Supporting Information

Enantioselective Intermolecular Bromoesterification of Allylic Sulfonamides

Wei Zhang,^{*a*} Na Liu,^{*a*} Casi M. Schienebeck,^{*a*} Xin Zhou,^{*a*} Izarin I. Izhar,^{*a*} Ilia A. Guzei,^{*b*} and Weiping Tang*^{*a,b*}

^aSchool of Pharmacy, University of Wisconsin, Madison, WI, 53705 USA. ^bDepartment of Chemistry, University of Wisconsin, Madison, WI,53706 USA. *E-mail: wtang@pharmacy.wisc.edu*

General remarks

All reactions in non-aqueous media were conducted under a positive pressure of dry argon in glassware that had been oven dried prior to use unless noted otherwise. Anhydrous solutions of reaction mixtures were transferred via an oven dried syringe or cannula. Chloroform was freshly distilled to remove stabilizers. All solvents were dried prior to use unless noted otherwise. Thin layer chromatography was performed using precoated silica gel plates (EMD Chemical Inc. 60, F254). Flash column chromatography was performed with silica gel (Sillicycle, 40-63µm). Infrared spectra (IR) were obtained as neat oils on a Bruker Equinox 55 Spectrophotometer. ¹H and ¹³C Nuclear magnetic resonance spectra (NMR) were obtained on a Varian Unity-Inova 400 MHz or 500 MHz recorded in ppm (δ) downfield of TMS ($\delta = 0$) in CDCl₃, DMSO. Signal splitting patterns were described as singlet (s), doublet (d), triplet (t), quartet (q), quintet (quint), broad (b) or multiplet (m), with coupling constants (*J*) in hertz. High resolution mass spectra (HRMS) were performed by Analytical Instrument Center at the School of Pharmacy on an Electron Spray Injection (ESI) mass spectrometer. Enantiomeric excess was determined by chiral HPLC analysis. The optical rotation was determined by Perkin–Elmer 241 Polarimeter.

General methods for the preparation of allylic sulfonamides:

The procedure for Heck coupling was based on protocols in the following reference: Busacca, C. A.; Dong, Y. *Tetrahedron Lett.* **1996**, *37*, 3947. The procedure for sulfonamide formation was based on protocols in the following reference: Wang, X.; Mei, T.-S.; Yu, J.-Q. *J. Am. Chem. Soc.* **2009**, *131*, 7520. (Both were cited in the manuscript.)

To a flask was added **S1** (1.30 g, 4.5 mmol), $Pd(OAc)_2$ (50.5 mg, 0.225 mmol), and tri(*o*-toyl)phosphine (137 mg, 0.45 mmol). The flask was filled with argon followed by addition of acetonitrile (10 mL), triethylamine (1.26 mL, 9.0 mmol) and iodobenzene (1.37 g, 6.7 mmol). The mixture was kept in oil bath at 85 °C for overnight followed by diluting with water (20 mL) and extracted with ether. The combined organic layer was dried over MgSO₄ and purified by flash chromatography to obtain **S2** (1.63 g, 91% yield).

To a stirred solution of **S2** (0.40 g, 1 mmol) in DCM (20 mL) was added trifluoroacetic acid (0.8 mL, 10 mmol). The mixture was stirred for 2 h at room temperature before the addition of 10% NaOH solution. The organic layer was separated and the aqueous layer was extracted with ether three times. The combined organic phase was dried over MgSO₄ and evaporated under vacuum. The crude product was used for the next step without further purification

To a stirred solution of amine **1** (0.66 g, 5 mmol) in DCM (50 mL) was added triethylamine (1.0 mL, 7.5 mmol). Trifluoromethanesulfonic anhydride (0.96 mL, 5.5 mmol) was added dropwise at -78 °C and the mixture was stirred for 1 h at that temperature before being quenched by water (10 mL). The organic layer was separated and the aqueous layer was extracted with DCM three times. The combined organic phase was dried over Na_2SO_4 and purified by flash chromatography eluting with ethyl acetate and hexanes to obtain **2f** (0.95 g, 70% yield) as a yellow oil.

Other allylic amines were prepared according to either procedure described for **1** or procedures in the following reference: Jaganathan, A.; Garzan, A.; Whitehead, D. C.; Staples, R. J.; Borhan, B. *Angew. Chem. Int. Ed.* **2011**, *50*, 2593. All other allylic sulfonamides were prepared from the corresponding allylic amines according to procedures described for **2f**.

Characterization data for new allylic sulfonamides 2b, 2d, 2e, 2f, 4a – 4n, 6, and 7:

2b: *N*-cinnamyl-4-nitrobenzenesulfonamide

Yellow solid. mp. 107- 109 °C ¹H NMR (400 MHz, CDCl₃, TMS): δ 8.32 (d, J = 8.4 Hz, 2H), 8.07 (d, J = 8.4 Hz, 2H), 7.31-7.21 (m, 5H), 6.46 (d, J = 15.6 Hz, 1H), 5.99 (dt, J = 15.6, 6.4 Hz, 1H), 4.90 (t, J = 6 Hz, 1H), 3.85 (t, J = 6 Hz, 2H), ¹³C NMR (100 MHz, CDCl₃): δ 150.3, 146.4, 135.9, 134.2, 129.0, 128.7, 126.6, 126.7, 124.7, 123.5, 45.9. IR (CHCl₃) v 1526, 1349, 1265, 1158 cm⁻¹. HRMS (ESI) *m*/*z* calcd for C₁₅H₁₄N₂O₄S+Na (M+Na)⁺ 341.0566, found 341.0563.

2d: N-cinnamyl-2,4-dinitrobenzenesulfonamide

Yellow solid. mp. 133- 135 °C ¹H NMR (400 MHz, CDCl₃, TMS): δ 8.63 (d, J = 2 Hz, 1H), 8.40 (dd, J = 8.4, 2 Hz, 1H), 8.32 (d, J = 8.8 Hz, 1H), 7.30-7.25 (m, 3H), 7.20-7.18 (m, 2H), 6.49 (d, J = 15.6 Hz, 1H), 5.98 (dt, J = 15.6, 6.8 Hz, 1H), 5.57 (b, 1H), 4.01 (t, J = 6.4 Hz, 2H), ¹³C NMR (100 MHz, DMSO-d₆: δ 150.1, 148.2, 138.9, 136.5, 132.7, 132.2, 129.2, 128.5, 127.8, 126.9, 125.4, 120.7, 45.4. IR (CHCl₃) v 1537, 1347, 1167, 735 cm⁻¹. HRMS (ESI) *m/z* calcd for C₁₅H₁₃N₃O₆S+Na (M+Na)⁺ 386.0417, found 386.0415.

2e: *N*-cinnamylmethanesulfonamide

White solid. mp. 74- 76 °C ¹H NMR (400 MHz, CDCl₃, TMS): δ 7.38-7.25 (m, 5H), 6.61 (d, J = 16 Hz, 1H), 6.20 (dt, J = 16, 6.4 Hz, 1H), 4.70 (b, 1H), 3.92 (t, J = 6.4 Hz, 2H), 2.98 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 136.3, 133.5, 128.9, 128.3, 126.8, 124.7, 45.6, 41.3. IR (CHCl₃) v 1311, 1146, 963, 907 cm⁻¹. HRMS (ESI) m/z calcd for C₁₀H₁₃NO₂S+Na (M+Na)⁺ 234.0559, found 234.0547.

2f: *N*-cinnamyl-1,1,1-trifluoromethanesulfonamide Yellow oil. ¹H NMR (400 MHz, CDCl₃, TMS): δ 7.37-7.26 (m, 5H), 6.58 (d, *J* = 16Hz, 1H), 6.13 (dt, J = 16, 6 Hz, 1H), 5.10 (b, 1H), 4.02 (d, J = 6.4Hz, 2H), ¹³C NMR (100 MHz, CDCl₃): δ 135.8, 134.8, 129.0, 128.7, 126.9, 123.0, 119.9 (d, J = 319 Hz), 46.7. IR (CHCl₃) v 1426, 1371, 1190, 1143 cm⁻¹. HRMS (ESI) *m*/*z* calcd for C₁₀H₁₀F₃NO₂S+Na (M+Na)⁺ 288.0277, found 288.0274.

4a: (*E*)-1,1,1-trifluoro-N-(3-(4-methoxyphenyl)allyl)methanesulfonamide Colorless oil. ¹H NMR (500 MHz, CDCl₃, TMS): δ 7.29 - 7.35 (m, 2H), 6.84 - 6.92 (m, 2H), 6.57 (d, *J* = 15.9 Hz, 1H), 5.99 - 6.09 (m, 1H), 4.88 (b, 1H), 4.06 (t, *J* = 6.2 Hz, 2H), 3.80 - 3.86 (s, 3H), ¹³C NMR (125 MHz, CDCl₃): δ 160.2, 134.6, 128.5, 128.2, 120.6, 119.9 (d, *J* = 318 Hz), 114.4, 55.6, 47.1. IR (CHCl₃) v 2359, 1608, 1265, 1035, 738 cm⁻¹. HRMS (ESI) *m/z* calcd for C₁₁H₁₂F₃NO₃S+H (M+H)⁺ 296.0563, found 296.0567.

4b: (*E*)-1,1,1-trifluoro-N-(3-p-tolylallyl)methanesulfonamide

Yellow oil. ¹H NMR (400 MHz, CDCl₃, TMS): δ 7.26 (d, J = 7.6 Hz, 2H), 7.14 (d, J = 7.6 Hz, 2H), 6.56 (d, J = 16 Hz, 1H), 6.08 (dt, J = 16, 6.4 Hz, 1H), 4.98 (b, 1H), 4.02 (d, J = 6.4Hz, 2H), 2.34 (s, 3H), ¹³C NMR (125 MHz, CDCl₃): δ 138.7, 134.8, 133.0, 129.7, 126.7, 121.8, 120.0 (q, J = 407 Hz), 46.8, 21.4. IR (CHCl₃) v 1426, 1370, 1042, 968 cm⁻¹. HRMS (ESI) *m/z* calcd for C₁₁H₁₂F₃NO₂S+Na (M+Na)⁺ 302.0433, found 302.0435.

4c: (*E*)-*N*-(3-(4-chlorophenyl)allyl)-1,1,1-trifluoromethanesulfonamide

Yellow solid. mp. 84- 86°C ¹H NMR (500 MHz, CDCl₃, TMS): δ 7.31 (d, J = 1.2 Hz, 2H), 7.26 (d, J = 1.2 Hz, 2H), 6.63 - 6.53 (m, 1H), 6.16 (dt, J = 15.8, 6.5 Hz, 1H), 4.87 (b, 1H), 4.08 (t, J = 6.5 Hz, 2H), ¹³C NMR (125 MHz, CDCl₃): δ 134.5, 134.2, 133.5, 129.2, 128.1, 123.7, 119.8 (d, J = 325 Hz), 46.6. IR (CHCl₃) v 1703, 1370, 1188, 734 cm⁻¹. HRMS (ESI) *m/z* calcd for C₁₀H₉ClF₃NO₂S+Na (M+Na)⁺ 321.9887, found 321.9875.

4d: (*E*)-*N*-(3-(4-bromophenyl)allyl)-1,1,1-trifluoromethanesulfonamide

White solid, mp. 85- 87°C ¹H NMR (400 MHz, CDCl₃, TMS): δ 7.48 (d, J = 8.4 Hz, 2H), 7.29 - 7.22 (m, 2H), 6.57 (d, J = 15.6 Hz, 1H), 6.18 (dt, J = 15.6, 6 Hz, 1H), 4.90 (b, 1H), 4.08 (t, J = 6 Hz, 2H), ¹³C NMR (100 MHz, CDCl₃): δ 134.6, 133.6, 132.1, 128.3, 123.8, 122.7, 119.8 (d, J = 250 Hz), 46.7. IR (CHCl₃) v 1704, 1371, 1187, 792 cm⁻¹. HRMS (ESI) *m/z* calcd for C₁₀H₉BrF₃NO₂S+Na (M+Na)⁺ 365.9382, found 365.1048.

4e: (*E*)-1,1,1-trifluoro-N-(3-(4-(trifluoromethyl)phenyl)allyl)methanesulfonamide Yellow oil. ¹H NMR (400 MHz, CDCl₃, TMS): δ 7.61 (d, *J* = 8.2 Hz, 2H), 7.49 (d, *J* = 8.2 Hz, 2H), 6.67 (d, *J* = 15.8 Hz, 1H), 6.29 (dt, *J* = 15.8, 6.4 Hz, 1H), 4.12 (d, *J* = 6.4 Hz, 2H), ¹³C NMR (100 MHz, CDCl₃): δ 139.4, 133.2, 130.5 (q, *J* = 26 Hz), 127.1, 126.0 (q, *J* = 2.7 Hz), 125.9, 124.4 (d, *J* = 217 Hz), 119.9 (d, *J* = 255 Hz), 46.5. IR (CHCl₃) v 2359, 1617, 1373, 1128, 906, 730 cm⁻¹. HRMS (ESI) *m*/*z* calcd for C₁₁H₉F₆NO₂S+Na (M+Na)⁺ 356.0150, found 356.0150.

4f: (*E*)-*N*-(3-(biphenyl-4-yl)allyl)-1,1,1-trifluoromethanesulfonamide White solid, mp. 103- 105°C ¹H NMR (400 MHz, CDCl₃, TMS): δ 7.62- 7.55 (m, 4H), 7.47-

white solid, hip. 105° 105° C 11 Hirk (400 MHz, CDCl₃, 1143). 0 7.02° 7.55 (iii, 411), 7.47° 7.42 (m, 4H), 7.38- 7.35 (m, 1H), 6.63 (d, J = 16 Hz, 1H), 6.19 (dt, J = 16, 6.4 Hz, 1H), 4.96 (b, 1H), 4.07 (d, J = 6.4 Hz, 2H), ¹³C NMR (125 MHz, CDCl₃): δ 141.5, 140.6, 134.7, 134.4, 129.1, 127.8, 127.7, 127.3, 127.2, 122.9, 119.9 (d, J = 319 Hz), 46.7. IR (CHCl₃) v 1363, 1150, 763 cm⁻¹. HRMS (ESI) *m*/*z* calcd for C₁₆H₁₄F₃NO₂S+Na (M+Na)⁺ 364.0590, found 364.0578.

4g: (*E*)-*N*-(3-(4'-cyanobiphenyl-4-yl)allyl)-1,1,1-trifluoromethanesulfonamide

Yellow oil. ¹H NMR (400 MHz, CDCl₃, TMS): δ 7.73- 7.67 (m, 4H), 7.57 (d, J = 6.4 Hz, 2H), 7.49 (d, J = 7.2 Hz, 2H), 6.67 (d, J = 16 Hz, 1H), 6.26 (dt, J = 16, 6.8 Hz, 1H), 5.18 (b, 1H), 4.12 (m, 2H), ¹³C NMR (100 MHz, CDCl₃): δ 145.1, 139.3, 136.2, 133.8, 132.9, 127.8, 127.7, 127.6, 124.2, 119.9 (d, J = 319 Hz), 119.1, 111.3, 46.7. IR (CHCl₃) v 1373, 1266, 1230, 1192 cm⁻¹. HRMS (ESI) m/z calcd for C₁₇H₁₃F₃N₂O₂S+Na (M+Na)⁺ 389.0542, found 389.0535.

4h: (*E*)-*N*-(3-(4'-acetylbiphenyl-4-yl)allyl)-1,1,1-trifluoromethanesulfonamide White solid, mp. 122- 125°C ¹H NMR (400 MHz, CDCl₃, TMS): δ 8.02 (d, *J* = 8 Hz, 2H), 7.66 (d, *J* = 8 Hz, 2H), 7.60 (d, *J* = 8 Hz, 2H), 7.46 (d, *J* = 8 Hz, 2H), 6.66 (d, *J* = 16 Hz, 1H), 6.25 (dt, *J* = 16, 6 Hz, 1H), 5.22 (b, 1H), 4.12 (t, *J* = 6 Hz, 2H), 2.64 (s, 3H), ¹³C NMR (100 MHz, CDCl₃): δ 198.2, 145.2, 140.0, 136.2, 135.8, 134.0, 129.2, 127.8, 127.5, 127.2, 123.8, 119.9 (d, *J* = 319 Hz), 46.8, 26.9. IR (CHCl₃) v 1679, 1603, 1363, 1190 cm⁻¹. HRMS (ESI) *m*/*z* calcd for C₁₈H₁₆F₃NO₃S+Na (M+Na)⁺ 406.0695, found 406.0693.

4i: (*E*)-*N*-(3-(4-(benzo[d][1,3]dioxol-5-yl)phenyl)allyl)-1,1,1-trifluoromethanesulfonamide Yellow solid, mp. 98- 101°C ¹H NMR (400 MHz, CDCl₃, TMS): δ 7.46 (d, *J* = 8 Hz, 2H), 7.41 (d, *J* = 8 Hz, 2H), 7.08- 7.05 (m, 2H), 6.88 (dd, *J* = 8.4, 1.2 Hz, 1H), 6.64 (d, *J* = 16 Hz, 1H), 6.20 (dt, *J* = 16, 6 Hz, 1H), 6.00 (s, 2H), 4.95 (b, 1H), 4.09 (b, 2H), ¹³C NMR (125 MHz, CDCl₃): δ 148.4, 147.5, 141.2, 135.0, 134.43, 134.38, 127.33, 127.29, 122.8, 120.8, 119.9 (d, *J* = 310 Hz), 108.9, 107.6, 101.4, 46.9. IR (CHCl₃) v 1482, 1364, 1227, 1189 cm⁻¹. HRMS (ESI) *m*/*z* calcd for C₁₇H₁₄F₃NO₄S+Na (M+Na)⁺ 408.0488, found 408.0494.

4j: (*E*)-*N*-(3-(biphenyl-3-yl)allyl)-1,1,1-trifluoromethanesulfonamide

Yellow solid, mp. 95- 97°C ¹H NMR (400 MHz, CDCl₃, TMS): δ 7.60- 7.57 (m, 3H), 7.52 (d, *J* = 8 Hz, 1H), 7.48- 7.42 (m, 3H), 7.37 (t, *J* = 7.2 Hz, 2H), 6.69 (d, *J* = 16 Hz, 1H), 6.24 (dt, *J* = 16, 6.4 Hz, 1H), 4.89 (b, 1H), 4.10 (b, 2H), ¹³C NMR (125 MHz, CDCl₃): δ 142.1, 140.8, 136.2, 134.8, 129.4, 129.1, 127.8, 127.6, 127.4, 125.8, 125.7, 123.3, 120.0 (q, *J* = 319 Hz), 46.8. IR (CHCl₃) v 1372, 1229, 1188, 1147 cm⁻¹. HRMS (ESI) *m*/*z* calcd for C₁₆H₁₄F₃NO₂S+Na (M+Na)⁺ 364.0590, found 364.0592.

4k: (*E*)-*N*-(3-(3-chlorophenyl)allyl)-1,1,1-trifluoromethanesulfonamide

Yellow oil. ¹H NMR (500 MHz, CDCl₃, TMS): δ 7.36 (s, 1H), 7.29 - 7.23 (m, 3H), 6.56 (d, J = 15.9 Hz, 1H), 6.14 - 6.23 (m, 1H), 5.15 (b, 1H), 4.07 (d, J = 6.4 Hz, 2H), ¹³C NMR (125 MHz, CDCl₃): δ 137.6, 134.9, 133.2, 130.2, 128.6, 126.8, 125.0, 124.6, 119.8 (d, J = 325 Hz), 46.5. IR (CHCl₃) v 2361, 1704, 1371, 1190, 738 cm⁻¹. HRMS (ESI) *m*/*z* calcd for C₁₀H₉ClF₃NO₂S+Na (M+Na)⁺ 321.9887, found 321.9891.

4I: (*E*)-*N*-(3-(3-bromophenyl)allyl)-1,1,1-trifluoromethanesulfonamide

Yellow solid, mp. 42- 45°C ¹H NMR (400 MHz, CDCl₃, TMS): δ 7.50 (d, J = 1.2 Hz, 1H), 7.40 (dd, J = 8, 1.2 Hz, 1H), 7.27 (dd, J = 8, 1.2 Hz, 1H), 7.20 (t, J = 8 Hz, 1H), 6.53 (d, J = 16 Hz, 1H), 6.15 (dt, J = 16, 6.4 Hz, 1H), 5.19 (b, 1H), 4.05 (b, 2H), ¹³C NMR (100 MHz, CDCl₃): δ 137.9, 133.1, 131.5, 130.5, 129.7, 125.5, 124.7, 123.1, 119.8 (d, J = 319 Hz), 46.5. IR (CHCl₃) v 1370, 1229, 1188, 1144 cm⁻¹. HRMS (ESI) *m*/*z* calcd for C₁₀H₉BrF₃NO₂S+Na (M+Na)⁺ 365.9382, found 365.9384.

4m: (*E*)-*N*-(3-(2,4-dichlorophenyl)allyl)-1,1,1-trifluoromethanesulfonamide Yellow oil. ¹H NMR (500 MHz, CDCl₃, TMS): δ 7.40 (dd, *J* = 8, 2.4 Hz, 1H), 7.34 (d, *J* = 2.4 Hz, 1H), 7.20 (d, *J* = 8 Hz, 1H), 6.91 (d, *J* = 16 Hz, 1H), 6.13 (dt, *J* = 16, 5.2 Hz, 1H), 5.44 (b, 1H), 4.08 (d, *J* = 5.2 Hz, 2H), ¹³C NMR (125 MHz, CDCl₃): δ 134.8, 134.1, 132.7, 129.91, 129.86, 128.1, 127.8, 126.6, 119.9 (q, *J* = 319 Hz), 46.7. IR (CHCl₃) v 1471, 1188, 1144, 1103 cm⁻¹. HRMS (ESI) *m/z* calcd for C₁₀H₈F₃NO₂S+Na (M+Na)⁺ 355.9497, found 355.9497.

4n: (*E*)-1,1,1-trifluoro-N-(3-(naphthalen-2-yl)allyl)methanesulfonamide White solid, mp. 85- 88°C¹H NMR (500 MHz, CDCl₃, TMS): δ 7.85- 7.79 (m, 3H), 7.69 (s, 1H), 7.53- 7.44 (m, 3H), 6.69 (d, *J* = 16 Hz, 1H), 6.22 (dt, *J* = 16, 6 Hz, 1H), 5.11 (b, 1H), 4.05 (d, *J* = 6 Hz, 2H), ¹³C NMR (125 MHz, CDCl₃): δ 134.8, 133.7, 133.6, 133.3, 128.7, 128.3, 128.0, 127.3, 126.8, 126.6, 123.5, 123.3, 120.0 (d, *J* = 319 Hz), 46.8. IR (CHCl₃) v 1370, 1186, 1147, 1053 cm⁻¹. HRMS (ESI) *m/z* calcd for C₁₄H₁₂F₃NO₂S+Na (M+Na)⁺ 338.0433, found 338.0437.

6: (*Z*)-1,1,1-trifluoro-*N*-(3-phenylallyl)methanesulfonamide

Yellow oil. ¹H NMR (400 MHz, CDCl₃, TMS): δ 7.36 (dd, J = 7.6, 6 Hz , 2H), 7.30 (d, J = 6 Hz, 1H), 7.16 (d, J = 7.6 Hz, 2H), 6.68 (d, J = 11.6 Hz, 1H), 5.67 (dt, J = 11.6, 4.4 Hz, 1H), 5.17 (b, 1H), 4.15 (b, 2H), ¹³C NMR (100 MHz, CDCl₃): δ 135.6, 134.0, 128.9, 128.8, 128.1, 125.6, 119.9 (d, J = 319 Hz), 42.5. IR (CHCl₃) v 1370, 1189, 1144, 1062 cm⁻¹. HRMS (ESI) *m/z* calcd for C₁₀H₁₀F₃NO₂S+Na (M+Na)⁺ 288.0277, found 288.0280.

7: N-(3,3-diphenylallyl)-1,1,1-trifluoromethanesulfonamide

Yellow oil. ¹H NMR (400 MHz, CDCl₃, TMS): δ 7.41- 7.39 (m, 3H), 7.30- 7.29 (m, 3H), 7.23- 7.21 (m, 2H), 7.12 (dd, J = 7.6, 1.6 Hz, 2H), 6.07 (t, J = 6.8 Hz, 1H), 4.94 (b, 1H), 3.96 (t, J = 6.8 Hz, 2H), ¹³C NMR (100 MHz, CDCl₃): δ 147.4, 141.0, 138.3, 129.6, 128.9, 128.6, 128.5, 128.4, 127.7, 121.8, 119.8 (d, J = 317 Hz), 43.7. IR (CHCl₃) v 1424, 1370, 1190, 1142 cm⁻¹. HRMS (ESI) m/z calcd for C₁₆H₁₄F₃NO₂S+Na (M+Na)⁺ 364.0590, found 364.0592.

Trans-8: (*E*)-N,N'-(but-2-ene-1,4-diyl)bis(1,1,1-trifluoromethanesulfonamide) White solid, mp. 69- 72 °C ¹H NMR (500 MHz, CDCl₃, TMS): δ 5.80 (b, 2H), 5.02 (b, 2H), 3.95 (b, 4H), ¹³C NMR (125 MHz, CDCl₃): δ 129.1, 119.8 (d, *J* = 310 Hz), 45.5. IR (CHCl₃) v 1685, 1532, 1507, 1186 cm⁻¹. HRMS (ESI) *m*/*z* calcd for C₆H₈F₆N₂O₄S₂+Na (M+Na)⁺ 372.9722, found 372.9720

Cis-8: (*Z*)-N,N'-(but-2-ene-1,4-diyl)bis(1,1,1-trifluoromethanesulfonamide) Colorless oil. ¹H NMR (400 MHz, CDCl₃, TMS): δ 5.73 (t, *J* = 5 Hz, 2H), 5.32 (b, 2H), 3.95 (d, *J* = 5 Hz, 4H), ¹³C NMR (100 MHz, CDCl₃): δ 128.6, 119.7 (d, *J* = 310 Hz), 40.5. IR (CHCl₃) v 1695, 1528, 1510, 1143 cm⁻¹. HRMS (ESI) *m*/*z* calcd for C₆H₈F₆N₂O₄S₂+Na (M+Na)⁺ 372.9722, found 372.9720

General methods for enantioselective bromoesterification of allylic sulfonamides:

To a solution of allylic trifluoromethanesulfonamides 2f (0.05 mmol) in freshly distilled CHCl₃ was added (DHQD)₂PHAL (7.7 mg, 0.01 mmol), (+) - CSA (2.3 mg, 0.01 mmol), benzoic acid (6.7 mg, 0.055mmol) and NBS (9.8 mg, 0.055 mmol) sequentially. The reaction mixture was stirred at rt until the starting material disappeared as indicated by TLC (12 h). The reaction mixture was concentrated under vacuum and directly purified by flash column chromatography eluting with ethyl acetate and hexanes.

Note: The reaction was scaled up to 0.96 mmol for substrate 4n.

Characterization Data for bromoesterification products 3f and 5a-5n:

3f: 2-bromo-1-phenyl-3-(trifluoromethylsulfonamido)propyl benzoate

Colorless oil. 35.2mg, 75% yield. ¹H NMR (400 MHz, CDCl₃, TMS): δ 8.07 (d, J = 7.2 Hz, 2H), 7.62 (t, J = 8.8 Hz, 1H), 7.50- 7.36 (m, 7H), 6.24 (d, J = 6.8 Hz, 1H), 5.54 (b, 1H), 4.53- 4.49 (m, 1H), 3.90 (dd, J = 14.8, 3.6 Hz, 1H), 3.65 (dd, J = 14.4, 8 Hz, 1H), ¹³C NMR (100 MHz, CDCl₃): δ 165.4, 136.2, 134.1, 130.1, 129.6, 129.3, 129.2, 129.0, 127.3, 119.8 (d, J = 319 Hz), 76.4, 54.5, 47.0. IR (CHCl₃) v 2358, 1727, 1264, 1146 cm⁻¹. HRMS (ESI) *m*/*z* calcd for C₁₇H₁₅BrF₃NO₄S+Na (M+Na)⁺ 487.9749, found 487.9746. [α]_D²⁵= + 3.9 (c 2.0, CHCl₃). 80% *ee* under conditions in Table 3.

5a: 2-bromo-1-(4-methoxyphenyl)-3-(trifluoromethylsulfonamido)propyl benzoate Yellow oil. 27.4mg, 55% yield. ¹H NMR (400 MHz, CDCl₃, TMS): δ 8.03 - 8.10 (m, 2H), 7.59 -7.66 (m, 1H), 7.45 - 7.53 (m, 2H), 7.39 (s, 2H), 6.89 - 6.96 (m, 2H), 6.18 (d, *J* = 7.2 Hz, 1H), 5.47 (b, 1H), 4.50 (td, *J* = 7.5, 3.3 Hz, 1H), 3.92 (dd, *J* = 14.6, 2.9 Hz, 1H), 3.80 - 3.83 (m, 3H), 3.65 (dd, *J* = 14.6, 7.8 Hz, 1H), ¹³C NMR (125 MHz, CDCl₃): δ 165.4, 160.4, 133.9, 130.4, 130.0, 128.9, 128.6, 128.2, 119.7 (d, *J* = 319 Hz), 114.4, 76.0, 55.5, 54.7, 47.1. IR (CHCl₃) v 2359, 1712, 1379, 1224, 1145 cm⁻¹. HRMS (ESI) *m*/*z* calcd for C₁₈H₁₇BrF₃NO₅S+Na (M+Na)⁺ 517.9855, found 517.9873.

5b: 2-bromo-1-phenyl-3-(trifluoromethylsulfonamido)propyl benzoate Colorless oil. 21.1mg, 87% yield. ¹H NMR (400 MHz, CDCl₃, TMS): δ 8.07- 8.05 (m, 2H), 7.61- 7.59 (m, 1H), 7.48 (t, *J* = 8 Hz, 2H), 7.33 (d, *J* = 6.4 Hz, 2H), 7.21 (d, *J* = 6.4 Hz, 2H), 6.20 (d, *J* = 6.8 Hz, 1H), 4.52- 4.48 (m, 1H), 3.90 (d, *J* = 14.4 Hz, 1H), 3.65 (dd, *J* = 14.4, 8 Hz, 1H), 2.35 (s, 3H), ¹³C NMR (100 MHz, CDCl₃): δ 165.4, 139.5, 134.0, 130.4, 130.0, 129.8, 128.9, 128.7, 127.1, 119.8 (d, *J* = 334 Hz), 76.3, 54.5, 47.0, 21.4. IR (CHCl₃) v 1700, 1376, 1266, 1195 cm⁻¹. HRMS (ESI) *m*/*z* calcd for C₁₈H₁₇BrF₃NO₄S+Na (M+Na)⁺ 501.9906, found 501.9892. [α]_D²⁵= + 6.7 (c 1.1, CHCl₃).

5c: 2-bromo-1-(4-chlorophenyl)-3-(trifluoromethylsulfonamido)propyl benzoate Yellow oil. 38.7mg, 77% yield. ¹H NMR (400 MHz, CDCl₃, TMS): δ 8.08 - 8.02 (m, 2H), 7.68 - 7.60 (m, 1H), 7.54 - 7.46 (m, 2H), 7.41- 7.39 (m, 4H), 6.16 (dd, J = 7.4, 1.2 Hz, 1H), 5.51 (b, 1H), 4.55 - 4.42 (m, 1H), 3.92 (d, J = 14.4 Hz, 1H), 3.73 - 3.60 (m, 1H), ¹³C NMR (125 MHz, CDCl₃): δ 165.2, 135.5, 134.8, 134.1, 130.0, 129.4, 129.3, 129.0, 128.8, 119.7 (d, J = 319 Hz), 75.6, 54.1, 47.1. IR (CHCl₃) v 2360, 1728, 1377, 1092, 716 cm⁻¹. HRMS (ESI) *m/z* calcd for C₁₇H₁₄BrClF₃NO₄S+Na (M+Na)⁺ 521.9360, found 521.9384. [α]_D²⁵= + 0.8 (c 0.63, CHCl₃).

5d: 2-bromo-1-(4-bromophenyl)-3-(trifluoromethylsulfonamido)propyl benzoate Yellow oil. 42.6mg, 78% yield. ¹H NMR (400 MHz, CDCl₃, TMS): δ 8.09 - 8.03 (m, 2H), 7.67 -

Yellow oil. 42.6mg, 78% yield. ¹H NMR (400 MHz, CDCl₃, 1MS): 8 8.09 - 8.03 (m, 2H), 7.67 - 7.59 (m, 1H), 7.58 - 7.46 (m, 4H), 7.38 - 7.31 (m, 2H), 6.15 (d, J = 7.4 Hz, 1H), 5.58 (b, 1H), 4.48 (td, J = 7.4, 3.2 Hz, 1H), 3.92 (dd, J = 14.5, 3.2 Hz, 1H), 3.76 - 3.59 (m, 1H), ¹³C NMR (100 MHz, CDCl₃): 8 165.3, 135.4, 134.2, 132.3, 130.1, 129.2, 129.1, 129.0, 123.8, 119.8 (q, J = 255 Hz), 75.7, 54.1, 47.1. IR (CHCl₃) v 2360, 1721, 1378, 1094, 713 cm⁻¹. HRMS (ESI) *m/z* calcd for C₁₇H₁₄Br₂F₃NO₄S+Na (M+Na)⁺ 565.8855, found 565.8875. [α]_D²⁵= + 9.5 (c 0.84, CHCl₃).

5e: 2-bromo-1-(4-(trifluoromethyl)phenyl)-3-(trifluoromethylsulfonamido)propyl benzoate Yellow oil. 27.9mg, 52% yield. ¹H NMR (400 MHz, CDCl₃, TMS): δ 8.06 (t, *J* = 6.4 Hz, 2H), 7.75 - 7.56 (m, 5H), 7.54 - 7.44 (m, 2H), 6.31 - 6.17 (m, 1H), 4.50 (dt, *J* = 6.6, 3.6 Hz, 1H), 3.94 (d, *J* = 14 Hz, 1H), 3.70 (dd, *J* = 14, 6.6 Hz, 1H), ¹³C NMR (100 MHz, CDCl₃): δ 165.2, 140.2, 134.3, 131.8 (d, *J* = 33 Hz), 130.1, 129.0, 128.8, 127.9, 126.1 (q, *J* = 3.8 Hz), 123.9 (d, *J* = 271 Hz), 119.7 (d, *J* = 319 Hz), 75.6, 53.8, 47.1. IR (CHCl₃) v 2359, 1707, 1375, 1067, 714 cm⁻¹. HRMS (ESI) *m*/*z* calcd for C₁₈H₁₄BrF₆NO₄S+Na (M+Na)⁺ 555.9623, found 555.9637. $[\alpha]_D^{25}$ = + 1.4 (c 0.87, CHCl₃).

5f: 1-(biphenyl-4-yl)-2-bromo-3-(trifluoromethylsulfonamido)propyl benzoate Yellow solid, mp. 138- 141°C. 22.3mg, 82% yield. ¹H NMR (400 MHz, CDCl₃, TMS): δ 8.09 (dd, J = 8, 1.2 Hz, 2H), 7.65- 7.61 (m, 3H), 7.59- 7.56 (m, 2H), 7.53- 7.50 (m, 3H), 7.49- 7.42 (m, 3H), 7.36 (m, 1H), 6.27 (d, J = 6.8 Hz, 1H), 5.51 (b, 1H), 4.58- 4.53 (m, 1H), 3.94 (dd, J =14.4, 3.2 Hz, 1H), 3.69 (dd, J = 14.4, 8 Hz, 1H), ¹³C NMR (125 MHz, CDCl₃): δ 165.4, 142.6, 140.5, 135.1, 134.1, 130.1, 129.3, 129.1, 129.0, 128.0, 127.9, 127.8, 127.5, 119.8 (d, J = 320 Hz), 76.3, 54.4, 47.1. IR (CHCl₃) v 1722, 1440, 1217, 1145 cm⁻¹. HRMS (ESI) *m/z* calcd for C₂₃H₁₉BrF₃NO₄S+Na (M+Na)⁺ 564.0062, found 564.0053. [α]_D²⁵= - 1.0 (c 0.87, CHCl₃).

5g: 2-bromo-1-(4'-cyanobiphenyl-4-yl)-3-(trifluoromethylsulfonamido)propyl benzoate Yellow oil. 22.5mg, 79% yield. ¹H NMR (400 MHz, CDCl₃, TMS): δ 8.12- 8.07 (m, 2H), 7.78-7.56 (m, 9H), 7.50 (t, J = 8 Hz, 2H), 6.26 (d, J = 7.2 Hz, 1H), 5.83 (b, 1H), 4.57- 4.52 (m, 1H), 3.98- 3.92 (m, 1H), 3.74- 3.69 (m, 1H), ¹³C NMR (125 MHz, CDCl₃): δ 165.4, 145.0, 140.3, 136.9, 134.2, 133.0, 130.1, 129.2, 129.0, 128.2, 128.0, 127.9, 119.7 (d, J = 357 Hz), 119.1, 111.6, 76.1, 54.2, 47.1. IR (CHCl₃) v 2229, 1662, 1606, 1379, 1264 cm⁻¹. HRMS (ESI) *m/z* calcd for C₂₄H₁₈BrF₃N₂O₄S+Na (M+Na)⁺ 589.0015, found 589.0069. [α]_D²⁵= - 4.4 (c 0.73, CHCl₃).

5h: 2-1-(4'-acetylbiphenyl-4-yl)-2-bromo-3-(trifluoromethylsulfonamido)propyl benzoate Yellow oil. 22.6mg, 77% yield. ¹H NMR (400 MHz, CDCl₃, TMS): δ 8.13- 8.08 (m, 3H), 8.02 (d, J = 8.4 Hz, 2H), 7.67- 7.62 (m, 4H), 7.57- 7.55 (m, 2H), 7.49 (t, J = 6.4 Hz, 2H), 6.28 (d, J = 7.2Hz, 1H), 6.03 (b, 1H), 4.59- 4.55 (m, 1H), 3.95 (d, J = 14 Hz, 1H), 3.72 (dd, J = 14, 8 Hz, 1H), 2.63 (s, 3H), ¹³C NMR (125 MHz, CDCl₃): δ 198.4, 165.4, 145.1, 141.1, 136.3, 134.2, 130.5, 130.1, 129.3, 129.0, 128.8, 128.1, 128.0, 127.5, 119.8 (d, J = 322 Hz), 76.1, 54.3, 47.2, 26.9. IR (CHCl₃) v 1676, 1604, 1378, 1265, 1193 cm⁻¹. HRMS (ESI) *m/z* calcd for C₂₅H₂₁BrF₃NO₅S+Na (M+Na)⁺ 606.0168, found 606.0177. [α]_D²⁵= - 5.2 (c 1.3, CHCl₃).

5i: 1-(4-(benzo[d][1,3]dioxol-5-yl)phenyl)-2-bromo-3-(trifluoromethylsulfonamido)propyl benzoate

White solid. mp. 146- 148°C. 20.9mg, 71% yield. ¹H NMR (400 MHz, CDCl₃, TMS): δ 8.08 (d, J = 8 Hz, 2H), 7.62 (t, J = 6.8 Hz, 1H), 7.55- 7.46 (m, 6H), 7.05- 7.03 (m, 2H), 6.87 (d, J = 8.8 Hz, 1H), 6.25 (d, J = 6.8 Hz, 1H), 6.00 (s, 2H), 5.58 (b, 1H), 4.55- 4.52 (m, 1H), 3.93 (d, J = 14 Hz, 1H), 3.68 (dd, J = 14, 8 Hz, 1H), ¹³C NMR (100 MHz, CDCl₃): δ 165.4, 148.4, 147.7, 142.2, 134.7, 134.1, 130.1, 129.2, 129.0, 128.9, 127.7, 127.5, 121.0, 119.8 (d, J = 309 Hz), 108.9, 107.8, 101.5, 76.2, 54.4, 47.0. IR (CHCl₃) v 1724, 1483, 1229, 1145 cm⁻¹. HRMS (ESI) *m/z* calcd for C₂₄H₁₉BrF₃NO₆S+Na (M+Na)⁺ 607.9961, found 607.9969. [α]_D²⁵= - 2.9 (c 2.0, CHCl₃).

5j

5j: 1-(biphenyl-3-yl)-2-bromo-3-(trifluoromethylsulfonamido)propyl benzoate

Colorless oil. 19.0mg, 70% yield. ¹H NMR (400 MHz, CDCl₃, TMS): δ 8.09- 8.07 (m, 2H), 7.65- 7.56 (m, 5H), 7.50- 7.41 (m, 6H), 7.35 (dt, J = 8, 0.8 Hz, 1H), 6.30 (d, J = 7.2 Hz, 1H), 5.57 (b, 1H), 4.58- 4.54 (m, 1H), 3.94 (d, J = 14.4 Hz, 1H), 3.69 (dd, J = 14.4, 8.4 Hz, 1H), ¹³C NMR (125 MHz, CDCl₃): δ 165.4, 142.3, 140.7, 136.8, 134.1, 130.1, 129.6, 129.3, 129.2, 129.0, 128.5, 128.0, 127.5, 126.2, 126.0, 119.8 (d, J = 319 Hz), 76.4, 54.5, 47.1. IR (CHCl₃) v 1722, 1380, 1196, 1145 cm⁻¹. HRMS (ESI) *m/z* calcd for C₂₃H₁₉BrF₃NO₄S+Na (M+Na)⁺ 564.0062,

found 564.0068. $[\alpha]_D^{25}$ = - 2.7 (c 1.1, CHCl₃).

5k: 2-bromo-1-(3-chlorophenyl)-3-(trifluoromethylsulfonamido)propyl benzoate Yellow oil. 26.8mg, 71% yield. ¹H NMR (400 MHz, CDCl₃, TMS): δ 8.10 - 8.04 (m, 2H), 7.68 - 7.60 (m, 1H), 7.54 - 7.44 (m, 3H), 7.39 - 7.32 (m, 3H), 6.21 - 6.14 (m, 1H), 4.54 - 4.43 (m, 1H), 3.96 - 3.85 (m, 1H), 3.74 - 3.61 (m, 1H), ¹³C NMR (100 MHz, CDCl₃): δ 165.2, 138.3, 135.1, 134.2, 130.3, 130.1, 129.8, 129.0, 128.9, 127.5, 125.7, 119.7 (d, *J* = 255 Hz), 75.6, 53.9, 47.0. IR (CHCl₃) v 1709, 1434, 1362, 1148, 729 cm⁻¹. HRMS (ESI) *m/z* calcd for C₁₇H₁₄BrClF₃NO₄S+Na (M+Na)⁺ 521.9360, found 521.9347. $[\alpha]_D^{25} = -1.6$ (c 0.46, CHCl₃).

51: 2-bromo-1-(3-bromophenyl)-3-(trifluoromethylsulfonamido)propyl benzoate Yellow oil. 18.1mg, 66% yield. ¹H NMR (400 MHz, CDCl₃, TMS): δ 8.06 (dd, *J* = 7.2, 0.8 Hz, 2H), 7.65- 7.60 (m, 2H), 7.52- 7.48 (m, 3H), 7.39 (d, *J* = 7.6 Hz, 1H), 7.28 (td, *J* = 8 Hz, 2 Hz, 1H), 6.15 (d, *J* = 7.6 Hz, 1H), 5.63 (b, 1H), 4.49- 4.45 (m, 1H), 3.91 (d, *J* = 14.4 Hz, 1H), 3.67 (dd, *J* = 14.4, 8 Hz, 1H), ¹³C NMR (100 MHz, CDCl₃): δ 165.2, 138.5, 134.2, 132.8, 130.6, 130.4, 130.1, 129.0, 128.9, 126.1, 123.1, 119.7 (d, *J* = 312 Hz), 75.5, 53.9, 47.0. IR (CHCl₃) v 1725, 1266, 1195, 1155 cm⁻¹. HRMS (ESI) *m*/*z* calcd for C₁₇H₁₄Br₂F₃NO₄S+Na (M+Na)⁺ 565.8855, found 565.8855. [α]_D²⁵= - 1.8 (c 2.0, CHCl₃).

5m: 2-bromo-1-(2,4-dichlorophenyl)-3-(trifluoromethylsulfonamido)propyl benzoate Yellow oil. 16.4mg, 61% yield. ¹H NMR (400 MHz, CDCl₃, TMS): δ 8.13- 8.07 (m, 2H), 7.65-7.60 (m, 1H), 7.52- 7.42 (m, 4H), 7.30 (d, J = 8.8 Hz, 1H), 6.56 (d, J = 6.4 Hz, 1H), 5.58 (b, 1H), 4.66- 4.61 (m, 1H), 3.90 (d, J = 14 Hz, 1H), 3.69 (dd, J = 14, 8.4 Hz, 1H), ¹³C NMR (125 MHz, CDCl₃): δ 165.0, 136.2, 134.32, 134.27, 132.8, 130.4, 130.2, 129.3, 129.1, 128.9, 128.1, 119.8 (q, J = 319 Hz), 73.2, 52.6, 46.9. IR (CHCl₃) v 1719, 1589, 1231, 1193 cm⁻¹. HRMS (ESI) *m/z* calcd for C₁₇H₁₃BrCl₂F₃NO₄S+Na (M+Na)⁺ 555.8970, found 555.8979. [α]_D²⁵= - 23 (c 1.0, CHCl₃).

5n: 2-bromo-1-(naphthalen-2-yl)-3-(trifluoromethylsulfonamido)propyl benzoate White solid. mp. 131- 134°C. 378mg, 76% yield. ¹H NMR (400 MHz, CDCl₃, TMS): δ 8.09 (d, *J* = 8.4 Hz, 2H), 7.91- 7.86 (m, 4H), 7.62 (t, *J* = 6.4 Hz, 1H), 7.56- 7.48 (m, 5H), 6.39 (d, *J* = 7.2 Hz, 1H), 5.55 (b, 1H), 4.65- 4.61 (m, 1H), 3.96 (d, *J* = 14 Hz, 1H), 3.71 (dd, *J* = 14, 8 Hz, 1H), ¹³C NMR (125 MHz, CDCl₃): δ 165.4, 134.1, 133.9, 133.5, 133.2, 130.1, 129.3, 129.2, 129.0, 128.5, 128.1, 127.3, 127.2, 127.0, 124.1, 119.8 (d, *J* = 319 Hz), 76.6, 54.3, 47.2. IR (CHCl₃) v 1727, 1428, 1380, 1265, 1145 cm⁻¹. HRMS (ESI) *m*/*z* calcd for C₂₁H₁₇BrF₃NO₄S+Na (M+Na)⁺ 537.9906, found 537.9907. [α]_D²⁵= - 10 (c 0.87, CHCl₃).

Procedure for the preparation of epoxide 9:

To a solution of **3f** (23 mg, 0.05 mmol) in water and THF (2 mL, volume ratio = 1:1) was added LiOH (10 mg, 0.25 mmol). After stirring for 8 h at 50 °C, the reaction mixture was diluted with water (3 mL) and extracted with ether. The combined organic phase was dried over MgSO₄, concentrated under vacuum and purified by flash column chromatography eluting with ethyl acetate and hexanes to afford product **9** (8.4 mg, 60% yield).

9: 1,1,1-trifluoro-N-((-3-phenyloxiran-2-yl)methyl)methanesulfonamide Colorless oil. ¹H NMR (500 MHz, CDCl₃, TMS): δ 7.39- 7.33 (m, 3H), 7.26 (d, *J* = 6 Hz, 2H), 3.86 (d, *J* = 2.5 Hz, 1H), 3.81 (d, *J* = 14.5 Hz, 1H), 3.50 (dd, *J* = 15, 5 Hz, 1H), 3.26 (dd, *J* = 5, 2.5 Hz, 1H), ¹³C NMR (125 MHz, CDCl₃): δ 135.5, 129.1, 129.0, 126.0, 112.0 (d, *J* = 320 Hz), 60.4, 57.1, 45.3. IR (CHCl₃) v 1375, 1230, 1191, 1148, 1087 cm⁻¹. HRMS (ESI) *m/z* calcd for C₁₀H₁₀F₃NO₃S+Na (M+Na)⁺ 304.0226, found 304.0223. [α]_D²⁵= - 21 (c 0.54, CHCl₃).

Procedure for the preparation of compound 10:

To a solution of **3f** (23 mg, 0.05 mmol) in HMPA (1 mL) was added NaN₃ (10 mg, 0.15 mmol). After stirring for 24 h at 50 °C, the reaction mixture was diluted with water (3 mL) at 0 °C, extracted with ether, and then the combined organic phase was washed with brine and dried over MgSO₄. The reaction mixture was concentrated under vacuum and purified by flash column chromatography eluting with ethyl acetate and hexanes to afford product **10** (18 mg, 83% yield).

10: 2-azido-1-phenyl-3-(trifluoromethylsulfonamido)propyl benzoate

Colorless oil. ¹H NMR (500 MHz, CDCl₃, TMS): δ 8.07 (d, J = 8 Hz, 2H), 7.57 (t, J = 7.5 Hz, 1H), 7.49 (d, J = 8 Hz, 2H), 7.45- 7.38 (m, 5H), 6.20 (d, J = 8.5 Hz, 1H), 4.15- 4.13 (m, 1H), 3.63 (dd, J = 13, 4 Hz, 1H), 3.27 (dd, J = 13, 3 Hz, 1H), ¹³C NMR (125 MHz, CDCl₃): δ 166.6, 135.8, 134.0, 130.2, 129.9, 129.6, 129.2, 128.8, 127.5, 119.7 (d, J = 319 Hz), 75.0, 59.2, 52.8. IR (CHCl₃) v 2108, 1702, 1381, 1269, 1198 cm⁻¹. HRMS (ESI) *m/z* calcd for C₁₇H₁₅F₃N₄O₄S+Na (M+Na)⁺ 451.0658, found 451.0646. [α]_D²⁵= + 8 (c 0.86, CHCl₃).

4.22 4.20 4.18 4.16 4.14 4.12 4.10 4.08 4.06 4.04 4.02 4.00 3.98 3.96 3.94 3.92 3.90 3.88 3.86 3.84 3.82 3.80 3.78 3.76 3.74 3.72 3.70 3.68 3.66 3.64 3.62 3.60 fl (ppm)

H_c

PROTON 5-215-7_020ct2012

1: 0: 1

Table S1. Summary of ¹H NMR of **2f** in the presence of catalyst and/or (+)-CSA

_Ha H^c, H^c NHTf H^b 2f

$2\mathbf{f}$: (DHQD) ₂ PHAL : (+)-CSA	H ^a	Н ^b	Hc
1: 0: 0	6.63	6.18	4.08
1: 1: 0	6.22	5.94	3.83
1: 1: 1	6.39	6.06	3.90
1: 1: 2	6.53	6.15	3.98
1: 1: 3	6.59	6.17	4.03
1: 1: 4	6.58	6.16	4.03
1: 0: 1	6.62	6.18	4.08
Substrate: (DHQD)2PHAL:CSA:BzOH 1 : 1 : 1 : 5.5	6. 39	6.04	Mixed with other peaks

Table S2. Summary of ¹H NMR of **NBS** in the presence of catalyst and/or PhCOOH

NBS: (DHQD)2PHAL: BzOH	H of NBS
1: 1: 5.5	2.84
2: 1: 5.5	2.86
5: 1: 5.5	2.89
1: 0: 5.5	2.96
1: 0: 0	2.96

HPLC spectra of racemic and enantio-enriched compounds 3f and 5b-5n.

HPLC (Chiralcel AD-H; eluent: hexane/2-propanol = 90/10; flow rate: 0.7 mL/min; detection: at 230 nm): retention times $t_1 = 9.0$ min $t_2 = 17.3$ min;

Retention Time	Area	Area%	Height
8.997	10254310	49.34	506851
17.323	10527576	50.66	306039

Retention Time	Area	Area%	Height
9.215	62847212	90.15	1804512
17.772	6870661	9.85	231045

HPLC (Chiralcel AD-H; eluent: hexane/2-propanol = 90/10; flow rate: 0.7 mL/min; detection: at 225 nm): retention times $t_1 = 9.4 \text{ min } t_2 = 18.6 \text{ min}$;

Retention Time	Area	Area%	Height
9.302	11281179	89.82	406245
18.523	1278905	10.18	37386

HPLC (Chiralcel AD-H; eluent: hexane/2-propanol = 90/10; flow rate: 0.7 mL/min; detection: at 220 nm): retention times $t_1 = 8.9 \text{ min } t_2 = 17.9 \text{ min}$;

0.10-				-18.323		
0.00	5.00	10.00	15.00 Minutes	20.00	25.00	30.00
Retention Time	Area	% Area	Height]		

	Retention Time	Area	% Area	Height
1	9.095	9974703	91.43	443386
2	18.323	935169	8.57	28770

HPLC (Chiralcel AD-H; eluent: hexane/2-propanol = 90/10; flow rate: 0.7 mL/min; detection: at 220 nm): retention times $t_1 = 9.3 \text{ min } t_2 = 19.7 \text{ min}$;

Retention Time	Area%	Start Time	End Time
9.802	90.53	9.422	10.722
20.684	9.47	20.088	21.488

HPLC (Chiralcel AD-H; eluent: hexane/2-propanol = 90/10; flow rate: 0.7 mL/min; detection: at 225 nm): retention times $t_1 = 7.4 \text{ min } t_2 = 12.6 \text{ min.}$

Retention Time	% Area	Start Time	End Time
7.406	51.24	7.383	8.867
12.634	48.76	10.333	13.200

Retention Time	Area%	Start Time	End Time
7.876	85.75	7.445	9.645
13.389	14.25	12.995	13.962

HPLC (Chiralcel AD-H; eluent: hexane/2-propanol = 90/10; flow rate: 0.7 mL/min; detection: at 250 nm): retention times $t_1 = 11.8 \text{ min } t_2 = 28.3 \text{ min}$;

Retention Time	Area	Area%	Height
11.804	1736181	50.84	66341
28.301	1678740	49.16	30442

Retention Time	Area	Area%	Height
12.088	24166656	95.18	832897
28.758	1224103	4.82	25003

HPLC (Chiralcel AD-H; eluent: hexane/2-propanol = 90/10; flow rate: 0.7 mL/min; detection: at 270 nm): retention times $t_1 = 19.5 \text{ min } t_2 = 39.9 \text{ min}$;

Retention Time	Area	Area%	Height
19.492	620915	3.58	17866
39.541	16715053	96.42	204585

HPLC (Chiralcel AD-H; eluent: hexane/2-propanol = 80/20; flow rate: 0.7 mL/min; detection: at 280 nm): retention times $t_1 = 14.4 \text{ min } t_2 = 28.3 \text{ min}$;

Retention Time	Area	Area%	Height
14.416	9933811	50.35	281245
28.293	9795204	49.65	165459

Retention Time	Area	Area%	Height
14.349	9879958	93.41	293061
28.183	697192	6.59	14570

HPLC (Chiralcel AD-H; eluent: hexane/2-propanol = 80/20; flow rate: 0.7 mL/min; detection: at 230 nm): retention times t₁ = 11.7 min t₂ = 28.1 min;

		[1
Retention Time	Area	Area%	Height
11.636	26557029	89.94	920492
28.101	2970763	10.06	64071

15.00

20.00

Minutes

25.00

30.00

35.00

40.00

10.00

5.00

HPLC (Chiralcel AD-H; eluent: hexane/2-propanol = 90/10; flow rate: 0.7 mL/min; detection: at 235 nm): retention times $t_1 = 9.5 \text{ min } t_2 = 15.8 \text{ min}$;

Retention Time	Area	Area%	Height
9.706	33368001	93.09	1227280
16.037	2475852	6.91	91247

HPLC (Chiralcel AD-H; eluent: hexane/2-propanol = 90/10; flow rate: 0.7 mL/min; detection: at 220 nm): retention times $t_1 = 8.4 \text{ min } t_2 = 12.1 \text{ min}$;

Retention Time	Area	% Area	Height
8.456	1995939	86.61	78234
12.127	308475	13.39	12710

HPLC (Chiralcel AD-H; eluent: hexane/2-propanol = 90/10; flow rate: 0.7 mL/min; detection: at 225 nm): retention times $t_1 = 8.5 \text{ min } t_2 = 11.9 \text{ min}$;

Retention Time	Area	% Area	Height
8.466	6420251	90.56	209880
11.916	669233	9.44	26058

HPLC (Chiralpak- IC; eluent: hexane/2-propanol = 90/10; flow rate: 0.6 mL/min; detection: at 230 nm): retention times $t_1 = 7.1 \text{ min } t_2 = 7.9 \text{ min}$;

Retention Time	Area	% Area	Height
7.120	2993039	48.20	186809
7.944	3216073	51.80	205086

Retention Time	Area	Area%	Height
7.449	31224009	91.69	1270702
8.257	2831021	8.31	145042

HPLC (Chiralcel AD-H; eluent: hexane/2-propanol = 90/10; flow rate: 0.7 mL/min; detection: at 220 nm): retention times $t_1 = 12.1 \text{ min } t_2 = 21.6 \text{ min}$;

Retention Time	Area	Area%	Height
12.191	17678656	94.85	645704
21.848	960797	5.15	27261

MOLECULAR STRUCTURE LABORATORY

ILIA A. GUZEI, PH.D.

University of Wisconsin-Madison 2124 Chemistry Department

****** 608-263-4694 Fax 608-262-0381

1101 University Ave Madison, WI 53706

E-mail: iguzei@chem.wisc.edu

Structural report on compound 5i

Crystallographic Experimental Section

Data Collection

A colorless crystal with approximate dimensions $0.55 \times 0.18 \times 0.13 \text{ mm}^3$ was selected under oil under ambient conditions and attached to the tip of a MiTeGen MicroMount©. The crystal was mounted in a stream of cold nitrogen at 100(1) K and centered in the X-ray beam by using a video camera.

The crystal evaluation and data collection were performed on a Bruker SMART APEXII diffractometer with Cu K_{α} (λ = 1.54178 Å) radiation and the diffractometer to crystal distance of 4.03 cm.

The initial cell constants were obtained from three series of ω scans at different starting angles. Each series consisted of 41 frames collected at intervals of 0.6° in a 25° range about ω with the exposure time of 10 seconds per frame. The reflections were successfully indexed by an automated indexing routine built in the APEXII program. The final cell constants were calculated from a set of 9300 strong reflections from the actual data collection.

The data were collected by using the full sphere data collection routine to survey the reciprocal space to the extent of a full sphere to a resolution of 0.82 Å. A total of 22391 data were harvested by collecting 19 sets of frames with 0.7^o scans in ω and ϕ with an exposure time 3/6 sec per frame. These highly redundant datasets were corrected for Lorentz and polarization effects. The absorption correction was based on fitting a function to the empirical transmission surface as sampled by multiple equivalent measurements. [1]

Structure Solution and Refinement

The systematic absences in the diffraction data were consistent for the space groups $P2_1$ and $P2_1/m$. The *E*-statistics strongly suggested the non-centrosymmetric space group $P2_1$ that yielded chemically reasonable and computationally stable results of refinement [2-4].

A successful solution by the direct methods provided most non-hydrogen atoms from the *E*-map. The remaining non-hydrogen atoms were located in an alternating series of least-squares cycles and difference Fourier maps. All non-hydrogen atoms were refined with anisotropic displacement coefficients. All hydrogen atoms were included in the structure factor calculation at idealized positions and were allowed to ride on the neighboring atoms with relative isotropic displacement coefficients.

Atom Br1 is disordered over two positions with the major component being present 78.1(8)% of the time. Atoms C22-C24 and O6 are disordered over two positions with the major components being present

S34

65.3(10)% of the time. The disordered parts were refined with constraints and restraints.

The final least-squares refinement of 410 parameters against 5359 data resulted in residuals *R* (based on F^2 for $l \ge 2\sigma$) and *wR* (based on F^2 for all data) of 0.0258 and 0.0646, respectively. The final difference Fourier map was featureless.

The molecular diagram is drawn with 50% probability ellipsoids.

References

[1] Bruker-AXS. (2007-2011) APEX2, SADABS, and SAINT Software Reference Manuals. Bruker-AXS, Madison, Wisconsin, USA.

[2] Sheldrick, G. M. (2008) SHELXL. Acta Cryst. A64, 112-122.

[3] Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. "OLEX2:

a complete structure solution, refinement and analysis program". J. Appl. Cryst. (2009) 42, 339-341.

[4] Guzei, I.A. (2006-2012). Internal laboratory computer programs "G1,2,3", "ResIns", "FCF_filter", "Modicifer".

Figure 1. A molecular drawing of 5i. The minor disorder components, solvent molecule, and H atoms are omitted.

Figure 2. A molecular drawing of **5i**. The content of the asymmetric unit. All disorder components are shown.

Table 1. Crystal data and structure refinem	ent for 5i .	
Identification code	5i	
Empirical formula	C ₂₈ H ₂₇ Br F ₃ N O ₈ S	
Formula weight	674.48	
Temperature	100(2) K	
Wavelength	1.54178 Å	
Crystal system	Monoclinic	
Space group	P2 ₁	
Unit cell dimensions	a = 11.663(4) Å	= 90°.
	b = 5.822(2) Å	$= 100.89(2)^{\circ}.$
	c = 21.566(8) Å	= 90°.
Volume	1438.0(9) Å ³	
Z	2	
Density (calculated)	1.558 Mg/m ³	
Absorption coefficient	3.255 mm ⁻¹	
F(000)	688	
Crystal size	0.55 x 0.18 x 0.13 mm ³	
Theta range for data collection	2.09 to 72.19°.	
Index ranges	-14<=h<=14, -7<=k<=7, -20	6<=1<=24
Reflections collected	22391	
Independent reflections	5359 [R(int) = 0.0200]	
Completeness to theta = 67.00°	99.4 %	
Absorption correction	Numerical with SADABS	
Max. and min. transmission	0.6714 and 0.2667	
Refinement method	Full-matrix least-squares on	1 F ²
Data / restraints / parameters	5359 / 6 / 410	
Goodness-of-fit on F ²	1.070	
Final R indices [I>2sigma(I)]	R1 = 0.0258, $wR2 = 0.0645$	
R indices (all data)	R1 = 0.0260, WR2 = 0.0646	
Absolute structure parameter	0.006(11)	
Extinction coefficient	0.00050(12)	
Largest diff. peak and hole	0.375 and -0.332 e.Å ⁻³	

Table 2. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (Å²x 10^3)

_	х	У	Z	U(eq)	
$\overline{\mathrm{Br}}(1)$	6361(1)	3808(2)	6694(1)	33(1)	
Br(1A)	6241(3)	4480(7)	6700(1)	33(1)	
S(1)	5855(1)	7824(2)	8568(1)	36(1)	
F(1)	5474(2)	4302(5)	9247(1)	66(1)	
F(2)	3927(1)	6029(4)	8785(1)	44(1)	
F(3)	4983(2)	7558(6)	9590(1)	100(1)	
O(1)	7000(2)	8033(5)	8934(1)	64(1)	
O(2)	5160(2)	9766(4)	8337(2)	73(1)	
O(2)	8908(1)	6279(3)	8120(1)	23(1)	
O(4)	9074(2)	10139(4)	8133(1)	35(1)	
O(5)	13677(2)	5679(4)	4514(1)	44(1)	
O(6)	13084(4)	3256(8)	5396(2)	40(1)	
O(6A)	13438(9)	2575(11)	5127(5)	42(2)	
N(1)	5885(2)	6145(4)	8001(1)	27(1)	
C(1)	4998(2)	6348(6)	9082(1)	$\frac{2}{39(1)}$	
C(2)	6684(2)	4194(4)	8038(1)	23(1)	
C(3)	7389(2)	4223(4)	7512(1)	23(1) 24(1)	
C(4)	8149(2)	6349(4)	7500(1)	23(1)	
C(5)	9340(2)	8287(4)	8362(1)	23(1)	
C(6)	10233(2)	7923(4)	8949(1)	24(1)	
C(7)	10255(2) 10463(2)	9685(4)	9391(1)	$\frac{2}{32(1)}$	
C(8)	11315(2)	9393(5)	9929(1)	32(1)	
C(9)	11912(2) 11942(2)	7369(5)	10025(1)	36(1)	
C(10)	117.2(2)	5611(5)	9587(1)	34(1)	
C(11)	10857(2)	5870(5)	9052(1)	28(1)	
C(12)	8905(2)	6275(4)	7004(1)	24(1)	
C(12)	8870(2)	7969(5)	6556(1)	26(1)	
C(14)	9626(2)	7923(5)	6129(1)	29(1)	
C(15)	10439(2)	6170(4)	6134(1)	22(1)	
C(16)	10451(2)	4439(5)	6583(1)	$\frac{22(1)}{37(1)}$	
C(17)	9701(2)	4493(5)	7009(1)	39(1)	
C(18)	11273(2)	6123(4)	5688(1)	23(1)	
C(19)	11222(2)	7728(5)	5212(1)	$\frac{-2}{35(1)}$	
C(20)	11991(2)	7718(6)	4782(1)	36(1)	
C(21)	12808(2)	6052(5)	4854(1)	30(1)	
C(22)	12927(7)	4591(16)	5358(4)	40(2)	
C(22A)	12804(13)	4160(40)	5277(9)	40(2)	
C(23)	12230(4)	4557(9)	5795(3)	28(1)	

for 5i. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C(23A)	11955(9)	4131(14)	5651(6)	28(1)
C(24)	14293(5)	3661(9)	4795(2)	40(1)
C(24A)	13952(10)	3278(10)	4606(5)	40(1)
O(7)	3569(2)	6667(5)	7307(1)	48(1)
O(8)	2472(1)	9808(4)	7042(1)	34(1)
C(25)	3957(2)	9095(7)	6471(1)	46(1)
C(26)	3335(2)	8370(5)	6987(1)	34(1)
C(27)	1874(2)	9458(5)	7570(1)	32(1)
C(28)	2261(2)	11256(5)	8062(1)	41(1)

Br(1)-C(3)	1.950(2)	C(12)-C(13)	1.376(3)
Br(1A)-C(3)	1.998(4)	C(12)-C(17)	1.391(3)
S(1)-O(1)	1.422(2)	C(13)-C(14)	1.389(3)
S(1)-O(2)	1.425(2)	C(13)-H(13)	0.9500
S(1)-N(1)	1.572(2)	C(14)-C(15)	1.392(3)
S(1)-C(1)	1.839(3)	C(14)-H(14)	0.9500
F(1)-C(1)	1.334(4)	C(15)-C(16)	1.395(3)
F(2)-C(1)	1.305(3)	C(15)-C(18)	1.492(3)
F(3)-C(1)	1.306(3)	C(16)-C(17)	1.385(3)
O(3)-C(5)	1.339(3)	C(16)-H(16)	0.9500
O(3)-C(4)	1.457(3)	С(17)-Н(17)	0.9500
O(4)-C(5)	1.201(3)	C(18)-C(19)	1.382(3)
O(5)-C(21)	1.377(3)	C(18)-C(23A)	1.417(5)
O(5)-C(24A)	1.439(5)	C(18)-C(23)	1.426(4)
O(5)-C(24)	1.448(4)	C(19)-C(20)	1.407(3)
O(6)-C(24)	1.430(4)	C(19)-H(19)	0.9500
O(6)-C(22)	1.446(6)	C(20)-C(21)	1.347(4)
O(6A)-C(22A)	1.262(15)	С(20)-Н(20)	0.9500
O(6A)-C(24A)	1.428(5)	C(21)-C(22)	1.366(9)
N(1)-C(2)	1.461(3)	C(21)-C(22A)	1.43(2)
N(1)-H(1)	0.80(3)	C(22)-C(23)	1.357(12)
C(2)-C(3)	1.523(3)	C(22A)-C(23A)	1.39(2)
C(2)-H(2A)	0.9900	С(23)-Н(23)	0.9500
C(2)-H(2B)	0.9900	C(23A)-H(23A)	0.9500
C(3)-C(4)	1.526(3)	C(24)-H(24A)	0.9900
C(3)-H(3A)	1.0000	C(24)-H(24B)	0.9900
C(3)-H(3B)	1.0000	C(24A)-H(24C)	0.9900
C(4)-C(12)	1.510(3)	C(24A)-H(24D)	0.9900
C(4)-H(4)	1.0000	O(7)-C(26)	1.210(3)
C(5)-C(6)	1.496(3)	O(8)-C(26)	1.332(3)
C(6)-C(7)	1.391(3)	O(8)-C(27)	1.458(3)
C(6)-C(11)	1.395(3)	C(25)-C(26)	1.499(3)
C(7)-C(8)	1.389(4)	C(25)-H(25A)	0.9800
C(7)-H(7)	0.9500	C(25)-H(25B)	0.9800
C(8)-C(9)	1.381(4)	C(25)-H(25C)	0.9800
C(8)-H(8)	0.9500	C(27)-C(28)	1.498(4)
C(9)-C(10)	1.383(4)	C(27)-H(27A)	0.9900
C(9)-H(9)	0.9500	C(27)-H(27B)	0.9900
C(10)-C(11)	1.389(3)	C(28)-H(28A)	0.9800
C(10)-H(10)	0.9500	C(28)-H(28B)	0.9800
C(11)-H(11)	0.9500	C(28)-H(28C)	0.9800
O(1)-S(1)-O(2)	122.58(15)	O(2)-S(1)-N(1)	108.47(15)
O(1)-S(1)-N(1)	109.11(11)	O(1)-S(1)-C(1)	105.43(14)

Table 3. Bond lengths [Å] and angles [°] for 5i.

O(2)-S(1)-C(1)	104.09(13)	O(3)-C(5)-C(6)	110.89(16)
N(1)-S(1)-C(1)	105.86(12)	C(7)-C(6)-C(11)	119.7(2)
C(5)-O(3)-C(4)	116.80(16)	C(7)-C(6)-C(5)	119.3(2)
C(21)-O(5)-C(24A)	104.3(3)	C(11)-C(6)-C(5)	121.0(2)
C(21)-O(5)-C(24)	105.2(2)	C(8)-C(7)-C(6)	119.8(2)
C(24A)-O(5)-C(24)	22.3(4)	C(8)-C(7)-H(7)	120.1
C(24)-O(6)-C(22)	102.6(4)	C(6)-C(7)-H(7)	120.1
C(22A)-O(6A)-C(24A)	110.3(10)	C(9)-C(8)-C(7)	120.3(2)
C(2)-N(1)-S(1)	123.27(15)	C(9)-C(8)-H(8)	119.9
C(2)-N(1)-H(1)	120(2)	C(7)-C(8)-H(8)	119.9
S(1)-N(1)-H(1)	112(2)	C(8)-C(9)-C(10)	120.3(2)
F(2)-C(1)-F(3)	109.0(2)	C(8)-C(9)-H(9)	119.8
F(2)-C(1)-F(1)	108.4(2)	C(10)-C(9)-H(9)	119.8
F(3)-C(1)-F(1)	109.2(3)	C(9)-C(10)-C(11)	119.9(2)
F(2)-C(1)-S(1)	110.42(17)	С(9)-С(10)-Н(10)	120.1
F(3)-C(1)-S(1)	110.4(2)	C(11)-C(10)-H(10)	120.1
F(1)-C(1)-S(1)	109.41(17)	C(10)-C(11)-C(6)	120.0(2)
N(1)-C(2)-C(3)	112.23(17)	C(10)-C(11)-H(11)	120.0
N(1)-C(2)-H(2A)	109.2	C(6)-C(11)-H(11)	120.0
C(3)-C(2)-H(2A)	109.2	C(13)-C(12)-C(17)	118.1(2)
N(1)-C(2)-H(2B)	109.2	C(13)-C(12)-C(4)	122.26(19)
C(3)-C(2)-H(2B)	109.2	C(17)-C(12)-C(4)	119.58(19)
H(2A)-C(2)-H(2B)	107.9	C(12)-C(13)-C(14)	120.9(2)
C(2)-C(3)-C(4)	114.72(18)	С(12)-С(13)-Н(13)	119.6
C(2)-C(3)-Br(1)	110.26(13)	С(14)-С(13)-Н(13)	119.6
C(4)-C(3)-Br(1)	110.25(15)	C(13)-C(14)-C(15)	121.7(2)
C(2)-C(3)-Br(1A)	106.70(16)	C(13)-C(14)-H(14)	119.1
C(4)-C(3)-Br(1A)	102.74(18)	C(15)-C(14)-H(14)	119.1
Br(1)-C(3)-Br(1A)	12.03(9)	C(14)-C(15)-C(16)	116.92(19)
C(2)-C(3)-H(3A)	107.1	C(14)-C(15)-C(18)	122.32(19)
C(4)-C(3)-H(3A)	107.1	C(16)-C(15)-C(18)	120.76(19)
Br(1)-C(3)-H(3A)	107.1	C(17)-C(16)-C(15)	121.3(2)
Br(1A)-C(3)-H(3A)	118.9	C(17)-C(16)-H(16)	119.4
C(2)-C(3)-H(3B)	110.8	C(15)-C(16)-H(16)	119.4
C(4)-C(3)-H(3B)	110.8	C(16)-C(17)-C(12)	121.1(2)
Br(1)-C(3)-H(3B)	99.0	C(16)-C(17)-H(17)	119.5
Br(1A)-C(3)-H(3B)	110.8	C(12)-C(17)-H(17)	119.5
H(3A)-C(3)-H(3B)	8.1	C(19)-C(18)-C(23A)	117.2(6)
O(3)-C(4)-C(12)	108.33(16)	C(19)-C(18)-C(23)	118.4(3)
O(3)-C(4)-C(3)	102.52(16)	C(23A)-C(18)-C(23)	19.1(4)
C(12)-C(4)-C(3)	114.04(18)	C(19)-C(18)-C(15)	121.7(2)
O(3)-C(4)-H(4)	110.6	C(23A)-C(18)-C(15)	119.5(6)
C(12)-C(4)-H(4)	110.6	C(23)-C(18)-C(15)	119.5(3)
C(3)-C(4)-H(4)	110.6	C(18)-C(19)-C(20)	122.9(2)
O(4)-C(5)-O(3)	125.1(2)	C(18)-C(19)-H(19)	118.5
O(4)-C(5)-C(6)	123.94(19)	C(20)-C(19)-H(19)	118.5

C(21)-C(20)-C(19)	116.9(2)	O(6A)-C(24A)-H(24C)	110.6
C(21)-C(20)-H(20)	121.6	O(5)-C(24A)-H(24C)	110.6
C(19)-C(20)-H(20)	121.6	O(6A)-C(24A)-H(24D)	110.6
C(20)-C(21)-C(22)	120.2(3)	O(5)-C(24A)-H(24D)	110.6
C(20)-C(21)-O(5)	128.9(2)	H(24C)-C(24A)-H(24D)	108.7
C(22)-C(21)-O(5)	110.5(3)	C(26)-O(8)-C(27)	117.60(18)
C(20)-C(21)-C(22A)	122.7(4)	C(26)-C(25)-H(25A)	109.5
C(22)-C(21)-C(22A)	13.1(14)	C(26)-C(25)-H(25B)	109.5
O(5)-C(21)-C(22A)	108.0(4)	H(25A)-C(25)-H(25B)	109.5
C(23)-C(22)-C(21)	125.3(4)	C(26)-C(25)-H(25C)	109.5
C(23)-C(22)-O(6)	124.7(7)	H(25A)-C(25)-H(25C)	109.5
C(21)-C(22)-O(6)	109.7(5)	H(25B)-C(25)-H(25C)	109.5
O(6A)-C(22A)-C(23A)	131(2)	O(7)-C(26)-O(8)	123.8(2)
O(6A)-C(22A)-C(21)	109.0(11)	O(7)-C(26)-C(25)	124.5(2)
C(23A)-C(22A)-C(21)	117.8(9)	O(8)-C(26)-C(25)	111.7(2)
C(22)-C(23)-C(18)	115.6(6)	O(8)-C(27)-C(28)	109.30(19)
C(22)-C(23)-H(23)	122.2	O(8)-C(27)-H(27A)	109.8
C(18)-C(23)-H(23)	122.2	C(28)-C(27)-H(27A)	109.8
C(22A)-C(23A)-C(18)	119.5(14)	O(8)-C(27)-H(27B)	109.8
C(22A)-C(23A)-H(23A)	120.2	C(28)-C(27)-H(27B)	109.8
C(18)-C(23A)-H(23A)	120.2	H(27A)-C(27)-H(27B)	108.3
O(6)-C(24)-O(5)	108.9(3)	C(27)-C(28)-H(28A)	109.5
O(6)-C(24)-H(24A)	109.9	C(27)-C(28)-H(28B)	109.5
O(5)-C(24)-H(24A)	109.9	H(28A)-C(28)-H(28B)	109.5
O(6)-C(24)-H(24B)	109.9	C(27)-C(28)-H(28C)	109.5
O(5)-C(24)-H(24B)	109.9	H(28A)-C(28)-H(28C)	109.5
H(24A)-C(24)-H(24B)	108.3	H(28B)-C(28)-H(28C)	109.5
O(6A)-C(24A)-O(5)	105.8(5)		

Symmetry transformations used to generate equivalent atoms:

	U ¹¹	U ²²	U33	U ²³	U13	U12	
$\overline{\text{Br}(1)}$	36(1)	41(1)	23(1)	-11(1)	12(1)	-15(1)	
Br(1A)	36(1)	41(1)	23(1)	-11(1)	12(1)	-15(1)	
S(1)	30(1)	24(1)	58(1)	-10(1)	21(1)	-7(1)	
F(1)	63(1)	92(2)	51(1)	44(1)	29(1)	25(1)	
F(2)	33(1)	58(1)	46(1)	8(1)	18(1)	-8(1)	
F(3)	89(2)	164(3)	57(1)	-65(2)	39(1)	-14(2)	
O(1)	39(1)	73(2)	85(2)	-51(1)	20(1)	-21(1)	
O(2)	58(1)	22(1)	156(3)	12(1)	66(2)	2(1)	
O(3)	20(1)	20(1)	29(1)	6(1)	4(1)	2(1)	
O(4)	39(1)	21(1)	43(1)	5(1)	3(1)	3(1)	
O(5)	48(1)	57(1)	36(1)	10(1)	27(1)	4(1)	
O(6)	39(2)	53(2)	35(2)	14(2)	22(2)	17(2)	
O(6A)	48(5)	34(3)	53(5)	-2(3)	32(4)	3(3)	
N(1)	21(1)	40(1)	22(1)	9(1)	7(1)	7(1)	
C(1)	42(1)	56(2)	25(1)	-6(1)	18(1)	-2(1)	
C(2)	23(1)	24(1)	22(1)	5(1)	6(1)	-2(1)	
C(3)	23(1)	26(1)	25(1)	2(1)	7(1)	2(1)	
C(4)	20(1)	23(1)	28(1)	4(1)	6(1)	4(1)	
C(5)	26(1)	17(1)	31(1)	1(1)	14(1)	2(1)	
C(6)	23(1)	23(1)	29(1)	3(1)	11(1)	0(1)	
C(7)	39(1)	23(1)	38(1)	-2(1)	17(1)	-2(1)	
C(8)	48(1)	37(2)	29(1)	-7(1)	10(1)	-12(1)	
C(9)	37(1)	43(1)	28(1)	3(1)	2(1)	-13(1)	
C(10)	29(1)	30(1)	41(1)	5(1)	3(1)	0(1)	
C(11)	26(1)	25(1)	32(1)	-1(1)	6(1)	-1(1)	
C(12)	17(1)	26(1)	30(1)	5(1)	6(1)	0(1)	
C(13)	27(1)	24(1)	28(1)	5(1)	5(1)	6(1)	
C(14)	35(1)	27(1)	26(1)	10(1)	10(1)	6(1)	
C(15)	16(1)	26(1)	23(1)	2(1)	2(1)	-3(1)	
C(16)	32(1)	38(1)	48(1)	22(1)	22(1)	19(1)	
C(17)	38(1)	37(1)	49(1)	27(1)	24(1)	16(1)	
C(18)	21(1)	26(1)	22(1)	0(1)	3(1)	-5(1)	
C(19)	22(1)	45(1)	40(1)	20(1)	9(1)	8(1)	
C(20)	26(1)	53(1)	30(1)	19(1)	5(1)	-1(1)	
C(21)	29(1)	39(1)	21(1)	-1(1)	9(1)	-8(1)	
C(22)	59(2)	19(4)	50(3)	2(3)	36(2)	4(3)	
C(22A)	59(2)	19(4)	50(3)	2(3)	36(2)	4(3)	
C(23)	36(3)	22(2)	28(3)	2(2)	14(2)	0(2)	
C(23A)	36(3)	22(2)	28(3)	2(2)	14(2)	0(2)	
C(24)	53(3)	45(2)	31(2)	-7(2)	27(2)	2(2)	
C(24A)	53(3)	45(2)	31(2)	-7(2)	27(2)	2(2)	

Table 4. Anisotropic displacement parameters $(Å^2x \ 10^3)$ for **5i**. The anisotropic displacement factor exponent takes the form: $-2 \ ^2[h^2 \ a^{*2}U^{11} + ... + 2h \ k \ a^{*} \ b^{*} \ U^{12}]$

O(7)	32(1)	80(2)	34(1)	22(1)	10(1)	25(1)
O(8)	35(1)	32(1)	36(1)	4(1)	12(1)	-1(1)
C(25)	32(1)	72(2)	34(1)	0(2)	10(1)	-15(1)
C(26)	19(1)	55(2)	25(1)	0(1)	-1(1)	-5(1)
C(27)	29(1)	30(1)	38(1)	1(1)	14(1)	0(1)
C(28)	32(1)	45(1)	48(2)	-9(1)	15(1)	0(1)

_	Х	у	Z	U(eq)	
H(1)	5280(30)	6130(60)	7754(15)	45(9)	
H(2A)	6229	2750	8014	28	
H(2B)	7225	4223	8451	28	
H(3A)	7924	2867	7579	29	
H(3B)	7864	2790	7519	29	
H(4)	7660	7772	7454	28	
H(7)	10039	11084	9324	39	
H(8)	11468	10590	10233	45	
H(9)	12526	7183	10393	44	
H(10)	12162	4230	9651	41	
H(11)	10691	4650	8756	33	
H(13)	8322	9185	6538	32	
H(14)	9586	9119	5826	35	
H(16)	10986	3200	6596	45	
H(17)	9729	3292	7310	47	
H(19)	10642	8892	5173	42	
H(20)	11938	8832	4456	44	
H(23)	12371	3556	6150	33	
H(23A)	11834	2788	5881	33	
H(24A)	14078	2314	4517	48	
H(24B)	15146	3901	4846	48	
H(24C)	13622	2388	4223	48	
H(24D)	14808	3045	4703	48	
H(25A)	3421	8993	6063	69	
H(25B)	4627	8083	6468	69	
H(25C)	4229	10682	6544	69	
H(27A)	2058	7912	7753	38	
H(27B)	1019	9559	7421	38	
H(28A)	1824	11085	8405	61	
H(28B)	2115	12784	7872	61	
H(28C)	3097	11077	8230	61	

Table 5. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10³) for **5i**.

Table 6. Torsion angles [°] for **5i**.

$\overline{O(1)-S(1)-N(1)-C(2)}$	32.6(2)	C(12)-C(13)-C(14)-C(15)	0.4(4)
O(2)-S(1)-N(1)-C(2)	168.36(17)	C(13)-C(14)-C(15)-C(16)	0.8(3)
C(1)-S(1)-N(1)-C(2)	-80.4(2)	C(13)-C(14)-C(15)-C(18)	-178.7(2)
O(1)-S(1)-C(1)-F(2)	-178.84(18)	C(14)-C(15)-C(16)-C(17)	-1.0(4)
O(2)-S(1)-C(1)-F(2)	51.0(2)	C(18)-C(15)-C(16)-C(17)	178.4(2)
N(1)-S(1)-C(1)-F(2)	-63.3(2)	C(15)-C(16)-C(17)-C(12)	0.1(4)
O(1)-S(1)-C(1)-F(3)	60.6(3)	C(13)-C(12)-C(17)-C(16)	1.1(4)
O(2)-S(1)-C(1)-F(3)	-69.6(3)	C(4)-C(12)-C(17)-C(16)	-176.5(2)
N(1)-S(1)-C(1)-F(3)	176.1(2)	C(14)- $C(15)$ - $C(18)$ - $C(19)$	-5.1(3)
O(1)-S(1)-C(1)-F(1)	-59.7(2)	C(16)-C(15)-C(18)-C(19)	175.4(2)
O(2)-S(1)-C(1)-F(1)	170.2(2)	C(14)-C(15)-C(18)-C(23A)	-170.5(6)
N(1)-S(1)-C(1)-F(1)	55.9(2)	C(16)-C(15)-C(18)-C(23A)	10.1(6)
S(1)-N(1)-C(2)-C(3)	-126.57(17)	C(14)-C(15)-C(18)-C(23)	167.5(4)
N(1)-C(2)-C(3)-C(4)	59.8(2)	C(16)-C(15)-C(18)-C(23)	-11.9(4)
N(1)-C(2)-C(3)-Br(1)	-65.4(2)	C(23A)-C(18)-C(19)-C(20)	-13.9(6)
N(1)-C(2)-C(3)-Br(1A)	-53.3(2)	C(23)-C(18)-C(19)-C(20)	7.7(5)
C(5)-O(3)-C(4)-C(12)	85.4(2)	C(15)-C(18)-C(19)-C(20)	-179.6(2)
C(5)-O(3)-C(4)-C(3)	-153.78(16)	C(18)-C(19)-C(20)-C(21)	-0.4(4)
C(2)-C(3)-C(4)-O(3)	59.1(2)	C(19)-C(20)-C(21)-C(22)	-5.5(7)
Br(1)-C(3)-C(4)-O(3)	-175.72(14)	C(19)-C(20)-C(21)-O(5)	-178.2(2)
Br(1A)-C(3)-C(4)-O(3)	174.47(18)	C(19)-C(20)-C(21)-C(22A)	9.6(13)
C(2)-C(3)-C(4)-C(12)	175.96(16)	C(24A)-O(5)-C(21)-C(20)	-156.9(6)
Br(1)-C(3)-C(4)-C(12)	-58.9(2)	C(24)-O(5)-C(21)-C(20)	-179.9(4)
Br(1A)-C(3)-C(4)-C(12)	-68.7(2)	C(24A)-O(5)-C(21)-C(22)	29.8(7)
C(4)-O(3)-C(5)-O(4)	6.6(3)	C(24)-O(5)-C(21)-C(22)	6.7(6)
C(4)-O(3)-C(5)-C(6)	-171.70(16)	C(24A)-O(5)-C(21)-C(22A)	16.2(12)
O(4)-C(5)-C(6)-C(7)	25.4(3)	C(24)-O(5)-C(21)-C(22A)	-6.9(11)
O(3)-C(5)-C(6)-C(7)	-156.24(19)	C(20)-C(21)-C(22)-C(23)	4.2(12)
O(4)-C(5)-C(6)-C(11)	-152.8(2)	O(5)-C(21)-C(22)-C(23)	178.2(7)
O(3)-C(5)-C(6)-C(11)	25.5(3)	C(22A)-C(21)-C(22)-C(23)	-101(3)
C(11)-C(6)-C(7)-C(8)	0.2(3)	C(20)-C(21)-C(22)-O(6)	-169.4(4)
C(5)-C(6)-C(7)-C(8)	-178.0(2)	O(5)-C(21)-C(22)-O(6)	4.5(8)
C(6)-C(7)-C(8)-C(9)	0.6(4)	C(22A)-C(21)-C(22)-O(6)	85.7(18)
C(7)-C(8)-C(9)-C(10)	-0.3(4)	C(24)-O(6)-C(22)-C(23)	172.5(8)
C(8)-C(9)-C(10)-C(11)	-0.8(4)	C(24)-O(6)-C(22)-C(21)	-13.7(8)
C(9)-C(10)-C(11)-C(6)	1.7(4)	C(24A)-O(6A)-C(22A)-C(23A)) 164.8(19)
C(7)-C(6)-C(11)-C(10)	-1.3(3)	C(24A)-O(6A)-C(22A)-C(21)	2(2)
C(5)-C(6)-C(11)-C(10)	176.9(2)	C(20)-C(21)-C(22A)-O(6A)	161.8(10)
O(3)-C(4)-C(12)-C(13)	-122.3(2)	C(22)-C(21)-C(22A)-O(6A)	-115(3)
C(3)-C(4)-C(12)-C(13)	124.2(2)	O(5)-C(21)-C(22A)-O(6A)	-11.8(19)
O(3)-C(4)-C(12)-C(17)	55.2(3)	C(20)-C(21)-C(22A)-C(23A)	-4(2)
C(3)-C(4)-C(12)-C(17)	-58.3(3)	C(22)-C(21)-C(22A)-C(23A)	79(2)
C(17)-C(12)-C(13)-C(14)	-1.4(3)	O(5)-C(21)-C(22A)-C(23A)	-177.4(15)
C(4)-C(12)-C(13)-C(14)	176.1(2)	C(21)-C(22)-C(23)-C(18)	3.1(12)

O(6)-C(22)-C(23)-C(18)	175.9(7)
C(19)-C(18)-C(23)-C(22)	-8.7(7)
C(23A)-C(18)-C(23)-C(22)	83(2)
C(15)-C(18)-C(23)-C(22)	178.4(6)
O(6A)-C(22A)-C(23A)-C(18)	-173.0(17)
C(21)-C(22A)-C(23A)-C(18)	-11(2)
C(19)-C(18)-C(23A)-C(22A)	19.6(15)
C(23)-C(18)-C(23A)-C(22A)	-79(2)
C(15)-C(18)-C(23A)-C(22A)	-174.5(13)
C(22)-O(6)-C(24)-O(5)	17.8(6)
C(21)-O(5)-C(24)-O(6)	-15.7(4)
C(24A)-O(5)-C(24)-O(6)	-106.3(10)
C(22A)-O(6A)-C(24A)-O(5)	8.3(15)
C(21)-O(5)-C(24A)-O(6A)	-15.0(8)
C(24)-O(5)-C(24A)-O(6A)	80.4(9)
C(27)-O(8)-C(26)-O(7)	7.9(3)
C(27)-O(8)-C(26)-C(25)	-173.43(19)
C(26)-O(8)-C(27)-C(28)	105.1(2)

> O N S H O 2e

O S_CF₃ N_O H CI 4c

PROTON-2

Ph 4f O CF3

O CF₃ N O 0 4i

> o S O `CF₃ 6 77.821 77.300 78.980 18.275 42.588 848 843 853 0 ř 6 1.1.1 11.4 200 150 100 50 PPM **ч**-

> OCOPh O CF₃ N O I Br 3f - 185,442 77.582 77.330 77.074 78.432 47.038 54,487 $\begin{array}{c} 138.23\\ 158.23\\ 158.23\\ 150.427\\ 120.28.030\\ 120.000\\ 120.0$ 50 200 150 100 PPM •

OCOPh O

CF₃

Br 5l

^{−NH}O O^{´S}C/ Q CF₃ Ph g

с. д.,

