison 6.3, R. Ahlrichs et. al., Universität Karlruhe 2008; see http://www.turbomole.com.
- [2] J. Tao, J. P. Perdew, V. N. Staroverov and G. E. Scuseria, Phys. Rev. Lett., 2003, 91, 146401.
- [3] S. Grimme, J. Antony, S. Ehrlich and H. Krieg, J. Chem. Phys., 2010, 132, 154104.
- [4] S. Grimme, S. Ehrlich and L. Goerigk, J. Comput. Chem., 2011, 32, 1456–1465.
- [5] S. Grimme, J. Chem. Phys., 2006, **124**, 034108.
- [6] T. Schwabe and S. Grimme, *Phys. Chem. Chem. Phys.*, 2006, 8, 4398–4401.
- [7] F. Weigend and R. Ahlrichs, Phys. Chem. Chem. Phys., 2005, 7, 3297–3305.
- [8] K. Eichkorn, O. Treutler, H. Öhm, M. Häser and R. Ahlrichs, Chem. Phys. Lett., 1995, 240, 283–289.
- [9] C. Hättig and F. Weigend, J. Chem. Phys., 2000, 113, 5154.
- [10] TURBOMOLE, verison 6.4, R. Ahlrichs et. al., Universität Karlruhe 2012; see http://www.turbomole.com.
- [11] S. Grimme, Chem. Eur. J., 2012, 32, 9955–9964.
- [12] A. Klamt and G. Schüürmann, J. Chem. Soc., Perkin Trans. 2, 1993, 799-805.
- [13] A. Klamt, J. Phys. Chem., 1995, 99, 2224–2235.
- [14] F. Eckert and A. Klamt, AIChE Journal, 2002, 48, 369–385.
- [15] F. Eckert and A. Klamt, COSMOtherm, version C2.1, Release 01.11; COSMOlogic GmbH & Co. KG, Leverkusen, Germany.
- [16] A. Klamt, WIREs Comput. Mol. Sci., 2011, 1, 699–709.

Figure 1: Computationally investigated reactions: formation of protonated phosphine and hydrated borane from separate reactants (A), association of the FLP (B), hydrogenation of the FLP (C), hydrogen transfer from the hydrogenated FLP to the olefine (D) and stepwise hydrogen transfer to the olefine (E). Reactions B, C and D include contributions for the association of the FLP and the ion pairs.

reaction	phosphine	298.15 K	213.15 K
А	2	-3.66	-4.09
	3	-2.14	-2.61
	4	-0.56	-1.10
	5	-3.31	-3.82
	6	0.10	-0.41
	7	3.40	2.90
	8	1.03	0.36
В	2	-2.92	-6.01
	3	2.53	-0.31
	4	0.33	-3.26
	5	-6.40	-9.41
	6	-1.20	-3.98
	7	0.64	-2.69
	8	2.06	-1.15
С	2	1.47	0.94
	3	-1.74	-2.43
	4	3.49	3.63
	5	2.69	1.95
	6	0.90	-0.15
	7	4.75	4.22
	8	0.40	0.53
D	2	-22.89	-22.61
	3	-19.68	-19.24
	4	-24.91	-25.31
	5	-24.11	-23.63
	6	-22.32	-21.52
	7	-26.17	-25.88
	8	-21.82	-22.19
Ea	2	12.86	12.62
	3	11.33	11.14
	4	9.75	9.63
	5	12.50	12.35
	6	9.11	8.94
	7	5.80	5.63
	8	8.18	8.16
Eb		-30.62	-30.19
Е	2	-17.31	-18.57
	3	-19.28	-20.05
	4	-20.87	-21.56
	5	-18.11	-18.84
	6	-21.51	-22.25
	7	-24.81	-25.56
	8	-22.44	-23.03

Tab. 1: Final free reaction enthalpies ΔG in solvation at two different temperatures based on B2PLYP-D3 electronic energies.

reaction	phosphine	ΔE TPSS-D3	$\Delta E B2PLYP-D3$
А	2	49.55	50.04
	3	51.00	51.44
	4	52.26	52.57
	5	49.28	50.02
	6	52.37	53.43
	7	54.70	55.83
	8	56.40	57.89
В	2	-17.28	-20.90
	3	-13.11	-16.31
	4	-16.26	-19.96
	5	-20.72	-24.65
	6	-14.61	-17.90
	7	-12.77	-16.03
	8	-12.25	-15.79
\mathbf{C}	2	-1.42	1.88
	3	-3.63	-1.33
	4	1.50	4.94
	5	0.95	2.96
	6	-0.67	2.04
	7	2.17	5.04
	8	-2.24	0.70
D	2	-26.73	-32.46
	3	-24.52	-29.25
	4	-29.65	-35.52
	5	-28.74	-33.54
	6	-27.48	-32.62
	7	-30.32	-35.62
	8	-25.91	-31.28
Ea	2	13.83	16.63
	3	12.38	15.24
	4	11.12	14.11
	5	14.09	16.65
	6	11.00	13.24
	7	8.68	10.84
	8	6.98	9.08
Eb	_	-91.53	-97.25
E	2	-77.70	-80.62
	3	-79.15	-82.02
	4	-80.41	-83.15
	5	-77.43	-80.60
	6	-80.52	-84.01
	7	-82.85	-86.41
	. 8	-84.55	-88.17
	<u> </u>		

Table 2: Electronic reaction energies.

		gas phase		CH ₂ Cl ₂	
reaction	phosphine	ΔH	ΔG	ΔH	ΔG
Δ	$ $ $\frac{1}{2}$	2 83	11 95	 50_70	-64.95
11	3	3.80	11.20 11.30	-59 78	-64.88
	4	3.82	11.00	-59.56	-64.61
	5	3.96	11.45 11.64	-59.87	-64 97
	6	3.96	11.01	-59 70	-64 67
	7	4 01	11.30	-58.83	-63 74
	8	3.97	11.51 11.55	-63.40	-68.11
B	2	1.71	19.57	5.49	-1.58
	3	1.74	18.96	7.31	-0.13
	4	1.65	19.63	7.95	0.66
	5	1.54	19.23	6.44	-0.99
	6	1.48	17.30	6.40	-0.60
	7	1.36	16.95	6.35	-0.28
	8	1.47	19.39	5.54	-1.54
С	2	3.30	9.39	-3.98	-9.80
	3	3.24	9.71	-4.54	-10.12
	4	3.27	8.42	-4.24	-9.88
	5	3.45	10.11	-4.84	-10.38
	6	3.24	11.27	-6.99	-12.42
	7	3.10	11.69	-6.10	-11.98
	8	3.38	9.47	-3.69	-9.77
D	2	3.05	5.16	4.98	4.41
	3	3.12	4.84	5.54	4.73
	4	3.08	6.13	5.24	4.48
	5	2.90	4.44	5.84	4.99
	6	3.11	3.28	7.99	7.02
	7	3.25	2.86	7.10	6.59
	8	2.97	5.08	4.70	4.38
Ea	2	0.87	0.62	-4.99	-4.40
	3	0.89	0.57	-5.00	-4.47
	4	0.88	0.38	-5.22	-4.74
	5	0.75	0.23	-4.91	-4.38
	6	0.74	0.55	-5.08	-4.68
	7	0.69	0.57	-5.95	-5.61
	8	0.84	0.33	-1.37	-1.23
Eb		1.65	2.68	65.78	63.96
Е	2	2.52	3.30	60.79	59.56
	3	2.54	3.25	60.78	59.48
	4	2.53	3.06	60.56	59.22
	5	2.40	2.91	60.87	59.58
	6	2.39	3.23	60.70	59.27
	7	2.34	3.25	59.83	58.35
	8	2.49	3.01	64.41	62.72

Table 3: Thermochemical and solvent correction terms at 298.15 K.

		o na se r	hase	CHaCla		
reaction	phosphine	$\Delta H \Delta G$			ΔH	
			<u> </u>		2.00	
А	2	53.87	61.29 62.74	-5.92	-3.00	
	ວ 4	55.20	02.74 64.06	-4.02	-2.14	
	4 5	52.09	04.00	-3.17	-0.00	
	5	57 20	61.00	-0.00	-3.31	
		50.84	67.14	-2.31	2.40	
	8	61.46	69.14	-1.94	1.03	
В	2	-19.19	-1.33	-13.61	-2.92	
D	3	-14.57	2.65	-7.26	2.53	
	4	-18.31	-0.33	-10.36	0.33	
	5	-23.11	-5.42	-16.67	-6.40	
	6	-16.42	-0.60	-10.02	-1.20	
	7	-14.67	0.92	-8.32	0.64	
	8	-14.32	3.60	-8.78	2.06	
С	2	5.18	11.27	1.20	1.47	
	3	1.91	8.38	-2.63	-1.74	
	4	8.21	13.36	3.97	3.49	
	5	6.41	13.07	1.57	2.69	
	6	5.28	13.31	-1.71	0.90	
	7	8.14	16.73	2.03	4.75	
	8	4.08	10.17	0.39	0.40	
D	2	-29.41	-27.30	-24.43	-22.89	
	3	-26.13	-24.41	-20.59	-19.68	
	4	-32.44	-29.39	-27.20	-24.91	
	5	-30.64	-29.10	-24.80	-24.11	
	6	-29.51	-29.34	-21.52	-22.32	
	7	-32.37	-32.76	-25.26	-26.17	
	8	-28.31	-26.20	-23.61	-21.89	
Ea	2	17.50	17.25	12.51	12.86	
	3	16.13	15.81	11.13	11.33	
	4	14.98	14.48	9.77	9.75	
	5	17.40	16.88	12.49	12.50	
	6	13.98	13.79	8.91	9.11	
	7	11.53	11.41	5.58	5.80	
	8	9.92	9.41	8.55	8.18	
Eb		-95.60	-94.57	-29.82	-30.62	
Ε	2	-78.10	-77.32	-17.31	-17.76	
	3	-79.47	-78.76	-18.69	-19.28	
	4	-80.62	-80.09	-20.05	-20.87	
	5	-78.20	-77.69	-17.33	-18.11	
	6	-81.62	-80.78	-20.92	-21.51	
	7	-84.07	-83.16	-24.24	-24.81	
	8	-85.68	-85.16	-21.27	-22.44	

Tab. 4: Resulting B2PLYP-D3 (free) enthalpies in gas phase and	in solvent (C	CH_2Cl_2) at f	298.15 K.
--	---------------	---------------------	-----------

					Cla
reaction	phosphine	ΔH	$\Delta H \Delta G$		ΔG
		4.94	0.17		<u> </u>
А		4.24	9.17	-00.08	-03.30 62.05
	ی ۱	4.23	9.20	-00.12	-05.20 62.01
	4	4.24	9.34	-09.97	-05.01
		1.38	9.49	-00.18	-05.54
	0 7	4.39	9.25	-00.13	-03.09
		4.44	9.20	-59.30	-62.19
	8	4.29	9.39	-03.80	-00.02
В	2	1.49	14.31	6.37	0.59
	3	1.51	13.86	8.17	2.13
	4	1.42	14.29	8.38	2.41
	5	1.30	13.97	7.28	1.27
	6	1.19	12.42	7.05	1.50
		1.06	12.10	6.55	1.25
	8	1.22	14.04	6.28	0.60
\mathbf{C}	2	3.67	7.49	-4.48	-8.44
	3	3.62	7.72	-5.10	-8.82
	4	3.64	6.80	-4.44	-8.11
	5	3.85	8.09	-5.41	-9.10
	6	3.68	8.99	-7.60	-11.18
	7	3.56	9.30	-6.21	-10.12
	8	3.79	7.65	-3.76	-7.82
D	2	3.11	4.76	5.48	5.09
	3	3.16	4.53	6.10	5.47
	4	3.14	5.45	5.44	4.76
	5	2.94	4.16	6.41	5.75
	6	3.11	3.27	8.60	7.83
	7	3.23	2.96	7.21	6.77
	8	3.00	4.61	4.77	4.48
Ea	2	0.79	0.69	-5.38	-4.71
	3	0.80	0.66	-5.35	-4.76
	4	0.79	0.52	-5.50	-5.00
	5	0.65	0.37	-5.29	-4.67
	6	0.65	0.61	-5.34	-4.92
	7	0.59	0.60	-6.10	-5.81
	8	0.74	0.48	-1.61	-1.39
Eb	_	1.75	2.40	66.47	64.66
E	2	2.53	2.09	61.08	59.95
Ц	3	2.50 2.54	$\frac{2.00}{2.06}$	61 12	59.00
		2.54 2.53	2.00	60.97	59.50 59.66
	5	2.30	1.52 1 77	61 18	59.00
	6	2.05 2.30	2.11	61 13	59.55 59 74
		2.09	2.01 2.01	50.27	58 85
		2.00 9.40	2.00 1.97	61.06	00.00 62.07
	0	2.40	1.01	04.00	05.27

Table 5: Thermochemical and solvent correction terms at 213.15 K.

		gas phase		CH_2Cl_2		
reaction	phosphine	ΔH	ΔG	ΔH	ΔH	
A	2	54.28	59.21	-5.80	-4.09	
	3	55.67	60.64	-4.45	-2.61	
	4	56.81	61.91	-3.16	-1.10	
	5	51.40	59.51	-8.77	-3.82	
	6	57.82	62.68	-2.31	0.41	
	7	60.27	65.09	0.91	2.90	
	8	61.88	66.98	-1.98	0.36	
В	2	-19.41	-6.59	-13.05	-6.01	
	3	-14.80	-2.45	-6.62	-0.31	
	4	-18.54	-5.67	-10.16	-3.26	
	5	-23.35	-10.68	-16.07	-9.41	
	6	-16.71	-5.48	-9.66	-3.98	
	7	-14.97	-3.93	-8.42	-2.69	
	8	-14.57	-1.75	-8.29	-1.15	
\mathbf{C}	2	5.55	9.37	1.07	0.94	
	3	2.29	6.39	-2.81	-2.43	
	4	8.58	11.74	4.14	3.63	
	5	6.81	11.05	1.40	1.95	
	6	5.72	11.03	-1.88	-0.15	
	7	8.60	14.34	2.38	4.22	
	8	4.49	8.35	0.73	0.53	
D	2	-29.35	-27.70	-23.87	-22.61	
	3	-26.09	-24.72	-19.99	-19.24	
	4	-32.38	-30.07	-26.94	-25.31	
	5	-30.60	-29.38	-24.19	-23.63	
	6	-29.51	-29.35	-20.91	-21.52	
	7	-32.39	-32.66	-25.17	-25.88	
	8	-28.28	-26.67	-23.51	-22.19	
Ea	2	17.42	17.32	12.04	12.62	
	3	16.04	15.90	10.69	11.14	
	4	14.89	14.62	9.40	9.63	
	5	17.30	17.02	12.01	12.35	
	6	13.89	13.85	8.55	8.94	
	7	11.43	11.44	5.33	5.63	
	8	9.82	9.55	8.21	8.16	
Eb		-95.50	-94.85	-29.03	-30.19	
Ε	2	-78.09	-78.53	-17.01	-18.57	
	3	-79.48	-79.95	-18.36	-20.05	
	4	-80.62	-81.22	-19.65	-21.56	
	5	-78.21	-78.83	-17.03	-18.84	
	6	-81.62	-82.00	-20.49	-22.25	
	7	-84.08	-84.41	-23.71	-25.56	
	8	-85.69	-86.30	-20.84	-23.03	

Coordinates of all structures (TPSS-D3(BJ)/def2-TZVP) in bohrs

1

-4.23249240776686 2.06215889597757 1.39899612432370 c -2.94823329880599 0.20612471456784 0.00613091574228 c -4.48800941605508 -1.44218064026580 -1.38898675935114 c -7.10713533376698 -1.26316729855424 -1.43599637499515 c -8.29317461867255 0.60240636889926 -0.00117505128396 c -6.84914243443467 2.27243581618083 1.43824822691958 c -0.00258062382489 -0.00421192230071 0.00130677167984 b 1.29029208904593 -2.66007946587504 -0.00295121660290 c 3.48208918598846 -3.16439711315246 -1.40815267518948 с 4.64844961597692 -5.51610036818445 -1.45172429715037 c 3.64346694193502 -7.47496557579630 -0.00296521589537 с 1.47993997871087 -7.06482179296155 1.44500002586572 c 0.34080055497439 -4.69955583317529 1.40133617009343 c 4.51415784098651 -1.34173182944171 -2.86082609254523 f 6.71644914464817 -5.92397909159164 -2.85816270039375 f 4.75270818601668 -9.74210521716244 -0.00219740712813 f 0.53141755767817 -8.94728898334228 2.85140950147362 f -1.73093374361264 -4.39371079670237 2.85435742287120 f -3.43433472492424 -3.26102293646080 -2.83049434583431 f -8.50125661149016 -2.85179840134628 -2.83371689221195 f -10.81010989488059 0.78962339858502 -0.00556974469566 f -7.99734265538399 4.05077800015779 2.83108309119742 f -2.92533115713911 3.70647890340557 2.84272505981949 f 4.68157927065500 0.67485302162055 2.82872318537294 f 3.90307131588927 2.62924493834478 1.38988275725971 с 1.65233270627211 2.44159719603071 -0.00044340284147 c 0.98782678924624 4.59996951210376 -1.39087957114483 c 2.44426951051501 6.78383351763382 -1.43325942931426 c 4.65329550971487 6.88259495413628 0.00086714677941 c 5.38586773451011 4.79558026448144 1.43379977052018 c -1.11584372811583 4.59365902600095 -2.83022982739915 f 1.75631712993141 8.78642754992634 -2.82485491792865 f 6.06585930562720 8.97417794947575 0.00205853756793 f 7.50017624755118 4.90420498778507 2.82626869741926 f

$\mathbf{2}$

 $\begin{array}{l} 5.96569025732868 & -2.13433208292382 & 1.37974399189357 \ c\\ 6.53198705933009 & -2.18349404897956 & 3.95508749243940 \ c\\ 4.59760837995868 & -1.90737850272006 & 5.72718412370753 \ c\\ 2.10944468711366 & -1.59148770261115 & 4.92163037006893 \ c\\ 1.52474764047666 & -1.50580108572856 & 2.33603426962604 \ c\\ 3.48005238089044 & -1.79037931107801 & 0.57253607781495 \ c\\ -1.81410737615022 & -1.05014449911602 & 1.47774120988078 \ p\\ -1.92301091221841 & 2.41591845304490 & 1.21708973219181 \ c\\ -4.20333644240788 & 3.56324106491185 & 0.53548155100831 \ c\\ -4.53616072225550 & 6.15817370351094 & 0.39660215302698 \ c\\ -2.49436280672364 & 7.71936535667085 & 0.98911526321446 \ c\\ -0.18612684201622 & 6.65775554153221 & 1.69179369453279 \ c\\ 0.09207373890221 & 4.03857498951890 & 1.79842230562200 \ c\\ -1.80363365588564 & -1.99223838800627 & -1.86527142351450 \ c\\ \end{array}$

```
-1.40578812586461 -0.32117748941264 -3.88002470080654 c
-1.41425672671644 -1.19898681460634 -6.36579158344982 c
-1.80326575532548 -3.75765292524828 -6.86853309889695 c
-2.20309188753573 -5.43773867533183 -4.87409159801054 c
-2.22173172915012 -4.55699139904729 -2.39275170407053 c
1.89592014804170 3.22476229512653 2.33791996045807 h
-2.56519335481616 -5.86296241250250 -0.84329915357216 h
0.59853338207923 -1.40716309003975 6.30277795381255 h
-6.20073514193323 2.04975541703419 -0.05170970990835 f
-1.08528290223138 1.67069055173894 -3.50142336340157 h
3.05219893580664 -1.74727768656913 -1.43391637272181 h
7.46386543040079 -2.35859113847708 -0.00684079682059 h
8.46974475202368 -2.44949688697862 4.57893939570622 h
5.02314452933807 -1.96044690571393 7.73514286877455 h
-6.35797916754036 6.91619734570245 -0.16111687482144 h
-2.71658588330230 9.75737193010912 0.89839528710872 h
1.40701303758240 7.86732593872663 2.15002710215585 h
-1.10898030762491 0.11858011322031 -7.91113809099564 h
-1.80747642779917 -4.43842690742746 -8.80533527725978 h
-2.52181619177551 -7.43031874832965 -5.25330605479331 h
```

3

9.73386605865075 -0.31915463225089 2.99698950678394 c 10.23435277268100 -2.54192285848196 4.32680135844704 c 8.28378215537410 -4.24952391188010 4.80988311862201 c 5.84029402788544 -3.72876771012114 3.97233698438482 c 5.32428915487845-1.51369997906385 2.61249491465268 c 7.29595087415886
0.18981844371840 2.13706879465703 c 2.05152297030002 -1.02562576230033 1.55375586461051 p 2.03121592049444 2.41114170995188 1.03063377124638 c 1.87264099015607 3.98658668928272 3.14479598370289 c 1.75610559767455 6.59961509952753 2.99759266377519 с 1.77996949936611 7.72443792385219 0.61241242461511 c 1.93018669105313 6.22467132898587 -1.55024480138160 c 2.05959921155146 3.60096853485708 -1.33685701962627 c 2.25968568446626 -2.17565887279665 -1.72198775810285 с 0.07312586198247 -2.18390906648068 -3.20499347731068 c -0.02688021911652 -3.15360238259932 -5.63715589397059 c 2.16642327612397 -4.20118640363932 -6.66040596323519 с 4.38923769433556 -4.24714384332020 -5.24376778191630 c 4.43160731875001 -3.24165256832086 -2.80781425221130 c 2.19460388742799 2.44744471256817 -3.02799201558506 h 6.16806495635052 -3.27998574273155 -1.71709584204978 h 4.31225244068800 -5.04191934029991 4.37639557641687 h 1.86177147925208 2.89855609880294 5.47654497702624 f -2.07133649716491 -1.15756414247880 -2.21823911219571 f 11.24613593869966 1.01926557419434 2.62465810321572 h 12.13524106847193 -2.93493019421433 4.99529708809688 h 8.65974072318880 -5.97519254398472 5.85671830419285 h 1.64709313297518 7.70637187106697 4.72028618229064 h $1.68300490715144 \ 9.76811111263764 \ 0.45450577300651 \ h$ 1.95415305297430 7.09505899818475 -3.40828800550604 h -1.78890257559570 -3.08267071055219 -6.68347651939530 h 2.12812080537568 -4.97765379661772 -8.55948326097043 h
 6.09859764427301 -5.06042618276251 -6.03579948774258 h
 6.91677252593451 1.91605886055066 1.09327774526566 h

4

9.66273420272497 -0.08584108448494 3.60194965322130 с 10.28040516690711 -2.51049960790349 4.43334766907346 c 8.47707469352591 -4.43240522113786 4.35322856256688 c 6.08577515169562 -3.86108161855177 3.44551635712782 c 5.38563874695997 -1.46220781637426 2.59000728044474 c 7.24531244066104
0.42407054866501 2.68630548827620 c $\,$ 2.09114979562809 -0.95885902638118 1.60006302039864 p 2.12867751947763 2.46361828208983 0.99329289660607 c 1.87643844153789 4.10256058573383 $3.04931315061104~{\rm c}$ 1.74770160633319 6.70939321124619 2.81443762598092 c 1.859821233691497.757945761451690.39777209628338 c 2.10819681643057 6.19275508106370 -1.70925585081105 c 2.24736900203517 3.57880833599931 -1.40817214977388 с 2.21200232704698 -2.18574030040884 -1.65024649391679 c -0.03171242935549 -2.27664977610152 -3.04130269636809 c -0.19924425223399 -3.28618976907380 -5.45370439745311 c 1.98215206104917 -4.28131659083794 -6.55103576185397 c 4.26301025657504 -4.23388895729491 -5.22957912208689 c 4.37178341420425 -3.19130215436370 -2.81208174635049 c 2.45280323856468 2.37138237146827 -3.05394752276337 h 6.15469388206825 -3.14869243827340 -1.79848068509114 h 4.34008284375704 -5.74781043960507 3.35246946905230 f $1.78629837166512\ 3.09042787772168\ 5.41247271842862\ f$ -2.16109003783455 -1.29098755548201 -1.98698293539524 f 11.06472624777142 1.41128647116300 3.65871263650597 h 12.16205251602765 -2.91600631274139 5.14454031135259 h 8.89276440859917 -6.34039614912518 4.97840264405347 h 1.56150066443238 7.86870393071786 4.49535434258932 h 1.75383020435233
9.79470749010667
 $0.17128510113212~{\rm h}$ 2.20064292583002 7.00525594425805 -3.59113225222705 h -2.00347210855556 -3.28506869446076 -6.42781935311660 h 1.89050072391594 -5.08873060123254 -8.43529191926983 h 5.96380421604473 -5.00263385839248 -6.08190690193552 h 6.77886362167053 2.31130908724420 2.03131670851803 h

$\mathbf{5}$

 $\begin{array}{l} 6.09732096094926 -3.12436311352049 \ 1.65988930370789 \ c\\ 6.85068094950223 \ -2.12502091039016 \ 3.97831392458292 \ c\\ 5.10258873254548 \ -0.81645843269998 \ 5.46054261594432 \ c\\ 2.62498641962824 \ -0.51498206145455 \ 4.62783106523701 \ c\\ 1.85817812990325 \ -1.47617461331213 \ 2.27302924540787 \ c\\ 3.62248020352391 \ -2.80101260924659 \ 0.81090098600696 \ c\\ -1.49428903297628 \ -1.21012580845798 \ 1.44936811677791 \ p\\ -2.03110488973276 \ 2.22897530661156 \ 1.33291930326643 \ c\\ -4.56493530307906 \ 3.00152103031464 \ 1.19882701866965 \ c\\ -5.18817536376704 \ 5.55950837781906 \ 1.13169237983320 \ c\\ -3.28585943976420 \ 7.38197557846959 \ 1.25312736715133 \ c\\ -0.76330857371689 \ 6.63035013745067 \ 1.42389982267718 \ c\\ \end{array}$

```
-0.13552792878188 4.07206192362551 1.45166733232932 c
-1.48696047509602 -1.99190910005483 -1.94936716470817 c
-0.13139459148351 -0.71589796906518 -3.83528500690247 c
-0.26542760748168 -1.30411796006247 -6.38756054244493 c
-1.82797393537310 -3.28877756274260 -7.13873660368222 c
-3.21591360324017 -4.64728554654953 -5.36198408938195 c
-3.01048988690054 -3.96910182640191 -2.83328111117448 c
1.83205398479793 3.50309432861128 1.54856552928677 h
-4.37484774320596 -5.31825874991701 -1.13631523756475 f
1.27284556355930 0.48695607297846 5.80729512678784 h
-6.05155987266782 1.58242029478307 1.15051006941604 h
1.42515127550762 1.19375066123746 -3.14696727002956 f
3.06615577885656 -3.58191103891803 -1.00360256015704 h
7.44122880286455 -4.15105227873959 0.49522508003024 h
8.78104067025651 -2.36920207659042 4.63195131861117 h
5.66613765503877 -0.04037437581086 7.27610209969179 h
-7.15750877529568 6.12827308832733 1.01304539198922 h
-3.76697973098214 9.37760946794191 1.22487845168791 h
0.72586642425722\ 8.04153814718835\ 1.51633648269029\ h
0.84087078125319 -0.22388108593536 -7.73240021601873 h
-1.96003580277227 -3.78155581826062 -9.12556968379205 h
-4.43900277612688 -6.20209247722886 -5.89528454592691 h
```

6

```
5.67549790861145 -2.24505142050023 2.13175257155403 c
5.78957176675001 -2.27244785385934 4.76706387419717 c
3.58770932196106 -1.93184635379055 6.17606330728271 с
1.28337319348927 -1.57597071219308 4.95026099603431 c
1.16115997939950 -1.51285472735858 2.30358622570244 c
3.37850388248998 -1.85802087016089 0.90407700122778 с
-2.01211250927242 -0.96551846348795 0.97477005392746 p
-1.94585876855312 2.51957891243718 0.91067368861105 c
-3.76250523557659 3.85642502682833 2.29210634600637 c
-3.79492637952851 6.47259033154391 2.51938189748291 c
-1.91548427175608 7.85753340193608 1.30567699052720 c
-0.05191719813035 6.64004394470228 -0.10698502496683 c
-0.11640334954597 4.02674620977646 -0.26540664893611 c
-1.64264539776810 -1.90800796614237 -2.35027962599097 c
-2.35338817857500 -0.53354416622503 -4.49828504086599 c
-2.21415323311039 -1.46700432218192 -6.94674065479902 c
-1.36505267899457 -3.92931022958014 -7.32580101713307 c
-0.70320947045178 -5.43060054425808 -5.26463029224316 c
-0.88947985386100 -4.39854727038379 -2.86474842759778 c
1.68453494895922 2.87796694963107 -1.67812123152944 f
-0.32261398957473 -5.90923092874616 -0.86523244415746 f
-0.43877310582101 -1.34744899564490 6.04890234547975 h
-5.60663612087467 2.54216614239588 3.49395097083256 f
-3.26599187020432 1.84843772868316 -4.21512874253843 f
3.31172587322899 -1.81410037016802 -1.14501178664009 h
7.38420704634037 -2.51578768720420 1.02553702304522 h
7.58514893317276 -2.56945334474037 5.71686108281000 h
3.65722832061188 -1.96730864589101 8.22762952005021 h
-5.26726338656934 7.37182283820994 3.62447947035410 h
```

-1.90225627516683 9.90320354311534 1.45550727767065 h 1.42233459811753 7.67658527505851 -1.08211155820542 h -2.77921561327970 -0.26135846315057 -8.50438298984604 h -1.24335114732833 -4.68839104306455 -9.22679541068274 h -0.07529173918908 -7.36887392558636 -5.48138374666348 h

7

5.91564016627331 -2.47807046282293 2.24369190271632 c 5.96543473139044 -2.27902290329869 4.86700387087117 c 3.77757678159116 -1.65426075403024 6.19585005120215 с 1.57684069741263-1.26497112570004 4.83210831514863 c 1.39006380306942 -1.44349198158349 2.19434223221646 c 3.65852494470803 -2.04619916614307 0.97300041048674 c -1.81665589972032 -0.98268371777993 0.89964152936779 p -1.88969091883028 2.49127124431927 0.91628138502250 c -3.92685730793035 3.71991430471079 2.07181435571608 c -4.08280844194608 6.32548934376325 2.35549852626147 c -2.10778796868672 7.80433441597648 1.43975297989660 c -0.02910740373744 6.69401135703568 0.25718330534988 c 0.02294687457218 4.08588747096931 0.02271333789056 c -1.56419481992614 -1.89254136502859 -2.43851184422556 c -2.20333412930786 -0.46491226451468 -4.57015159493898 c -2.25607902754364 -1.43921546391748 -7.00808621763729 c -1.67387651403004 -3.97712600882381 -7.38352926669126 c -1.06644353872686 -5.51634887399387 -5.33114842189185 c -1.05225880854192 -4.44167496096449 -2.94812069018531 c 2.02439962539043 3.03176435231609 -1.17138230695824 f -0.48316186310188 -5.94427915792641 -0.93919667030746 f -0.54970723754748 -0.63389836568979 6.13042476833066 f -5.86667244989431 2.30701795796920 2.96013517339050 f -2.83142762985213 2.00812586859925 -4.29596498326660 f 3.71925148596824 -2.21065686676371 -1.57850877973749 f 7.59250454850731 -2.94018651189288 1.16010223111173 h 7.71842003170980 -2.60221310235033 5.88119035985662 h 3.75228805942997-1.46783062449318
 $8.23593265403052~{\rm h}$ -5.72071431885067 7.14537392939428 3.27314582646124 h -2.18971847266850 9.84411868832881 1.64034078658618 h 1.51943123968682 7.80912161267767 -0.48907840176097 h -2.75244502069901 -0.19910743513990 -8.56205503712559 h -1.70316349174624 -4.76262223949193 -9.27746451099744 h -0.61474972642184 -7.50269219371058 -5.54971827618954 h

8

 $\begin{array}{r} -7.90527535988007 & -3.40727156794141 & -3.72632332164925 \ \mathrm{c} \\ -5.73336006682289 & -4.87163923248428 & -4.00920118305427 \ \mathrm{c} \\ -3.45420628586484 & -4.09150075031294 & -2.93976977075597 \ \mathrm{c} \\ -3.31261893946413 & -1.83163405613686 & -1.56856648441922 \ \mathrm{c} \\ -5.52187777619965 & -0.39066883431316 & -1.25742481672833 \ \mathrm{c} \\ -7.79056244391881 & -1.16221910175260 & -2.34455683634322 \ \mathrm{c} \\ -9.67637222914262 & -4.01179308170981 & -4.56884494924708 \ \mathrm{h} \\ -5.80399184033270 & -6.62460306357738 & -5.07572445017248 \ \mathrm{h} \\ -1.77776163286728 & -5.25091120635274 & -3.18158689813689 \ \mathrm{h} \\ -5.45883236504492 & 1.35183648424731 & -0.17037431880446 \ \mathrm{h} \end{array}$

```
-9.47426138679535 -0.01227359756371 -2.10385142884818 h
1.24004471853669 7.36903460440530 -2.44571593534894 c
-0.50404522218554 5.95676570619666 -3.83236052671360 c
-1.05896681710597 3.47695624838105 -3.13965334060264 c
0.11313402104153 2.38652830573338 -1.03120818454848 c
1.83514952418231 3.83262744536855 0.37546528289213 с
2.41578622477052 6.29951388427069 -0.34178694109801 c
1.67221732409235 9.29872086990544 -2.99678468626757 h
-1.42416597399411 6.78244195614177 -5.47180403275087 h
-2.39562979669549 2.38169579723778 -4.24295366309557 h
2.71642000707683 3.01417265201271 2.04253751913318 h
3.76242229948573 7.39272482856582 0.75641282115236 h
6.09057746503860 -5.30047351729681 -3.71151938393118 c
4.51840799356594 -3.80750650862275 -5.20872780103904 c
2.53075489370365 -2.50021248271312 -4.08985455084752 с
2.03689711486459 -2.61117899055172 -1.49222683519934 с
3.65247651661872 -4.13619037250674 -0.05770991099955 с
5.65707794376027 -5.47157920276805 -1.12192989867147 с
8.00857912802467 -6.57114800290199 -4.76470385377535 f
4.93396577406274 -3.65874453428422 -7.70880845111563 f
1.05362676456833 -1.11198486628015 -5.62227998603630 f
3.31350364931887 -4.36552759189343 2.45329208810495 f
7.16791277621093 -6.91564650505371 0.31739246894280 f
-0.48402600260877 -0.83031171544906 0.15615225997495 p
```

9

-7.39909294368645 0.30959420299212 -2.87975263173787 c -5.23898180485715 -0.54473373434089 -4.12934149165766 c -3.02949436020637 -1.022396666699347 -2.78099575147880 c -2.94120462429409 -0.67908943466132 -0.15054655711111 c -5.12191617058228 0.19773352680438 1.07912598379477 c -7.32963214581064 0.68387665398172 -0.26992386684922 c 6.57879704265084 0.62196365281971 -1.98780998436649 c 4.50511249634010 2.21929528563142 -2.31345973780633 c 2.16855759402701 1.58514472180308 -1.28079617814925 с 1.86285807989734 -0.64831926815769 0.12033059685520 c 3.95959029690891 -2.24554608316257 0.41804420401957 с 6.29483171846578 -1.61619979853853 -0.62174689135544 c -0.60891616938505 -1.27416587003012 1.29079991351204 c -0.73144284877798 -2.35100727680027 3.59292390721888 c -9.11768120838077 0.69633645310253 -3.93373568395048 h -5.27578004274102 -0.84213610007432 -6.16062613066870 h -1.35428695578796 -1.69043538116766 -3.76097836543125 h -5.05834985145446 0.53810867378297 3.10276194363969 h -8.99250975092543 1.37823624722044 0.71441141503826 h 8.39729357430763 1.10947881112576 -2.80601582839483 h 4.70883909857966 3.96595299324489 -3.37343851835862 h 0.56112941311546 2.83573579250968 -1.53592707187721 h 3.73133164808379 -4.01276915230430 1.43772916105229 h 7.89061470360817 -2.88647454647827 -0.38507468633659 h -2.52579957790132 -2.90084477544789 4.42112557689132 h 0.96013278880640 -2.70533892686138 4.69791667350790 h

1-H anion -2.15966524388772 1.88812559414274 1.02056619261237 c -0.44022097491906 -0.03362152660559 0.48029773553655 c -1.50783069640697 -2.13229111721241 -0.71800645628480 c -4.05267261454437 -2.34381422537652 -1.34064125668623 c -5.68408634076611 -0.36372820275761 -0.76491349541268 c -4.72503812002176 1.77070363721389 0.42472101490029 c 2.61120868396007 -0.02310167834144 0.99699895744949 b 3.49473614953216 -2.17023131505879 3.05389413404784 c 5.98796921489147 -3.03604928656125 3.01257639728827 c 6.92942034828325 -4.89063334390761 4.62396701538976 c 5.33055135243712 -5.97854624245818 6.40400167889154 c 2.83342990226449 -5.17499401947049 6.53763198237663 c 1.98353119075936 -3.30286982856925 4.89153054098760 c 7.65660171808987 -2.04813714054986 1.33313477894494 f 9.36883879459442 -5.65546608527416 4.48626284186611 f 6.19684364634317 -7.78834699163432 7.98750755326474 f 1.27129787585111 -6.20762608161962 8.28251683059884 f -0.46321654335892 -2.58807658996425 5.19322823596608 f -0.02611460229425 -4.13877422974593 -1.32086802896185 f -4.96849005443977 -4.43605661908729 -2.49674942866107 f -8.16633798314049 -0.51649692695218 -1.35517925329635 f -6.30020616981255 3.70465266020977 1.00018119154987 f -1.40646165880096 4.03524005646312 2.21271508730105 f 3.06184193834535 2.29395210881431 6.18033802205301 f 3.99375707517009 3.65620871688369 4.21515656673152 c 3.77380589719430 2.74490188320591 1.75098104774412 c 4.72418267374652 4.36616846714733 -0.09956643996611 c 5.83624304289155 6.69516868752750 0.42497003124948 c 6.02903152215079 7.50000287729262 2.91828056688445 c 5.09463881163980 5.96413958333103 4.83546892284784 c 4.58262994026510 3.72922132679669 -2.57916954349191 f 6.73435679260109 8.18719334185063 -1.45195180861522 f 7.10261961715028 9.75212724355413 3.47206407785872 f 5.25206950751779 6.74874390292279 7.26639788097399 f 3.57272630671376 -0.62638263620927 -0.98533957393879 h

S86

2-H cation

 $\begin{array}{l} 6.15370665817906 & -2.57295748030144 & 1.68621679984757 \ \mathrm{c} \\ 6.50499640751468 & -2.49812849598972 & 4.29899319906177 \ \mathrm{c} \\ 4.49327265803554 & -1.91328479964075 & 5.90747186287948 \ \mathrm{c} \\ 2.11809821934131 & -1.39344906635925 & 4.90808818745450 \ \mathrm{c} \\ 1.77029507282967 & -1.46862910851053 & 2.27693631957784 \ \mathrm{c} \\ 3.78411639592442 & -2.06170691762373 & 0.65921397840086 \ \mathrm{c} \\ -1.25236223867164 & -0.71119880598487 & 0.98161059217202 \ \mathrm{p} \\ -1.78906934928669 & 2.61704156463643 & 1.11895757539445 \ \mathrm{c} \\ -4.23296807133226 & 3.55461097924442 & 0.73918549881236 \ \mathrm{c} \\ -4.77340634743934 & 6.11268660178083 & 0.78982320228803 \ \mathrm{c} \\ -2.78474812409763 & 7.79160503288746 & 1.22669380083046 \ \mathrm{c} \\ -0.32187282050491 & 6.91691453795190 & 1.60887748949308 \ \mathrm{c} \\ 0.18364859793485 & 4.33773427396986 & 1.56185502087907 \ \mathrm{c} \\ -1.62642978151886 & -1.90759724327069 & -2.14794019113585 \ \mathrm{c} \\ -1.42063900008516 & -0.27374539890151 & -4.22358205148926 \ \mathrm{c} \end{array}$

```
-1.63338635973618 -1.25168483144164 -6.65824363837183 c
-2.05195036443520 -3.83118348527341 -7.01305558294824 c
-2.26048590143905 -5.45430886968415 -4.94015251302510 c
-2.04606974428382 -4.50496835657047 -2.49846646997888 c
2.08655300580754 3.63830698497313 1.87414919563038 h
-2.20913909522135 -5.76692460707035 -0.88659071701930 h
0.55340317539978 -0.93935783470451 6.15850457407335 h
-6.10496554981190 1.86200013924494 0.31471876970339 f
-1.11180098448780 1.73441133873516 -3.93588257226181 h
3.49279870972915 -2.13733825028165 -1.37047287136326 h
7.71984697853049 -3.03900330563330 0.44715013296395 h
8.35267748600319 -2.90783960299451 5.09048134115721 h
4.77419478668133 -1.87201048486433 7.93844727660884 h
-6.69662198106086 6.75731795539011 0.49630637168770 h
-3.17131303597707 9.80536001357925 1.27290061701600 h
1.19975638235828<br/>8.24629051337020 1.95215174289888 \ h
-1.48278244519659 0.00167163420437 -8.27429281624720 h
-2.22694637672921 -4.58262333328998 -8.91379340799154 h
-2.59935130953369 -7.45633397259060 -5.22707704983863 h
-3.07745865342033 -1.87599931898668 2.51186533283960 h
```

3-H cation

9.96601025760821 -0.37775898146378 3.42577413480673 c 10.25998179566012 -2.68137157057188 4.67731124002353 c 8.23751158958678 -4.36686884886436 4.87964841065275 c 5.90668193959425 -3.75867145090984 3.82595859382754 c 5.61821817019644 -1.44075255165269 2.56658556606022 c 7.64274547810026 0.25818027587859 2.36549365608400 с 2.66406390231055 -0.69930752899560 1.12674228820084 p 2.19239691213492 2.62498495381267 0.84420714955979 с 1.77708022369033 4.05227429923880 3.03145595541519 c 1.42162608700478 6.64182201927709 2.96411108310100 c 1.50021477835314 7.84272441727336 0.61574109394921 c 1.91709727152297 6.47179794216715 -1.60331951202320 c 2.25820542919785 3.86782302188980 -1.49983334621629 с 2.39171249638698 -2.18652274829415 -1.88880492729730 c 0.02748236725636 -2.32135698998553 -3.06704767665815 c -0.30799439734083 -3.44261862571261 -5.40561370807972 c 1.81024117793450 -4.45734844117705 -6.60896191048714 c 4.19772008163809 -4.35280660884980 -5.48371563106762 c 4.49693750255426 -3.22737061230669 -3.12716084010212 c 2.56744281056872 2.78580478737392 -3.21520218841204 h 6.33856098166168 -3.15775843390954 -2.22623434551546 h 4.33046696223216 -5.06451963915104 3.99137963301918 h 1.72563793363885 2.81141364060000 5.26886711634211 f -1.97575007899958 -1.30861757250214 -1.83653716608495 f 11.54043033895894
0.92859743701653
 $3.28484268662708 \ {\rm h}$ 12.07083283616186 -3.16207303171685 5.51276236248949 h 8.47310905252963 -6.14782698518991 5.86848765720737 h 1.08916763696428 7.67337712503128 4.70359271870995 h 1.22795838996666
9.87354913482888
 $0.52432243723652\ h$ 1.96610620087663 7.43367699290990 -3.41233262233573 h -2.17584047422808 -3.51463875808654 -6.24615493681821 h $\begin{array}{l} 1.58516216600248 - 5.34434468246034 - 8.44454920936598 \ h\\ 5.82135969457332 - 5.15896890711170 - 6.43994306243639 \ h\\ 7.39558181708375 \ 2.05801704810595 \ 1.41059766886833 \ h\\ 0.75446866987839 - 1.67454343946966 \ 2.68031589647755 \ h\\ \end{array}$

4-H cation

9.88398503128347 -0.23054461192653 3.79728560405543 c 10.24237572601091 -2.66155075709065 4.76691841101859 c 8.33083857125672 -4.47587038794214 4.63638981911598 c 6.06863567912608 -3.79828631776366 3.51317367302778 c 5.64826184107881 -1.37876666300251 2.53176860476997 c 7.59393035484351 0.42015150193373 2.68431052548363 c 2.67333382412244 -0.67025705907751 1.11911532280806 p 2.25524889429091 2.65884260625587 0.81638743319516 с 1.80881215100143 4.10583568663183 $2.98458510525000~{\rm c}$ 1.46489621875529
6.69622791028300
2.88861387136650 c 1.58516009502476 7.87594198793010 0.53132119041968 c 2.03490549454061 6.48461412530643 -1.66869789531863 c 2.36619041278239 3.88076639124157 -1.53717933215164 c 2.37747059886099 -2.19026531867119 -1.87269395517930 с -0.01294073301829 -2.40425083047305 -2.98351726780669 c -0.37775822538691 -3.56125639333904 -5.30013457181004 c 1.73607208974714 -4.52667495531585 -6.55015976652598 с 4.14998132291730 -4.33645544028774 -5.49406928003743 c 4.47943097032507 -3.17648181419350 -3.15901260999863 c 2.69840736166698 2.78173845087991 -3.23733750575747 h 6.34398806564725 -3.03615427549674 -2.31500235341376 h 4.16747468598199 -5.50188289340198 3.33600804860134 f 1.71886337316672 2.88540665276826 5.23184231420896 f -2.00855300648672 -1.43119939791208 -1.71118053430565 f 11.38677796095561 1.15747352734433 3.92019915231801 h 12.02945899664609 -3.15705803231196 5.64289955653920 h 8.57373694432766 -6.36822933808245 5.38482988981254 h 1.11103405645356 7.74493462959825 4.61354016420073 h 1.31847273224390
9.90634528253842
 $0.41757373927828 \ {\rm h}$ 2.11609194048648 7.43053118805345 -3.48489250117450 h -2.26467861852466 -3.69843686100729 -6.08815383556953 h 1.48754053031391 -5.44232555576710 -8.36848694832435 h 5.77042643493676 -5.10242156944976 -6.48783352795574 h 7.29109174722241 2.30897753115913 1.94311682712458 h 0.76942808403640 -1.59875258746124 2.70422488717151 h

5-H cation

 $\begin{array}{l} 5.91427059016760 & -3.69510887466277 & 2.09945446881856 \ \mathrm{c} \\ 6.66655798032479 & -2.42094467710854 & 4.28365488488062 \ \mathrm{c} \\ 5.08531939183067 & -0.62571504139859 & 5.39882948962502 \ \mathrm{c} \\ 2.74170291810330 & -0.08990524426059 & 4.33369895520206 \ \mathrm{c} \\ 1.99128399978705 & -1.37422488667014 & 2.13463687000435 \ \mathrm{c} \\ 3.57366756838654 & -3.18219306849463 & 1.01472335541769 \ \mathrm{c} \\ -1.07127651378425 & -0.76963092790916 & 0.85443775202349 \ \mathrm{p} \\ -2.01554864320111 & 2.43978701245893 & 1.26782704473385 \ \mathrm{c} \\ -4.53994780086561 & 2.93788075713403 & 1.92052144368637 \ \mathrm{c} \\ -5.33408242284521 & 5.43039180743191 & 2.19438204937139 \ \mathrm{c} \end{array}$

-3.62610604160827 7.40604986496572 1.81979584170002 c -1.11545800368783 6.90483770493478 1.17432572008995 c -0.29377202857521 4.42352415244145 0.89140825292448 c -1.28286602530002 -1.86995739762970 -2.33520133819238 c 0.24123362545350 -0.84003955476043 -4.24518142339625 c 0.11058509244559 -1.60416924049327 -6.73928973888955 c -1.63129609302097 -3.48552576289192 -7.36999813215238 c -3.20130789711001 -4.57568340756628 -5.55368169595736 c -3.00302824409322 -3.74934969831673 -3.07810529642356 c 1.65532474515063 4.02808249305681 0.39323813728133 h -4.51138303090584 -4.78508079730778 -1.29822971306998 f 1.51501463676574 1.31400989667691 5.19081779636989 h -5.86508095009473 1.39805154318295 2.22067943244295 h 1.90335391048618 0.97837182428791 -3.56371732338160 f 2.98558972422040 -4.16815391299528 -0.68572251619365 h 7.15130440858944-5.08471828681097 1.23709752162251 h 8.49597243258376 -2.82481245706763 5.11928947615381 h 5.67940499708905 0.36140486437923 7.09528005718840 h -7.27846091256083 5.82798451417148 2.71027199383475 h -4.25181175503840 9.34715528438581 2.04104608381833 h 0.20395611254054 8.44928442941895 0.89271480896550 h 1.33469553612005 -0.74418863081398 -8.13832179142969 h -1.76776545072324 -4.11184246127624 -9.31756267402035 h -4.55696465808832 -6.03601714680591 -6.02860506533523 h -2.90635919854164 -2.19862767368644 2.11516727228666 h 6-H cation 6.15010221605966 -3.19555146047779 1.83832886798705 с 6.66340590455157 -2.46276335853248 4.31782725782268 c 4.84885628549933 -1.17213323178764 5.73920784928548 c 2.51214700786302 -0.60153477894803 4.68388902898266 c 2.00632612753274 -1.34272824211989 2.18590726380841 c 3.81527688189202 -2.64211350369389 0.75611635248446 c -1.01821010339095 -0.65374250070296 0.87367821617827 p -1.82667863124761 2.61839073611821 1.05513838485337 c -4.38361606299675 3.30171389686799 1.29188355161233 c -5.18251190191075 5.78025721113700 1.48916200939415 c -3.35140173944515 7.67986044424085 1.42780339765674 c -0.78871962214858 7.11578400368862 1.17081627163259 c -0.06739311491893 4.60707121575419 0.97862705255937 c -1.39512313389661 -1.91623026088567 -2.23028077101212 c -0.37707503378395 -0.71900623512017 -4.36617772575428 c -0.70618820811620 -1.63424085212813 -6.79162811815994 c -2.11045237381885 -3.84731240966292 -7.10603789232893 c -3.15848907480674 -5.12346589985735 -5.04926473099507 c -2.78017286539408 -4.14123220811760 -2.65448090186011 c 2.39605957796548 4.04834375801983 0.70688709639434 f -3.75807112386552 -5.35048310423805 -0.63434063583978 f 1.10532929048371 0.41206992045256 5.78443425273345 h -6.10825281195854 1.41505853505269 1.31544266155935 f 0.98353763503631 1.40557264936836 -3.98626087454082 f 3.40609101274356 -3.21394165685793 -1.17053461051040 h 7.56475488846378-
4.197269876920180.74299229714534 h

8.48601229653566-2.89830809977859 5.15219294623894 h 5.25689904644026 -0.61109490508141 7.66885583563673 h -7.17919024521234 6.19716936742697 1.67545663146763 h -3.93624920494753 9.63961952575504 1.57380819576230 h 0.64088638781165 8.58148468962303 1.10657661397467 h 0.11949449160506 -0.63721745405034 -8.37897229798808 h -2.38897544417788 -4.59545821006203 -8.99462558987988 h -4.24358134699873 -6.84551594419732 -5.27933949329528 h -2.88078600744817 -1.86838476028492 2.29824660699442 h

7-H cation

6.49640910754056 -2.28266687266889 1.93526336409195 c 6.51645190510008 -2.67958812122888 4.54337504310792 c 4.33870015281549 -2.38404653178004 6.00382308956943 c 2.13200290322025 -1.68487939921360 4.79256310696543 c 1.99893116735873 -1.28179200373447 2.17138946385079 c 4.24789435245942 -1.58492150161050 0.79832329192461 c -0.96647994583083 -0.50341810245337 0.77860411789305 p -1.67888695408045 2.78657265045238 0.88097398868669 c -4.20438558962843 3.54436955374201 1.19305049922599 c -4.91595497635880 6.05068551506509 1.38090704048048 c -3.02893720095363 7.88956571744115 1.23351069902893 c -0.49288264468809 7.24418061827241 0.90028789270751 c 0.13727495404538 4.71268064748754 0.72128899840913 c -1.41274083646071 -1.86725929580832 -2.26772450710153 c -0.95007998374041 -0.59253644793077 -4.54708852518633 c -1.40664044670613 -1.68720352808644 -6.87727353873147 c -2.34549283395185 -4.15161257685043 -6.94701614824035 c -2.82070293394322 -5.51361198707041 -4.73734102519775 c -2.33795906356855 -4.34942108470276 -2.44915408450592 c 2.56867573370445 4.05134819315991 0.36545954061118 f -2.75414557517925 -5.61408483034262 -0.26899663693640 f -0.00897550961579 -1.35869288473479 6.14685845586988 f -5.97811584885878 1.70879058127241 1.30266906842766 f -0.01577189479043 1.77224818503319 -4.43624343406527 f 4.19223981055040 -1.16077374818779 -1.71037433768557 f 8.18437140086020 -2.49406413598613 0.79436869594330 h 8.26873575558447 -3.22228466416301 5.45925361364399 h 4.33959576126764 -2.67820897713714 8.03083565406989 h -6.89076148360103 6.53467529200948 1.62817311598422 h $-3.54778073318567 \ 9.86831587110289 \ 1.37178539242414 \ \mathrm{h}$ 0.97734515118725 8.66416226931697 0.76700047716736 h -1.01968775095358 -0.62693067638010 -8.58655199485714 h -2.70685768870559 -5.03346097504535 -8.76239043540799 h -3.54065197876931 -7.43081729470583 -4.77429881788133 h -2.77091728212375 -1.65033345453386 2.31878387571343 h

8-H cation

 $\begin{array}{r} -8.02819037953059 & -3.52335723167682 & -3.29670288397625 \ \mathrm{c} \\ -5.94175874772652 & -5.12909935232804 & -3.46977099792469 \ \mathrm{c} \\ -3.56806333887948 & -4.29056559871175 & -2.70911191135666 \ \mathrm{c} \\ -3.29964475947991 & -1.82238225922398 & -1.77782840475462 \ \mathrm{c} \\ -5.39596384549654 & -0.20148610255350 & -1.59937058407871 \ \mathrm{c} \end{array}$

```
-7.75760800550940 -1.06920733167485 -2.36288882755129 c
-9.87455922013607 -4.18559343610433 -3.89689333984774 h
-6.16108542794945 -7.03221403637471 -4.20087739670738 h
-1.94353877068719 -5.53655631357258 -2.84258474546441 h
-5.17979258173237 1.70929765394590 -0.88369039549470 h
-9.38506077552887 0.17166680186978 -2.23438324800504 h
1.04292321162563 7.66931670644035 -1.96517710565227 c
-0.17338008646210 6.25358703378676 -3.83296902002757 c
-0.62420207122863 3.69020437740847 -3.46367194318967 c
0.15390204835600 2.55491336055521 -1.19387953645315 c
1.37412695299004 3.97442176816432 0.68976957349400 c
1.81239978952962 6.53650330521548 0.29039961986600 c
1.38473945835725 9.66947776425140 -2.26628520276749 h
-0.77219065267052 7.14828122541052 -5.57825609308139 h
-1.57259234017649 2.58717672739874 -4.90877136079658 h
1.96286023965220 3.09263803049995 2.44848487472769 h
2.74225590617877 7.64789897560308 1.74114164182207 h
6.15920698326892 -5.60597421147224 -3.83742890154202 c
4.61674176670551 -4.22603208819935 -5.48456545021193 c
2.66173968240104 -2.78638173826092 -4.48977361710195 с
2.18920785696055 -2.68042217652958 -1.88529902042469 c
3.76798774410613 -4.08078010857431 -0.28078780493815 с
5.73930316158454 -5.53898925861952 -1.22966778771481 c
8.03252104226306 -6.98875378634790 -4.75856389547467 f
5.03121432693829 -4.30386564178065 -7.96418600648339 f
1.17947813641051 -1.46131814508331 -6.06945852581382 f
3.39236711048789 -4.04107440261359 2.22799430929632 f
7.21518615800871-6.86316668443714<br/> 0.31707980106882~{\rm f}
-0.30800170859634 -0.73811075958264 -0.66787073381658 p
-0.08542386403410 -1.07300506682824 1.94776992037676 h
```

9-H cation, $[Ph_2C-CH_3]^+$

```
-6.95340872223401 0.71255249358922 -2.21436607575831 c
-4.78135837065385 0.04600655971284 -3.56751527860048 c
-2.57874909574668 -0.55114447995149 -2.28789403115664 c
-2.51517484545315 -0.54585068327949 0.40186623654006 c
-4.76543317682309 0.06901649174195 1.73307529585631 c
-6.93414799418607 0.73478624059737 0.43348818403428 c
6.98352356676806 0.30832208447753 -1.36425578866930 c
4.92825623096537 1.82933438193351 -2.03408732278526 c
2.55530810694189 1.32103298267375 -1.05270390981606 c
2.19369478928534 -0.72429620962082 0.65460947407381 c
4.32691849539658 -2.19173285737966 1.36852834252343 c
6.67573809951470 -1.70352302524058 0.33410725429848 c
-0.24561469032176 -1.22850021443787 1.71687445866510 c
-0.41445907210467 -2.56282042788614 4.19647679533724 c
-8.67420722782741 1.19472367557129 -3.22275637064123 h
-4.82928315726170 -0.03235962222238 -5.61586830841200 h
-0.92470944035242 -1.17411194886524 -3.32502067887085 h
-4.75413977060592 0.14774666154703 3.78049170768276 h
-8.62101168786280 1.27352870884938 1.46692383809902 h
8.84082604400104 0.70601928229363 -2.14079676798892 h
5.19714481187227 3.42630962017994 -3.29152857709882 h
```

 $\begin{array}{l} 0.98297808801736 \ 2.56615562745572 \ -1.47323488206889 \ h\\ 4.09393535851169 \ -3.76808530451834 \ 2.65783211764822 \ h\\ 8.28227034329820 \ -2.87358128937843 \ 0.83799698144113 \ h\\ -0.16037682677470 \ -4.59845294894518 \ 3.84352354260529 \ h\\ -2.27033357756275 \ -2.36575395518511 \ 5.06716355016702 \ h\\ 1.06333972119837 \ -1.96972684371222 \ 5.50829221289469 \ h\\ \end{array}$

activation product originating from 9, Ph₂CH-CH₃ -6.72479696496953 0.14362062972245 -2.43980914141664 c -4.64480819944740 -1.31311364823598 -3.15679144971718 c -2.54923806541820 -1.50116247119437 -1.57333767452459 c -2.49904096108209 -0.24743737265755 0.75594841651046 c -4.58970666838972 1.21033958619470 1.45370674567131 c -6.69019348162198 1.40920754715698 -0.12877022601096 c 6.74373377877530 0.55503813214611 -1.60721230448474 c 5.03112541928431 2.53935998080404 -1.28724425712133 с 2.80467407516097 2.15462980471320 0.05789326597070 с 2.23747223053787 -0.20611140357301 1.12084992758379 с 3.96729085624080 -2.17446719294639 0.79202633540771 с 6.20311629657104 -1.79963087090344 -0.56365986536410 c -0.25024355207472 -0.52347218752988 2.53529983031336 c -0.45812988563614 -3.01139368536843 4.02530292448220 c -8.35362352803596 0.29945046649529 -3.67956193080740 h -4.65122436341850 -2.29468944468787 -4.96058128843621 h -0.91929751468677 -2.60751951038835 -2.15686983721364 h -4.56754578129970 2.20346165125503 3.25424681042219 h -8.29352694464377 2.55879308746071 0.44119291958998 h 8.48236267451259
0.84827370277083-2.65851286509366 h 5.43386265578295 4.38594273800910 -2.09025043028525 h 1.46527929923060 3.69802984029687 0.28029129567697 h 3.58380038951917 -4.02213844119088 1.59689597220663 h 7.52155068380323 -3.35671572263270 -0.79714657826185 h -0.37252641528161 1.03340602922271 3.90277746984135 h -0.46512166743283 -4.64274616585655 2.75209054611979 h -2.23012015495327 -3.04194369067008 5.08924359607442 h 1.11387578897333 -3.21801138841248 5.35598179286671 h

FLP $1 \cdot 2$

 $\begin{array}{l} -2.27096598797756 & 3.26832815672846 & 2.23201922193983 \ \mathrm{c} \\ -1.21727280722353 & 0.97095198550887 & 1.44321818360789 \ \mathrm{c} \\ -3.01341199957750 & -0.89643610047140 & 0.87089471980157 \ \mathrm{c} \\ -5.61248121230828 & -0.54032434658241 & 1.02348792961391 \ \mathrm{c} \\ -6.55409353755019 & 1.78945504252903 & 1.80609970828718 \ \mathrm{c} \\ -4.86348585654075 & 3.69963739341493 & 2.43005563081993 \ \mathrm{c} \\ 1.80977516860305 & 0.51828755235451 & 1.06779367935622 \ \mathrm{b} \\ 2.83614454750979 & -2.23437918737897 & 2.02986839490309 \ \mathrm{c} \\ 5.26883505306773 & -3.06253689688688 & 1.43384274674203 \ \mathrm{c} \\ 6.34695056940773 & -5.29851323274438 & 2.29588945796210 \ \mathrm{c} \\ 4.97504747036010 & -6.83261321901980 & 3.92661141816593 \ \mathrm{c} \\ 2.58330298422578 & -6.05143310762074 & 4.68716604272835 \ \mathrm{c} \\ 1.59126277266021 & -3.79130303337668 & 3.77642180547336 \ \mathrm{c} \\ 6.75177723256101 & -1.62596637340332 & -0.07963684268579 \ \mathrm{f} \\ 8.68583371219970 & -5.98002196520481 & 1.56564950553738 \ \mathrm{f} \end{array}$

5.95607408170357 -9.00614127260016 4.78788729757172 f 1.27305338196019 -7.45490064118278 6.35459512094030 f -0.63413766239729 -3.09710632427249 4.82343145314913 f -2.27013292110142 -3.22079751733614 0.11620043100568 f -7.21854215437946 -2.41708686540412 0.43052265654389 f -9.05278202741868 2.18210415513706 1.95056328443998 f -5.74150119282361 5.96631029056309 3.16568217134688 f -0.80249621315813 5.27311241015685 2.81143200866371 f 3.55170387617662 0.58271826755779 6.31638170585772 f 4.39179682834664 2.49385850116728 4.84301233099750 c 3.60959118777291 2.70862490396846 2.31962538200944 c 4.47592590665497 4.90170840030503 1.14274118139650 c 6.07325475826876 6.67129619294652 2.24861462044224 c 6.85415451227551 6.32041226104914 4.73263508277906 c 5.98063118865114 4.21764059453948 6.04390500696297 c 3.70640883207571 5.45798845353699 -1.24381538308376 f 6.84085665900829 8.71692652341014 0.94676721200780 f 8.39140815869236 7.99571654687370 5.85140724698519 f 6.65756208918585 3.87427949144635 8.46764289802706 f 1.91563507621115 0.66836129045570 -3.03198002936544 p 0.05556557490560 3.29525817524636 -4.33852000092277 c 4.85671146093879 0.83181016990783 -4.84842581870110 c 0.38887316365263 -2.13100556870093 -4.39006959342192 с -2.49705739986219 3.66863316900128 -3.71598384936621 c -3.83633476402209 5.70902669880159 -4.70435535282989 c -2.65730541158735 7.41154953576661 -6.33079333111501 c -0.12697779201307 7.05202132172484 -6.97017495749404 c 1.21994030314700 5.01647159004040 -5.98546761209450 с 1.59563887692097 -4.48269762201209 -4.34373514395525 c 0.51112021763803 -6.67296481640659 -5.28557042197794 c -1.89370054037312 -6.54101438509981 -6.34916665924718 c -3.13918227308864 -4.22403717063458 -6.48891467547971 c -2.00297454267268 -2.05178089662447 -5.53367215888992 c 4.81510781739423 -0.01552935047139 -7.36186040568956 c 6.95686002081780 0.20154102677730 -8.87436347937889 c 9.16152956719175 1.26909334304384 -7.89874597438677 c 9.21291532619997 2.11298468206575 -5.40352124783230 c 7.07415691535312 1.90004154554819 -3.88249786856976 c -3.46820299394672 2.36135825240231 -2.48084048823112 h -5.80750815110547 5.95763917746116 -4.18978739071359 h -3.70109674741460 9.00608844943941 -7.09210250797813 h 0.81810295796877 8.36611113229620 -8.23172092769815 h 3.19383307591500 4.78905066393485 -6.47832962560611 h 3.96833547028173 -4.65262503812850 -3.39797318959395 f 1.56043874754701-
-8.43052977737913-5.17783804191762 h -2.77495629453549 -8.24247225114780 -7.08146725971079 h -4.99774981208533 -4.09674790531597 -7.34631264883198 h -2.98179631000969 -0.26198809828394 -5.69050212649058 h 3.10299138386070 -0.83549865776829 -8.13904657188430 h 6.89959522517198 -0.46567993344760 -10.81432861720698 h 10.83413213755811 1.43444418612552-9.07666710545291 h 10.92442233879145 2.93454349214199 -4.62503721768909 h 7.16017197633940 2.52935152953134 -1.94054801057256 h

FLP 1.3

-2.04643118817662 3.58930543771187 3.51328649361615 c -1.36398421416327 1.58248336309628 1.92332478919609 c -3.42303656772692 0.40425778443737 0.75314704781220 с -5.91791980173919 1.17660707469426 0.97713402788541 c -6.47816978883392 3.23957128176306 2.51226801128294 c -4.52707921105606 4.43463659442718 3.80383826625240 c $1.49418873554556 \ 0.63221686767038 \ 1.41778789107214 \ \mathrm{b}$ 2.04834712662171 -2.33279302756883 1.84318997541487 c 4.35180087705241 -3.38776082334588 1.09410137636714 c 5.00373173986506 -5.90941638980338 1.39095707958186 c 3.29832089618211 -7.54098536509789 2.54894444663559 c 1.00888904156226 -6.58513712498321 3.41441745469728 c 0.43962044154522 -4.03512937805271 3.07400008415190 c 6.11008306553912 -1.88665741111857 -0.02496876691107 f 7.23050106641193 -6.79010440028517 0.53214414259184 f 3.86162706864277 -9.99404026507509 2.83705747974625 f -0.62897718024146 -8.12429806818565 4.59701120360865 f -1.76837467106267 -3.26760873929150 4.10156308461514 f -3.00014918038829 -1.63893551315713 -0.71749905893955 f -7.77858104570324 -0.03985784442290 -0.24635434943446 f -8.86698241294518 4.03743720019511 2.76997833438741 f -5.04808514805130 6.38736617763876 5.34252134101380 f -0.31464758433223 4.83698999357154 4.91730298913217 f 5.24460441169257 -0.53653558702709 5.52023607871612 f 5.32525886342964 1.78860717074980 4.46574962214297 c 3.66696164822435 2.48161180674950 2.52049290255510 с 3.90051297100349 5.00703247282503 1.78363681216769 c 5.64762127743753 6.70192501818496 2.76137392996400 c 7.28741179562529 5.89499959479975 4.65373820326796 c 7.10913727971107 3.42082201714407 5.51600836310596 c 2.33458517541954 5.93357348862819 -0.02708100503139 f 5.76654110204812 9.09191052877352 1.90623587142455 f $8.99462902683376\ 7.48463023581014\ 5.63775080598595\ f$ 8.64333114697581 2.62316411045922 7.37486340545024 f 1.77716803750733 0.74937978775629 -3.15215265319073 p -0.29903926425445 3.01870805939198 -4.74888183381062 c 4.89615048911243 1.36005567976828 -4.57518438319733 c 0.99995064358904 -2.36457507895968 -4.45174408069825 c -1.73478495883677 4.78364503960298 -3.38785248676176 c -3.27444470011926 6.53598383185321 -4.60586693710453 c -3.41379014873931 6.57119586756727 -7.23506942392673 c -2.01934530364485 4.83819083309535 -8.64592994687202 c -0.51205948678781 3.10837610123184 -7.38593430728649 c 2.84594679786013 -4.27720778305633 -4.32861584768571 c 2.35808578536398 -6.73436603370467 -5.12183900547140 с -0.01186905963309 -7.35559971916344 -6.09305535486607 c -1.86616781858853 -5.50091685470740 -6.28964523453138 c -1.33746256598744 -3.06276598501062 -5.47612041714433 c 5.66566765686102 0.13988938579731 -6.80228158336637 c 8.00819867502507 0.67333487978428 -7.87541055198582 c 9.62066555296266 2.43261780538221 -6.75672275692303 с

8.86805144713934 3.66093324958592 -4.55293436071987 c 6.52831244546075 3.12623802433731 -3.47120985850887 c -1.63439920019861 4.79018790473610 -1.35036795688551 h -4.35775397665359 7.87311296658966 -3.49041695047219 h -4.60783054311229 7.93478549469341 -8.19656472312466 h -2.09448969426664 4.79037342455629 -10.69408914621776 h 0.76132449095974 1.40091660296774 -8.81486087309197 f 4.71935871515201 -3.80275795125294 -3.65627804967924 h 3.83407332679595 -8.15153153928624 -4.98273818736428 h -0.41551619571997 -9.26874050646478 -6.71408900591460 h -3.72393717839939 -5.89917445570385 -7.05932247372305 h -3.21048317257061 -1.33844966158278 -5.73788998153111 f 4.43743201156377 -1.22051412604493 -7.70945713015743 h 8.56582052950955 -0.29088035402984 -9.59953406442689 h 11.44836123442702 2.84027716650055 -7.59682948486262 h 10.10082895191599 5.03512885101378 -3.65642423408190 h 5.99842271335789 4.08916281084072 -1.75408404794057 h

FLP 1.4

-1.65893950481166 4.27518193288618 2.93081195372342 c -1.34428849151198 2.15890977360062 1.37088925743236 c -3.55840279286108 1.42813205676181 0.12504174555280 c -5.84941144112114 2.69383805541339 0.26322519555908 c -6.03075183963725 4.83611985037797 1.77525327512187 с -3.92029258990218 5.61433625948299 3.13361777341223 c 1.28194543871193 0.60951311669444 1.03181773764929 b 1.10583834463291 -2.36170741512324 1.77761373044712 c 3.02507198541585-4.06987877650101 1.15480629070164 c 2.97653167139582 -6.63976297678682 1.66842287627139 c 0.90482220940864 -7.64639442511637 2.93475064007823 c -1.03182755471900 -6.03538489889573 3.68201003557411 c -0.89267270615261 -3.46354748433310 3.12122272527379 c 5.12912565064201 - 3.21785042561438 - 0.04270966588865 f 4.88210757545356 -8.15148363346264 0.93865826694345 f 0.78945178942324 -10.12465192969544 3.44712222321967 f -3.01619762056880 -6.96582098608153 4.96621037218352 f -2.82812281498191 -2.06000519111119 4.02344775284344 f -3.53765178782375 -0.67332790028136 -1.34866207397075 f -7.86449362977872 1.89183746349980 -1.05765591074944 f -8.21135044426945 6.11528353050983 1.93805989098073 f -4.08335316418610 7.64113439131265 4.65615403336409 f 0.23941962761061 5.13568669744617 4.40901124305044 f 4.90635384981996 -1.15211383200290 5.12851411726952 f 5.37946567463150 1.08158979578877 3.98144420166673 c 3.76175552197876 2.05113865261128 2.12241442961008 с 4.44623510747421 4.46343327962072 1.28436103824488 c 6.56951059530694 5.78352219257278 2.07113092881378 c 8.15682125004749 4.69196318509044 3.85923893467652 c 7.53919072520709 2.33059830410950 4.83223439341332 с 2.96355005586611 5.66724733968385 -0.43033416895924 f 7.11345708451856 8.07081768510590 1.11118982781460 f 10.23472980099384 5.90734653557292 4.64844859110441 f 9.01755877392067 1.27804475184638 6.60974846905986 f

1.91142256648440 0.57701062099860 -3.25236631108726 p -0.60759200354371 2.21707128681175 -4.94805665988379 c 4.87362652083859 2.11724719519247 -4.12743699882571 с 2.04118853313938 -2.63042453405937 -4.51952623413629 c -1.43608970650661 4.56682254964422 -4.01817295359843 c -3.38012902307679 5.90305743118907 -5.17513921830796 c -4.58289741706673 4.90578570597932 -7.29589436150988 c -3.79210152932727 2.59866267989388 -8.28051915453680 c -1.82214723478320 1.31329927332085 -7.11995717892392 c 0.22367234081930 -4.38951881305162 -3.69863907292790 c 0.23395523352014 -6.87949616970513 -4.53829333102505 c 2.09546015632259 -7.69674851745459 -6.21318169951172 c 3.90384842219456 -5.99749364477051 -7.08554103236355 с 3.83605315654956 -3.51066655689393 -6.25506849632647 с 7.44053477508021 5.07099803775166 -6.59233247020136 с 9.56223611029955 4.46003029626591 -5.16307636276840 c 9.37486308454310 2.65973246600560 -3.24924797706807 c 7.06153032654704 1.52417689168804 -2.73687060757594 c -0.53195443794465 5.35501184428835 -2.36618472612354 h -3.96151183949471 7.71070942765054 -4.40090832123770 h -6.12135186613056 5.92149148509273 -8.19591894167212 h -4.65415096407986 1.77746376764002 -9.94930036924335 h -1.07702186185666 -0.87150130393776 -8.22637416684896 f -1.22099141850090 -3.78738126527512 -2.38754354649433 h -1.20272687138509 -8.17753782523600 -3.86289744120973 h 2.13646146474272 -9.64424204067747 -6.85678603467827 h 5.35840705841229 -6.54985664452653 -8.42028017293259 h 5.58132671546672 -1.92543834107174 -7.25179918323685 f 3.18923290303947 4.49116655607842 -7.59617195975800 f 7.51723669203752 6.43440389967245 -8.12124455182502 h 11.35330745386407 5.37892604911075 -5.55836956143027 h 11.01845683639033 2.14807578099047 -2.13484120224000 h 6.93989731779961 0.14647694998916 -1.23528345535657 h

FLP 1.5

-1.52461849593112 4.32646560058241 3.27234641145365 c -1.35516184943625 2.30105031516587 1.56877873928338 c -3.62119564626136 1.81256584458823 0.29320844442539 c -5.80255082045720 3.25890973964990 0.51132467166038 c -5.82822204912499 5.30719454496556 2.15535557998561 c -3.67284023393548 5.82166927280937 3.56655826293689 c 1.19243451238934 0.61771068817954 1.19440950652475 b 0.97114524090069 -2.32800897742941 1.98127612703883 c 2.85977117890165 -4.06830104762814 1.35725157025664 c 2.74969038632716 -6.63944380729804 1.85847029928712 c 0.65059145873237 -7.60172764764785 3.11719595499168 c -1.25479025514077 -5.95288654855213 3.86167178823198 c -1.06218984262124 -3.38487782383174 3.30172122767295 c 4.99513178206442 -3.24614026915014 0.18228657518463 f 4.63018285376643 -8.19379825726894 1.14209877427174 f 0.48025046748055 -10.08127840152511 3.61899133672045 f -3.27119248964403 -6.85015646892250 5.11926652593244 f

-2.98659674903995 -1.93919406912396 4.15308658155367 f -3.79055214444024 -0.21235426909481 -1.24590836591833 f -7.87706940046913 2.68786969636513 -0.84228984072029 f -7.90535390728993 6.73792726399979 2.40467926027041 f -3.68539458425048 7.74450501222894 5.22869275854713 f 0.41319653212192 4.92932792949634 4.82887337309983 f 5.09407081156789 -1.13038709252765 5.06568775565586 f 5.45936101270232 1.11817906903849 3.90811753540235 c 3.72169475430888 2.06372860222850 2.15048533773205 с 4.29173645142296
4.50387092996733 1.30325504644316 c 6.41603789449619 5.87411957175781 1.99353146904459 c 8.12975950822409 4.80203352948732 3.67332513779416 c 7.63092525975225 2.41385727453413 4.64974820729165 c 2.67800647921732 5.68596728047665 -0.30578236116962 f 6.84270988600400 8.19101995631360 1.04373389754437 f 10.21788585336624 6.06277113941041 4.36054534548792 f 9.23491344925986 1.38319727200765 6.32994699592484 f 1.86984177895832 0.42881428258395 -3.08688317545648 p -0.59038628773815 1.86146830384720 -5.01792293863822 c 4.74792065078801 2.13825237425633 -3.92159703527495 c 2.26032617939745 -2.74897592782555 -4.46698302435788 с -1.46138855179253 4.29405390112975 -4.41038854730914 c -4.43868819215650 4.10929405857566 -7.87095014336355 c -3.57022233633457 1.69898226066445 -8.48841656230801 c -1.65482995447639 0.57715262352324 -7.07246047100622 c 4.25679997249939 -3.49489696491777 -6.06251784061405 c 4.61165521452600 -5.95676171332580 -6.89803756166527 c 2.89187350298306 -7.81575153737013 -6.19510691787915 с 0.81149274415270 -7.18539491442249 -4.71754053953136 c 0.54442660783963 -4.70419479648201 -3.91972775754765 c 4.69902542380137 4.08205932355906 -5.71547601615381 c 6.89402483292885 5.42793372177469 -6.26770680466576 c 9.15544046661197 4.83894753469591 -5.05111985470628 c 9.21924702159589 2.88615667052605 -3.28089196895954 c 7.02920506551514 1.55001290646477 -2.70405812760408 c -0.64883969149338 5.31371594032577 -2.83402446196637 h -4.03683976439823 7.28405308180624 -5.34717142329535 h -5.94090564109329 4.97476199597608 -8.96891888831157 h -4.38594663871495 0.68122406243953 -10.07270007148704 h -0.99394354673506 -1.29952955554924 -7.56583059080360 h 5.94057768856492 -1.77920605116733 -6.91439842879328 f 6.22122943325616 -6.36048054647845 -8.09948643735280 h 3.15458812635301 -9.74823683728687 -6.82765506366160 h -0.60577222908372 -8.56056676609041 -4.17293984542226 h -1.55165947031954 -4.14703674427301 -2.58376567041939 f 2.95260420382657 4.55017348678545 -6.67852098937358 h 6.82982100012883 6.93971689606586 -7.65395378101046 h 10.86107040446518 5.89744618910290 -5.47788429380764 h 10.97202537570633 2.41216159209650 -2.32461211945930 h 7.09931720819409 0.04996406175162 -1.31604777564158 h

FLP $1 \cdot 6$

```
-1.42492862711133 4.43839205123203 4.60411909128151 c
-1.36238305887712 2.40996144478776 2.89694238398208 c
-3.59161475277281 2.04335834227499 1.51851890760851 c
-5.69618187789783 3.59590330379840 1.73216339661592 c
-5.65857475756117 5.59201008487813 3.44613340165369 c
-3.51139310215245 6.00535970698114 4.91113168831231 c
1.05106818998356<br/>0.69367215426427 2.60723240682632 \ {\rm b}
0.80927802020070 -2.26654900400106 2.571566655663730 c
2.67877507223041 -3.85426213005961 1.55477261848051 c
2.49145393953395 -6.46857919865999 1.46769910449878 c
0.34937537736317 -7.63602035865020 2.45410024495313 c
-1.54451460909730 -6.16584133462141 3.53696232680318 c
-1.28415297824714 -3.55109614812300 3.58663205607149 c
4.80215084197891 -2.86272194689119 0.54671117879472 f
4.33499342180900 -7.87418999483387 0.44043600886712 f
0.12037189340494 -10.15263666346141 2.36943701694900 f
-3.59029196472981 -7.28589551924891 4.53447210200206 f
-3.15942257672289 -2.27658969888645 4.74654897493449 f
-3.74479247630547 0.14679750095412 -0.16572250459345 f
-7.75320617608182 3.20566130902774 0.29350067313126 f
-7.67570603011854 7.09917647185285 3.69012986602286 f
-3.48188228111682 7.89993764659210 6.60060947898774 f
0.57412172514653\ 4.91684855450783\ 6.12091022214570\ f
5.38479595929496 -1.16846812182735 5.55882868329350 f
5.68577336483077 1.03054878724898 4.29799410692148 c
3.69843575726670 2.02426114567251 2.85374372964069 с
4.18381534280576 4.38862613124379 1.75423799754239 c
6.47144224466758 5.65381921506605 1.99726632219364 c
8.39559453657252 4.56615546074930 3.42253931314040 c
7.99707412357614 2.24183611450837 4.59558161876186 c
2.40532210447796 5.52661431242511 0.33448615126807 f
6.85825917195773 7.87913214945968 0.84737033977001 f
10.62421088603011 5.74110817220635 3.65759627102301 f
9.83666778874688 1.21382600209141 6.01151153692804 f
1.82739721008574 0.56287097530166 -3.59300634730133 p
-0.43506970484093 1.77520971139015 -5.93830947122173 c
4.72103680679020 2.28122858508999 -4.38628239203420 c
2.25992237036803 -2.71561597627878 -4.68394031476944 c
-2.14227960204600 3.67143205967076 -5.23140095483928 c
-4.02871231621739 4.61757041874153 -6.78405190248808 c
-4.23680429766173 3.64925890576391 -9.22368097295557 c
-2.55812592911122 1.80891621016683 -10.07591667004632 c
-0.69864967474100 0.94023722080863 -8.44103061273023 c
4.38732821742981 -3.81518984239977 -5.81969207740174 c
4.57877980132636 -6.37456471942290 -6.36623626867284 c
2.55313089863502 -7.95995071214634 -5.81437152997132 с
0.36120443545902 -6.97931840372155 -4.73488631879244 c
0.28663245226141 -4.41711851419848 -4.20053834250474 c
4.75064509328914 4.23660506513694 -6.16933164383902 c
6.93273993137689 5.66439018363405 -6.54801400191724 c
9.11329141203305 5.15171967469345 -5.16207709232241 c
9.09859121531486 3.20727449460334 -3.38001120695703 c
6.91393117284531 1.80291942714800 -2.96969184809334 c
```

 $\begin{array}{l} -1.90996803855702\ 4.68660478825557\ -2.89288260779072\ f\\ -5.28119707165694\ 6.07643772423671\ -6.07733266928754\ h\\ -5.70025566944687\ 4.35083090626706\ -10.47737434156899\ h\\ -2.64690567203932\ 1.05631989725893\ -11.97968179763243\ h\\ 0.95712159282780\ -0.77392925213337\ -9.37074026412060\ f\\ 6.37117874125449\ -2.34714673673465\ -6.47808013039178\ f\\ 6.29685196063234\ -7.07462752466185\ -7.23596289212080\ h\\ 2.67823512413001\ -9.96274930560491\ -6.23486499428161\ h\\ -1.26379368067931\ -8.14923012181333\ -4.30057510889787\ h\\ -1.86591270028193\ -3.47753262878857\ -3.16601368073824\ f\\ 3.06915879106745\ 4.64751510671955\ -7.26903607826745\ h\\ 6.92455112279218\ 7.17570591036780\ -7.93707735264157\ h\\ 10.81173091187173\ 6.26452146103093\ -5.45933772593155\ h\\ 10.78727551412141\ 2.79756934931464\ -2.28661185039381\ h\\ 6.91954208828126\ 0.31257771974550\ -1.56430490852582\ h\\ \end{array}$

FLP 1.7

-1.66391477274404 4.67502426264830 4.67006768683780 c -1.59644470940908 2.37693415152308 3.35172638308655 c -3.82486248884085 1.74023824677615 2.06680059373472 c -5.94652114887219 3.28559886168861 2.02493017704640 c -5.91754059313624 5.55091127974386 3.36473843975674 c -3.76516447255149 6.24687002032974 4.71564679956935 c 0.80397821667483
0.64446345261657
 $3.30794917450497\ \mathrm{b}$ 0.45710107953970 -2.28858858437456 3.52809284113895 c 2.00416551635464 -4.02774549671119 2.25563584593358 c 1.63275706213712 -6.62514486307625 2.34657861527789 с -0.33015153498360 -7.59545790920176 3.80814844069079 c -1.88987227165860 -5.95612134368241 5.15538959396272 c -1.48248829406226 -3.36787239629787 4.98428846814418 c 3.92831393935545 -3.21220059089376 0.81281640592571 f 3.14182044368534 -8.20594970238661 1.05761269248366 f -0.70530601434340 -10.09187003178945 3.93131981322936 f -3.75588332537959 -6.89208615204587 6.59653556106690 f -3.03162342586444 -1.88757696583543 6.36603839966659 f -3.95898668875783 -0.41795011342129 0.72737553320260 f -8.00891842381035 2.63252986624083 0.69819456340387 f -7.94935181311162 7.05566393926223 3.35722688559035 f -3.74968015410328 8.41625667094929 6.03171976052128 f 0.35956187854773 5.42713469136927 6.03132998323070 f 5.37841473727507 -1.27787071457709 5.76446670653346 f 5.61439982306212 0.82229450541508 4.34002192405444 c 3.49204042996531 1.86734091004275 3.13770370909967 c 3.95432872337150 4.11020636394767 1.79023494021241 c 6.32816489761662 5.21424431875448 1.60437844117720 c 8.37372114945852 4.08410672162885 2.81569214196904 c 8.01500228123375 1.87701237855818 4.20520452634180 c 2.07167183254682 5.28465676318583 0.54588456054097 f 6.67247691097492 7.34252265985243 0.27175570368015 f 10.67618822282424 5.11377131803247 2.64327541438621 f 9.98239179231117 0.80438180822161 5.39427107354433 f 2.10065113904087 0.77965010880108 -4.01298767927644 p -0.24407058919110 1.89999523588741 -6.31799732777946 c

```
5.00868149068110 2.52102205025837 -4.76260746519796 c
2.62006111831123 -2.44099480174974 -5.23091781284730 c
-2.39264252522410 3.17482728061401 -5.45350032268300 c
-4.38046325336408 3.90948929818630 -6.99789618799332 c
-4.22631475072432 3.36959842153012 -9.56973046720956 c
-2.11427028406938 2.14375311483230 -10.56133846531502 c
-0.18444443129596 1.45853238846863 -8.92682107662528 c
4.59945225395244 -3.40983889118645 -6.69485112881844 c
4.83693493006308 -5.95255044733148 -7.30311348161252 c
3.00739085723867 -7.64609384282721 -6.46211243876117 с
0.96140910992744 -6.79515734147808 -5.03704778214803 c
0.83603903695793 -4.24461672979436 -4.46813332046573 c
5.19706805183267 4.82707297894354 -6.04817575504399 c
7.43044120437122 6.18817889918095 -6.27314872863781 c
9.61784004898738 5.25077946733677 -5.15471688436128 c
9.55148502333764 2.98336836874006 -3.81304409886185 c
7.27058651140731 1.71742847295672 -3.64083026596152 c
-2.53943552438722 3.76476230227472 -2.96466437650729 f
-5.98895482597162 4.88129153837785 -6.18218962761265 h
-5.75693669892312 3.92366177965674 -10.81742753611814 h
-1.93438907917199 1.73819977634771 -12.56174692624262 h
1.88670785252020 0.34392601536366 -9.93085830100282 f
6.38767899517001 -1.82793037387385 -7.60956884277621 f
6.43220548659158-6.55709846385881-8.43824004012526 h
3.16848078376176 -9.63645533966590 -6.92827727224376 h
-0.50553505338309 -8.05844109798838 -4.36698116672644 h
-1.16475072768524 -3.41732243988674 -3.07878022591222 f
3.10886472758850 5.84301835429778 -7.13433234814001 f
7.41367043523042 7.95569941346564 -7.30927425487826 h
11.37481006110185 6.29582467163851 -5.30972213281962 h
11.21305372622563 2.20234702313218 -2.90378159174177 h
7.20543909378616 -0.47075951714408 -2.29442146709852 f
```

FLP 1.8

```
-2.17709183056986 3.31800440314001 3.18523594612218 c
-1.33725008756981 1.21261249663655 1.80983612029215 c
-3.30446870847458 -0.31728805229194 0.91648491895622 c
-5.85891967519950 0.19095827517831 1.22012257774025 c
-6.58463265242864 2.34472694626536 2.54636698589170 c
-4.72329837003531 3.90179592556457 3.55157353182945 c
1.61581212354949\ 0.56074338349677\ 1.23678034590766\ \mathrm{b}
2.50792651395688 -2.29858287349649 1.92037807774485 c
4.95883851776288 -3.10774908280204 1.34507303183716 c
5.94511505117452 -5.45856380125978 1.97108130616179 c
4.45329025299066 -7.15353769815551 3.31559677033341 c
2.03429087566397 -6.42076650703828 4.03507574753793 с
1.12982053810476 -4.03938337325604 3.36742474936834 c
6.55162530756326 -1.52054367924369 0.12014064789249 f
8.30783255772670 -6.09912864704433 1.29464591152726 f
5.34457557813770 -9.43995309183863 3.93991723548139 f
0.60063723051786 -7.99911184657368 5.41666751107340 f
-1.15881943219463 -3.45330370450255 4.34068664229054 f
-2.74812285286936 -2.47359857249029 -0.34515749642628 f
```

-7.61838420191735 -1.37208960085247 0.27247415960020 f -9.03363691049670 2.88986276120285 2.87287686467482 f -5.38935894647088 5.96849493806559 4.86710039544799 f -0.54536639339940 4.96516557069938 4.25331234182230 f 4.56952797055946 0.09547532741334 5.98327411030626 f 4.90238482980691 2.23466720413853 4.62585484455541 c 3.58983178391508 2.64115430262038 2.36206884270960 с 4.00636721301701 5.02382119883684 1.31093275196642 c 5.63998786512480 6.83141788327251 2.28974427995028 c 6.94640398915988 6.30275631432796 4.51009043626471 c 6.55548853013870 3.98836128925059 5.69083206319062 c 2.74696591784319 5.69157697307075 -0.82527945973955 f 5.95824198065293 9.06652117940252 1.12373108354615 f 8.53501343956222 8.00562292311408 5.50469563800973 f 7.75785545414425 3.46708974513820 7.86477406659569 f 1.80530547429324 0.73604208109566 -3.04305176687818 p -0.03272491113450 3.24238113226199 -4.61179328659949 c 4.88016925964675 1.00430382172683 -4.62289683471990 c 0.56449191657077 -2.21063016706137 -4.45115967607489 c -2.00117759540770 4.50388516514155 -3.37125964656779 c -3.36725911098518 6.38218161097119 -4.60475131621121 c -2.79376379071786 7.02913035305132 -7.09373939353883 c -0.82811017759585 5.79235297287415 -8.33636999955769 c 0.55241510846369 3.91849551553759 -7.10440265371098 с 2.04276760622069 -4.40966527512157 -4.53765321969305 c 1.17719822303106 -6.68216350910689 -5.53733470362134 c -1.26312057112078 -6.82977160849754 -6.50602578571791 c -2.79664539896681 -4.69357301363122 -6.45651034379069 c -1.88715523112958 -2.44583681929902 -5.43729176537248 c 5.24702452084548 -0.05437072398506 -7.02772484105064 c 7.51468059899698 0.30062213510989 -8.31373514271737 c 9.44865096976608 1.71854290716992 -7.22039949968785 c 9.10310489381308 2.76344169517855 -4.82760077852417 c 6.83801478773046 2.40927846678407 -3.53441546677537 с -2.47580153620177 4.02877620233217 -1.44426638378337 h -4.88214307421505 7.34207848927526 -3.60728431388155 h -3.86155083314286 8.49588624271681 -8.05296908348364 h -0.34743736215203 6.29110574375618 -10.26829363130347 h 2.10073017092990 3.01219678378210 -8.09096050011106 h 4.44075894179894 -4.39666631313837 -3.70063961399459 f 2.68912636036724 -8.71361753340148 -5.59044051821816 f -2.12626346979289 -8.99746129433861 -7.46825530914536 f -5.16120513237373 -4.81950722620906 -7.35337600104610 f -3.53118095027245 -0.51594332775245 -5.37477758395666 f 3.76177367354139 -1.16430152680367 -7.90461094010713 h 7.76670769292473 -0.54017104449503 -10.16871847016631 h 11.21952215980025 1.99084837620281 -8.22076474459225 h 10.60380910146160 3.85009551746971 -3.94596112878083 h 6.63580422555945 3.18080566041417 -1.65397863708217 h

 $FLP-H_2$ [1-H][H-2]

-2.21770909205054 1.74499233384065 3.27136549145313 c -0.43731124501351 -0.05803899132945 2.53210000873792 c

-1.45764788557955 -2.08938084015774 1.18529260390079 c -4.00320454143906 -2.34487830455045 0.56972018104779 c -5.69470821473938 -0.48465383544744 1.34390582974172 c -4.78888273628847 1.56928285751293 2.71516004969687 c 2.62252260662069 0.02832524091578 2.98959119837658 b 3.65400754309295 -2.21867643056693 4.82290025329223 с 6.13468322763834 -3.06897644120558 4.54134652817278 c 7.19481373029437 -5.00115362176187 5.97510622385568 c 5.72798097918713 -6.18252916533346 7.81225024971567 c 3.24288494377140 -5.40231641117457 8.17400134505799 с 2.27009487726752 -3.45444757193604 6.69294180043233 c 7.65938286823984 -1.98662806139704 2.77350043323011 f 9.60552788150377 -5.74723754575134 5.60783059733492 f 6.70553742204511 -8.05763260612811 9.22518236723238 f 1.81574388107488 -6.53315427232858 9.95607949043234 f -0.15645577790490 -2.77566133491924 7.16757619420759 f 0.09126162586654 -3.98548967602901 0.39994824637550 f -4.84646275487685 -4.35591203888913 -0.75048279549332 f -8.16265519590889 -0.66199769601552 0.75882665735950 f -6.40810280160338 3.39943499992775 3.44045910789319 f -1.51645004584125 3.82565838460382 4.57766581816762 f 2.82623034252665 2.19873642406369 8.17297356764043 f 3.80273460458002
3.64425952255444
6.30449964630706 c 3.72747778478430 2.78635154717763 3.81007135259246 c 4.73481797936187 4.46748862459138 2.05761949057836 c 5.73447295106771 6.82321281999485 2.66354584885257 c 5.76664726269270 7.58501127909166 5.17832059367572 c 4.79246647920528 5.97489765784181 7.01916156974887 c 4.78463914659442 3.85595745008724 -0.45733720185376 f 6.66754389580818 8.36221563419713 0.85196311678480 f 6.72280108125276 9.85067409053696 5.82353735437812 f 4.79987197719214 6.70738092350294 9.45674847061635 f 1.69428497393521 0.43124183382869 -4.19164047794836 p 0.28339120984018 3.50680007911714 -4.10363129979206 c -0.51286156466711 -1.78254388177262 -5.50932948157497 c -1.94767918091508 3.82954355522137 -2.70817799537689 c -2.97794166217888 6.23333164593874 -2.44387534782900 c -1.79107524397550 8.30505798790016 -3.56858105004114 c 0.42575793187232 7.97950556731672 -4.95908960639529 c 1.47870962420298 5.58186006771878 -5.22863066340635 c 0.12091256916945 -4.34941979421808 -5.52981278447135 c -1.50056319949935 -6.18864760494434 -6.44267684586101 c -3.84433915648856 -5.43277961394115 -7.38197596415048 c -4.52655489138472 -2.88414745012702 -7.41454653195724 c -2.87146724879755 -1.06437877088097 -6.48609642120765 c 4.57990241634466 0.63542198292053 -8.57736499505365 c 6.86277422889937 0.63616356436573 -9.88209232333985 c 9.13735677933107 0.41039370780779 -8.55915639256190 c 9.13986615618555 0.17735762437083 -5.93293641879194 c 6.86767621445128 0.18025882838292 -4.60250960895782 c -2.84452053708370 2.21850061217759 -1.81094301392029 h -4.68449113004032 6.48718849298641 -1.33461184939395 h

 $\begin{array}{l} -2.58785199428201 \ 10.18253703581717 \ -3.34327937746771 \ h\\ 1.35596903548443 \ 9.59694132207176 \ -5.81113318272898 \ h\\ 3.23367808620206 \ 5.32970275062496 \ -6.25861903204002 \ h\\ 2.41178033163108 \ -5.03411395214817 \ -4.62879664311795 \ f\\ -0.93127077287946 \ -8.15649805067186 \ -6.39153435230971 \ h\\ -5.14678330708137 \ -6.85182866807696 \ -8.08731640087838 \ h\\ -6.35408315121874 \ -2.31524018921593 \ -8.14854851225777 \ h\\ -3.39639555123976 \ 0.91728635922390 \ -6.49508722702858 \ h\\ 2.80386641565869 \ 0.78695339060767 \ -9.59724241054064 \ h\\ 6.87049904831692 \ 0.80207950588721 \ -11.92692596971227 \ h\\ 10.91458530401099 \ 0.40554101557228 \ -9.58537562685982 \ h\\ 10.90881753069779 \ -0.01258494158503 \ -4.91237429476156 \ h\\ 6.85652598981434 \ -0.00315511793754 \ -2.55934017037963 \ h\\ 3.56642565950814 \ -0.45483984897164 \ 0.93594819237821 \ h\\ 2.35496042161192 \ -0.30427090457389 \ -1.69271375314844 \ h \end{array}$

$FLP-H_2$ [1-H][H-3]

-2.19146369133698 4.09544647373965 3.83742129109299 c -1.19598616575708 2.35203140388157 2.12674389163462 c -2.97147900066524 1.38023409834970 0.436666665652308 c -5.51345279440978 2.02703253547285 0.38673294777384 c -6.40922258000093 3.77315175337951 2.14012227054924 c -4.73167217229653 4.81066417173088 3.87676870352176 c 1.77149003243117 1.57117072572502 1.80533463837983 b 2.29301074109789 -1.48160336875013 1.70303315187807 c 4.48732088043847 -2.37662307078454 0.54747263592259 c 5.10938261532163 -4.91811619829468 0.30680629071998 c 3.45686402703435 -6.73118378723691 1.24650264119086 с 1.25133032266613 -5.95063904038267 2.44576697116646 c 0.73071074919909 -3.37672635842931 2.66778470966921 c 6.16506533931362 -0.70257587380166 -0.47673576109355 f 7.25469256410365 -5.64667636345138 -0.87937806836543 f 3.97825474839466 -9.20741390092988 0.97725724393649 f -0.35394851075960 -7.69442412464995 3.37377175959252 f -1.43224406532477 -2.77802430319691 3.88846077365127 f -2.20542879218960 -0.33473852301272 -1.34420136241440 f -7.10257540208983 1.01215909503998 -1.32929976846303 f -8.85865605424834 4.45434199280769 2.14113388517561 f -5.57713439117833 6.50799600404328 5.57427387808847 f -0.69942688450508 5.22051607624167 5.58389816184201 f 2.48171996434840 0.27062934967054 7.15784541078986 f 4.03490628781622 2.08951552262310 6.24171364457126 c 3.76453905078760 2.87820732905941 3.74136196315636 c 5.42777786532606 4.77444662131292 2.99253106832278 c 7.24285234795979 5.83285638735344 4.57768702394843 c 7.43394896263699 4.98138732012782 7.05770103910138 c 5.81134538004335 3.08770541565752 7.90255236048773 c 5.34818388140926 5.70865743574779 0.58879532445605 f 8.81207057947562 7.66253696255052 3.74217415345450 f 9.16930716570875 5.97749324144862 8.62590690838960 f 5.98293576606526 2.26263363138590 10.30495315999036 f 2.06109598775823 0.39212424224774 -5.44058348647391 p -0.32980138014392 2.48794546628985 -6.58582981237871 c

5.09905210884071 1.12680444778451 -6.73953108997770 c 1.42089251795780 -2.90769910292838 -5.85223099832303 c -1.30558516632883 4.31992189772778 -4.93180854152846 c -3.13245774278048 6.01065583470995 -5.77906617764995 c -3.98539747851603 5.89301286634591 -8.27225849850325 c -3.02087498488098 4.09826636646895 -9.95090673255696 c -1.20528980778966 2.43618475024145 -9.07156275565595 c 3.46744039313601 -4.58893586621331 -5.60439470977939 с 3.08029082387060 -7.18510643982212 -5.64953149409790 с 0.64040309235303 -8.14458564519697 -5.94692571929432 с -1.41351630611885 -6.51891685918380 -6.21457022651228 c -0.99892631674562 -3.93115037378133 -6.15929850909417 c 5.85119240010461 0.24066192544838 -9.12180733917652 c 8.20296907053734 0.93733040571596 -10.06914856837623 c 9.78689286403326 2.50955857679332 -8.65698163396813 c 9.03077109721890 3.39053041087284 -6.28989857524711 c 6.68338328831472 2.70569097362679 -5.31457420413433 c -0.64068731227606 4.39030970906975 -2.99140395575466 h -3.89748573324045 7.40632475310880 -4.48732547597831 h -5.41861063572766 7.20603583625043 -8.92801882503742 h -3.65983142761559 3.97550750072373 -11.89424931779450 h -0.24022007624966 0.66734446040148 -10.66412818278349 f 5.35845673630864 -3.83994592935588 -5.34179653595914 h 4.67494353212584 -8.45045719275563 -5.41478572862227 h 0.32818157753528 -10.17183081437338 -5.96311599485193 h -3.32688511442976 -7.21556153824731 -6.44721564041560 h -3.00789130034014 -2.38365930293345 -6.41776907506998 f 4.61498207390593 -0.98393029866109 -10.20778913189103 h 8.80291268167398 0.25287291163352 -11.90776536138581 h 11.62306321650419 3.04024510129620 -9.40436983363700 h 10.26926168152009 4.59699684056170 -5.18641774120959 h 6.10510184579991 3.36337046493234 -3.45886208671585 h 2.33776782998258 2.38807057090688 -0.28536709523643 h 2.21566019688617 1.02405641586554 -2.83997254356980 h

FLP-H₂ [1-H][H-4]

-2.28730749468839 3.88928050571629 5.53113620520887 c -1.65910896531674 2.07320314018191 3.72754156402911 c $-3.56317494294195\ 1.56377688103119\ 1.97911957780254\ \mathrm{c}$ -5.89840033880703 2.76671059683426 1.93793397118748 c -6.42212543221420 4.58580217272943 3.76522562629721 c -4.60295919441301 5.14599066323722 5.58124479430372 c 1.07568804587936 0.70037546078518 3.43424819032811 b 1.11533577881402 -2.27328659421894 4.20814042414449 c 2.78450905224383 -3.91021073975208 2.99322323731587 c 2.85431250304746 -6.50831972444031 3.37769926628797 с 1.18516991078207 -7.58178000242404 5.10516342260569 c -0.50129016074005 -6.03146969162899 6.39890070091520 c -0.49960546202447 -3.43800510316854 5.93429705516571 c 4.47488219886961 -2.96943527927668 1.27766072107171 f 4.49167466210135 -7.99092667403891 2.10082139740883 f 1.20601493150376 -10.09011754212714 5.51952899204752 f -2.10918955036178 -7.05921356235231 8.08178914149136 f

-2.17229807248906 -2.04321857869535 7.27496843771942 f -3.16368388888473 -0.20374742113232 0.13350202371154 f -7.64052898115333 2.21355336056463 0.15821408940705 f -8.66383243616320 5.78531068536497 3.77417228405552 f -5.10666654462182 6.89352255982823 7.36062040790594 f -0.61818511067500 4.51205986389462 7.36574754490910 f 4.25334059181459 -0.17638841391468 8.12830107151872 f 4.91319641307499 1.76532918429537 6.59999212195573 c 3.46399601368411 2.33312641012693 4.47323604840397 с 4.31395029961870
4.41091009053329 3.09354493619461 c 6.45451467923377 5.81163515084444 3.69186488851009 c 7.85474346549342 5.14689545641038 5.81809784094220 c 7.07107920024122 3.11177794710823 7.28917473994561 c 3.02220080627838 5.15506312724640 0.98056034936385 f 7.19712442256463 7.77647644405901 2.24383490613881 f 9.94030551306403 6.46062108922177 6.44202167345081 f 8.40910426135824 2.47156898836793 9.35659388155950 f 2.08501721310320 0.61604108450541 -4.12260467739469 p -0.44769533961962 2.51035085706368 -5.31541439118457 c 5.15314385730263 1.97459431862192 -4.52610501529262 c 1.89572021498836 -2.66099232066481 -4.92688629787039 c -1.49192848298214 4.31570968217835 -3.66471183925873 c -3.53835352563481 5.77188047230061 -4.43188910765316 c -4.56672945289646 5.43672239002853 -6.83917299800669 c -3.55979236898671 3.65626460505302 -8.50209685133223 c -1.51405556861953 2.22447296204025 -7.71258086272573 c 0.55432244474739 -4.24392779124810 -3.26284991532880 c 0.44065967881557-6.82921094912369-3.71078042068416 c 1.66737668103368 -7.85906304495776 -5.80817444130894 c 3.00768245691952 -6.32197191725252 -7.47899140769008 с 3.09811190392337 -3.74708233359197 -7.01030004463109 с 5.92645576684050 3.27078653158860 -6.69084487353347 c 8.28111659519181 4.40374412718305 -6.86358896039439 c 9.91575894471124 4.23021613308448 -4.80256871088256 c 9.19962893983432 2.94266389279589 -2.61300765246717 c 6.82896001949891 1.82204684824063 -2.46628976004978 c -0.70825342294679 4.54134997912488 -1.78211951032209 h -4.34737246438050 7.14268985013432 -3.14066903831138 h -6.17784578222367 6.56045057826706 -7.43053400791790 h -4.33258474951135 3.36376749090480 -10.37767376253206 h -0.52838761140913 0.48853291288896 -9.30844525250858 f -0.36136994501652 -3.43629290728381 -1.61448163103044 h -0.57565786042381 -8.03977889042160 -2.40594905717883 h 1.59500358428034 -9.88112370114918 -6.14616244954039 h 3.97771771823624 -7.08545089369553 -9.11507430045780 h 4.40458065262774 -2.24164086813007 -8.60998586676081 f 4.32223507806998 3.43836281217227 -8.67346668660882 f 8.79881221328651 5.39946257946535 -8.57845872477022 h 11.75934544569709 5.12361288152191 -4.90862079233934 h 10.47128091955935 2.83939492624429 -1.00871899727396 h 6.24624901123449 0.85130932828107 -0.75545376991218 h 1.71936680441070
0.64497111414157-1.45426403901298 h 1.41268022384015
0.66363979512008 $1.15550458947155~{\rm h}$

```
FLP-H<sub>2</sub> [1-H][H-5]
-1.86656749938171 3.49277921831492 6.27605289366512 c
-2.19970129941300 2.34414781027185 3.92677876234834 c
-4.46937061250580 2.92047083898682 2.72785831081050 c
-6.29492246317275 4.51858212017400 3.74927040995390 c
-5.87126597054142 5.61570710992386 6.10017342807237 c
-3.63093761620839 5.09649273222874 7.38212570530582 c
-0.01517807324170 0.62007693980387 2.61609911486891 b
0.32661502918360 -2.23650036056681 3.72988601169883 c
1.99137477611586 -3.89011558577763 2.53650438468526 c
2.33769211137913 -6.40919577141522 3.17123234295738 c
0.94060748078082 -7.41647855847843 5.15985470836469 c
-0.75336043796661 -5.86327849910050 6.43309592668109 c
-1.03005594203650 -3.34162302724212 5.70371329207839 c
3.42976019338960 -3.02293585766499 0.55790712058681 f
3.98228143050938 -7.88281869538551 1.88343001677452 f
1.21895701110800 -9.85497836443802 5.82525285089663 f
-2.12364520026114 -6.81551242457875 8.35501344827741 f
-2.74196795350716 -1.99268667832335 7.04111718838491 f
-5.01440642729000 1.92236322323706 0.41395369761515 f
-8.45616141731217 5.02059960135799 2.48877848750349 f
-7.60771068378576 7.16436822829642 7.12592989785026 f
-3.21403889249619 6.14569436598816 9.66476365972460 f
0.27252503569567 3.02891735581493 7.60817232916624 f
5.04496566342782 -0.11981614118349 5.39749234539956 f
4.82509921867455 1.88205717195280 3.82192357365344 c
2.58813010820547 2.30356669164302 2.48872181852159 c
2.62909123005773 4.46184993943207 0.97308340551871 c
4.66799979485155 6.10682069553546 0.77127220491771 c
6.86078961004234 5.58039413143145 2.11882996930293 c
6.94000921044803 3.44375932097812 3.64793879623453 c
0.56227913980033 5.05157499866435 -0.45705211234554 f
4.55638606050353 8.16845758876282 -0.72800380834049 f
8.89206442229565\ 7.09944053975866\ 1.91855022009422\ f
9.07129100101031 2.91023042876923 4.93909322082679 f
2.14449045971217 0.23505178372706 -4.36388080308625 p
0.04272831811111 1.87368787353170 -6.43988880144467 c
5.17617619437389 1.73026358685458 -4.16072404676465 c
2.51113748793430 -3.01028591860695 -5.30563318205604 c
-2.16865826001366 2.90316859132756 -5.40206911016484 c
-3.85953575278400 4.16621338216764 -6.97809901604706 c
-3.34858285406059 4.39637124639770 -9.55323327883294 c
-1.14678497177837 3.35859686650253 -10.58149528214189 c
0.55592917434044 2.08753568769483 -9.03463174347991 c
4.35441336648566 -3.85201606312238 -7.00942883674593 c
4.70793889571397 -6.37943385469151 -7.58952799598163 c
3.13274697311457 -8.15994368636416 -6.44808287076294 с
1.21912726631431 -7.42745654655570 -4.79226498085496 c
0.93415674790357 -4.87778699852666 -4.27598478476429 c
5.58315784334095 4.07030219953924 -5.32673147142659 c
7.92337526418456 5.24960993132247 -5.07423262032766 c
9.83403811981806 4.10825233154378 -3.66540248729072 c
```

```
9.41471517672967 1.77955274655747 -2.49378368673725 с
7.09174117012309 0.57658070768496 -2.73345104800199 с
-2.56014115351713 2.72212615302483 -3.39705816253117 h
-5.57248683797065 4.96572466687147 -6.18228330839126 h
-4.67144376863186 5.38445616367309 -10.77206756589215 h
-0.76265070106798 3.53765337724717 -12.58884960294913 h
2.26601254876290 1.27373041185722 -9.82614899217800 h
5.84247297345606 -2.11293184153231 -8.15454818695637 f
6.17991957192039 -6.91823621373033 -8.90797614570023 h
3.39069839147525 -10.14954808866062 -6.87151750431851 h
-0.03121020755427 -8.78397225946980 -3.90316575647605 h
-0.94194997654283 -4.13526365054334 -2.72382000867344 f
4.07942438261861 4.97398524395354 -6.38719540070762 h
8.23707710362045 7.07552359296380 -5.95324579892625 h
11.64497246675726 5.04690640134241 -3.44889274547510 h
10.89073388186732 0.91184255168238 -1.36434813773074 h
6.75859562296665 -1.21641845031495 -1.79815451907514 h
-0.69595174478651 0.29692053580236 0.42869273948454 h
0.92330478870360 0.17563245167710 -1.96927347864523 h
```

$FLP-H_2$ [1-H][H-6]

-1.79035205317263 3.94873622483678 5.36029854763384 c -1.93941729995795 2.12051624848039 3.46844913892799 c -4.36647170411279 1.70132485685114 2.52741487013319 с -6.49841465946190 3.00601365723733 3.34712752370471 c -6.24381892233882 4.82969045685928 5.22473465188260 c -3.86636586667643 5.30273523367893 6.24561835325205 c 0.45805282266014
0.59491569025984 2.29344831169499 b 0.82266109091375 -2.24980994933196 3.42234954207066 c 1.96717179673828 -4.10876963559796 1.95758405155616 c 2.26082528150988 -6.61732167435392 2.66900958458717 c 1.37824138756135 -7.37368409235061 5.02794315610675 c 0.24147695687366 -5.59358911191396 6.59531181297583 c -0.00732061627465 -3.09970511362287 5.77740519852446 c 2.91698294231987 -3.48815812839023 -0.37740421655642 f 3.37452321720174 -8.31041525016582 1.11214647412108 f 1.62730772103703 -9.78900447552063 5.78188995372128 f -0.59831810507764 -6.30385359481809 8.89017608521606 f -1.09470806443434 -1.48213414889726 7.43073514753360 f -4.74660647272171 -0.06656731632939 0.70224192313366 f -8.79784410461478 2.53256035371620 2.34660299161448 f -8.27709614012739 6.11743547352299 6.04937282720771 f -3.60940804398954 7.05114555128443 8.08140721646389 f 0.46158552931324 4.47116876049854 6.46865105556163 f 5.45148280754095 -0.19157041289943 5.12070970216704 f 5.26042115199265 1.83537839599838 3.56880081129726 c 3.03318335488232 2.30497895107217 2.23665582768809 c 3.11149748505734 4.47446829471030 0.73819002915342 с 5.17532573999251 6.08862717784481 0.55916647630420 c 7.35312657927238 5.52285111572795 1.91603247634495 c 7.39650587597583 3.37204098725890 3.42506987697282 c 1.06206367797305 5.10290315194951 -0.69492414060372 f 5.10806130648304 8.15662001196311 -0.93475403083522 f

9.41026407008559 7.00881454329641 1.72578918356781 f 9.51487862689928 2.79351742102714 4.71933189478342 f 1.97804148033609 0.42734301161016 -4.91028028010141 p 0.03182179685476 2.22740278705900 -7.02422711462481 c 5.07796818196328 1.74810667618704 -4.63077853262502 c 2.05698275861065 -2.81117635431412 -5.92167258073650 с -2.19972107078527 3.41680216119417 -6.21630199992088 c -3.73368780433689 4.77801255357066 -7.85264232026671 c -3.04265368676882 4.94965594266037 -10.38689696580932 с -0.86231091106390 3.77256964355641 -11.29726207838785 c 0.61088120502357 2.43610550120807 -9.60151115067833 c 4.03592443033736 -3.97962099500674 -7.23909474049048 c 4.04056321363375 -6.54428900199182 -7.77808691238401 c 1.99482572055971 -8.00905716704414 -6.99721623600332 c -0.04552204740007 -6.93636717214166 -5.71803606620570 c 0.02832893439615 -4.37196110249875 -5.22153481109181 c 5.70952039643018 4.01058894835319 -5.84266010077721 c 8.10452570782478 5.04220780862473 -5.48208931281607 c 9.84679827196047 3.82648798895113 -3.92566687276549 c 9.20003187443226 1.57665268973372 -2.70406676783500 c 6.81745116735481 0.52536456165902 -3.04249732137598 c -2.88540193556670 3.21105955379690 -3.78961124695167 f -5.43126624157640 5.66388617033681 -7.12550039471919 h -4.22754317821095 6.00880307724558 -11.68288394431207 h -0.31036819653731 3.87457515479253 -13.26695284933104 h 2.71927993916205 1.25719222201298 -10.44101928143598 f 6.01674137935705 -2.57669985533431 -8.00875489807024 f 5.63012338165357 -7.35276168382592 -8.78567216058102 h 1.98721112745506 -10.02019733944525 -7.39667983924546 h -1.65189529532486 -8.04504925195256 -5.09828827736743 h -1.92669684358121 -3.27840526544720 -4.00297647213682 f 4.34163614164301 4.97654759182155 -7.02470577265297 h 8.59403612037406 6.81041134016321 -6.39780131819523 h 11.70156854261220 4.65053393486049 -3.62875661603422 h 10.54306202604181 0.65453295814721 -1.45823556554231 h 6.30110853166739 -1.20028060947162 -2.06402942017150 h 0.76095225385719 0.41799548091754 -2.48706777717959 h -0.12813674171217 0.25919638612923 0.07586669091466 h

$FLP-H_2$ [1-H][H-7]
2.90550559725259 -3.73563766202836 -0.05674807290449 f 2.55731942830338 -8.61588961329214 1.31546465889497 f 0.00030144860356 -9.93490374846321 5.63836359287827 f -2.21330974594958 -6.25264358862678 8.52318562779508 f -1.91546731329865 -1.38178273511593 7.16456583231941 f -4.47237059521914 -0.06470284448271 0.38212069033649 f -8.56681797559583 2.77612367661587 1.42672916378819 f -8.25629071179106 6.63269106817483 4.87394615248508 f -3.75754373724333 7.59996137565766 7.24406131639139 f 0.34974311612119 4.79621747443802 6.21918427392700 f 5.05049392296288 -0.82965429069136 5.72076145238423 f 5.27275149723058 1.21965665829927 4.20849648425403 c 3.26876806619951 1.98399363194209 2.67452690896401 c 3.75526957175967 4.15640097019109 1.25988538357184 c 6.01099941789956 5.49725534012830 1.32510870410818 c 7.96426253701151 4.63170821325870 2.85690217889361 c 7.58993706438801 2.47461326693384 4.31070146899499 c 1.94149285982722 5.06970020598151 -0.33146787616796 f 6.35337002557124 7.58090424988424 -0.11061387969144 f 10.19923061806741 5.85175545029677 2.89920792544656 f 9.47333598769924 1.62559718146447 5.79902029746589 f 2.25355624276255 0.63670621730720 -4.87415663019657 p -0.12657680817444 2.03076242262584 -6.83746688879358 c 5.18596256147013 2.33498143191700 -4.93363419723573 с 2.65027340296470 -2.59098314200234 -5.83999662286523 c -2.21487252135951 3.30358605772975 -5.81390325710720 c -4.16196038830502 4.23031466440607 -7.30639225034211 c -4.02022953337853 3.89683503115627 -9.91350568776708 c -1.96810875723663 2.66782597362156 -11.03133833030392 c -0.07297551466510 1.77247072279721 -9.47287869151910 c 4.70213177143671 -3.61068830509340 -7.16322819623216 c 4.90761563082649 -6.17019792634021 -7.67634132700536 c 2.99015063622208 -7.78517361817039 -6.86280081058662 c 0.87990952308194 -6.86428766522218 -5.58096355503781 c 0.75515705467567 -4.29722408300853 -5.11093845260344 c 5.63419914761396 4.60579647358578 -6.22653170364003 c 7.91853162759466 5.87598291543541 -6.08625957424340 c 9.84638577543590 4.87099376455424 -4.60062449053390 c 9.50689610880889 2.61946034032016 -3.27474366726108 c 7.19758550477901 1.41434945895479 -3.46654779151887 c -2.32272614456828 3.64094154431999 -3.30758405576336 f -5.73795810483097 5.18625135425795 -6.41330968987884 h -5.52913846793304 4.61435695020613 -11.10239629394431 h -1.82223733998489 2.41724814861536 -13.05879028161610 h 1.95744396230133 0.61746552955127 -10.51265201385979 f 6.55327415547207 -2.05475284630725 -7.97609666244613 f 6.54745979145316 -6.86034963867888 -8.69119411646233 h 3.14103130780692 -9.79500576158314 -7.23919209259971 h -0.62697953998721 -8.08967605974698 -4.93234639225501 h -1.27579582972616 -3.33910660713362 -3.90019286100356 f 3.78270492011772 5.61702632678785 -7.66224636948167 f 8.145219144212717.63479696272911 -7.11056167488036 h 11.63210792276569 5.86685495305228 -4.45528379914391 h

 $\begin{array}{l} 10.97064027046236 \ 1.81763346855760 \ -2.08810171306076 \ h\\ 6.81975341134538 \ -0.76591587560199 \ -2.20316056614271 \ f\\ 0.26933078955997 \ 0.30877726297655 \ 0.06232482433923 \ h\\ 1.26780327826846 \ 0.55911894970469 \ -2.31141007064723 \ h \end{array}$

FLP-H₂ [1-H][H-8]

-2.21367176597740 1.86035799476202 1.16476966812613 c -0.46797611828337 -0.01485526450174 0.52807132515134 c -1.52880825998606 -2.08101264748172 -0.72943627950971 c -4.07329673626441 -2.30330762894475 -1.36123362042931 c -5.73405097279876 -0.38641474231382 -0.66505735726940 c -4.78798927904398 1.70431591431115 0.62008795329697 c 2.58675152096289 -0.00777351031935 1.03680453307986 b 3.50314334857637 -2.16664335163555 3.03035549648736 с 5.97040150330949 -3.08640988214807 2.87451230141502 c 6.94605422704106-4.94334467452046
4.45895261398336 c 5.40294781505724 -5.97026526409316 6.32661338454767 c 2.92772945659332 -5.11515043989021 6.56646501092415 c 2.03984074722000 -3.24793837592436 4.93528929545135 с 7.56501892464712 -2.15160495459745 1.08527000211400 f 9.34714366101045 -5.76229292613675 4.20915416612735 f 6.29845494888937 -7.76918846214244 7.88372699961738 f 1.42678277795668 -6.09511906330119 8.37576296274692 f -0.38305973131670 -2.49094845164909 5.29414414334269 f -0.02761419567708 -4.05909469144511 -1.39406331479684 f -4.94287226272939 -4.34507044769793 -2.62567125935222 f -8.20119441707270 -0.53720070224639 -1.25279125951279 f -6.37033422785357 3.59663189255364 1.25889713658684 f -1.47456494873309 3.99574292182725 2.35380566372671 f 2.50146898537269 2.53449757673615 6.02715085687586 f 3.70508145939829 3.78742119044966 4.15444083045127 с 3.78859299421949 2.74501943393792 1.73068097752213 с 5.05421755697720 4.22367914747756 -0.03443671113490 c 6.12948943077522 6.56683323747117 0.48317202561371 c 5.98285540947289 7.52367825427934 2.92564511029203 c 4.76191083949920 6.11277816425859 4.78371198201526 c 5.32268570488197 3.40363804128701 -2.47874088019538 f 7.30765010158891 7.90460503016798 -1.34594520174107 f 7.00631458878272 9.78132846480940 3.48598215792248 f 4.60111678929002 7.03037494556434 7.15096689584290 f 1.93087435422922 0.54741607523447 -6.08294641222967 p 0.38376848581935 3.53507904122754 -5.78796227025424 c 4.74574899586541 0.74115260087160 -7.94219690608090 c -0.11960780233677 -1.85471840681772 -7.37339038226571 c -2.03228504850114 3.65277236309003 -4.71014094725387 c -3.11760154519285 5.99403728500475 -4.22084065490191 c -1.79561846639187 8.20565063448114 -4.79135609467516 c 0.61182218872819 8.08419210023921 -5.85930372822727 c 1.71802620055030 5.74996793803447 -6.36153041792869 c 0.58666534959321 -4.37365691999139 -6.93419544922667 c -0.90435550744118 -6.39478001180727 -7.69200105933913 c -3.16066269929327 -5.91091215863453 -8.96924649700120 с -3.87662412064504 -3.43223496475408 -9.51075384092199 с -2.34673487831869 -1.43722568326480 -8.74097583890054 c 4.63246328704982 1.50780152916229 -10.47883703473321 c 9.15081262829891 0.95017352913026 -10.78690709141363 c 9.25446380360381 0.17713504045678 -8.26896287896157 с 7.05277970501110 0.06529118096340 -6.82887721209134 с -3.04358002109742 1.93131407649848 -4.24239895143404 h -4.97908176052135 6.08991419260590 -3.36652845136383 h -2.64208985378675 10.03032558665851 -4.38662758163543 h 1.64530677394505 9.80466380539854 -6.28132379918427 h 3.61098101525642 5.64871159481842 -7.14040885068950 h 2.79045148620995 -4.85474254438414 -5.77825999772029 f -0.19726316958444 -8.77165403208244 -7.22996385620206 f -4.61424879482503 -7.82465713126982 -9.71578275614098 f -6.00818478981185 -2.98907353654094 -10.79483977859189 f -3.06331164354877 0.91034879069012 -9.38719387615934 f 2.83573575501774 2.02295434336685 -11.32959589042259 h 6.77563539526131 2.21196578590252 -13.85373365637940 h 10.87346676585264 1.03660375527850 -11.89868497192996 h 11.04809276420138 -0.33539329953580 -7.41673669517266 h 7.12201502965211 -0.52124930312778 -4.86444999801666 h 2.65925867594396 -0.34611817795398 -3.64457538973512 h 3.55177199354081 -0.65595879423853 -0.96405333091969 h