Copper(I)-Catalyzed Diastereoselective Hydroxytrifluoromethylation of Dienes

Accelerated by Phosphine Ligands

Deng-Fu Lu, Cheng-Liang Zhu and Hao Xu*

Department of Chemistry, Georgia State University, Atlanta GA 30303, United States

Supporting Material

A. General Information

- B. Catalyst Discovery for Diastereoselective Hydroxytrifluoromethylation of Dienes
- C. Procedures of Copper(I)-Catalyzed Diastereoselective Hydroxytrifluoromethylation of Dienes and Product Relative Stereochemistry Determination
- D. Optimized Geometric Details of Conformations by Computational Studies
- E. References
- F. NMR spectra

A. General Information

General Procedures. All reactions were performed in oven-dried or flame-dried round-bottom flasks and vials. Stainless steel syringes and cannula were used to transfer air- and moisture-sensitive liquids. Flash chromatography was performed using silica gel 60 (230-400 mesh) from Sigma Aldrich.

Materials. Commercial reagents were purchased from Sigma Aldrich, Fluka, EM Science, and Lancaster and used as received. All solvents were used after being freshly distilled unless otherwise noted.

Instrumentation. Proton nuclear magnetic resonance (¹H NMR) spectra and carbon nuclear magnetic resonance (¹³C NMR) spectra were recorded on Bruker UltraShield-400 (400 MHz). Chemical shifts for protons are reported in parts per million downfield from tetramethylsilane and are referenced to the NMR solvent residual peak (CHCl₃: δ 7.26). Chemical shifts for carbons are reported in parts per million downfield from tetramethylsilane and are referenced to the NMR solvent (CDCl₃: δ 77.0). For those complicated spin-spin splitting patterns, coupling constants were obtained by 2D J-resolve experiments. Data are represented as follows: chemical shift, multiplicity (br = broad, s = singlet, d = doublet, t = triplet, q = quartet, p = pentet, m = multiplet), coupling constants in Hertz (Hz), and integration.

The mass spectroscopic data were obtained at the Georgia State University mass spectrometry facility using a Micromass Platform II single quadrupole instrument. Infrared (IR) spectra were obtained by using a Perkin Elmer Spectrum 100 FT-IR spectrometer. Data are represented as follows: frequency of absorption (cm^{-1}).

Molecular modeling was carried on some compounds to assist the stereochemistry determination. Optimal geometries of diastereomers were achieved by analytical gradient methods with the Gaussian09 software package. The density functional theory (DFT) calculations were performed at the B3LYP 6-31+G** or M06L 6-31+G** + LANL2DZ level of theories as noted.¹

Abbreviations used: EtOH – ethanol, EtOAc – ethyl acetate, THF – tetrahydrofuran, MeOH – methanol, Et_2O – diethyl ether, DCM – dichloromethane, TEA – triethylamine, MS – molecular sieves, TLC – thin layer chromatography.

B. Catalyst Discovery for Diastereoselective Hydroxytrifluoromethylation of Dienes

(1.25 equiv) 3O₂CAr catalyst (15 mol %) 2 DCM, RT Ar: o-iodo-phenyl PPh_3 PCy₃ PⁿBu₃ rac-BINAP P^tBu₃ 9 5 6 7 8 conversion^b yield^b entry^a Cu (X)_n ligand T(h) dr^b (15 mol %) (%) (%) 1 Cu(MeCN)₄PF₆ NA 4 90 32 1.2 2 CuCl NA 4 80 56 2.0 3 CuCN NA 12 <10 trace NA 4^c CuCN 4 12 <10 trace NA 5^c 5 CuCN 6 >95 53 3.0 6 6^c CuCN 4 >95 47 5.0 7^c CuCN 7 4 >95 40 4.2 8^c CuCN 8 23 12 50 7.0 9c,d CuCN 9 6 >95 77 6.7 Cu(MeCN)₄PF₆ 10^c 9 NA NA 12 trace CuCl 9 12 <20 13 5.5 11^c

Table S1. Catalyst discovery for hydroxytrifluoromethylation of dienes

General Procedure

To a flame-dried sealable 2-dram vial equipped with a stir bar were added a copper salt (0.03 mmol) and the corresponding ligand (0.03 mmol). After the vial was evacuated and backfilled three times, dry dichloromethane (2 mL) was added via a syringe and the mixture was stirred for 30 min at room temperature and then cooled to 0 °C. Diene **1** (0.2 mmol) was added to the vial via a syringe. The Togni's reagent **3** (76 mg, 0.24 mmol) was then dissolved in dichloromethane (2 mL) and added via a syringe. The reaction mixture was degassed again by brief evacuation and backfilling with argon three times, then warmed to room temperature and kept stirring until the starting material was fully consumed (monitored by GC). α , α , α -Trifluorotoluene was then added as an internal standard and the reaction was analyzed by ¹⁹F NMR.

C.ProceduresforCopper(I)-CatalyzedDiastereoselectiveHydroxytrifluoromethylation and Product Relative Stereochemistry Determination

a. Synthesis of Dienes

The diene substrates 1,3-cyclohexadiene (1), isoprene (S6), and 7-methyl-3-methylene-1,6octadiene (myrcene, S7) were purchased from Sigma-Aldrich and redistilled before use. The substrate cyclopentadiene (S1) was obtained via retro-Diels–Alder reaction by heating commercially available dicyclopentadiene above 150 $^{\circ}$ C.

Substrates (*E*)-Buta-1,3-dienylbenzene diene (**S2**),² (*E*)-deca-1,3-diene (**S3**),³ 1-vinylcyclohex-1ene (**S4**),⁴ (*E*)-(2-methylbuta-1,3-dien-1-yl)benzene (**S5**),⁵ (*E*)-penta-2,4-dien-1-ol (**S8**),⁶ (4methylpenta-1,3-dien-1-yl)benzene (**S9**),⁷ and (1*E*)-penta-1,3-dien-1-ylbenzene (**S10**)⁸ were prepared according to literature procedures and their NMR spectra were in accordance with the previously reported data. The Togni's reagent **3** (3,3-Dimethyl-1-(trifluoromethyl)-1,2benziodoxole) was synthesized according to a literature.⁹

b. General Procedure

To a flame-dried sealable 2-dram vial equipped with a stir bar were added CuCN (13 mg, 0.15 mmol, tri-*tert*-butylphosphonium tetrafluoroborate (44 mg, 0.15 mmol) and *N*,*N*-diisopropylethylamine (26 μ L, 0.15 mmol). After the vial was evacuated and backfilled three times, dry dichloromethane (10 mL) was added via a syringe and the mixture was stirred for 30 min at room temperature. The diene substrate (1.0 mmol) was then added to the vial via a syringe. To another flame dried vial was added the Togni's reagent **3** (379 mg, 1.2 mmol) dissolved in dichloromethane (12 mL). Both of the vials were degassed by brief evacuating and backfilling with argon three times and the Togni's reagent was then added to the substrate dropwise by

syringe pump over 3 hours. The reaction mixture was stirred until the diene was consumed which was monitored by TLC. After the reaction was quenched by saturated aqueous sodium bicarbonate solution, the aqueous layer was separated and extracted by ether (20 mL \times 3). The combined organic phase was dried over anhydrous Na₂SO₄ and concentrated *in vacuo*. The residue was purified by silica gel flash column chromatography to afford the 1,4-hydroxytrifluoromethylation product.

c. Product Characterization and Relative Stereochemistry Determination

trans-4-(Trifluoromethyl)cyclohex-2-en-1-yl 2-iodobenzoate(2): by following the general procedure (1.0 mmol scale), product 2 was obtained from 1 and isolated by silica gel flash column (hexanes : ether = 99 : 1 to 9 : 1) as colorless oil (249 mg, 63% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.01 (d, *J* = 7.9 Hz, 1H), 7.79 (d, *J* = 7.7 Hz, 1H), 7.42 (t, *J* = 7.6 Hz, 1H), 7.17 (t, *J* = 7.6 Hz, 1H), 6.15 (d, *J* = 10.3 Hz, 1H), 5.92 (d, *J* = 10.3 Hz, 1H), 5.66 – 5.52 (m, 1H), 3.07 – 2.88 (m, 1H), 2.43 – 2.26 (m, 1H), 2.22 – 2.09 (m, 1H), 1.94 – 1.77 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 166.1, 141.3, 135.3, 132.7, 131.4, 130.9, 127.9, 126.7 (q, *J* = 279.8), 124.9 (q, *J* = 3.0 Hz), 94.0, 69.4, 39.9 (q, *J* = 27.5 Hz), 26.2, 19.6 (q, *J* = 2.4 Hz); ¹⁹F NMR (377 MHz, CDCl₃) δ -72.33 (d, *J* = 9.2 Hz); HRMS (ESI, m/z): calcd for C₁₄H₁₂F₃INaO₂+ (M + Na⁺), 418.9726, found 418.9715; IR v_{max} (neat)/cm⁻¹: 3043 (w), 2956 (m, sharp), 1719 (s, C=O).

cis-4-(Trifluoromethyl)cyclohex-2-en-1-yl 2-iodobenzoate (2'): by following the general procedure (1.0 mmol scale), product 2' was obtained from 1 and isolated by silica gel flash

column (hexanes : ether = 99 : 1 to 9 : 1) as colorless oil (37 mg, 9% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.01 (d, *J* = 7.9 Hz, 1H), 7.79 (d, *J* = 7.7 Hz, 1H), 7.42 (t, *J* = 7.4 Hz, 1H), 7.16 (t, *J* = 7.5 Hz, 1H), 6.23 (d, *J* = 10.0 Hz, 1H), 6.03 (d, *J* = 10.2 Hz, 1H), 5.57 – 5.45 (m, 1H), 3.01 – 2.79 (m, 1H), 2.26 – 2.12 (m, 1H), 2.06 – 1.85 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.0, 141.3, 135.4, 132.6, 130.9, 129.4, 127.9, 126.7 (q, *J* = 283.8 Hz),126.5 (q, *J* = 3.3 Hz), 93.8, 67.0, 40.4 (q, *J* = 27.5 Hz), 26.1, 17.7 (q, *J* = 2.4 Hz); ¹⁹F NMR (377 MHz, CDCl₃) δ -72.27 (d, *J* = 9.2 Hz); HRMS (ESI, m/z): calcd for C₁₄H₁₂F₃INaO₂⁺ (M + Na⁺), 418.9726, found 418.9715; IR v_{max} (neat)/cm⁻¹: 3045 (w), 2959 (m, sharp), 1717 (s, C=O).

Relative stereochemistry determination: The relative stereochemistry of **2** and **2'** is determined by nuclear overhauser effect (*NOE*) analysis after the derivatization for both of them.

Derivatization of compound 2:

2 (100 mg, 0.25 mmol, 1.0 equiv) and NMO (*N*-Methylmorpholine *N*-oxide) (44.3 mg, 0.38 mmol, 1.5 equiv) were dissolved in acetone/water 3:1 mixture (4 mL). Then OsO₄ dissolved in acetonitrile (c = 0.0066 mmol/ml, 1.9 ml, 5 mol%) was slowly added via a syringe at room temperature. The mixture was stirred for 2 days, and then quenched by saturated NaS₂O₃ solution. After evaporation of acetone, the aqueous phase was extracted by ethyl acetate (4×5 mL) and then dried over anhydrous Na₂SO₄. The diol was purified by column chromatography to afford colorless oil (60 mg, 56%), which was used without further purification. The colorless oil was dissolved in acetone (3 mL) and 2,2-dimethoxylpropane (0.5 mL) to which *p*-toluenesulfonic acid monohydrate (2.6 mg, 0.013 mmol, ca.10 mol%) was added subsequently. After 3 hours, the reaction was quenched with solid NaHCO₃. The mixture was filtered and the filtrate was concentrated under vacuum. The desired compound was isolated as colorless oil after purification by column chromatography (58 mg, 49% two step combined yield). ¹H NMR (400 MHz, CDCl₃) δ 8.01 (d, J = 7.8 Hz, 1H), 7.83 (d, J = 7.7 Hz, 1H), 7.44 (t, J = 7.5 Hz, 1H), 7.19

(t, J = 7.7 Hz, 1H), 5.31 - 5.21 (m, 1H), 4.65 - 4.57 (m, 1H), 4.38 - 4.28 (m, 1H), 2.46 - 2.33 (m, 1H), 2.12 - 1.93 (m, 3H), 1.58 (s, 3H), 1.50 - 1.35 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 166.1, 141.3, 134.9, 132.8, 131.1, 128.0, 127.2 (q, J = 280.1 Hz), 110.4, 94.1, 73.6, 73.4, 71.4, 44.3 (q, J = 25.2 Hz), 28.3, 26.2, 23.4, 19.8 (d, J = 3.0 Hz); ¹⁹F NMR (377 MHz, CDCl₃) δ - 70.73 (d, J = 8.1 Hz); HRMS (ESI, m/z): calcd for C₁₇H₁₉F₃IO₄⁺ (M + H⁺), 471.0275, found 471.0283. IR v_{max} (neat)/cm⁻¹: 2977(m), 2936 (m), 1724 (s, C=O).

NOE observed 2a

Electronic Supplementary Material (ESI) for Chemical Science This journal is O The Royal Society of Chemistry 2013

Derivatization of compound 2':

2' a: **2'** was converted to **2'** a by following the previously mentioned procedure with 72% overall yield after two steps. ¹H NMR (400 MHz, CDCl₃) δ 8.03 (d, *J* = 7.9 Hz, 1H), 7.81 (d, *J* = 7.7 Hz, 1H), 7.45 (t, *J* = 7.6 Hz, 1H), 7.20 (t, *J* = 7.4 Hz, 1H), 5.52 (d, *J* = 3.3 Hz, 1H), 4.43 (t, *J* = 6.3 Hz, 1H), 4.32 (s, 1H), 2.54 – 2.35 (m, 1H), 1.97 (t, *J* = 11.0 Hz, 2H), 1.93 – 1.75 (m, 2H), 1.57 (s, 3H), 1.41 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 165.4, 141.5, 134.8, 133.0, 131.2, 128.1, 127.2 (q, *J* = 280.0 Hz), 109.5, 93.9, 74.6, 71.8 (d, *J* = 1.8 Hz), 71.2, 43.8 (q, *J* = 25.3 Hz), 28.2, 26.3, 24.2, 17.6 (q, *J* = 2.8 Hz); ¹⁹F NMR (377 MHz, CDCl₃) δ -70.08 (d, *J* = 8.7 Hz); HRMS (ESI, m/z): calcd for C₁₇H₁₉F₃IO₄⁺ (M + H⁺), 471.0275, found 471.0273. IR v_{max} (neat)/cm⁻¹: 3058 (w), 2987 (m, sharp), 1729 (s, C=O).

Electronic Supplementary Material (ESI) for Chemical Science This journal is O The Royal Society of Chemistry 2013

S11

trans-4-(Trifluoromethyl)cyclopent-2-enol (S1b): by following the general procedure (1.0 mmol scale) with the variation (1.5 eq cyclopentadiene and 1.0 eq Togni's reagent were used).

To facilitate the product separation, **S1a** was hydrolyzed to **S1b** according to a literature procedure. To a vial charged with ester (0.2 mmol) and a co-solvent of THF/MeOH/H₂O (2:2:1, 5 mL) was added lithium hydroxide (0.3 mmol). The reaction was stirred at room temperature until the ester was consumed which was indicated by TLC. Then the reaction mixture was concentrated under reduced pressure to remove the organic solvent and the aqueous phase was extracted by ether (2 mL × 4). The combined organic phase was dried over anhydrous sodium sulfate, concentrated and purified by a silica gel flash column (hexanes : EtOAc = 10 : 1 to 4 : 1) **S1b** was obtained as colorless oil (102 mg, 67% yield). (Note: the product is volatile and it should be handled carefully under the vacuum) ¹H NMR (400 MHz, CDCl₃) δ 6.16 – 6.05 (m, 1H), 5.91 – 5.81 (m, 1H), 5.01 (d, *J* = 3.4 Hz, 1H), 3.65 – 3.53 (m, 1H), 2.36 (ddd, *J* = 14.5, 7.2, 4.5 Hz, 1H), 1.95 (ddd, *J* = 14.4, 8.6, 3.5 Hz, 1H); ¹³C NMR (100MHz, CDCl₃) δ 139.1, 128.8 (q, *J* = 2.8 Hz), 127.1 (q, *J* = 277.8 Hz), 76.4, 49.0 (q, *J* = 28.7 Hz), 33.9; ¹⁹F NMR (377 MHz, CDCl₃) δ -71.34 (d, *J* = 9.2 Hz); HRMS (ESI, m/z): calcd for C₆H₆F₃O⁻ (M – H⁺), 151.0376, found 151.0373; IR v_{max} (neat)/cm⁻¹: 3321 (br, O-H), 3073 (w), 2916 (w, sharp).

NOE results predicted based on computational studies:

Electronic Supplementary Material (ESI) for Chemical Science This journal is O The Royal Society of Chemistry 2013

 H_a-H_f : 2.347 Å, strong *NOE* predicted H_a-H_e : 2.797 Å, weak *NOE* predicted H_b-H_f : 3.025 Å weak *NOE* predicted H_b-H_e : 2.406 Å strong *NOE* predicted

S1'b

 H_a-H_f : 2.407 Å, strong *NOE* predicted H_a-H_e : 2.997 Å, weak *NOE* predicted H_b-H_f : 2.408 Å, strong *NOE* predicted H_b-H_e : 3.041 Å, weak *NOE* predicted

3.041

H

2.408 Å

HF / B3YP 6-31+G**

2.997 A

Ha

2.407 A

S1b

 $\begin{array}{l} H_a-H_f: \mbox{ strong } \textit{NOE} \mbox{ observed}; \\ H_a-H_e: \mbox{ weak } \textit{NOE} \mbox{ observed}; \\ H_b-H_f: \mbox{ weak } \textit{NOE} \mbox{ observed}; \\ H_b-H_e: \mbox{ strong } \textit{NOE} \mbox{ observed}. \end{array}$

NOE results observed:

(*E*)-5,5,5-Trifluoro-1-phenylpent-2-en-1-yl 2-iodobenzoate (S2a): following the general procedure (1.0 mmol scale), the title compound was obtained from S2 and isolated by a silica gel flash column (deactived by 1% Et₃N, hexanes : ether = 99 : 1 to 20 : 1) as colorless oil (321 mg, 72% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.02 (d, *J* = 7.9 Hz, 1H), 7.85 (d, *J* = 7.8 Hz, 1H), 7.52 – 7.31 (m, 6H), 7.18 (t, *J* = 7.6 Hz, 1H), 6.55 (d, *J* = 6.1 Hz, 1H), 6.08 (dd, *J* = 15.5, 6.1 Hz, 1H), 5.89 – 5.78 (m, 1H), 2.98 – 2.80 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 165.3, 141.5, 138.1, 135.3, 134.9, 132.8, 131.0, 128.7, 128.6, 128.0, 127.3, 125.6 (q, *J* = 276.7 Hz), 121.6 (q, *J* = 3.6 Hz), 94.2, 76.6, 37.0 (q, *J* = 30.1 Hz); ¹⁹F NMR (377 MHz, CDCl₃) δ -66.08 (t, *J* = 10.6 Hz); HRMS (ESI, m/z): calcd for C₁₈H₁₄F₃INaO₂⁺ (M + Na⁺), 468.9883, found 468.9905; IR v_{max} (neat)/cm⁻¹: 3062 (w), 2926 (m), 1726 (s, C=O).

(*E*)-1,1,1-trifluoroundec-3-en-5-yl 2-iodobenzoate (S3a): by following the general procedure (1.0 mmol scale), S3a was obtained from S3 and isolated by a silica gel flash column (hexanes : ether = 99 : 1 to 20 : 1) as colorless oil (308 mg, 68% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.01 (d, *J* = 7.9 Hz, 1H), 7.79 (dd, *J* = 7.8, 1.4 Hz, 1H), 7.42 (t, *J* = 7.6 Hz, 1H), 7.17 (td, *J* = 7.6, 1.4 Hz, 1H), 5.90 – 5.71 (m, 2H), 5.52 (q, *J* = 6.4 Hz, 1H), 2.97 – 2.77 (m, 2H), 1.92 – 1.79 (m, 1H), 1.79 – 1.68 (m, 1H), 1.46 – 1.23 (m, 8H), 0.90 (t, *J* = 6.7 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 165.8, 141.3, 135.6, 135.5, 132.6, 130.8, 127.9, 125.7 (d, *J* = 276.5 Hz), 121.4 (q, *J* = 3.5 Hz), 93.9, 75.5, 37.1 (q, *J* = 30.0 Hz), 34.2, 31.7, 29.0, 25.0, 22.6, 14.1; ¹⁹F NMR (377 MHz, CDCl₃) δ -66.24 (t, *J* = 10.6 Hz); HRMS (ESI, m/z): calcd for C₁₈H₂₂F₃INaO₂⁺ (M + Na⁺), 477.0509, found 477.0520; IR v_{max} (neat)/cm⁻¹: 3062 (*w*), 2926 (*m*, sharp), 1726 (*s*, C=O).

(*E*)-2-(3,3,3-trifluoropropylidene)cyclohexyl 2-iodobenzoate (S4a): by following the general procedure (1.0 mmol scale), S4a was obtained from S4 and isolated by a silica gel flash column (hexanes : ether = 99 : 1 to 9 : 1) as colorless oil (309 mg, 73% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.02 (d, *J* = 7.9 Hz, 1H), 7.83 (dd, *J* = 7.7, 1.3 Hz, 1H), 7.44 (t, *J* = 7.6 Hz, 1H), 7.17 (dd, *J* = 10.8, 4.5 Hz, 1H), 5.58 – 5.44 (m, 2H), 2.99 – 2.78 (m, 2H), 2.53 – 2.37 (m, 1H), 2.23 (dd, *J* = 12.4, 6.1 Hz, 1H), 2.02 – 1.81 (m, 3H), 1.80 – 1.50 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 165.5, 143.1, 141.3, 135.7, 132.5, 130.8, 127.9, 126.1 (q, *J* = 276.6 Hz), 111.6, 111.5, 93.8, 76.7, 33.1, 32.0 (q, *J* = 29.9 Hz), 26.7 (d, *J* = 2.9 Hz), 22.6; ¹⁹F NMR (377 MHz, CDCl₃) δ -66.08 (t, *J* = 10.8 Hz); HRMS (ESI, m/z): calcd for C₁₆H₁₇F₃IO₂⁺ (M + H⁺), 425.0220, found 425.0231; IR v_{max} (neat)/cm⁻¹: 2936 (*m*, sharp), 1724 (*s*, C=O).

S4a

(*E*)-5,5,5-trifluoro-2-methyl-1-phenylpent-2-en-1-yl 2-iodobenzoate (S5a): by following the general procedure (1.0 mmol scale), S5a was obtained from S5 and isolated by a silica gel flash column (deactived by 1% Et₃N, hexanes : ether = 99 : 1 to 20 : 1) as colorless oil (340 mg, 74% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.03 (d, *J* = 7.9 Hz, 1H), 7.86 (t, *J* = 11.1 Hz, 1H), 7.51 – 7.31 (m, 6H), 7.19 (t, *J* = 7.6 Hz, 1H), 6.47 (s, 1H), 5.81 (t, *J* = 7.3 Hz, 1H), 3.06 – 2.85 (m, 2H), 1.69 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 165.1, 141.6, 139.8, 137.6, 134.8, 132.8, 131.0, 128.6, 128.3, 128.0, 127.1, 126.2 (q, *J* = 276.9 Hz), 115.6 (q, *J* = 3.4 Hz), 94.2, 80.4, 32.8 (q, *J* = 29.8 Hz), 13.6; ¹⁹F NMR (377 MHz, CDCl₃) δ -65.83 (t, *J* = 10.8 Hz); HRMS (ESI, m/z): calcd for C₁₉H₁₆F₃INaO₂⁺ (M + Na⁺), 483.0039, found 483.0056; IR v_{max} (neat)/cm⁻¹: 3067 (w), 2927 (s, sharp), 1729 (s, C=O).

S5a

(*E*)-5,5,5-trifluoro-3-methylpent-2-en-1-yl 2-iodobenzoate (S6a): by following the general procedure (1.0 mmol scale), S6a was obtained from S6 and isolated by a silica gel flash column (deactived by 1% Et₃N, hexanes : ether = 99 : 1 to 9 : 1) as colorless oil (257 mg, 67% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.99 (d, *J* = 7.9 Hz, 1H), 7.76 (d, *J* = 7.8 Hz, 1H), 7.42 (t, *J* = 7.6 Hz, 1H), 7.17 (q, *J* = 7.4 Hz, 1H), 6.21 (dd, *J* = 17.4, 11.0 Hz, 1H), 5.40 (d, *J* = 17.4 Hz, 1H), 5.31 (d, *J* = 11.0 Hz, 1H), 3.08 – 2.88 (m, 2H), 1.83 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 165.4, 141.2, 139.8, 135.7, 132.6, 130.8, 128.0, 125.4 (q, *J* = 278.2 Hz), 115.0, 93.8, 80.1, 41.9 (q, *J* = 27.4 Hz), 24.5; ¹⁹F NMR (377 MHz, CDCl₃) δ -60.19 (t, *J* = 10.7 Hz); HRMS (ESI, m/z): calcd for C₁₃H₁₃F₃IO₂⁺ (M + H⁺), 384.9907, found 384.9913; IR v_{max} (neat)/cm⁻¹: 2977 (m), 2856 (w), 1726 (s, C=O).

(Z)-7-methyl-3-(2,2,2-trifluoroethyl)octa-2,6-dien-1-yl 2-iodobenzoate (S7a): by following the general procedure C (1.0 mmol scale), S7a was obtained through the reaction of myrcene S7 (2.0 equiv) and Togni's reagent (1.0 equiv), and isolated by a silica gel flash column (hexanes : ether = 99 : 1 to 20 : 1) as colorless oil (262 mg, 58% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.02 (d, *J* = 7.9 Hz, 1H), 7.79 (d, *J* = 7.7 Hz, 1H), 7.42 (t, *J* = 7.5 Hz, 1H), 7.18 (t, *J* = 7.6 Hz, 1H), 5.96 (dd, *J* = 17.3, 11.1 Hz, 1H), 5.42 (d, *J* = 17.3 Hz, 1H), 5.37 (d, *J* = 11.1 Hz, 1H), 5.11 (t, *J* = 6.6 Hz, 1H), 3.37 – 3.19 (m, 1H), 2.99 – 2.82 (m, 1H), 2.51 – 2.38 (m, 1H), 2.12 – 1.97 (m, 2H), 1.93 – 1.81 (m, 1H), 1.67 (s, 3H), 1.59 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 165.3, 141.4, 138.4, 135.4, 132.6, 130.9, 128.0, 125.4 (q, *J* = 278.1 Hz), 122.8, 115.4, 94.0, 82.4, 39.6 (q, *J* = 27.1 Hz), 37.0, 25.7, 21.7, 17.8; ¹⁹F NMR (377 MHz, CDCl₃) δ -59.99 (t, *J* = 10.7 Hz); HRMS (ESI, m/z): calcd for C₁₈H₂₁F₃IO₂⁺ (M + H⁺), 453.0533, found 453.0529; IR v_{max} (neat)/cm⁻¹: 2916 (m, sharp), 1729 (s, C=O).

(*E*)-7-methyl-3-(2,2,2-trifluoroethyl)octa-2,6-dien-1-ol (S7b): the configuration of S7b was determined by ROESY experiment after hydrolysis by following the typical hydrolysis procedure (at 50 °C for 5 hours in this case); S7b was isolated by silica gel flash column (hexanes : ethyl acetate = 50:1 to 9:1) as colorless oil in 50% yield (note: product is volatile); ¹H NMR (400 MHz, CDCl₃) δ 5.92 (dd, *J* = 17.3, 10.7 Hz, 1H), 5.36 (d, *J* = 17.3 Hz, 1H), 5.25 (d, *J* = 10.8 Hz, 1H), 5.13 (t, *J* = 6.8 Hz, 1H), 2.53 – 2.31 (m, 2H), 2.16 – 1.95 (m, 2H), 1.78 – 1.67 (m, 4H), 1.67 – 1.59 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 141.3, 132.7, 125.9 (q, *J* = 278.2 Hz), 123.6, 113.8, 73.1, 44.5 (q, *J* = 25.6 Hz), 40.6, 25.7, 22.0, 17.7; ¹⁹F NMR (377 MHz, CDCl₃)

δ -59.82 (t, J = 11.1 Hz); HRMS (ESI, m/z): calcd for C₁₁H₁₆F₃O⁻ (M - H⁺), 221.1159, found 221.1152; IR v_{max} (neat)/cm⁻¹: 3473 (br), 2926 (s), 1259 (s).

S7b

 H_a - $H_{g/h}$: strong *NOE* observed; H_c - $H_{g/h}$: weak *NOE* observed.

(*E*)-6,6,6-trifluoro-1-hydroxyhex-3-en-2-yl 2-iodobenzoate (S8a): by following the general procedure C (1.0 mmol scale), S8a was obtained from S8 and isolated by a silica gel flash column (deactived by 1% Et₃N, hexanes : ether = 9 : 1 to 3 : 1) as colorless oil (272 mg, 68% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.01 (d, *J* = 7.9 Hz, 1H), 7.81 (d, *J* = 7.7 Hz, 1H), 7.44 (t, *J* = 7.6 Hz, 1H), 7.19 (t, *J* = 7.7 Hz, 1H), 5.98 – 5.78 (m, 2H), 5.67 – 5.59 (m, 1H), 3.98 – 3.78 (m, 2H), 2.90 (qd, *J* = 10.6, 4.1 Hz, 2H), 2.03 (br, *J* = 15.5 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 165.9, 141.3, 135.4, 132.8, 131.8, 131.1, 128.0, 125.5 (q, *J* = 276.5 Hz), 123.4 (q, *J* = 3.5 Hz), 93.7, 76.1, 64.3, 37.1 (q, *J* = 30.1 Hz); ¹⁹F NMR (377 MHz, CDCl₃) δ -66.21 (t, *J* = 10.6 Hz); HRMS (ESI, m/z): calcd for C₁₃H₁₃F₃IO₃⁺ (M + H⁺), 400.9856, found 400.9856; IR v_{max} (neat)/cm⁻¹: 3431 (br, O-H), 3058 (w), 2936 (m, sharp), 1721 (s, C=O).

(*E*)-6,6,6-trifluoro-2-methyl-5-phenylhex-3-en-2-yl 2-iodobenzoate (S9a): by following the general procedure C (1.0 mmol scale), a mixture of two region- isomers were obtained from S9 and purified by a silica gel flash column (deactived by 1% Et₃N, hexanes : ether = 99 : 1 to 20 : 1) as colorless oil (2:1, 318 mg, 67% overall yield). The mixture was subjected to hydrolysis with LiOH according to the previously mentioned procedure and S9a was recovered by a silica gel flash column (hexanes : EtOAc = 99 : 1 to 9 : 1) as colorless oil (166 mg, 35% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.95 (d, *J* = 8.0 Hz, 1H), 7.65 (d, *J* = 7.6 Hz, 1H), 7.45 – 7.31 (m, 6H), 7.13 (t, *J* = 7.6 Hz, 1H), 6.17 (d, *J* = 15.9 Hz, 1H), 6.04 (dd, *J* = 15.8, 7.5 Hz, 1H), 4.11 – 3.96 (m, 1H), 1.72 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 164.7, 139.9, 139.3, 136.0, 133.4, 131.1, 129.4, 128.2, 127.8, 127.2, 126.9, 125.0 (q, *J* = 280.0 Hz), 121.7, 92.4, 80.9, 51.7 (q, *J* = 27.8 Hz), 25.8, 25.6; ¹⁹F NMR (377 MHz, CDCl₃) δ -68.98 (d, *J* = 9.4 Hz); HRMS (ESI, m/z): calcd for C₂₀H₁₈F₃INaO₂⁺ (M + Na⁺), 497.0196, found 497.0188; IR v_{max} (neat)/cm⁻¹: 2972 (m, sharp), 2865 (m), 1722 (s, C=O).

(*E*)-5,5,5-trifluoro-4,4-dimethyl-1-phenylpent-2-en-1-ol (S9b): by following the general procedure C (1.0 mmol scale), two region- isomers (2:1, 318 mg, 67% overall yield) were obtained from S9 which showed on the TLC plate as one spot. The mixture was subjected to hydrolysis with LiOH according to the previously mentioned procedure. S9b was isolated by silica gel flash column (hexanes : EtOAc = 9 : 1 to 5 : 1) as colorless oil (49 mg, 20% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.48 – 7.30 (m, 5H), 5.94 (d, *J* = 15.8 Hz, 1H), 5.87 (dd, *J* = 15.8, 5.5 Hz, 1H), 5.26 (s, 1H), 1.99 (s, 1H), 1.28 (s, 3H), 1.26 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 142.4, 133.8, 131.2, 131.2, 128.7, 128.3 (q, *J* = 282.4 Hz), 127.9, 126.3, 74.6, 42.3 (q, *J* = 25.4 Hz), 21.1 (q, *J* = 2.1 Hz); ¹⁹F NMR (377 MHz, CDCl₃) δ -77.86 (s); HRMS (ESI, m/z): calcd for C₁₃H₁₅F₃NaO⁺ (M + Na⁺), 267.0967, found 267.0973; IR v_{max} (neat)/cm⁻¹: 3354 (br, O-H), 2980 (s, sharp).

(*E*)-5,5,5-trifluoro-4-methyl-1-phenylpent-2-en-1-yl 2-iodobenzoate (S10a): by following the general procedure C (1.0 mmol scale), S10a was obtained from S10 and purified by a silica gel flash column (deactived by 1% Et₃N, hexanes : ether = 99 : 1 to 9 : 1) as colorless oil (267 mg, 58% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.02 (d, *J* = 7.9 Hz, 1H), 7.84 (d, *J* = 7.8 Hz, 1H), 7.51 – 7.30 (m, 6H), 7.18 (t, *J* = 7.6 Hz, 1H), 6.56 (d, *J* = 6.1 Hz, 1H), 6.04 (dd, *J* = 15.6, 6.2 Hz, 1H), 5.85 (dd, *J* = 15.6, 7.7 Hz, 1H), 3.03 – 2.88 (m, 1H), 1.28 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 165.4, 141.4, 138.2, 132.8, 132.6, 131.0, 128.7, 128.5 (q, *J* = 3.6 Hz), 128.0, 127.4, 127.3, 126.1 (q, *J* = 279.7), 100.0, 94.1, 76.8, 41.2 (q, *J* = 27.9 Hz), 13.3; ¹⁹F NMR (377 MHz, CDCl₃) δ -72.51 (d, *J* = 8.6 Hz); HRMS (ESI, m/z): calcd for C₁₉H₁₆F₃INaO₂⁺ (M + Na⁺), 483.0039, found 483.0056; IR v_{max} (neat)/cm⁻¹: 3062 (w), 2936 (m, sharp), 1727 (s, C=O).

Derivatization of compound **S10a** for relative stereochemistry determination

Following the similar procedure in the deravatization of compound 2 and 2', compound S10a (a single diastereomer, 230 mg, 0.5 mmol) was subjected to the *cis*-dihydroxylation condition and then hydrolyzed to afford an inseparable mixture of two diastereomers (85 mg, 65% overall yield after two steps, dr = 4:1 based on ¹H NMR). A single crystal (S10b) was obtained from recrystallization of the major diastereomer by slow diffusion of hexanes vapor to ethyl acetate solvent.

S10b: ¹H NMR (400 MHz, MeOD) δ 7.44 (m, 2H), 7.36 (m, 2H), 7.28 (m, 1H), 4.73 (d, J = 8.2 Hz, 1H), 4.11 (d, J = 9.0 Hz, 1H), 3.65 (d, J = 8.1 Hz, 1H), 2.64 – 2.46 (m, 1H), 1.11 (d, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, MeOD) δ 142.9, 128.5 (q, J = 279.7 Hz), 127.7, 127.1, 126.9, 73.6, 73.3, 68.8, 41.1 (q, J = 24.0 Hz), 9.2 (q, J = 3.5 Hz); ¹⁹F NMR (377 MHz, MeOD) δ -69.82 (d, J = 9.1 Hz);

S10c: ¹H NMR (400 MHz, MeOD) δ 7.44 (m, 2H), 7.36 (m, 2H), 7.28 (m, 1H), 4.68 (d, J = 7.8 Hz, 1H), 4.21 (dd, J = 4.3, 2.0 Hz, 1H), 3.65 (m, 1H), 2.65 – 2.48 (m, 1H), 1.23 (d, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, MeOD) δ 142.7, 128.1 (q, J = 279.6 Hz), 127.7, 127.1, 126.9, 75.8, 74.3, 66.9, 41.2 (q, J = 24.3 Hz), 7.6 (q, J = 3.1 Hz); ¹⁹F NMR (377 MHz, MeOD) δ -71.77 (d, J = 9.7 Hz).

HRMS (ESI, m/z): calcd for $C_{12}H_{14}F_{3}O_{3}^{-}$ (M – H⁺), 263.0901, found 263.0895; IR v_{max} (neat)/cm⁻¹: 3326 (s, broad), 2921 (m, sharp), 1456 (m, sharp), 1251 (s), 1170 (s).

X-ray crystallographic analysis of S10b

Table 1. Crystal data and structure refinement for twin4.

•

Crystal size	0.584 x 0.341 x 0.232 mm ³
Theta range for data collection	2.963 to 69.439°.
Index ranges	-12<=h<=12, -14<=k<=14, -19<=l<=20
Reflections collected	17421
Independent reflections	6701 [R(int) = 0.0164]
Completeness to theta = 67.679°	94.7 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7532 and 0.6562
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	6701 / 133 / 508
Goodness-of-fit on F ²	2.099
Final R indices [I>2sigma(I)]	R1 = 0.1206, wR2 = 0.4204
R indices (all data)	R1 = 0.1287, wR2 = 0.4381
Extinction coefficient	n/a
Largest diff. peak and hole	1.337 and -0.887 e.Å ⁻³

	Х	у	Z	U(eq)
O(12C)	1269(2)	4603(3)	390(2)	47(1)
O(10C)	-931(2)	4807(3)	1105(2)	47(1)
O(8C)	2283(2)	4988(3)	2570(2)	50(1)
O(10)	-3578(3)	4755(3)	839(2)	60(1)
O(12)	-6166(2)	5350(3)	824(2)	62(1)
O(8B)	3671(3)	5869(2)	4359(2)	49(1)
O(8)	-5436(3)	4141(3)	2282(2)	61(1)
F(17B)	8986(3)	8575(3)	7754(3)	101(1)
O(10B)	4358(3)	5725(2)	6057(2)	58(1)
F(18B)	8723(4)	7218(6)	6463(5)	198(4)
O(12B)	6357(3)	6394(3)	5431(3)	82(1)
F(15B)	8287(4)	8878(7)	6582(4)	147(2)
C(9C)	204(3)	4387(3)	1470(2)	39(1)
F(18C)	1802(6)	1665(5)	-260(4)	161(2)
C(7C)	1117(3)	5416(4)	2260(2)	49(1)
C(11C)	914(3)	3782(3)	751(2)	39(1)
C(11)	-5059(3)	5904(4)	1574(3)	47(1)
F(15)	-5769(7)	8229(5)	2378(4)	144(2)
C(9)	-4134(3)	5014(4)	1606(2)	49(1)
C(7B)	3354(3)	6671(3)	5134(2)	42(1)
F(15C)	161(6)	1125(4)	-1339(4)	141(2)
C(9B)	4407(4)	6845(3)	5988(2)	44(1)
F(18)	-6442(6)	7548(5)	979(5)	152(2)
C(1BB)	3013(12)	7779(7)	4956(8)	39(1)
C(2BB)	2268(11)	8463(9)	5494(7)	52(2)
C(3BB)	1903(10)	9477(8)	5392(6)	71(2)
C(4BB)	2282(11)	9808(7)	4752(7)	76(2)
C(5BB)	3027(10)	9124(8)	4214(6)	73(2)
C(6BB)	3393(10)	8110(8)	4316(7)	52(2)
C(1CB)	385(5)	5749(5)	3027(3)	48(2)
C(2CB)	-136(7)	6797(6)	3207(4)	77(3)

Table 2. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10³) for twin4. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C(1A)	-3700(20)	3080(20)	1900(20)	49(1)
C(16)	-3127(8)	7540(7)	2309(5)	110(3)
C(6BA)	3801(8)	8179(6)	4508(5)	52(2)
C(5BA)	3732(8)	9291(7)	4493(5)	73(2)
C(4BA)	3124(9)	10088(5)	5072(5)	76(2)
C(3BA)	2585(8)	9774(6)	5666(5)	71(2)
C(2BA)	2654(8)	8662(7)	5681(6)	52(2)
C(1BA)	3262(9)	7864(5)	5102(6)	39(1)
C(6CA)	-48(6)	5726(6)	3436(4)	63(2)
C(5CA)	-629(8)	6383(8)	4102(5)	91(3)
C(4CA)	-633(8)	7579(8)	4303(5)	103(3)
C(3CA)	-56(8)	8117(6)	3838(5)	92(3)
C(2CA)	525(7)	7460(5)	3171(4)	65(2)
C(1CA)	529(6)	6264(5)	2970(4)	48(2)
C(16C)	-747(7)	1923(5)	225(5)	92(2)
C(14C)	851(8)	2057(7)	-652(6)	114(2)
C(14)	-5313(9)	7923(6)	1647(5)	98(2)
C(16B)	6353(6)	8752(5)	7609(4)	86(2)
C(13)	-4394(5)	7046(5)	1578(4)	69(1)
C(14B)	8166(5)	8087(6)	6941(5)	93(2)
C(13C)	30(4)	2704(4)	-30(3)	64(1)
F(17)	-4769(7)	8918(4)	1626(4)	143(2)
C(6B)	-4236(5)	1844(4)	864(5)	76(2)
C(5B)	-3478(6)	979(3)	932(6)	103(3)
C(4B)	-2408(5)	1241(4)	1671(6)	82(3)
C(3B)	-2095(4)	2368(4)	2343(5)	58(2)
C(2B)	-2853(4)	3233(3)	2276(5)	47(1)
C(1B)	-3923(4)	2971(3)	1536(5)	49(1)
C(7)	-4856(3)	3883(4)	1548(3)	50(1)
C(11B)	5797(4)	7323(4)	6005(3)	54(1)
F(17C)	1505(7)	2696(5)	-965(4)	165(2)
C(13B)	6776(4)	7748(3)	6931(3)	58(1)
C(6CB)	246(6)	5077(5)	3524(4)	62(2)
C(5CB)	-415(7)	5454(7)	4200(4)	92(3)
C(4CB)	-936(8)	6502(8)	4379(4)	105(4)
C(3CB)	-796(8)	7174(7)	3883(5)	103(3)

Electronic Supplementary Material (ESI) for Chemical Science This journal is The Royal Society of Chemistry 2013

C(6A)	-3900(30)	1950(20)	1240(30)	76(2)
C(5A)	-3090(40)	1140(20)	1360(30)	103(3)
C(4A)	-2060(30)	1470(20)	2140(30)	82(3)
C(3A)	-1860(20)	2610(20)	2790(30)	58(2)
C(2A)	-2680(20)	3412(19)	2670(20)	47(1)

Electronic Supplementary Material (ESI) for Chemical Science This journal is O The Royal Society of Chemistry 2013

D. Optimized Geometric Details of Conformations by Computational Studies

Optimized coordinates of the compounds 2a, 2'a, S1b, S1'b, S7b and S7'b are given below.

Standard orientation

Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	Туре	Х	Y	Z
1	 б	0	-2.297328	0.810202	-0.563975
2	б	0	-3.649860	0.077365	-0.640397
3	б	0	-3.780699	-1.108357	0.331340
4	б	0	-2.890612	-0.917752	1.558499
5	б	0	-1.401878	-0.745849	1.233545
б	б	0	-1.154651	-0.062329	-0.111612
7	8	0	-2.543733	1.830926	0.390115
8	8	0	-4.584881	1.074032	-0.245925
9	б	0	-3.878561	2.253716	0.165829
10	б	0	-3.951213	3.295678	-0.938361
11	б	0	-4.452216	2.743846	1.473477
12	б	0	-3.592831	-2.450672	-0.334206
13	9	0	-3.806546	-3.455135	0.537245
14	9	0	-4.454710	-2.617775	-1.360443
15	9	0	-2.350842	-2.628970	-0.841500
16	8	0	0.009581	0.787649	-0.057218
17	б	0	1.196529	0.142595	-0.182960
18	б	0	2.328494	1.106357	-0.166776
19	8	0	1.283153	-1.059772	-0.307576
20	б	0	2.043521	2.480529	-0.254995
21	б	0	3.048305	3.433288	-0.289839
22	б	0	4.377726	3.028227	-0.233397
23	б	0	4.688408	1.677264	-0.131907
24	б	0	3.676796	0.717968	-0.096595
25	53	0	4.361663	-1.297849	0.131647
26	1	0	-2.048235	1.253356	-1.541578
27	1	0	-3.874758	-0.242722	-1.665991
28	1	0	-4.828463	-1.110539	0.649771
29	1	0	-3.035906	-1.744589	2.259043
30	1	0	-3.251392	-0.013298	2.058184
31	1	0	-0.878643	-1.705619	1.229692
32	1	0	-0.937607	-0.134486	2.012710
33	1	0	-0.972812	-0.815106	-0.883789
34	1	0	-4.992445	3.555439	-1.143082

Electronic Supplementary Material (ESI) for Chemical Science This journal is O The Royal Society of Chemistry 2013

35	1	0	-3.513637	2.914898	-1.864572
36	1	0	-3.414327	4.202248	-0.647181
37	1	0	-5.499516	3.025545	1.344498
38	1	0	-3.897588	3.615583	1.828196
39	1	0	-4.390771	1.956426	2.227622
40	1	0	1.003328	2.781626	-0.298017
41	1	0	2.794593	4.486485	-0.361039
42	1	0	5.180956	3.759277	-0.263165
43	1	0	5.725421	1.363268	-0.077483

Standard orientation

Center	Atomic	Atomic	Coord	 dinates (Ang	stroms)
Number	Number	Туре	Х	Y	Z
1	б	0	-2.292492	0.753128	0.417335
2	6	0	-3.654369	0.328181	-0.123176
3	6	0	-3.886484	-1.162751	-0.342517
4	6	0	-2.656016	-1.870325	-0.911946
5	б	0	-1.385094	-1.551060	-0.134217
б	б	0	-1.148677	-0.054734	-0.179894
7	8	0	-2.222674	2.111510	0.011075
8	8	0	-3.662230	0.993268	-1.379028
9	6	0	-3.067981	2.271904	-1.145425
10	6	0	-2.247406	2.642016	-2.360135
11	6	0	-4.126392	3.305243	-0.810621
12	б	0	-4.373338	-1.790338	0.947063
13	9	0	-4.450349	-3.129712	0.856406
14	9	0	-5.599507	-1.338871	1.280761
15	9	0	-3.558118	-1.508144	1.994583
16	8	0	0.028526	0.321549	0.560055
17	6	0	1.201016	0.220223	-0.111855
18	б	0	2.313579	0.785417	0.696892
19	8	0	1.295216	-0.244981	-1.227250
20	б	0	2.009568	1.788138	1.632421
21	6	0	2.998094	2.408105	2.380516
22	6	0	4.323782	2.020194	2.217900
23	6	0	4.650302	1.020699	1.308179
24	6	0	3.657197	0.411360	0.543483
25	53	0	4.332569	-1.136016	-0.771730
26	1	0	-2.238524	0.719558	1.510625
27	1	0	-4.444348	0.735875	0.529982

28	1	0	-4.723392	-1.263004	-1.042807
29	1	0	-2.534354	-1.537328	-1.948904
30	1	0	-2.835573	-2.947569	-0.947455
31	1	0	-0.525419	-2.056645	-0.582455
32	1	0	-1.459086	-1.888885	0.905268
33	1	0	-1.002953	0.245291	-1.223944
34	1	0	-2.888841	2.726429	-3.241003
35	1	0	-1.484609	1.885516	-2.555835
36	1	0	-1.751654	3.601869	-2.199080
37	1	0	-4.777727	3.481290	-1.670547
38	1	0	-3.654302	4.249925	-0.529545
39	1	0	-4.737649	2.970619	0.031012
40	1	0	0.970788	2.080755	1.742422
41	1	0	2.734315	3.189254	3.086872
42	1	0	5.112670	2.491193	2.797600
43	1	0	5.683819	0.712086	1.190886

Standard orientation

Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	Туре	Х	Y	Z
1	 6	0	-0.511737	1.353183	-0.238603
2	б	0	0.128177	0.005791	-0.504333
3	б	0	-0.813313	-0.992424	0.220931
4	б	0	-2.129732	-0.226118	0.459320
5	б	0	-1.728524	1.224068	0.296899
6	8	0	-3.072149	-0.642121	-0.548326
7	6	0	1.570653	-0.080468	-0.038278
8	9	0	2.098275	-1.309910	-0.273032
9	9	0	2.358309	0.817245	-0.688842
10	9	0	1.715101	0.162346	1.288886
11	1	0	-0.028368	2.288577	-0.501274
12	1	0	0.168184	-0.187360	-1.584643
13	1	0	-0.378565	-1.283184	1.181136
14	1	0	-0.996019	-1.898945	-0.359047
15	1	0	-2.552213	-0.440833	1.450455
16	1	0	-2.392471	2.048550	0.541827
17	1	0	-3.881659	-0.121161	-0.460574

Center	Atomic	Atomic	Coord	dinates (Angs	stroms)
Number	Number	Туре	Х	Y	Z
1	 6	0	0.438065	1.460837	-0.096207
2	6	0	-0.251370	0.227057	-0.645956
3	б	0	0.829786	-0.877331	-0.515877
4	б	0	2.171146	-0.126836	-0.375608
5	6	0	1.751568	1.265691	0.042553
б	8	0	2.978814	-0.815726	0.585165
7	б	0	-1.558306	-0.104755	0.053665
8	9	0	-1.412116	-0.311530	1.383845
9	9	0	-2.127511	-1.225847	-0.461832
10	9	0	-2.465067	0.899370	-0.091911
11	1	0	-0.094914	2.383832	0.107206
12	1	0	-0.531027	0.384120	-1.696903
13	1	0	0.818053	-1.580370	-1.350975
14	1	0	0.682572	-1.444644	0.407916
15	1	0	2.709653	-0.091952	-1.336308
16	1	0	2.464076	2.012469	0.381195
17	1	0	3.877985	-0.463561	0.560219

Standard orientation

Standard orientation:

Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	Туре	Х	Y	Z
1	 6	0	-1.940039	-0.917257	-0.858236
2	б	0	-1.379067	0.448309	-0.502043
3	б	0	-2.204027	1.351649	0.052956
4	б	0	-1.867912	2.757833	0.447073
5	6	0	0.075803	0.731362	-0.838065
б	6	0	1.039036	0.710663	0.379179
7	6	0	2.446160	1.080795	-0.008347
8	6	0	3.560033	0.330491	0.063515
9	6	0	4.894868	0.885771	-0.377536
10	б	0	3.614890	-1.088949	0.575541
11	8	0	-2.963910	3.592371	0.050398
12	6	0	-1.454797	-2.080855	-0.010492
13	9	0	-1.675209	-1.891604	1.312955
14	9	0	-0.123946	-2.323827	-0.156721
15	9	0	-2.095573	-3.228531	-0.357864
16	1	0	-1.696318	-1.177587	-1.895298
17	1	0	-3.029712	-0.915297	-0.767137
_

18	1	0	-3.237648	1.076929	0.259210
19	1	0	-0.933805	3.094233	-0.022488
20	1	0	-1.731315	2.809914	1.539394
21	1	0	0.149665	1.714962	-1.320159
22	1	0	0.433982	0.003993	-1.574423
23	1	0	0.999036	-0.270309	0.857131
24	1	0	0.670139	1.430407	1.123197
25	1	0	2.554979	2.092868	-0.404307
26	1	0	5.618905	0.870544	0.448274
27	1	0	4.810975	1.915495	-0.737089
28	1	0	5.327172	0.276490	-1.182619
29	1	0	4.040254	-1.754167	-0.187400
30	1	0	2.639615	-1.487370	0.859303
31	1	0	4.276107	-1.156828	1.449862
32	1	0	-2.837882	4.473547	0.424762

Standard orientation:

Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	Туре	Х	Y	Z
1	 6	0	1.801221	-0.447619	0.979667
2	6	0	0.716752	0.324110	0.242547
3	б	0	0.937099	1.529108	-0.310833
4	6	0	-0.625609	-0.383140	0.198413
5	б	0	-1.770956	0.327288	-0.543332
б	б	0	-3.022377	-0.511870	-0.572879
7	б	0	-4.221980	-0.248451	-0.025715
8	б	0	-5.367399	-1.224162	-0.169858
9	б	0	-4.562442	0.997950	0.756249
10	б	0	2.648370	-1.349714	0.097325
11	9	0	3.365302	-0.652804	-0.819225
12	9	0	1.908393	-2.257559	-0.589337
13	9	0	3.541600	-2.053814	0.841833
14	б	0	2.211046	2.327057	-0.323482
15	8	0	1.980559	3.694224	0.040168
16	1	0	1.355276	-1.097398	1.739910
17	1	0	2.502527	0.216914	1.491797
18	1	0	0.117260	2.027452	-0.823375
19	1	0	-0.943818	-0.576712	1.234262
20	1	0	-0.476490	-1.378744	-0.242518
21	1	0	-1.454464	0.525560	-1.577209
22	1	0	-1.959810	1.302391	-0.084103

23	1	0	-2.918705	-1.455113	-1.112416
24	1	0	-6.221264	-0.755293	-0.677215
25	1	0	-5.730611	-1.553173	0.813052
26	1	0	-5.078794	-2.111560	-0.740481
27	1	0	-4.914331	0.735012	1.762624
28	1	0	-5.384082	1.542926	0.272777
29	1	0	-3.722369	1.686553	0.864076
30	1	0	2.616947	2.373392	-1.339818
31	1	0	2.989543	1.884129	0.310133
32	1	0	1.578704	3.714111	0.919115

E. References

- (Gaussian 09, Revision A.02) M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.
- 2. K. Urkalan and M. S. Sigman, Angew. Chem. Int. Ed. 2009, 48, 3146-3149;
- 3. J. Y. Wu, B. Moreau and T. Ritter, J. Am. Chem. Soc., 2009, 131, 12915-12917;
- W. D. Inman, K. A. J. Sanchez, M. A. Chaidez, D. R. Paulson, J. Org. Chem., 1989, 54, 4872–4881;
- 5. R. L. Nongkhlaw, R. Nongrum and B. Myrboh, J. Chem. Soc., Perkin Trans. 1, 2001, 1300-1303;
- L. A. Brozek, M. J. Ardolino, and J. P. Morken, J. Am. Chem. Soc., 2011, 133, 16778-16781;
- 7. 7. R. Tamura, K. Saegusa, M. Kakihana, D. Oda, J. Org. Chem., 1988, 53, 2723-2728;
- 8. L. Liao, M. S. Sigman, J. Am. Chem. Soc., 2010, 132, 10209-10211;
- 9. A. T. Parsons, S. L. Buchwald, Angew. Chem. Int. Ed. 2009, 48, 3146-3149.

F. **NMR Spectra**

¹⁹F NMR (377 MHz, CDCl₃)

 $<^{-70.719}_{-70.740}$

10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100		-120	-140	-160	-180	-200	
										f	1 (ppm)						

19F NMR (377 MHz, CDCl3)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -120 -140 -160 -180 -200 f1 (ppm)

Electronic Supplementary Material (ESI) for Chemical Science This journal is C The Royal Society of Chemistry 2013

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -120 -140 -160 -180 -200 f1 (ppm)

Electronic Supplementary Material (ESI) for Chemical Science This journal is C The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Chemical Science This journal is O The Royal Society of Chemistry 2013

