A Chiral Porous Metallosalan-Organic Framework Containing Titanium-Oxo Clusters for Enantioselective Catalytic Sulfoxidation

Weimin Xuan, Chengcheng Ye, Mengni Zhang, Zhijie Chen and Yong Cui* School of Chemistry and Chemical Technology and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China; Email: <u>yongcui@sjtu.edu.cn</u>

Table of Content

- 1. Materials and general procedures.
- 2. Synthesis of the ligand H_2L , TiL and MOF 1.
- 3. Methyl Orange (MO) inclusion experiments.
- 4. Experimental procedure and determination of enantiomeric purity for sulfoxides.
- 5. Experimental procedure for oxidation of sulfides catalyzed by 1
- 6. **Table S1** Crystal data and structure refinement for 1.
- 7. Table S2 Selected bond lengths and angles for 1.
- 8. Figures S1-S5 Additional X-ray crystallographic structures .
- 9. Figure S6 Solid state UV/Vis spectra of H_2L , TiL and 1.
- 10. Figure S7 Calculation of band gap of complex 1.
- 11. Figure S8 Solid state fluorescence spectra.
- 12. Figure S9 Solid-state CD spectra
- 13. Figure S10 TGA curve.
- 14. Figure S11 PXRD patterns.
- 15. Figure S12 UV-Vis spectra of digested frameworks 1 loaded with MO
- 16. Figure S13 The BET plot and N_2 adsorption.
- 17. Figure S14 XPS of the pristine and recycled sample of 1.
- 18. Figure S25 ¹H and ¹³C NMR spectra
- 19. Figure S16 ESI-Mass of H₂L and some sulfoxides
- 20. HPLC and ¹H NMR of sulfoxides (Tables S3 and S4)
- 21. Figures S17 and S18 Kinetic study of recycling MOF in catalysis

1. Materials and General Procedures.

All of the chemicals are commercial available, and used without further purification. Elemental analyses of C, H and N were performed with an EA1110 CHNS-0 CE elemental analyzer. The IR (KBr pellet) spectra were recorded (400-4000 cm⁻¹ region) on a Nicolet Magna 750 FT-IR spectrometer. The solid state CD spectra were recorded on a J-800 spectropolarimeter (Jasco, Japan). Thermogravimetric analyses (TGA) were carried out in an air atmosphere with a heating rate of 10 °C/min on a STA449C integration thermal analyzer. Powder X-ray diffraction (PXRD) data were collected on a DMAX2500 diffractometer using Cu Ka radiation. The calculated PXRD patterns were produced using the SHELXTL-XPOW program and single crystal reflection data. All UV/Vis absorption spectrum were recorded on a Lambda 20 UV/Vis Spectrometer (Perkin Elmer, Inc., USA). Fluorescence spectra were performed on LS 50B Fluorescence Spectrometer (Perkin Elmer, Inc., USA). ¹H and ¹³C NMR experiments were carried out on a MERCURYplus 400 spectrometer operating at resonance frequencies of 400 MHz. Electrospray ionization mass spectra (ES-MS) were recorded on a Finnigan LCQ mass spectrometer using dichloromethane-methanol as mobile phase. Analytical high performance liquid chromatography (HPLC) was performed on a YL-9100 HPLC with UV detection at 254 nm. Analytical CHIRALCEL OD-H columns (4.6 mm × 25 cm) from Daicel were used.

X-ray Crystallography. Single-crystal XRD data for the compound was collected on a Bruker Smart 1000 CCD diffractometer with Cu-K α radiation ($\lambda = 1.54178$ Å) at 123K. The empirical absorption correction was applied by using the SADABS program (G. M. Sheldrick, SADABS, program for empirical absorption correction of area detector data; University of Göttingen, Göttingen, Germany, 1996). The structure was solved using direct method, and refined by full-matrix least-squares on F2 (G. M. Sheldrick, SHELXTL97, program for crystal structure refinement, University of Göttingen, Germany, 1997).

The structure was solved using direct method, and refined by full-matrix least-squares on F2 (G.M. Sheldrick, SHELXTL97, program for crystal structure refinement, University of Göttingen, Germany, 1997). All non-hydrogen atoms are refined anisotropically, except the guest molecules. Due to the relatively weak diffraction, only parts of the guest water molecules could be found in difference Fourier maps and all the phenyl rings are constrained to ideal six membered rings. Contributions to scattering due to these highly disordered solvent molecules were removed using the *SQUEEZE* routine of *PLATON*; structures were then refined again using the data generated. Elemental analysis showed that the formula unit of compound 1 includes about 16 water guest molecules. Crystal data and details of the data collection are given in Table S1. Selected bond distances are presented in Tables S2.

2. Synthesis of the ligand and MOF 1

The salen precursor of H_2L was synthesized according to the literature (*J. Am. Chem. Soc.*, 2004, **126**, 6314).

2.1 Synthesis of the ligand H₂L. The precursor (295 mg, 0.5 mmol) was dissolved in MeOH (25 mL), and 6 equiv of NaBH₄ (220 mg, 3 mmol) were added portion-wise with stirring. The reaction mixture was stirred overnight at RT, during which time its color turned light yellow. The reaction mixture was poured into 100 mL of water, and the desired product was isolated by vacuum filtration (0.272 g, 92% yield).

¹H NMR (CDCl₃) δ : 8.55-8.57 (dd, 4H, pyridyl-H), 7.47-7.47 (d, 2H, Ar-H), 7.43-7.44 (dd, 4H, pyridyl-H), 7.37-7.39 (d, 4H, pyridyl-H), 7.16-7.17 (d, 2H, ArH), 4.00-4.17 (dd, 4H, Methylene-H), 2.46 (d, 2H, cyclohexadecyl-H), 2.24 (d, 2H, cyclohexadecyl-H), 1.73 (d, 2H, cyclohexadecyl-H), 1.38 (s, 18H, cyclohexadecyl-H/CMe₃), 1.23 (d, 4H, cyclohexadecyl-H). ¹³C NMR (CDCl₃) δ : 158.55, 150.15, 148.90, 137.93, 128.12, 125.20, 125.12, 123.83, 121.23, 60.19, 50.54, 35.06, 31.15, 29.60, 24.54.

ESI-MS: m/z 593.3 (Calcd m/z 593.4 for $[H_2L+H]^+$).

FTIR (KBr pellet, □/cm⁻¹): 3368(m), 3221(m), 2954(s), 2860(s), 1605(m), 1570(w), 1482(s), 1445(w), 1391(w), 1358(w), 1250(w), 1232(w), 1155(w), 1084(w), 1024(w), 993(m), 947(w), 880(m), 807(m), 755(w), 713(m), 646(w), 617(w).

2.2 Synthesis of TiL

The complex was prepared according to a published procedure (Tshuva et al., *J. Am. Chem. Soc.* **2011**, *133*, 16812–16814). A solution of tetrabutyl titanate (340 mg, 1mmol) in anhydrous THF (10 mL) was added dropwise to H_2L (590 mg, 1 mmol) in anhydrous THF (30 mL). The reaction mixture immediately change into bright yellow and stirred at room temperature for 2 h, after which the solvent was evaporated under vacuum, The yellow powder of TiL was collected and dried under reduced pressure (665 mg, 85%). Anal (%). Calcd for $C_{46}H_{62}N_4O_4Ti$: C, 70.57; H, 7.98; N, 7.16. Found: C, 70.06; H, 7.94; N, 7.13. FTIR (KBr pellet): 3433(m), 3209(m), 2954(s), 2861(s), 1630(m), 1590(w), 1478(s), 1415(w), 1393(w), 1362(w), 1249(w), 1213(w), 1113(w), 1095(w), 991(m), 970(m), 865(w), 805(w), 750(w), 672(w), 549(w), 507(w).

2.3 Synthesis of MOF 1

A mixture of CdI₂·4H₂O (0.03 mmol), TiL (0.04 mmol), biphenyl-4,4'-dicarboxylic acid (H₂BPDC, 0.03 mmol) and DMF (1.0 mL) in a capped vial was heated at 80 °C. After for 4 days, yellow rod-like crystals of **1** were filtered, washed with THF, and dried at room temperature. Yield: 5.41 mg (42.1%). Elemental analysis showed **1** has the formula $[H_2NMe_2]_2[Cd_3{TiO_6(TiL)_3}(BPDC)_3(H_2O)_3]\cdot16H_2O]$, which was also supported by TGA and IR. Anal (%). Calcd for C₁₆₀H₂₁₀Cd₃N₁₄O₄₃Ti₄: C, 54.19; H, 5.97; N, 5.53. Found: C, 53.98; H, 5.91; N, 5.50. FTIR (KBr pellet): 3448(m), 3200(m), 2955(s), 2861(s), 1604(m), 1545(w), 1500(w), 1446(s), 1364(w), 1323(w), 1286(m), 1249(w) 1203(w), 1067(w), 1026(w), 980(m), 9 877(w), 827(w), 774(w), 700(w), 563(w), 539(w). Ti exhibiting +4 oxidation state was confirmed by XPS

spectrum (see Figure S14).

3. The MO (Methyl Orange) dye inclusion experiment

Fresh crystal 1 (3 mg, 0.661 μ mol) was briefly dried on a filter paper, and then soaked in a methanol solution of Methyl Orange (60 mM) overnight. The resulting red crystals were washed with water thoroughly until the washings become colorless. The washed samples were digested by Na₂EDTA (0.05 M, 2 mL) and NaOH (6 M, 0.1 mL), the resultant clear solution with light red color was diluted to 100 mL. Absorption experiments were performed on Lambda 20 UV/Vis Spectrometer(Perkin Elmer, Inc., USA). The experimental showed that MOF 1 could adsorb 1.6 methyl orange (MO) per formula unit in solution (51.9%).

4. Experimental procedure for photocatalytic degradation of Methyl Orange

Photocatalytic reactions for decomposition of MO were carried out in a 25 mL vial. An UV LED Spot Light Source curing device equipped with 450 nm pure UV light source was used, which was placed over the vial with the height of 8 cm. The Powerful intensity was determined as 8000 mW/cm² by energy meter. Typically, 0.025 mmol 1, TiL or CdSO₄ was dispersed into 20 ml of 20 mg/L MO aqueous solution. The suspensions were then magnetically stirred for 30 min in the dark. At regular irradiation time intervals, 1 ml solution was sampled, filtered and diluted to 3 times volume. The photographs were then taken accordingly and the UV-Vis absorption spectra of methyl orange aqueous solutions were measured by Lambda 20 UV/Vis Spectrometer (Perkin Elmer, Inc., USA). The relationship between A and C: A=0.0027+0.076C (A: absorbance, for methyl orange, A (464 nm) is used in this relationship; C: mg/L; this relationship stands when C below or equals to 20 mg/L).

5. Experimental procedure for oxidation of sulfides

Methyl phenyl sulfide, methyl p-tolyl sulfide, methyl 4-nitrophenyl sulfide, isopropyl phenyl sulfide, benzyl phenyl sulfide and 2-naphthyl methyl sulfide were commercially available from J&K, while benzyl 2-naphthyl sulfide, naphthyl 2-methylenenaphthyl sulfide and dendritic sulfide were synthesized according to literature method (Bryliakov K. and Tals E. *Eur. J. Org. Chem.* **2011**, 4693–4698).

General Procedur for oxidation of sulfides. The catalyst 1 (16 mg, 0.020 mmol) and the related sulfide (0.25 mmol) were combined in CH_2Cl_2 (1 mL) and stirred for 20 min at 25 °C, followed by adding an 1.2 equiv. 30 % H_2O_2 (or urea- H_2O_2). The mixture was further stirred for 48 h–72 h at 25 °C. The reaction progress was monitored by TLC (eluent: EtOAc/hexane). The ee of the resulted sulfoxide was determined by HPLC using Chiralcel OD-H, Chiralcel AD-H or Chiralcel OJ-H, and the conversion was determined by ¹H NMR. The recycling study was performed similarly.

6.	Table S1.	Crystal	data and	l structure	refinement	for 1	1
----	-----------	---------	----------	-------------	------------	-------	---

Identification code	1
Empirical formula	C ₁₆₀ H ₁₇₈ N ₁₄ O ₉ Ti ₄ Cd3
Formula weight	3257.96
Temperature (K)	123(2)
Wavelength (Å)	1.54178
Crystal system	Hexagonal
Space group	P622
Unit cell dimensions	$a = 32.0273(3), \alpha = 90^{\circ}$
	$b = 32.0273(3), \qquad \beta = 90^{\circ}$
	$c = 29.1427(7), \gamma = 120^{\circ}$
Volume ($Å^3$), Z	25888.1(7), 4
Density (calculated) (mg/m ³)	0.836
Absorption coefficient (mm ⁻¹)	3.295
F(000)	6736
θ range for data collection (°)	1.59 to 53.99
Limiting indices	$-33 \leq h \leq 33, -31 \leq k \leq 32, -30 \leq I \leq 28$
Reflections collected	68827
Independent reflections	10155 (Rint = 0.2486)
Completeness to theta	53.99/ 97 %
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	10155 /1208 / 563
Goodness-of-fit on F ²	1.246
Final R indices [I>2sigma(I)]	R1 = 0.0966, $wR2 = 0.2253$
R indices (all data)	R1 = 0.1267, wR2 = 0.2452
Absolute structure parameter	0.122(18)
Largest diff. peak and hole (e.Å ⁻³)	1.354 and -0.568

Ti(1)-O(8)	184.3(9)
Ti(1)-O(2)	194.1(7)
Ti(1)-O(1)	194.4(8)
Ti(1)-O(9)	200.1(9)
Ti(1)-N(1)	216.6(10)
Ti(1)-N(3)	231.2(11)
Ti(1)- $Ti(2)$	294.37(19)
Ti(2)-O(8)	189 6(9)
Ti(2) - O(9)	207 2(9)
Ti(2) - Ti(1) # 1	2944(2)
Ti(2) - Ti(1) # ?	294 37(19)
Cd(1)-O(7)	297.37(19) 227.9(7)
Cd(1) - O(5)	227.9(7) 234 9(8)
Cd(1)-O(3)	235 3(8)
Cd(1) - O(3)	233.3(8) 240.0(5)
Cd(1) - N(2) Cd(1) - O(6)	240.0(3) 243.7(8)
Cd(1) - O(0)	243.7(6) 244.5(7)
Cd(1) - O(4)	244.3(7)
Cu(1)-IN(4)#3 O(8) Ti(1) O(2)	247.0(7)
$O(8) - \Pi(1) - O(2)$	101.0(3)
O(8)-I1(1)-O(1) O(2) T:(1) $O(1)$	97.2(4)
O(2)-I1(1)-O(1)	10/./(3)
O(8)-Ii(1)-O(9)	83.4(4)
O(2)-Ii(1)-O(9)	90.0(3)
O(1)-Ti(1)-O(9)	161.7(3)
O(8)-Ti(1)-N(1)	98.2(4)
O(2)-Ti(1)-N(1)	158.1(4)
O(1)-Ti(1)-N(1)	80.2(3)
O(9)-Ti(1)-N(1)	81.5(3)
O(8)-Ti(1)-N(3)	169.2(4)
O(2)-Ti(1)-N(3)	82.0(3)
$O(1)-T_1(1)-N(3)$	91.7(4)
O(9)-Ti(1)-N(3)	86.2(4)
N(1)-Ti(1)-N(3)	77.3(3)
O(8)-Ti(1)-Ti(2)	38.7(3)
O(2)-Ti(1)-Ti(2)	97.3(2)
O(1)-Ti(1)-Ti(2)	133.6(3)
O(9)-Ti(1)-Ti(2)	44.7(3)
N(1)-Ti(1)-Ti(2)	90.9(3)
N(3)-Ti(1)-Ti(2)	130.9(3)
O(8)#1-Ti(2)-O(8)	97.2(4)
O(8)#1-Ti(2)-O(9)	96.2(3)
O(8)-Ti(2)-O(9)	80.2(4)
O(8)#2-Ti(2)-O(9)	166.6(4)
O(8)#1-Ti(2)-O(9)#2	1 80.2(4)
O(8)-Ti(2)-O(9)#1	166.6(4)
O(8)#2-Ti(2)-O(9)#	1 96.2(3)
O(9)-Ti(2)-O(9)#1	87.0(4)
O(8)#1-Ti(2)-O(9)#2	2 166.6(4)
O(8)-Ti(2)-O(9)#2	96.2(3)
O(8)#2-Ti(2)-O(9)#2	2 80.2(4)

7. Table S2. Selected Bond lengths [Å] and angles [°] for 1

O(9)-Ti(2)-O(9)#2	87.0(4)
O(8)#1-Ti(2)-Ti(1)	98.3(2)
O(8)-Ti(2)-Ti(1)	37.4(3)
O(8)#2-Ti(2)-Ti(1)	133.4(3)
O(9)-Ti(2)-Ti(1)	42.8(2)
O(9)#1-Ti(2)-Ti(1)	129.6(3)
O(9)#2-Ti(2)-Ti(1)	92.9(2)
O(8)#1-Ti(2)-Ti(1)#1	37.4(3)
O(8)-Ti(2)-Ti(1)#1	133.4(3)
O(8)#2-Ti(2)-Ti(1)#1	98.3(2)
O(9)-Ti(2)-Ti(1)#1	92.9(2)
O(9)#1-Ti(2)-Ti(1)#1	42.8(2)
O(9)#2-Ti(2)-Ti(1)#1	129.6(3)
Ti(1)-Ti(2)-Ti(1)#1	119.935(12)
O(8)#1-Ti(2)-Ti(1)#2	133.4(3)
O(8)-Ti(2)-Ti(1)#2	98.3(2)
O(8)#2-Ti(2)-Ti(1)#2	37.4(3)
O(9)-Ti(2)-Ti(1)#2	129.6(3)
O(9)#1-Ti(2)-Ti(1)#2	92.9(2)
O(9)#2-Ti(2)-Ti(1)#2	42.8(2)
Ti(1)-Ti(2)-Ti(1)#2	119.935(12)
Ti(1)#1-Ti(2)-Ti(1)#2	119.935(12)
O(7)-Cd(1)-O(5)	89.3(4)
O(7)-Cd(1)-O(3)	89.8(4)
O(5)-Cd(1)-O(3)	86.8(2)
O(7)-Cd(1)-N(2)	172.5(4)
O(5)-Cd(1)-N(2)	97.5(4)
O(3)-Cd(1)-N(2)	87.4(3)
O(7)-Cd(1)-O(6)	99.5(4)
O(5)-Cd(1)-O(6)	53.4(3)
O(3)-Cd(1)-O(6)	138.7(3)
N(2)-Cd(1)-O(6)	87.2(3)
O(7)-Cd(1)-O(4)	89.2(4)
O(5)-Cd(1)-O(4)	141.9(3)
O(3)-Cd(1)-O(4)	55.1(3)
N(2)-Cd(1)-O(4)	83.4(3)
O(6)-Cd(1)-O(4)	163.0(3)
O(7)-Cd(1)-N(4)#3	84.2(3)
O(5)-Cd(1)-N(4)#3	130.0(3)
O(3)-Cd(1)-N(4)#3	142.4(3)
N(2)-Cd(1)-N(4)#3	93.8(3)
U(6)-Cd(1)-N(4)#3	78.8(3)
U(4)-Cd(1)-N(4)#3	87.7(3)
11(1)-O(8)-T1(2)	103.9(5)
11(1)-0(9)-11(2)	92.5(4)

Symmetry transformations used to generate equivalent atoms: #1 -y+1,x-y,z#2 -x+y+1,-x+1,z#3 -x+1,-y,z#4 x,x-y,-z#5 x,x-y,-z+1

8. Additional X-ray crystallographic structures of reported compounds.

8.1 Figure S1. (a) The molecular structure of **1** and coordination environments of Cd1, Ti1 and Ti2.

8.2 Figure S2. View of six zigzag chains constructed from Cd centers and BPDC along c (a) and b (b) direction.

8.3 Figure S3. View of two kinds of open channels along *c* direction. One is filled by counterion $H_2N(Me)_2$ and lined with hexane groups, another is lined with ter-butyl groups.

8.4. Figure S4. View of packing mode showing that one mesoporous column is interlocked by there other columns and three sets of six zigzag chains along the c-direction (left), and one set of six zigzag chains is surrounded by six interlocked mesoporous columns (right).

8.5. *Figure S5.* Topologic representation of 1 constructed from 4-conneted Cd centers and 6-connected tetranuclear Ti cluster.

9. Figure S6. UV/Vis absorption spectra of H₂L, (TiL) and 1 in the solid state.

10. Figures S7. Calculation of band gap in complex 1 (2.68 eV).

11. Figure S8. Fluorescence spectra for H₂L, TiL and 1 in the solid state.

12. Figure S9. CD spectra of (*R*)- and (*S*)-TiL and (*R*)- and (*S*)-1 in the solid state.

13. Figure S10. TGA curve of 1.

14. Figure S11. PXRD patterns of the pristine, evacuated (regenerated), the samples of **1** after including the MO dye and after heating in H2O and H2O/H2O2.

15. Figure S12. UV-Vis Absorption spectra of digested frameworks **1** loaded with MO (Methyl Orange).

16. Figures S13. Bet plot and N₂ adsorption of 1.

17. Figures S14. XPS of complex 1 and recovered complex 1

18. Figure S15. ¹H and ¹³C NMR for the ligand (R)-H₂L, (R)-TiL, sulfides, sulfoxides and sulfone in CDCl₃.

¹H NMR (400 MHz, CDCl₃, δ): 7.60-7.90 (m,8H), 7.30-7.60 (m, 6H), 4.39 (s, 2H). ¹³C NMR (400 MHz, CDCl₃, δ):139.984, 134.136, 133.951, 133.559, 132.850, 132.131, 128.635, 127.985, 127.963, 127.938, 127.924, 127.753, 127.433, 127.259, 126.765, 126.440, 126.397, 126.170, 126.135, 126.025, 39.457.

¹H NMR (400 MHz, CDCl₃, δ): 7.41-7.92 (m, 13H), 7.07-7.10 (dd, 1H), 4.23-4.35 (s, 2H)

¹H NMR (400 MHz, CDCl₃, δ): 7.70-7.85 (m, 4H), 7.40-7.50 (m, 5H), 4.18 (s, 2H), 6.50-6.70 (m, 3H), 4.91 (s, 4H), 4.18 (s, 2H), 1.35 (s, 36H).

¹³C NMR(400 MHz, CDCl₃, δ):160.434, 151.246, 139.75, 135.877, 134.170, 133.938, 132.112, 128.597, 128.021, 127.941, 127.437, 126.745, 126.024, 122.615, 122.541, 108.032, 101.290, 71.140, 39.494, 35.131, 31.741.

125.684, 122.538, 120.557, 109.406, 102.678, 71.087, 64.354, 35.135, 31.746.

122.586, 122.527, 109.979, 103.058, 71.139, 63.469, 35.131, 31.738.

19. Figure S16. ESI-Mass of (R)-H₂L, (R)-TiL and some sulfides and sulfoxides.

20. The HPLC and ¹H NMR analyses of sulfoxides.

20.1 The oxidation catalyzed by 8 mol % MOF 1.

(R)-Methyl phenyl sulfoxide (catalyzed by 8 mol % (R)-1)

Chiralcel OD-H column: 90/10 hexane/i-PrOH; flow rate 1.0 mL/min; $t_R = 12.21$ min; $t_R = 17.203$ min;

Serial Number	Retention Time [min]	Area [mAbs*s]	Туре	Area %
1	12.2167	2149.0591	BB	67.8512
2	17.2000	1018.2519	BB	32.1488
The Total		3167.3110		

-3.06 -2.73

Sulfone/Sulfoxide = 1:7

(*R*)- Isopropyl phenyl sulfoxide (catalyzed by 8 mol % (*R*)-1) Chiralcel OD-H column: 93/7 hexane/i-PrOH; flow rate 0.5 mL/min; $t_R = 19.53$ min; $t_R = 24.63$ min;

Serial Number	Retention Time [min]	Area [mAbs*s]	Туре	Area %
1	19.5333	8257.8054	BB	71.0559
2	24.6333	3363.7540	BB	28.9441
The Total		11621.5594		

(*R*)- Benzyl phenyl sulfoxide (catalyzed by 8 mol % (*R*)-1) Chiralcel OD-H column: 90/10 hexane/i-PrOH; flow rate 1.0 mL/min; $t_R = 16.76$ min; $t_R = 20.93$ min;

Serial Number	Retention Time [min]	Area [mAbs*s]	Туре	Area %
1	16.7667	5355.5805	BB	76.3067
2	20.9333	1662.9132	BB	23.6933
The Total		7018.4937		

(S)- Benzyl phenyl sulfoxide (catalyzed by 8 mol % (S)-1)

编号	RT[分钟]	面积[mAbs*s]	类型	峰宽[秒]	面积%
1	16.1333	6720.0431	BB	67.0000	24. 3456
2	19.7333	20882.6249	BB	130.0000	75.6544
和		27602.6680			

(*R*)-Methyl p-toyl sulfoxide (catalyzed by 8 mol % (*R*)-1)

Chiralcel OD-H column: 90/10 hexane/i-PrOH; flow rate 1.0 mL/min; $t_R = 11.40$ min; $t_R = 13.20$ min;

Serial Number	Retention Time [min]	Area [mAbs*s]	Туре	Area %
1	11.4000	11770.3305	BB	69.4964
2	13.2000	5166.2758	BB	30.5036
The Total		16936.6063		

(*R*)-14-nitrophenyl sulfoxide oxidized by 30% H₂O₂ (catalyzed by 8 mol % (*R*)-1) Chiralcel OJ-H column: 80/20 hexane/i-PrOH; flow rate 1.0 mL/min; $t_R = 31.00$ min; $t_R = 39.06$ min;

Serial Number	Retention Time [min]	Area [mAbs*s]	Туре	Area %
1	31.0000	24780.8786	BB	68.8408
2	39.0667	11216.4759	BB	31.1592
The Total		35997.3545		

(*R*)-Methyl 4-nitrophenyl sulfoxide oxidized by 30% H₂O₂-Urea (catalyzed by 8 mol % (*R*)-1).

Chiralcel OJ-H column: 80/20 hexane/i-PrOH; flow rate 1.0 mL/min; $t_R = 28.25$ min; $t_R = 35.03$ min; \pm

Serial Number	Retention Time [min]	Area [mAbs*s]	Туре	Area %
1	28.2500	11496.7565	BB	78.6729
2	35.0333	3116.6112	BB	21.3271
The Total		14613.3678		

(*R*)-2-naphthyl Benzyl sulfoxide (catalyzed by 8 mol % (*R*)-1) Chiralcel AD-H column: 85/15 hexane/i-PrOH; flow rate 1.2 mL/min; $t_R = 21.28$ min; $t_R = 24.83$ min;

Serial Number	Retention Time [min]	Area [mAbs*s]	Туре	Area %
1	21.2833	16808.5943	BB	82.1663
2	24.8333	3648.2022	BB	17.8337
The Total		20456.7966		

(*R*)- 2-Naphthyl benzyl sulfoxide (catalyzed by 8 mol% (*R*)-1) Chiralcel AD-H column: 85/15 hexane/i-PrOH; flow rate 1.0 mL/min; $t_R = 21.28$ min; $t_R = 24.83$ min;

Serial	Retention	Area	Туре	Area %
Number	Time [min]	[mAbs*s]		
1	25.4500	27282.0755	BB	90.4708
2	30.0833	2873.5907	BB	8.5292
The Total		3015.6662		

Sulfone/Sulfoxide = 1:3

(*R*)- Naphthyl 2-methylenenaphthyl sulfoxide (catalyzed by 8 mol % (*R*)-1) Chiralcel AD-H column: 85/15 hexane/i-PrOH; flow rate 1.0 mL/min; $t_R = 25.35$ min; $t_R = 28.78$ min;

Serial Number	Retention Time [min]	Area [mAbs*s]	Туре	Area %
1	25.3500	1110.6274	BB	79.2573
2	28.7833	1290.6662	BB	20.7427
The Total		1401.2936		

20.2 Oxidation of $PhSCH_2Ph$ by 1 mol% and 0.1 mol % of MOF 1

The catalytic reaction with low catalyst loading was carried out in the same way as described above (72 h) and the results were summarized as following:

Table S5 Comparison of the catalytic performance at different catalyst loading						
Catalyst loading (%) of 1	Conv. (%)	ee (%)	Select. (%)			
1	24	17	92			
0.1	18	7	94			

Table S3 Comparison of the catalytic performance at different catalyst loading

1% catalyst loading

0.1% catalyst loading

分析结果	

编号	RT[分钟]	面积[mAbs*s]	类型	峰宽[秒]	面积%
1	14.5000	19572.3311	BB	106.0000	53.2596
2	17.6833	17176. 5893	BB	121.0000	46.7404
和		36748.9204			

20.3 The oxidation catalyzed by 24 mol% TiL.

The reactions were carried out in the same way as described above and stopped at the conversions close to those of corresponding heterogeneous reactions catalyzed by **1**.

(R)-Methyl phenyl sulfoxide (catalyzed by 24 mol% TiL, 24h)

(*R*)-Isopropyl phenyl sulfoxide (catalyzed by 24 mol%TiL, 24h)

(*R*)-Benzyl phenyl sulfoxide (catalyzed by 24 mol % TiL, 28h)

(*R*)-Naphthyl dendritic sulfoxide (catalyzed by 24% mol TiL, 72h) Chiralcel OD-H column: 90/10 hexane/i-PrOH; flow rate 0.5 mL/min; $t_R = 15.76$ min; $t_R = 21.95$ min;

Serial Number	Retention Time [min]	Area [mAbs*s]	Туре	Area %
1	15.7667	11948.5556	BB	43.5221
2	21.9500	15505.4555	BB	56.4779
The Total		27454.0114		

-4.34 -4.19 -4.16 -3.99 -3.96

20.4 Oxidation of sulfides catalyzed by 8 mol% TiL.

Table 54 Summary of the eatarytic results with 8 months rule						
	Conv. (%)	ee (%)	Select. (%)			
Methyl phenyl sulfide	91	3	69			
Benzyl phenyl sulfide	71	3	73			

 Table S4 Summary of the catalytic results with 8 mol% TiL

RT[分钟]	面积[mAbs*s]	类型	峰宽[秒]	面积%
13.0500	2392.1845	BB	80. 0000	51.4686
17.8167	2255.6634	FF	101.0000	48.5314
	4647.8479			
	RT[分钟] 13.0500 17.8167	RT[分钟] 面积[mAbs*s] 13.0500 2392.1845 17.8167 2255.6634 4647.8479	RT[分钟] 面积[mAbs*s] 类型 13.0500 2392.1845 BB 17.8167 2255.6634 FF 4647.8479 4647.8479 FF	RT[分钟] 面积[mAbs*s] 类型 峰宽[秒] 13.0500 2392.1845 BB \$0.0000 17.8167 2255.6634 FF 101.0000 4647.8479 \$101.0000 \$101.0000 \$101.0000

分析结	果					
编号	RT[分钟]	面积[mAbs*s]	类型		峰宽[秒]	面积%
1	15.7000	6093.4088		BB	91.0000	51.6754
2	19.2833	5698.2960		BB	110.0000	48.3246
和		11791.7047				
	4.31		11.4	4.08	4.01	3.98
	Ĩ		Ĩ	Ĩ	Ĩ	Ť

21. The result of recycling study of **1** in the oxidation benzyl phenyl sulfide with 1.2 equiv H_2O_2 (All reactions were run for 72 h at r.t unless noted otherwise).

21.1. Study of conversion, selectivity and enantiomeric excess vs time in the catalytic oxidation of PhSCH₂Ph by MOF **1** in the 1st cycle.

Figure S17 Sulfide conversion, selectivity of sulfoxide and enantiomeric excess vs time for the 1st cycle.

54

¹H NMR data

21.2. The result of the 2^{nd} cycle

Serial Number	Retention Time [min]	Area [mAbs*s]	Туре	Area %
1	14.6667	3704.1061	BB	74.8019
2	17.9500	1247.7801	BB	25.1981
The Total		4951.8861		

21.3 Kinetic study of conversion, selectivity and enantiomeric excess vs time in the catalytic oxidation of PhSCH₂Ph by MOF 1 in the 3rd cycle.

Figure S18. Plots of sulfide conversion, selectivity of sulfoxide and enantiomeric excess vs time for the 3rd cycle .

HPLC data

Serial Number	Retention	Area [mAbs*s]	Туре	Area %
	Time [min]			
1	15.0333	5759.8054	BB	65.6434
2	18.5000	2998.8751	BB	34.3566
The Total		8728.6806		

Serial Number	Retention Time [min]	Area [mAbs*s]	Туре	Area %
1	15.3167	7697.3323	BB	66.8660
2	18.9500	3814.2539	BB	33.1340
The Total		11511.5862		

分析结	果				
编号	RT[分钟]	面积[mAbs*s]	类型	峰宽[秒]	面积%
1	14.5667	9553.1026	BB	102.0000	73.8023
2	17.8667	3391.0697	BB	98.0000	26.1977
和		12944. 1723			

分析结果						
编号	RT[分钟]	面积[mAbs*s]	类型	峰宽[秒]	面积%	
1	14.3167	21189.3367	BB	113.0000	69.8947	
2	17.5833	9126.7545	BB	97.0000	30.1053	
和		30316.0912				

22 11 21	1215				
编号	RT[分钟]	面积[mAbs*s]	类型	峰宽[秒]	面积%
1	14. 4333	8731.2078	BB	99.0000	69.9934
2	17.7000	3743.1145	BB	97.0000	30.0066
和		12474. 3223			

刀机组	达				
编号	RT[分钟]	面积[mAbs*s]	类型	峰宽[秒]	面积%
1	14.5500	11659.5205	BB	106.0000	72.9569
2	17.8833	4321.8624	BB	99.0000	27.0431
和		15981.3828			

编号	RT[分钟]	面积[mAbs*s]	类型	峰宽[秒]	面积%
1	14. 5333	7893.7467	BB	92.0000	74.3927
2	17.8167	2717.1711	BB	94.0000	25.6073
和		10610.9178			

¹H NMR data

