Pd-catalyzed oxidative C–H/C–H cross-coupling of pyridines with heteroarenes

Bo Liu, Yumin Huang, Jingbo Lan, Feijie Song, and Jingsong You*

Key Laboratory of Green Chemistry and Technology of Ministry of Education,

College of Chemistry, and State Key Laboratory of Biotherapy, West China Hospital,

West China Medical School, Sichuan University, 29 Wangjiang Road, Chengdu

610064, PR China

Fax: 86-28-85412203; E-mail: jsyou@scu.edu.cn

Supporting Information

Table of contents

I. General remarks	S2
II. General procedure for the oxidative C–H/C–H cross-coupling of pyridine	s with
heteroarenes	S2
III. Experimental data for the described substances	
IV. ORTEP diagrams of compounds 3f , 3k , 3o , 4c and 4f	S18
V. Kinetic isotope effect experiment	S18
VI. The effect of radical scavenger TEMPO on the coupling reaction	S24
VII. References	S24
VIII. Copies of ¹ H and ¹³ C NMR spectra	S25

I. General Remarks

NMR spectra were obtained on a Bruker AMX-400. The ¹H NMR (400 MHz) chemical shifts were measured relative to CDCl₃ as the internal reference (CDCl₃: δ = 7.26 ppm). The ¹³C NMR (100 MHz) chemical shifts were given using CDCl₃ as the internal standard (CDCl₃: δ = 77.16 ppm). Low-resolution mass spectra (MS) were obtained by a LCMS-IT-TOF. High-resolution mass spectra (HR-MS) were obtained with a Waters-Q-TOF-Premier (ESI). X-Ray single-crystal diffraction data were collected on a Bruker SMART 1000 CCD areadetector diffractometer. Melting points were determined with XRC-1 and are uncorrected.

Unless otherwise noted, all reagents were obtained from commercial suppliers and used without further purification. 3,7-Diethyl-1-methyl-xanthine¹ and 2-methyl-5-nitro-2*H*-indazole² were prepared according to the literature procedures. Pyridine and DMF were dried by refluxing over CaH₂ for at least 24 h, and freshly distilled prior to use. Unless otherwise indicated, all syntheses and manipulations were carried out under an N₂ atmosphere.

II. General procedure for the oxidative C–H/C–H cross-coupling of pyridines with heteroarenes

A flame-dried Schlenk test tube with a magnetic stirring bar was charged with $Pd(OAc)_2$ (11.2 mg, 0.05 mmol), N-heteroarene (0.50 mmol), AgOAc (251 mg, 1.5 mmol), 1,10-phenanthroline monohydrate (49.5 mg, 0.25 mmol), PivOH (51 mg, 0.50 mmol), and pyridines (1.0 mL) under an N₂ atmosphere. The rubber septum was replaced with a teflon stopper, and the system was then evacuated and back filled with N₂ for twice. The reaction mixture was stirred for 5 min at room temperature, and then heated at 140 °C for 24 h. The resulting solution was cooled to ambient temperature, diluted with 20 mL of CH₂Cl₂, filtered through a celite pad, and washed with 10-20 mL of CH₂Cl₂. The combined organic extracts were concentrated and the resulting residue was purified by column chromatography on silica gel to provide the desired product.

III. Experimental data for the described substances

2-(5-Methylthiophen-2-yl)pyridine (3a)

Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 6/1, v/v) afforded **3a** as a pale yellow solid (64 mg, 73% yield). For gram-scale, Pd(OAc)₂ (224 mg, 1.0 mmol), 2-methylthiophene (980 µL, 10 mmol), AgOAc (5.0 g, 30 mmol), 1,10-phenanthroline monohydrate (990 mg, 5 mmol), PivOH (1.02 g, 10 mmol), and pyridine (20 mL) at 140 °C for 24 h. Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 6/1, v/v) afforded **3a** as a pale yellow solid (1.25 g, 71% yield). M.p.: 64-65 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 2.52$ (s, 3H), 6.76 (d, J = 2.8 Hz, 1H), 7.08 (t, J = 6.4 Hz, 1H), 7.37 (d, J = 3.6 Hz, 1H), 7.57 (d, J = 8.0 Hz, 1H), 7.62 (t, J = 7.6 Hz, 1H), 8.52 (d, J = 4.4 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 15.7$, 118.4, 121.5, 124.8, 126.5, 136.6, 142.3, 142.6, 149.5, 152.9 ppm. HRMS (ESI⁺): calcd for C₁₀H₉NNaS [M+Na]⁺ 198.0353, found 198.0356.

2-(5-Ethylthiophen-2-yl)pyridine (3b)

Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 6/1, v/v) afforded **3b** as colorless oil (61 mg, 64% yield). ¹H NMR (400 MHz, CDCl₃): $\delta = 1.33$ (t, J = 7.6 Hz, 3H), 2.85 (q, J = 7.6 Hz, 2H), 6.80 (d, J = 3.2 Hz, 1H), 7.09 (t, J = 6.0 Hz, 1H), 7.43 (d, J = 3.2 Hz, 1H), 7.59 (d, J = 8.0 Hz, 1H), 7.64 (t, J = 7.2 Hz, 1H), 8.53 (d, J = 4.8 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 15.9$, 23.9, 118.5, 121.5, 124.6, 124.7, 136.7, 141.8, 149.4, 150.4, 152.9 ppm. HRMS (ESI⁺): calcd for C₁₁H₁₂NS [M+H]⁺ 190.0690, found 190.0687.

2-(5-Butylthiophen-2-yl)pyridine (3c)

Following the general procedure, the reaction mixture was stirred at 140 °C for 24 h. Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 6/1, v/v) afforded **3c** as colorless oil (70 mg, 64% yield). ¹H NMR (400 MHz, CDCl₃): $\delta = 0.92$ (t, J = 7.6 Hz, 3H), 1.37-1.46 (m, 2H), 1.66-1.74 (m, 2H), 2.82 (t, J = 7.6 Hz, 2H), 6.77 (d, J = 3.6 Hz, 1H), 7.07 (t, J = 5.6 Hz, 1H), 7.39 (d, J = 3.6 Hz, 1H), 7.58 (d, J = 8.0 Hz, 1H), 7.62 (t, J = 8.4 Hz, 1H), 8.52 (d, J = 4.8 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 13.9$, 22.2, 30.1, 33.7, 118.4, 121.4, 124.5, 125.3, 136.6, 142.1, 148.7, 149.5, 153.0 ppm. HRMS (ESI⁺): calcd for C₁₃H₁₆NS [M+H]⁺ 218.1003, found 218.1003.

2-(5-Phenylthiophen-2-yl)pyridine (3d)

Following the general procedure, the reaction mixture was stirred at 140 °C for 24 h. Purification by column chromatography on silica gel (petroleum ether/CH₂Cl₂ = 1/1, v/v) afforded **3d** as a white solid (74 mg, 62% yield). M.p.: 101-103 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.19 (t, *J* = 5.6 Hz, 1H), 7.30 (t, *J* = 7.2 Hz, 1H), 7.35 (d, *J* = 4.0 Hz, 1H), 7.39 (t, *J* = 8.0 Hz, 2H), 7.67-7.79 (m, 5H), 8.60 (d, *J* = 4.8 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 118.8, 122.0, 124.2, 125.9, 128.0, 129.1, 134.3, 137.0, 146.5, 149.4 ppm. HRMS (ESI⁺): calcd for C₁₅H₁₂NS [M+H]⁺ 238.0690, found 238.0690.

2-(5-Chlorothiophen-2-yl)pyridine (3e)

Following the general procedure, the reaction mixture was stirred at 140 °C for 24 h. Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 6/1, v/v) afforded **3e** as a yellow solid (56 mg, 58% yield). M.p.: 63-64 °C. ¹H NMR (400 MHz, CDCl₃): δ = 6.92 (d, *J* = 4.0 Hz, 1H), 7.15-7.18 (m, 1H), 7.38 (d, *J* = 3.6 Hz, 1H), 7.57 (d, *J* = 8.0 Hz, 1H), 7.68 (td, *J* = 7.6 Hz, 1.6 Hz, 1H), 8.53 (d, *J* = 4.8 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 118.2, 122.3, 123.8, 127.4, 132.6, 137.0, 143.4, 149.5, 151.8 ppm. HRMS (ESI⁺): calcd for C₉H₇CINS [M+H]⁺ 195.9988, found 195.9987.

Phenyl(5-(pyridin-2-yl)thiophen-2-yl)methanone (3f)

Following the general procedure, the reaction mixture was stirred at 140 °C for 24 h. Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 5/1, v/v) afforded **3f** as a yellow solid (74 mg, 56% yield). M.p.: 112-114 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.27 (d, *J* = 5.6 Hz, 1H), 7.49 (t, *J* = 7.6 Hz, 2H), 7.59 (t, *J* = 7.2 Hz, 1H), 7.69 (s, 2H), 7.74-7.80 (m, 2H), 7.90 (d, *J* = 7.6 Hz, 2H), 8.64 (d, *J* = 4.8 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 120.0, 123.5, 125.5, 128.6, 129.3, 132.5, 135.6, 137.5, 138.1, 144.1, 149.7, 151.3, 188.2 ppm. HRMS (ESI⁺): calcd for C₁₆H₁₁NNaOS [M+Na]⁺ 288.0459, found 288.0460.

2-(3-Methylbenzo[b]thiophen-2-yl)pyridine (3g)

Following the general procedure, the reaction mixture was stirred at 140 °C for 24 h. Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 5/1, v/v) afforded **3g** as a white solid (71 mg, 63% yield). M.p.: 52-54 °C. ¹H NMR (400 MHz, CDCl₃): δ = 2.69 (s, 3H), 7.23 (d, *J* = 6.8 Hz, 1H), 7.36-7.43 (m, 2H), 7.69 (d, *J* = 7.6 Hz, 1H), 7.77 (d, *J* = 7.6 Hz, 2H), 7.85 (d, *J* = 7.6 Hz, 1H), 8.72 (d, *J* = 4.4 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 13.5, 122.1, 122.5, 122.6, 123.3, 124.2, 125.2, 129.9, 136.6, 138.1, 139.6, 141.7, 149.8, 153.6 ppm. HRMS (ESI⁺): calcd for C₁₄H₁₂NS [M+H]⁺ 226.0690, found 226.0687.

2-(5-Chloro-3-methylbenzo[b]thiophen-2-yl)pyridine (3h)

Following the general procedure, the reaction mixture was stirred at 140 °C for 24 h. Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 6/1, v/v) afforded **3h** as a white solid (71 mg, 55% yield). M.p.: 90-92 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 2.58$ (s, 3H), 7.19 (s, 1H), 7.23-7.29 (m, 1H), 7.63-7.71 (m, 3H), 7.76 (t, J = 7.6 Hz, 1H), 8.67 (d, J = 4.8 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 13.5$, 122.3, 122.5, 123.3, 123.5, 125.6, 129.2, 130.6, 136.8, 137.7, 140.1, 142.9, 149.8, 153.1 ppm. HRMS (ESI⁺): calcd for C₁₄H₁₁CINS [M+H]⁺ 260.0301, found 260.0296.

2-(5-Butylfuran-2-yl)pyridine (3i)

Following the general procedure, the reaction mixture was stirred at 140 °C for 24 h. Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 6/1, v/v) afforded **3i** as colorless oil (58 mg, 57% yield). ¹H NMR (400 MHz, CDCl₃): $\delta = 0.92$ (t, J = 7.2 Hz, 3H), 1.36-1.46 (m, 2H), 1.65-1.72 (m, 2H), 2.69 (t, J = 7.6 Hz, 2H), 6.11 (d, J = 3.2 Hz, 1H), 6.94 (d, J = 3.2 Hz, 1H), 7.06-7.09 (m, 1H), 7.60-7.68 (m, 2H), 8.55 (d, J = 4.4 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 13.9$, 22.4, 28.1, 30.3, 107.6, 109.6, 118.3, 121.4, 136.6, 149.6, 149.8, 151.9, 158.2 ppm. HRMS (ESI⁺): calcd for C₁₃H₁₆NO [M+H]⁺ 202.1232, found 202.1231.

2-(Benzofuran-2-yl)pyridine (3j)

Following the general procedure, the reaction mixture was stirred at 140 °C for 24 h.

Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 6/1, v/v) afforded **3j** as a white solid (54 mg, 55% yield). M.p.: 79-81 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.16-7.20 (m, 2H), 7.24-7.28 (td, *J* = 8.4 Hz, 1.6 Hz, 1H), 7.41 (s, 1H), 7.48 (dd, *J* = 8.4 Hz, 0.8 Hz, 1H), 7.56 (d, *J* = 8.4 Hz, 1H), 7.70 (td, *J* = 7.6 Hz, 1.6 Hz, 1H), 7.82 (d, *J* = 8.0 Hz, 1H), 8.60 (d, *J* = 6.4 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 105.3, 111.7, 120.0, 121.9, 123.1, 123.4, 125.4, 128.9, 137.1, 149.2, 149.8, 154.9, 155.5 ppm. HRMS (ESI⁺): calcd for C₁₃H₉NNaO [M+Na]⁺ 218.0582, found 218.0584.

1-Methyl-2-(pyridin-2-yl)-1*H*-indole (3k)

Following the general procedure, the reaction mixture was stirred at 140 °C for 24 h. Purification by column chromatography on silica gel (petroleum ether/CH₂Cl₂ = 1/1, v/v) afforded **3k** as a pale yellow solid (42 mg, 40% yield). M.p.: 86-87 °C. ¹H NMR (400 MHz, CDCl₃): δ = 4.08 (s, 3H), 6.87 (s, 1H), 7.13 (t, *J* = 7.6 Hz, 1H), 7.22-7.30 (m, 2H), 7.40 (d, *J* = 8.0 Hz, 1H), 7.65 (d, *J* = 8.0 Hz, 1H), 7.71-7.78 (m, 2H), 8.70 (d, *J* = 4.4 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 32.1, 104.2, 110.0, 120.1, 121.2, 122.0, 122.9, 123.9, 127.6, 137.2, 138.5, 139.6, 148.7, 152.1 ppm. HRMS (ESI⁺): calcd for C₁₄H₁₃N₂ [M+H]⁺ 209.1079, found 209.1076.

2-Methyl-5-nitro-3-(pyridin-2-yl)-2H-indazole (3l)

Following the general procedure, the reaction mixture was stirred at 140 °C for 24 h. Purification by column chromatography on silica gel (petroleum ether/ethyl acetate/CH₂Cl₂ = 3/1/1, v/v/v) afforded **31** as a yellow solid (79 mg, 62% yield). M.p.: 213-215 °C. ¹H NMR (400 MHz, CDCl₃): δ = 4.50 (s, 3H), 7.49-7.53 (m, 1H), 7.80-7.84 (m, 2H), 8.03 (t, J = 8.0 Hz, 1H), 8.15 (dd, J = 9.2 Hz, 2.0 Hz, 1H), 8.81 (d, J = 2.0 Hz, 1H), 8.88 (d, J = 4.4 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 40.7$, 118.6, 119.4, 119.8, 120.6, 123.8, 124.7, 137.6, 138.0, 143.9, 147.9, 149.0, 150.5 ppm. HRMS (ESI⁺): calcd for C₁₃H₁₁N₄O₂ [M+H]⁺ 255.0882, found 255.0879.

3-(Pyridin-2-yl)imidazo[1,2-*a*]pyridine (3m)

Following the general procedure, the reaction mixture was stirred at 140 °C for 24 h. Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 1/1, v/v) afforded **3m** as a white solid (49 mg, 50% yield). M.p.: 77-78 °C. ¹H NMR (400 MHz, CDCl₃): δ = 6.97 (td, *J* = 6.8 Hz, 1.2 Hz, 1H), 7.17-7.20 (m, 1H), 7.33-7.37 (m, 1H), 7.73-7.78 (m, 3H), 8.16 (s, 1H), 8.66 (dt, *J* = 4.8 Hz, 1.2 Hz, 1H), 9.96 (d, *J* = 7.2 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 113.1, 117.6, 120.6, 121.1, 123.8, 125.8, 128.2, 134.4, 136.7, 147.4, 148.8, 150.6 ppm. HRMS (ESI⁺): calcd for C₁₂H₉N₃Na [M+Na]⁺ 218.0694, found 218.0698.

1,3,7-Trimethyl-8-(pyridin-2-yl)-xanthine (3n)

Following the general procedure, the reaction mixture was stirred at 140 °C for 24 h. Purification by column chromatography on silica gel (petroleum ether/acetone/CH₂Cl₂ = 3/1/1, v/v/v) afforded **3n** as a white solid (69 mg, 51% yield). M.p.: 275-276 °C. ¹H NMR (400 MHz, CDCl₃): δ = 3.44 (s, 3H), 3.64 (s, 3H), 4.47 (s, 3H), 7.34-7.37 (m, 1H), 7.82 (t, *J* = 7.6 Hz, 1H), 8.20 (d, *J* = 8.0 Hz, 1H), 8.68 (d, *J* = 4.4 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 28.2, 29.9, 35.3, 109.6, 124.2, 124.8, 137.0, 147.9, 148.4, 149.0, 149.4, 151.9, 155.8 ppm. HRMS (ESI⁺): calcd for C₁₃H₁₄N₅O₂ [M+H]⁺ 272.1147, found 272.1147.

3,7-Diethyl-1-methyl-8-(pyridin-2-yl)-xanthine (30)

Following the general procedure, the reaction mixture was stirred at 140 °C for 24 h. Purification by column chromatography on silica gel (petroleum ether/acetone/CH₂Cl₂ = 6/1/1, v/v/v) afforded **30** as a white solid (73 mg, 49% yield). M.p.: 222-223 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 1.37$ (t, J = 6.8 Hz, 3H), 1.48 (t, J = 7.2 Hz, 3H), 3.44 (s, 3H), 4.21 (q, J = 7.2 Hz, 2H), 5.03 (q, J = 6.8 Hz, 2H), 7.33 (t, J = 6.4 Hz, 1H), 7.81 (t, J = 7.6 Hz, 1H), 8.22 (d, J = 8.0 Hz, 1H), 8.67 (d, J = 4.4 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 13.5$, 16.6, 28.1, 38.6, 42.8, 108.9, 124.1, 124.8, 136.9, 147.6, 147.8, 149.1, 149.4, 151.3, 155.5 ppm. HRMS (ESI⁺): calcd for C₁₅H₁₈N₅O₂ [M+H]⁺ 300.1460, found 300.1463.

N-(6-(5-Methylthiophen-2-yl)pyridin-3-yl)pivalamide (4a)

N-(Pyridin-3-yl)pivalamide (890 mg, 5.0 mmol), 2-methylthiophene (49 μL, 0.50 mmol), Pd(OAc)₂ (11.2 mg, 0.05 mmol), AgOAc (251 mg, 1.5 mmol), 1,10-phenanthroline monohydrate (49.5 mg, 0.25 mmol), PivOH (51 mg, 0.50 mmol), and DMF (0.5 mL) at 140 °C for 24 h. Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 3/1, v/v) afforded **4a** as a white solid (87 mg, 63% yield). M.p.: 102-104 °C. ¹H NMR (400 MHz, CDCl₃): δ = 1.30 (s, 9H), 2.56 (s, 3H), 6.84 (d, J = 2.4 Hz, 1H), 7.23-7.25 (m, 1H), 7.29 (s, 1H), 7.99 (s, 1H), 8.36 (d, J = 4.4 Hz, 1H), 8.65 (d, J = 8.4 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 15.5, 27.6, 40.1, 122.6, 126.0, 126.8, 129.8, 131.7, 138.3, 143.2, 143.4, 144.8, 177.1 ppm. HRMS (ESI⁺): calcd for C₁₅H₁₉N₂OS [M+H]⁺ 275.1218, found 275.1213.

2-(5-Methylthiophen-2-yl)-5-phenylpyridine (4b)

Following the general procedure, the reaction mixture was stirred at 140 °C for 24 h. Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 6/1, v/v) afforded **4b** as a white solid (52 mg, 41% yield). M.p.: 126-127 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 2.55$ (s, 3H), 6.80 (d, J = 2.8 Hz, 1H), 7.39 (t, J = 7.6 Hz, 1H), 7.47 (t, J = 8.0 Hz, 2H), 7.54 (bs, 1H), 7.59-7.61 (m, 2H), 7.66 (d, J = 8.4 Hz, 1H), 7.89 (dd, J = 8.0 Hz, 2.0 Hz, 1H), 8.79 (d, J = 2.4 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 15.8$, 118.4, 125.0, 126.6, 126.9, 128.1, 129.2, 134.3, 135.1, 137.7, 141.9, 142.8, 147.8, 151.6 ppm. HRMS (ESI⁺): calcd for C₁₆H₁₄NS [M+H]⁺ 252.0847, found 252.0847.

Ethyl 6-(benzo[b]thiophen-2-yl)nicotinate (4c)

Following the general procedure, the reaction mixture was stirred at 140 °C for 24 h. Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 6/1, v/v) afforded **4c** as a pale yellow solid (57 mg, 40% yield). M.p.: 168-169 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 1.41$ (t, J = 7.2 Hz, 3H), 4.40 (q, J = 7.2 Hz, 2H), 7.36-7.40 (m, 2H), 7.83-7.89 (m, 3H), 8.00 (s, 1H), 8.32-8.35 (m, 1H), 9.22 (d, J = 1.2 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 14.4$, 61.6, 119.1, 122.8, 123.5, 124.7, 124.89, 124.92, 125.9, 138.0, 140.4, 141.4, 143.4, 150.9, 155.7, 165.1 ppm. HRMS (ESI⁺): calcd for C₁₆H₁₄NO₂S [M+H]⁺ 284.0745, found 284.0746.

3-Fluoro-2-(5-methylthiophen-2-yl)pyridine (4d)

Following the general procedure, the reaction mixture was stirred at 140 °C for 24 h. Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 6/1, v/v) afforded **4d** as colorless oil (69 mg, 71% yield). ¹H NMR (400 MHz, CDCl₃): $\delta = 2.54$ (s, 3H), 6.81 (d, J = 3.2 Hz, 1H), 7.10-7.15 (m, 1H), 7.40-7.44 (m, 1H), 7.62 (t, J = 2.8 Hz, 1H), 8.36 (dd, J = 3.2 Hz, 1.6 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 15.6$, 122.1, 122.2, 123.6, 123.8, 126.8, 126.9, 128.7, 137.3, 141.6, 141.7, 143.3, 145.0, 154.5, 157.1 ppm. HRMS (ESI⁺): calcd for C₁₀H₉FNS [M+H]⁺ 194.0440, found 194.0437.

2-(5-(3-Fluoropyridin-2-yl)thiophen-2-yl)ethanol (4e)

Following the general procedure, the reaction mixture was stirred at 140 °C for 24 h. Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 6/1, v/v) afforded **4e** as colorless oil (85 mg, 76% yield). ¹H NMR (400 MHz, CDCl₃): $\delta = 2.08$ (s, 1H), 3.17 (t, J = 6.4 Hz, 2H), 4.32 (t, J = 6.4 Hz, 2H), 6.92 (d, J = 3.6 Hz, 1H), 7.15-7.19 (m, 1H), 7.44-7.49 (m, 1H), 7.72 (s, 1H), 8.38 (d, J = 4.0 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 21.1$, 64.5, 122.49, 122.53, 123.9, 124.1, 127.16, 127.18, 128.5, 128.7, 138.1, 141.3, 143.6, 144.9, 154.6, 157.2, 171.0 ppm. HRMS (ESI⁺): calcd for C₁₁H₉FNS [M-H₂O+H]⁺ 206.0440, found 206.0443.

5-(3-Fluoropyridin-2-yl)thiophene-2-carbonitrile (4f)

Following the general procedure, the reaction mixture was stirred at 140 °C for 24 h. Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 6/1, v/v) afforded **4f** as a greenish yellow solid (44 mg, 43% yield). M.p.: 113-114 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.29-7.33 (m, 1H), 7.50-7.55 (m, 1H), 7.64 (d, J = 4.0 Hz, 1H), 7.75 (dd, J = 4.0 Hz, 1.6 Hz, 1H), 8.42-8.44 (m, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 111.3, 111.4, 114.4, 124.4, 124.6, 124.9, 125.0, 127.4, 127.5, 138.49, 138.51, 139.3, 139.4, 145.66, 145.70, 147.1, 147.2, 155.1, 157.8 ppm. HRMS (ESI⁺): calcd for C₁₀H₆FN₂S [M+H]⁺ 205.0236, found 205.0233.

2-(Benzo[b]thiophen-2-yl)-3-fluoropyridine (4g)

Following the general procedure, the reaction mixture was stirred at 140 °C for 24 h. Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 6/1, v/v) afforded **4g** as a white solid (70 mg, 61% yield). M.p.: 123-125 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.22-7.25 (m, 1H), 7.35-7.39 (m, 2H), 7.48-7.53 (m, 1H), 7.83-7.90 (m, 2H), 8.06 (d, *J* = 1.6 Hz, 1H), 8.46-8.48 (m, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 122.4, 123.54, 123.58, 123.8, 124.0, 124.6, 124.7, 125.1, 125.3, 125.5, 140.1, 140.2, 140.41, 140.43, 140.91, 140.93, 141.3, 141.5, 145.38, 145.43, 155.5, 158.2 ppm. HRMS (ESI⁺): calcd for C₁₃H₉FNS [M+H]⁺ 230.0440, found 230.0440.

2-(4,5-Dimethylfuran-2-yl)-3-fluoropyridine (4h)

Following the general procedure, the reaction mixture was stirred at 140 °C for 24 h. Purification by column chromatography on silica gel (petroleum ether/CH₂Cl₂ = 1/1, v/v) afforded **4h** as colorless oil (65 mg, 68% yield). ¹H NMR (400 MHz, CDCl₃): δ = 2.02 (s, 3H), 2.35 (s, 3H), 6.90 (d, *J* = 4.0 Hz, 1H), 7.10-7.13 (m, 1H), 7.38-7.44 (m, 1H), 8.44-8.46 (m, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 10.0, 11.8, 116.97, 116.99, 117.2, 117.3, 121.71, 121.74, 123.25, 123.4, 138.1, 138.2, 145.1, 145.19, 145.24, 150.2, 154.1, 156.7 ppm. HRMS (ESI⁺): calcd for C₁₁H₁₁FNO [M+H]⁺ 192.0825, found 192.0822.

5-(3-Fluoropyridin-2-yl)-2-isobutylthiazole (4i)

Following the general procedure, the reaction mixture was stirred at 140 °C for 24 h. Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 6/1, v/v) afforded **4i** as colorless oil (98 mg, 83% yield). ¹H NMR (400 MHz, CDCl₃): $\delta = 0.99$ (d, J = 6.8 Hz, 6H), 2.11-2.18 (m, 1H), 2.89 (d, J = 6.8 Hz, 2H), 7.16-7.19 (m, 1H), 7.42-7.47 (m, 1H), 8.27 (d, J = 1.6 Hz, 1H), 8.36 (d, J = 4.4 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 22.4$, 29.9, 42.5, 123.08, 123.12, 123.6, 123.8, 134.67, 134.75, 139.8, 139.9, 142.2, 142.3, 145.4, 145.5, 154.7, 157.3, 172.65, 172.68 ppm. HRMS (ESI⁺): calcd for C₁₂H₁₄FN₂S [M+H]⁺ 237.0862, found 237.0860.

3-Chloro-2-(5-methylthiophen-2-yl)pyridine (4j)

Following the general procedure, the reaction mixture was stirred at 140 °C for 24 h. Purification by column chromatography on silica gel (petroleum ether/ ethyl acetate = 6/1, v/v) afforded **4j** as colorless oil (47 mg, 45% yield). ¹H NMR (400 MHz, CDCl₃): $\delta = 2.53$ (s, 3H), 6.81 (d, J = 1.6 Hz, 1H), 7.06-7.09 (m, 1H), 7.72 (d, J = 8.0 Hz, 1H), 7.93 (d, J = 3.6 Hz, 1H), 8.47 (d, J = 4.8 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 15.4$, 121.7, 126.4, 127.5, 129.5, 138.7, 139.8, 143.8, 147.2, 149.5 ppm. HRMS (ESI⁺): calcd for C₁₀H₉CINS [M+H]⁺ 210.0144, found 210.0143.

Fig. S1 ¹H-¹H NOESY spectrum of compound 4j.

2-(5-Methylthiophen-2-yl)quinoline (4k)

Following the general procedure, the reaction mixture was stirred at 140 °C for 24 h. Purification by column chromatography on silica gel (petroleum ether/CH₂Cl₂ = 1/1, v/v) afforded **4k** as a pale yellow solid (65 mg, 58% yield). M.p.: 122-124 °C. ¹H NMR (400 MHz, CDCl₃): δ = 2.56 (s, 3H), 6.83 (d, *J* = 2.8 Hz, 1H), 7.46 (t, *J* = 7.6 Hz, 1H), 7.60 (bs, 1H), 7.67 (t, *J* = 7.6 Hz, 1H), 7.73 (t, *J* = 8.4 Hz, 2H), 8.11 (d, *J* = 8.8 Hz, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 15.8, 117.4, 125.9, 126.1, 126.5, 127.1, 127.6, 129.3, 129.8, 136.5, 143.0, 143.7, 148.3, 152.6 ppm. HRMS (ESI⁺): calcd for C₁₄H₁₂NS [M+H]⁺ 226.0690, found 226.0686.

Electronic Supplementary Material (ESI) for Chemical Science This journal is O The Royal Society of Chemistry 2013

1-(5-Methylthiophen-2-yl)isoquinoline (4l)

Following the general procedure, the reaction mixture was stirred at 140 °C for 24 h. Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 6/1, v/v) afforded **41** as pale green oil (64 mg, 57% yield). ¹H NMR (400 MHz, CDCl₃): $\delta = 2.59$ (s, 3H), 6.88 (d, J = 2.8 Hz, 1H), 7.46 (d, J = 3.2 Hz, 1H), 7.56 (d, J = 5.6 Hz, 1H), 7.60 (t, J = 7.2 Hz, 1H), 7.69 (t, J = 7.2 Hz, 1H), 7.85 (d, J = 8.0 Hz, 1H), 8.52 (d, J = 5.6 Hz, 1H), 8.55 (d, J = 8.4 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 15.6$, 119.6, 126.0, 126.1, 127.0, 127.3, 127.6, 129.2, 130.2, 137.3, 140.3, 142.0, 143.1, 153.7 ppm. HRMS (ESI⁺): calcd for C₁₄H₁₂NS [M+H]⁺ 226.0690, found 226.0694.

Fig. S2 ¹H-¹H NOESY spectrum of compound 41.

Electronic Supplementary Material (ESI) for Chemical Science This journal is © The Royal Society of Chemistry 2013

3-(5-Methylthiophen-2-yl)pyridazine (4m)

Following the general procedure, the reaction mixture was stirred at 140 °C for 24 h. Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 1/1, v/v) afforded **4m** as a white solid (36 mg, 41% yield). M.p.: 91-93 °C. ¹H NMR (400 MHz, CDCl₃): δ = 2.57 (s, 3H), 6.83-6.84 (m, 1H), 7.54-7.57 (m, 2H), 7.80 (d, *J* = 8.4 Hz, 1H), 9.04 (d, *J* = 4.8 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 15.8, 122.3, 126.7, 126.9, 127.0, 137.9, 145.0, 149.2, 155.5 ppm. HRMS (ESI⁺): calcd for C₉H₈N₂NaS [M+Na]⁺ 199.0306, found 199.0305.

4-(5-Methylthiophen-2-yl)pyrimidine (4n)

Following the general procedure, the reaction mixture was stirred at 140 °C for 24 h. Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 4/1, v/v) afforded **4n** as a pale yellow solid (39 mg, 44% yield). M.p.: 83-85 °C. ¹H NMR (400 MHz, CDCl₃): δ = 2.56 (s, 3H), 6.84 (dd, *J* = 3.6 Hz, 1.2 Hz, 1H), 7.51 (dd, *J* = 5.2 Hz, 1.2 Hz, 1H), 7.62 (d, *J* = 4.0 Hz, 1H), 8.62 (d, *J* = 5.2 Hz, 1H), 9.08 (s, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 15.9, 114.8, 127.1, 128.2, 139.3, 146.1, 156.8, 158.97, 159.04 ppm. HRMS (ESI⁺): calcd for C₉H₉N₂S [M+H]⁺ 177.0486, found 177.0482.

2-(5-Methylthiophen-2-yl)pyrazine (40)

Following the general procedure, the reaction mixture was stirred at 140 °C for 24 h. Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 6/1, v/v) afforded **4o** as a pale greenish yellow solid (72 mg, 82% yield). M.p.: 85-87 °C. ¹H NMR (400 MHz, CDCl₃): δ = 2.55 (s, 3H), 6.81 (d, *J* = 3.6 Hz, 1H), 7.49 (d, *J* = 3.6 Hz, 1H), 8.34 (d, *J* = 2.4 Hz, 1H), 8.46 (s, 1H), 8.88 (s, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 15.8, 126.2, 126.9, 138.9, 140.4, 141.8, 144.0, 144.3, 148.9 ppm. HRMS (ESI⁺): calcd for C₉H₉N₂S [M+H]⁺ 177.0486, found 177.0480.

2-(5-Methylthiophen-2-yl)quinoxaline (4p)

Following the general procedure, the reaction mixture was stirred at 140 °C for 24 h. Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 6/1, v/v) afforded **4p** as a pale greenish yellow solid (51 mg, 45% yield). M.p.: 113-115 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 2.58$ (s, 3H), 6.86 (s, 1H), 7.64-7.68 (m, 2H), 7.71 (t, J = 8.0 Hz, 1H), 8.03 (d, J = 8.4 Hz, 2H), 9.17 (s, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 15.9$, 127.0, 127.4, 128.9, 129.1, 129.2, 130.4, 139.9, 141.2, 142.0, 142.3, 145.3, 147.7 ppm. HRMS (ESI⁺): calcd for C₁₃H₁₁N₂S [M+H]⁺ 227.0643, found 227.0639.

IV. ORTEP diagrams of compounds 3f, 3k, 3o, 4c and 4f.

Fig. S3 ORTEP diagrams of **3f**, **3k**, **3o**, **4c** and **4f**. Thermal ellipsoids are shown at the 50% probability level.

V. Mechanistic Experiments

(1) Synthesis of pyridine- d_1 and benzofuran- d_1

Pyridine- d_I was prepared by following a modified procedure from Brandsma *et al.*³

n-Butyllithium (2.5 M solution in hexane, 14.4 mL, 36 mmol, 1.2 equiv) was added dropwise to a solution of 2-bromopyridine (4.74 g, 30 mmol, 1.0 equiv) in dry Et₂O (80 mL) at -78 °C. The resulting mixture was stirred for 2 h at -78 °C and D₂O (3.0 mL) was added. The brown suspension was warmed to room temperature and stirred for an additional hour. A mixture of 10 mL of 36% hydrochloric acid and 10 mL of

water was added after this quenching procedure. The aqueous layer was separated and the organic layer was washed with 10 mL of water. The combined aqueous layers were freed from organic solvents by heating them in vacuo (rotary evaporator). Subsequently potassium hydroxide pellets (10 g) were added with shaking and cooling in ice-water. The deuterated pyridine liberated was isolated by extraction (5 times) with diethyl ether, drying the extracts over powder KOH, and subsequently distilling at normal pressure to afford pyridine- d_1 as colorless oil (2.1 g, 88% yield). ¹H NMR (400 MHz, CDCl₃): δ = 7.26-7.29 (m, 2H), 7.66 (td, J = 7.6 Hz, J = 1.2 Hz 1H), 8.60 (d, J = 4.0 Hz, 1H) ppm.

The deuterium incorporation amounts up to >99% determined by 1 H NMR.

Fig. S4 ¹H NMR of **pyridine**- d_1 measured in CDCl₃.

Benzofuran- d_I was prepared by following a modified procedure from Fagnou *et al.*⁴ *n*-Butyllithium (2.5 M solution in hexane, 6.0 mL, 15 mmol, 1.5 equiv) was added dropwise to a solution of benzofuran (1.18 g, 10 mmol, 1.0 equiv) in dry THF (20 mL) at -40 °C. The resulting mixture was stirred for 4 h at -40 °C and D₂O (2.0 mL) was added. The resulting mixture was stirred for an additional 2 h at room temperature before H₂O was added (5 mL). The two phases were separated and the aqueous phase was extracted with Et₂O (3×5 mL). The organic phases were combined, washed with brine and dried over MgSO₄. The solvent was removed under reduced pressure and the crude product was purified by short column chromatography on silica gel (eluent: pentane) to afford benzofuran- d_1 as colorless oil (1.1 g, 93%). ¹H NMR (400 MHz, CDCl₃): δ = 6.78 (s, 1H), 7.23-7.26 (m, 1H), 7.29-7.32 (m, 1H), 7.52 (d, *J* = 8.0 Hz, 1H), 7.61 (d, *J* = 7.6 Hz, 1H) ppm.

The deuterium incorporation amounts up to >99% determined by 1 H NMR.

Fig. S5 ¹H NMR of benzofuran- d_1 (top) and benzofuran (bottom) measured in CDCl₃.

(2) Kinetic isotope effect experiments

Two sets of reactions were carried out in a parallel manner. In each case benzofuran was allowed to react with pyridine and pyridine- d_5 , respectively. The sealed tube was screw capped and heated to 140 °C (oil bath). After being stirred for 6 h, the reaction mixture was cooled to room temperature, and diluted with 20 mL of CH₂Cl₂. The reaction mixture was filtered through a celite pad, and washed with CH₂Cl₂. The filtrate was concentrated in *vacuo*. Purification by column

chromatography on silica gel (petroleum ether/ethyl acetate = 6/1, v/v) afforded **3j** and d_4 -**3j** in the yields of 39% and 14%, respectively.

To a 25 mL sealed tube were added Pd(OAc)₂ (11.2 mg, 0.05 mmol), AgOAc (251 mg, 1. 5 mmol), 1,10-phenanthroline monohydrate (49.5 mg, 0.25 mmol), PivOH (51 mg, 0.50 mmol), benzofuran (49 μ L, 0.50 mmol) and pyridine-*d*₁ (1.0 mL, 12.5 mmol). The reaction mixture was stirred at 140 °C under an N₂ atmosphere for 6 h. The reaction vessel was cooled to room temperature and diluted with CH₂Cl₂. The reaction mixture was filtered through a celite pad, and washed with CH₂Cl₂. The filtrate was concentrated in *vacuo*. The resulting residue was analyzed by ¹H NMR.

Fig. S7 ¹H NMR spectrum of the mixture of d_1 -**3j** and **3j** measured in CDCl₃

Two sets of reactions were carried out in a parallel manner. In each case pyridine was allowed to react with benzofuran and benzofuran- d_1 , respectively. The sealed tube was screw capped and heated to 140 °C (oil bath). After being stirred for 6 h, the reaction mixture was cooled to room temperature, and diluted with 20 mL of CH₂Cl₂. The reaction mixture was filtered through a celite pad, and washed with CH₂Cl₂. The filtrate was concentrated in *vacuo*. The yield of **3j** was determined by column chromatography on silica gel (petroleum ether/ethyl acetate = 6/1, v/v).

VI. The effect of radical scavenger TEMPO on the coupling reaction

A flame-dried Schlenk test tube with a magnetic stirring bar was charged with TEMPO (15.6 mg, 0.1 mmol), Pd(OAc)₂ (11.2 mg, 0.05 mmol), 2-methylthiophene **2a** (49 μ L, 0.50 mmol), AgOAc (251 mg, 1.5 mmol), 1,10-phenanthroline monohydrate (49.5 mg, 0.25 mmol), PivOH (51 mg, 0.50 mmol), and pyridine (1.0 mL) under an N₂ atmosphere. The rubber septum was replaced with a teflon stopper, and the system was then evacuated and back filled with N₂ for twice. The reaction mixture was stirred for 5 min at room temperature, and then heated at 140 °C for 24 h. The resulting solution was cooled to ambient temperature, diluted with 20 mL of CH₂Cl₂, filtered through a celite pad, and washed with 10-20 mL of CH₂Cl₂. The combined organic extracts were concentrated and the resulting residue was purified by column chromatography on silica gel to provide the desired product **3a**.

VII. References

(a) P. Xi, F. Yang, S. Qin, D. Zhao, J. Lan, G. Gao, C. Hu and J. You, *J. Am. Chem. Soc.* 2010, **132**, 1822; (b) D. van den Berg, K. R. Zoellner, M. O. Ogunrombi, S. F. Malan, G. Terre'Blanche, N. Castagnoli, Jr., J. J. Bergh and J. P. Petzer, *Bioorg. Med. Chem.* 2007, **15**, 3692.

2. M. Chakrabarty, T. Kundu, S. Arima and Y. Harigaya, *Tetrahedron*, 2008, **64**, 6711.

- 3. J. Verbeek and L. Brandsma, J. Org. Chem. 1984, 49, 3857.
- 4. O. René and K. Fagnou, Adv. Synth. Catal. 2010, 352, 2116.

VIII. Copies of ¹H and ¹³C NMR spectra

100 90 f1 (100 f1 (100 f1)

Electronic Supplementary Material (ESI) for Chemical Science This journal is O The Royal Society of Chemistry 2013

f1 (הקדע)

Electronic Supplementary Material (ESI) for Chemical Science This journal is O The Royal Society of Chemistry 2013

້. 210 200 190 180 170 160 150 140 150 120 110 100 90 80 70 60 50 40 50 20 10 0 -10 £ໂ (ຮອຫ)

