Chiral Organic Contact Ion Pairs in Metal-Free Catalytic

Asymmetric Oxidative Coupling of Tertiary Amines

Gen Zhang, Yunxia Ma, Shoulei Wang, Weidong Kong, and Rui Wang*

Key Laboratory of Preclinical Study for New Drugs of Gansu Province; Institute of Biochemistry and Molecular Biology, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, and State Key Laboratory of Chiroscience, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong (China)

E-mail: wangrui@lzu.edu.cn and bcrwang@polyu.edu.hk

Supporting information

Contents	S 1
1.0 General Methods	S2
2.0 The Metal and Solvent Optimization Result	S2
3.0 Other Unsuccessful Examples	S3
4.0 General Procedure for the Preparation of Optically Active	
C ₁ -Alkylated Tetrahydroisoquinolins	S5
5.0 Mechanistic Experiments and Proposed Reaction Pathways	S13
6.0 X-ray Structure of 3 I	S15
7.0 References	S16
8.0 Copies of HPLC Spectra of Racemic/Chiral Products	S17
9.0 Copies of NMR Spectra of Products	S25

1.0 General Methods

All reactions were carried out under an argon atmosphere condition unless otherwise noted and solvents were dried according to established procedures. Reactions were monitored by thin layer chromatography (TLC), column chromatography purifications were carried out using silica gel GF254. Proton nuclear magnetic resonance (¹H NMR) spectra were recorded on Brucker 300 MHz spectrometer in CDCl₃ unless otherwise noted and carbon nuclear magnetic resonance (¹³C NMR) spectra were recorded on Brucker 300 MHz spectrometer in CDCl₃ using tetramethylsilane (TMS) as internal standard unless otherwise noted. Data are presented as follows: chemical shift, integration, multiplicity (br = broad, s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, cm = complex multiplet) and coupling constant in Hertz (Hz). Infrared (IR) spectra were recorded on a FT-IR spectrometer. Optical rotations were recorded on a Perkin-Elmer 341 polarimeter. HR-MS was measured with an APEX II 47e mass spectrometer. Melting points were measured on an XT-4 melting point apparatus and were uncorrected. The ee values determination was carried out using chiral high-performance liquid chromatography (HPLC) with Daicel Chiracel AS-H or OD-H column on Waters with a 2996 UV-detector. N-aryl tetrahydroisoquinolins 1a-m and organocatalysts **4a-c** were prepared according to the previous reported procedures.^[1], [2], [3], [4], [5]

2.0. The Metal and Solvent Optimization Results

N PM		Metal (10 mol%) 4g (20 mol%) ⁱ PrOH (20 mol%) DDQ (1.0 equiv) DCM, rt. 48h	O 3a
Entry	Metal	Yield [%] ^[b]	ee [%] ^[c]
1	AgOTf	55	29
2	Yb(OTf) ₃	68	33
3	CuOTf	51	43
4	Cu(OTf) ₂	70	55
5	La(OTf) ₃	45	47
6	$Pd(OAc)_2$	53	45
7	Mg(OTf) ₂	38	58

Table S1. The metal optimization results ^[a]

8	Zn(OTf) ₂	41	31
9	$Sc(OTf)_3$	36	63
10	-	66	89

[a] Unless otherwise specified, the reaction was carried out with 1a (0.1 mmol) and 2a (0.4 mmol) in the presence of metal salts (0.01 mmol) and 4g (0.02 mmol), anhydrous ⁱPrOH (0.02 mmol), and DCM (1.0 mL) at rt for 48 h. [b] Isolated yield. [c] Determined by HPLC on a Chiralpak OD column.

<i>Table S2.</i> The Solvent optimization results

[a] Unless otherwise specified, the reaction was carried out with 1a (0.1 mmol) and 2a (0.4 mmol) in the presence of 4g (0.02 mmol), anhydrous ⁱPrOH (0.02 mmol), and solvent (1.0 mL) at rt for 48 h. [b] Isolated yield. [c] Determined by HPLC on a Chiralpak OD column.

3.0 Other Unsuccessful Examples for Asymmetric Oxidative sp³ C-H Alkylation

N-benzyl-4-methoxy-N-methylaniline (known compounds): colorless oil, ¹**H NMR** (300 MHz, CDCl₃): δ 7.25-7.31(m, 3 H), 7.22-7.24 (m, 2 H), 6.81-6.854 (d, *J* = 9.3 Hz, 2 H), 6.72-6.75 (d, *J* = 9.0 Hz, 2 H), 4.43 (s, 2 H), 3.75 (s, 3 H), 2.91 (s, 3 H) ppm; ¹³**C NMR** (75 MHz, CDCl₃): δ 151.7, 144.8, 139.2, 128.4, 127.1, 126.9, 114.7, 114.5, 58.0, 55.7, 39.1 ppm.

2-benzyl-1,2,3,4-tetrahydroisoquinoline (known compounds): colorless oil, ¹**H NMR** (300 MHz, CDCl₃): δ 7.29-7.41 (m, 5 H), 7.08-7.11 (m, 3 H), 6.17 (s, 1 H), 3.68 (s, 2 H), 3.63 (s, 2 H), 2.88-2.92 (t, *J* = 6.0 Hz, 2 H), 2.72-2.76 (t, *J* = 6.0 Hz, 2 H) ppm; ¹³**C NMR** (75 MHz, CDCl₃): δ 138.4, 134.9, 134.4, 129.2, 128.7, 128.3, 127.1, 126.6, 126.1, 125.6, 62.8, 56.1, 50.4, 29.2 ppm.

pentan-3-one (known compounds): colorless oil, ¹H NMR (300 MHz, CDCl₃): δ 2.40-2.47 (dd, J = 7.5. 15.0 Hz, 4 H), 1.04-1.09 (t, J = 7.5 Hz, 6 H) ppm; ¹³C NMR (75 MHz, CDCl₃): δ 212.3, 35.4, 7.9 ppm.

cyclopentanone (known compounds): colorless oil, ¹**H NMR** (300 MHz, CDCl₃): δ 2.15-2.20 (m, 4 H), 1.94-1.99 (m, 4 H) ppm; ¹³**C NMR** (75 MHz, CDCl₃): δ 219.5, 38.4, 23.2 ppm.

cycloheptanone (known compounds): colorless oil, ¹**H NMR** (300 MHz, CDCl₃): δ 2.48-2.52 (m, 4 H), 1.69-1.74 (m, 8 H) ppm; ¹³**C NMR** (75 MHz, CDCl₃): δ 215.6, 43.9, 30.4, 24.3 ppm.

3-methylbutanal (known compounds): colorless oil, ¹H NMR (300 MHz, CDCl₃): δ 9.75-9.77 (t, *J* = 2.1 Hz, 1 H), 2.29-2.32 (m, 2 H), 2.16-2.25 (m, 1 H), 0.98-1.00 (d, *J* = 6.6 Hz, 6 H) ppm; ¹³C NMR (75 MHz, CDCl₃): δ 203.0, 52.6, 23.4, 22.6 ppm.

4.0 General Procedure for the Preparation of Optically Active C₁-Alkylated Tetrahydroisoquinolins

Typical experimental procedure: Typical experimental procedure: Under N_2 , a solution of simple ketone (0.4 mmol), chiral amino acid **4g** (0.02 mmol) and anhydrous ⁱPrOH (0.02 mmol) in DCM (0.3 mL) was stirred at room temperature for 1 h. And a solution of aryl-substituted 1,2,3,4-tetrahydroisoquinolin **1** (0.1 mmol) in DCM (0.2 mL) was added to the mixture above mentioned and the resultant mixture was stirred for 0.5 h. Finally, a solution of DDQ (0.1 mol) DCM (0.5 mL) was slowly added to the mixture above prepared and the resultant reaction mixture was stirred at RT for the appropriate time. After the reaction was completed (monitored by TLC), the resulting mixture was concentrated under reduced pressure and the residue was purified through column chromatography on silica gel (eluent, ethyl acetate / hexane 1:5). After filteration and the solvent was removed at reduced pressure to give the pure products.

(*R*)-2-((*S*)-2-(4-methoxyphenyl)-1,2,3,4-tetrahydroisoquinolin-1-yl)cyclohexanone: yellow oil, 65% yield; 90% *ee* determined by HPLC on a Chiralpak OD-H column (hexane/2-propanol = 80/20, flow rate = 1.0 mL/min, 254nm, $t_{major} = 5.81$ min, $t_{minor} = 7.77$ min); $[\alpha]^{20}_{D} = -29$ (*c* = 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ 7.10-7.16 (m, 4 H), 6.87-6.90 (d, *J* = 9.0 Hz, 2 H), 6.77-6.80 (d, *J* = 9.0 Hz, 2 H), 5.34-5.36 (d, *J* = 5.7 Hz, 1 H), 3.73 (s, 3 H), 3.61-3.66 (m, 1 H), 3.45-3.50 (m, 1 H), 2.73-2.96 (m, 4 H), 2.41-2.48 (m, 1 H), 2.24-2.34 (m, 2 H), 2.00-2.06 (m, 1 H), 1.82-1.86 (m, 3 H) ppm; ¹³C NMR (75 MHz, CDCl₃): δ 212.0, 153.1, 144.0, 136.1, 135.0, 128.9, 127.8, 126.6, 125.6, 118.3, 114.6, 56.4, 55.6, 43.9, 41.1, 30.3, 29.7, 27.5, 26.6, 23.4 ppm; **IR** (neat): 3316, 3062, 2926, 2854, 2359, 1706, 1511, 1462, 1246, 909, 734 cm⁻¹; **HRMS** (ESI): C₂₂H₂₅NO₂ [M+H]⁺ calcd: 336.1958, found: 336.1965.

(*R*)-2-((*S*)-2-(4-fluorophenyl)-1,2,3,4-tetrahydroisoquinolin-1-yl)cyclohexanone: yellow oil, 78% yield; 90% *ee* determined by HPLC on a Chiralpak OD-H column (hexane/2-propanol = 80/20, flow rate = 1.0 mL/min, 254nm, t_{major} = 4.80 min, t_{minor} = 5.49 min); $[\alpha]^{20}_{D}$ = -24 (*c* = 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ 7.07-7.17 (m, 4 H), 6.86-6.94 (m, 4 H), 5.42-5.43 (d, *J* = 5.1 Hz, 1 H), 3.63-3.70 (m, 1 H), 3.46-3.54 (m, 1 H), 2.90-2.99 (m, 1 H), 2.76-2.88 (m, 2 H), 2.41-2.48 (m, 1 H), 2.29-2.36 (m, 2 H), 1.82-1.90 (m, 3 H), 1.63-1.80 (m, 2 H) ppm; ¹³C NMR (75 MHz, CDCl₃): δ 211.9, 146.1, 135.7, 134.9, 128.9, 127.9, 126.7, 125.8, 117.2, 115.8, 115.5, 56.4, 55.7, 43.4, 41.6 (J = 54 Hz), 30.4, 27.3 (J = 33.8 Hz), 26.7, 23.7 ppm; IR (neat): 3308, 3056, 2932, 2859, 2250, 1706, 1510, 1451, 1233, 939, 775 cm⁻¹; HRMS (ESI): C₂₁H₂₂FNO [M+Na]⁺ calcd: 346.1578, found: 346.1581.

(*R*)-2-((*S*)-2-(4-chlorophenyl)-1,2,3,4-tetrahydroisoquinolin-1-yl)cyclohexanone: yellow oil, 75% yield; 84% *ee* determined by HPLC on a Chiralpak OD-H column (hexane/2-propanol = 60/40, flow rate = 1.0 mL/min, 254nm, $t_{major} = 4.58$ min, $t_{minor} = 5.41$ min); $[\alpha]^{20}_{D} = -19$ (*c* = 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ 7.12-7.17 (m, 6 H), 6.81-6.84 (d, *J* = 9.0 Hz, 2 H), 5.53-5.55 (d, *J* = 4.5 Hz, 1 H), 3.48-3.71 (m, 2 H), 2.81-3.02 (m, 3 H), 2.29-2.48 (m, 3 H), 1.81-1.90 (m, 3 H), 1.58-1.73 (m, 2 H) ppm; ¹³C NMR (75 MHz, CDCl₃): δ 211.8, 147.8, 135.5, 134.8, 129.5, 128.9, 127.9, 126.8, 125.9, 116.1, 113.3, 56.4, 55.2, 42.7, 41.5, 30.3, 27.7, 27.3, 23.9 ppm; IR (neat): 3315, 3030, 2935, 2861, 2319, 1705, 1594, 1496, 1331, 938, 746 cm⁻¹; HRMS (ESI): C₂₁H₂₂CINO [M+Na]⁺ calcd: 362.1282, found: 362.1288.

(*R*)-2-((*S*)-2-(4-bromophenyl)-1,2,3,4-tetrahydroisoquinolin-1-yl)cyclohexanone: yellow oil, 72% yield; 78% *ee* determined by HPLC on a Chiralpak OD-H column (hexane/2-propanol = 80/20, flow rate = 1.0 mL/min, 254nm, $t_{major} = 5.06$ min, $t_{minor} = 6.33$ min); $[\alpha]^{20}_{D} = -16$ (*c* = 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ 7.07-7.17 (d, *J* = 9.0 Hz, 2 H), 7.15-7.16 (m, 4 H), 6.76-6.79 (d, *J* = 9.0 Hz, 2 H), 5.54-5.56 (d, *J* = 4.5 Hz, 1 H), 3.44-3.72 (m, 2 H), 2.90-3.01 (m, 1H), 2.81-2.88 (m, 2 H), 2.42-2.48 (m, 1 H), 2.29-2.35 (m, 1 H), 2.18-2.25 (m, 1 H), 1.80-2.06 (m, 2 H), 1.65-1.69 (m, 3 H) ppm; ¹³C NMR (75 MHz, CDCl₃): δ 211.7, 148.2, 135.5, 134.8, 128.7, 127.9, 126.8, 125.9, 116.4, 113.8, 110.0, 56.3, 55.0, 42.6, 41.5, 30.3, 27.3, 27.1, 24.0 ppm; **IR** (neat): 3314, 3063, 2933, 2859, 1958, 1705, 1587, 1494, 1230, 938, 748 cm⁻¹; **HRMS** (ESI): C₂₁H₂₂BrNO [M+Na]⁺ calcd: 406.0782, found: 406.0784.

(*R*)-2-((*S*)-2-(2-chlorophenyl)-1,2,3,4-tetrahydroisoquinolin-1-yl)cyclohexanone: yellow oil, 81% yield; 88% *ee* determined by HPLC on a Chiralpak AS-H column (hexane/2-propanol = 99/1, flow rate = 1.0 mL/min, 254nm, t_{major} = 14.93 min, t_{minor} = 12.78 min); $[\alpha]^{20}_{D}$ = -22 (*c* = 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ 7.30-7.34 (m, 1 H), 7.13-7.17 (m, 5 H), 6.81-6.84 (d, *J* = 9.0 Hz, 2 H), 5.53-5.54 (d, *J* = 4.8 Hz, 1 H), 3.64-3.73 (m, 1 H), 3.49-3.57 (m, 1H), 2.92-3.02 (m, 1 H), 2.81-2.88 (m, 2 H), 2.42-2.49 (m, 1 H), 2.29-2.34 (m, 1 H), 1.81-1.92 (m, 3 H), 1.59-1.71 (m, 3 H) ppm; ¹³C NMR (75 MHz, CDCl₃): δ 211.8, 147.8, 135.5, 134.8, 129.5, 129.1, 128.7, 128.0, 126.8, 125.9, 118.9, 116.1, 113.3, 56.3, 55.1, 42.7, 41.5, 30.3, 27.3, 27.1, 23.9 ppm; **IR** (neat): 3298, 3065, 2938, 2863, 2251, 1704, 1595, 1496, 1230, 910, 773 cm⁻¹; **HRMS** (ESI): C₂₁H₂₂CINO [M+Na]⁺ calcd: 362.1282, found: 362.1289.

(*R*)-2-((*S*)-2-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)-1,2,3,4-tetrahydroisoquinolin-1-yl)cyclohe xanone: yellow oil, 69% yield; 61% *ee* determined by HPLC on a Chiralpak OD-H column (hexane/2-propanol = 80/20, flow rate = 1.0 mL/min, 254nm, t_{major} = 8.75 min, t_{minor} = 13.18 min); [α]²⁰_D= -19 (*c* = 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ 7.29-7.32 (m, 1 H), 7.10-7.11 (m, 3 H), 6.71-6.74 (m, 1 H), 6.34-6.36 (m, 2 H), 5.42-5.45 (d, *J* = 8.4 Hz, 1 H), 4.21-4.25 (m, 2 H), 4.17-4.18 (m, 2 H), 3.45-3.49 (t, *J* = 6.3 Hz, 2 H), 2.95-2.99 (m, 1 H), 2.68-2.86 (m, 2 H), 2.45-2.49 (m, 1 H), 2.21-2.31 (m, 3 H), 2.04-2.08 (m, 2 H), 1.69-2.08 (m, 2 H) ppm; ¹³C NMR (75 MHz, CDCl₃): δ 212.1, 144.4, 143.8, 140.0, 135.1, 134.5, 128.0, 127.3, 126.6, 126.2, 117.4, 106.7, 102.0, 64.8, 64.2, 59.2, 54.7, 43.8, 32.6, 28.7, 27.2, 25.5 ppm; **IR** (neat): 3317, 3060, 2971, 2862, 2250, 1715, 1511, 1457, 1249, 1070, 733 cm⁻¹; **HRMS** (ESI): C₂₃H₂₃NO₃ [M+Na]⁺ calcd: 386.1727, found: 386.1729.

(*S*)-3-((*S*)-2-(4-methoxyphenyl)-1,2,3,4-tetrahydroisoquinolin-1-yl)dihydro-2H-pyran-4(3H)one: yellow oil, 73% yield; 94% *ee* determined by HPLC on a Chiralpak OD-H column (hexane/2-propanol = 80/20, flow rate = 1.0 mL/min, 254nm, $t_{major} = 5.61$ min, $t_{minor} = 6.48$ min); $[\alpha]^{20}_{D} = -38$ (*c* = 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ 7.15-7.21 (m, 2 H), 7.07-7.13 (m, 2 H), 6.86-6.89 (d, *J* = 9.0 Hz, 2 H), 6.73-6.77 (d, *J* = 9.3 Hz, 2 H), 5.22-5.24 (d, *J* = 8.7 Hz, 1 H), 4.05-4.16 (m, 2 H), 3.89-3.91 (d, J = 7.5 Hz, 1 H), 3.72 (s, 3 H), 3.51-3.58 (m, 1 H), 2.88-3.02 (m, 1 H), 2.79-2.86 (m, 2 H), 2.70-2.77 (m, 1 H), 2.66-2.69 (m, 1 H), 2.52-2.64 (m, 1 H), 2.24-2.31 (m, 1 H) ppm; ¹³C NMR (75 MHz, CDCl₃): δ 206.8, 153.6, 143.8, 135.7, 134.8, 129.6, 127.1, 125.8, 119.3, 116.3, 115.4, 69.9, 68.9, 58.8, 55.8, 55.5, 43.7, 41.1, 24.9 ppm; IR (neat): 3317, 2925, 2853, 2354, 1959, 1713, 1510, 1464, 1245, 1037, 761 cm⁻¹; HRMS (ESI): C₂₁H₂₃NO₃ [M+Na]⁺ calcd: 360.1570, found: 360.1577.

(*S*)-3-((*S*)-2-(3-chlorophenyl)-1,2,3,4-tetrahydroisoquinolin-1-yl)dihydro-2H-pyran-4(3H)-on e: yellow oil, 77% yield; 83% *ee* determined by HPLC on a Chiralpak OD-H column (hexane/2-propanol = 80/20, flow rate = 1.0 mL/min, 254nm, $t_{major} = 6.77$ min, $t_{minor} = 9.22$ min); $[\alpha]^{20}_{D} = -51 (c = 1.0, CHCl_3)$; ¹H NMR (300 MHz, CDCl_3): δ 7.32-7.41 (m, 1 H), 7.18-7.21 (m, 2 H), 7.08-7.13 (m, 2 H), 6.89 (s, 1 H), 6.80-6.83 (d, *J* = 8.4 Hz, 1 H), 6.73-6.80 (d, *J* = 21.0 Hz, 1 H), 5.41-5.44 (d, *J* = 8.1 Hz, 1 H), 4.11-4.16 (m, 1 H), 3.98-4.05 (m, 1 H), 3.65-3.84 (m, 4 H), 2.62-2.96 (m, 4 H), 2.29-2.34 (m, 1 H) ppm; ¹³C NMR (75 MHz, CDCl_3): δ 206.6, 150.4, 135.1, 135.0, 134.4, 130.3, 129.5, 127.6, 127.5, 126.0, 118.9, 115.7, 113.8, 69.8, 68.8, 58.3, 55.0, 42.4, 41.1, 25.5 ppm; IR (neat): 3404, 3067, 2967, 2856, 2249, 1714, 1592, 1485, 1207, 911, 733 cm⁻¹; HRMS (ESI): C₂₀H₂₀CINO₂ [M+Na]⁺ calcd: 364.1075, found: 364.1071.

(*S*)-3-((*S*)-2-(3-chloro-4-methylphenyl)-1,2,3,4-tetrahydroisoquinolin-1-yl)dihydro-2H-pyran-4(3H)-one: yellow solid, 71% yield; 90% *ee* determined by HPLC on a Chiralpak OD-H column (hexane/2-propanol = 80/20, flow rate = 1.0 mL/min, 254nm, t_{major} = 9.59 min, t_{minor} = 6.53 min); [α]²⁰_D= -43 (*c* = 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ 7.25-7.28 (m, 1 H), 7.17-7.22 (m, 2 H), 7.08-7.11 (m, 1 H), 7.00-7.03 (d, *J* = 9.0 Hz, 1 H), 6.91-6.92 (m, 1 H), 6.73-6.77 (m, 1 H), 5.33-5.35 (d, *J* = 8.4 Hz, 1 H), 4.13-4.18 (m, 1 H), 4.04-4.09 (m, 1 H), 3.77-3.82 (m, 1 H), 3.73-3.74 (m, 1 H), 3.67-3.71 (m, 1 H), 3.58-3.66 (m, 1 H), 2.89-2.98 (m, 1 H), 2.82-2.86 (m, 1 H), 2.72-2.75 (m, 1 H), 2.64-2.71 (m, 1 H), 2.26-2.33 (m, 1 H), 2.23 (s, 3 H) ppm; ¹³C NMR (75 MHz, CDCl₃): δ 206.7, 148.5, 135.1, 134.9, 134.4, 131.3, 129.6, 127.6, 127.4, 126.3, 126.0, 116.8, 114.7, 69.8, 68.9, 58.5, 55.1, 42.5, 41.1, 25.2, 18.9 ppm; IR (neat): 3408, 3021, 2924, 2854, 2358, 1715, 1610, 1502, 1208, 948, 732 cm⁻¹; HRMS (ESI): C₂₁H₂₂CINO₂ [M+Na]⁺ calcd: 378.1231, found: 378.1240.

(*R*)-3-((*S*)-2-(4-methoxyphenyl)-1,2,3,4-tetrahydroisoquinolin-1-yl)dihydro-2H-thiopyran-4(3 H)-one: yellow solid, 75% yield; 90% *ee* determined by HPLC on a Chiralpak OD-H column (hexane/2-propanol = 80/20, flow rate = 1.0 mL/min, 254nm, t_{major} = 5.89 min, t_{minor} = 6.64 min); [α]²⁰_D= -18 (*c* = 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ 7.18-7.19 (m, 3 H), 7.08-7.11 (m, 1 H), 6.88-6.91 (d, *J* = 9.0 Hz, 2 H), 6.74-6.77 (d, *J* = 9.3 Hz, 2 H), 5.55-5.58 (d, *J* = 9.6 Hz, 1 H), 5.55 (s, 3 H), 3.68-3.74 (m, 1 H), 3.53-3.66 (m, 1 H), 3.02-3.09 (m, 1 H), 2.94-3.00 (m, 2 H), 2.89-2.90 (m, 1 H), 2.77-2.87 (m, 2 H), 2.69-2.74 (m, 1 H), 2.59-2.67 (m, 1 H), 2.47-253 (m, 1 H) ppm; ¹³C NMR (75 MHz, CDCl₃): δ 208.6, 153.7, 143.8, 135.8, 134.8, 129.7, 127.3, 127.2, 125.8, 119.5, 114.5, 57.9, 55.5, 44.0, 41.5, 33.6, 31.4, 30.1, 24.5 ppm; **IR** (neat): 3317, 2952, 2921, 2833, 1959, 1707, 1510, 1460, 1244, 1036, 772 cm⁻¹; **HRMS** (ESI): C₂₁H₂₃NO₂S [M+H]⁺ calcd: 354.1522, found: 354.1529.

(*R*)-3-((*S*)-2-(4-(trifluoromethoxy)phenyl)-1,2,3,4-tetrahydroisoquinolin-1-yl)dihydro-2H-thi opyran-4(3H)-one: yellow solid, 70% yield; 80% *ee* determined by HPLC on a Chiralpak OD-H column (hexane/2-propanol = 80/20, flow rate = 1.0 mL/min, 254nm, $t_{major} = 5.31$ min, $t_{minor} =$ 6.13 min); $[\alpha]^{20}_{D}= -17$ (*c* = 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ 7.19-7.21 (m, 3 H), 7.10-7.12 (m, 1 H), 7.04-7.07 (d, *J* = 9.0 Hz, 2 H), 6.92-6.95 (d, *J* = 9.3 Hz, 2 H), 5.70-5.73 (d, *J* = 9.0 Hz, 1 H), 3.58-3.80 (m, 2 H), 3.09-3.13 (m, 1 H), 2.94-3.06 (m, 2 H), 2.91-2.95 (m, 3 H), 2.87-2.89 (m, 1 H), 2.75-2.79 (m, 1 H), 2.50-2.57 (m, 1 H) ppm; ¹³C NMR (75 MHz, CDCl₃): δ 208.5, 148.2, 141.7, 135.2, 134.4, 129.7, 127.5, 126.0, 122.2, 117.1, 113.4, 57.7, 55.8, 44.1, 42.3 (J = 93.8 Hz), 33.5, 31.2, 30.1, 25.0 ppm; IR (neat): 3316, 3061, 2923, 2854, 1707, 1608, 1511, 1260, 1112, 939, 760 cm⁻¹; HRMS (ESI): C₂₁H₂₀F₃NO₂S [M+Na]⁺ calcd: 430.1059, found: 430.1069.

(*R*)-3-((*S*)-2-(2-fluorophenyl)-1,2,3,4-tetrahydroisoquinolin-1-yl)dihydro-2H-thiopyran-4(3H) -one: yellow solid, 67% yield; 70% *ee* determined by HPLC on a Chiralpak OD-H column (hexane/2-propanol = 80/20, flow rate = 1.0 mL/min, 254nm, t_{major} = 5.61 min, t_{minor} = 6.01 min); [α]²⁰_D= -19 (*c* = 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ 7.20-7.23 (m, 3 H), 6.96-7.04 (m, 1 H), 6.89-6.93 (m, 1 H), 6.82-6.87 (m, 3 H), 5.42-5.45 (d, *J* = 9.3 Hz, 1 H), 3.64-3.74 (m, 1 H), 3.50-3.56 (m, 1 H), 3.08-3.12 (m, 2 H), 2.93-3.03 (m, 3 H), 2.50-2.90 (m, 3 H), 2.29-2.34 (m, 1 H) ppm; ¹³C NMR (75 MHz, CDCl₃): δ 208.4, 138.6, 138.5, 135.7, 134.7, 129.8, 127.3, 127.1, 126.0, 124.3, 123.0, 122.0, 116.4, 57.9, 56.9, 43.5, 41.4, 33.5, 31.5, 30.1, 25.1 ppm; **IR** (neat): 3391, 3020, 2951, 2854, 2253, 1704, 1511, 1451, 1227, 910, 759 cm⁻¹; **HRMS** (ESI): C₂₀H₂₀FNOS $[M+Na]^+$ calcd: 364.1142, found: 364.1149.

(*R*)-3-((*S*)-6,7-dimethoxy-2-phenyl-1,2,3,4-tetrahydroisoquinolin-1-yl)dihydro-2H-thiopyran-4(3H)-one: yellow solid, 61% yield; 90% *ee* determined by HPLC on a Chiralpak OD-H column (hexane/2-propanol = 90/10, flow rate = 1.0 mL/min, 254nm, t_{major} = 9.92 min, t_{minor} = 11.08 min); [α]²⁰_D= -22 (*c* = 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ 7.19-7.22 (m, 2 H), 6.96-6.98 (d, *J* = 8.1 Hz, 2 H), 6.78-6.83 (t, *J* = 7.2 Hz, 1 H), 6.71 (s, 1 H), 6.57 (s, 1 H), 5.66-5.69 (d, *J* = 8.4 Hz, 1 H), 3.88 (s, 3 H), 3.83 (s, 3 H), 3.67-3.71 (m, 2 H), 3.10-3.15 (m, 1 H), 3.04-3.05 (m, 1 H), 2.85-2.98 (m, 4 H), 2.75-2.82 (m, 2 H), 2.53-2.57 (m, 1 H) ppm; ¹³C NMR (75 MHz, CDCl₃): δ 208.8, 149.5, 148.2, 147.0, 129.3, 127.3, 126.9, 119.4, 116.7, 112.1, 110.4, 58.0, 56.1, 55.8, 55.2, 42.8, 41.7, 33.7, 31.1, 24.7 ppm; IR (neat): 3530, 3001, 2929, 2835, 2253, 1706, 1514, 1245, 1111, 911, 732 cm⁻¹; HRMS (ESI): C₂₂H₂₅NO₃S [M+Na]⁺ calcd: 406.1447, found: 406.1447.

(*S*)-3-((*S*)-7-chloro-2-(4-methoxyphenyl)-1,2,3,4-tetrahydroisoquinolin-1-yl)dihydro-2H-pyra n-4(3H)-one: yellow solid, 52% yield; 77% *ee* determined by HPLC on a Chiralpak OD-H column (hexane/2-propanol = 90/10, flow rate = 1.0 mL/min, 254nm, t_{major} = 6.87 min, t_{minor} = 8.08 min); $[\alpha]^{20}_{D}$ = -16 (*c* = 0.5, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ 7.26-7.30 (m, 1 H), 7.15-7.18 (m, 1 H), 7.04-7.04 (d, *J* = 8.1 Hz, 1 H), 6.84-6.87 (d, *J* = 9.3 Hz, 2 H), 6.74-6.77 (d, J = 9.3 Hz, 2 H), 5.14-5.17 (d, *J* = 8.7 Hz, 1 H), 4.07-4.20 (m, 2 H), 3.69 (s, 3 H), 3.62-3.68 (m, 1 H), 3.51-3.58 (m, 1 H), 2.69-2.83 (m, 3 H), 2.51-2.63 (m, 2 H), 2.26-2.33 (m, 1 H), 2.04-2.06 (m, 1 H) ppm; ¹³C NMR (75 MHz, CDCl₃): δ 206.4, 153.8, 143.4, 137.4, 133.2, 131.3, 131.0, 127.4, 127.2, 119.5, 114.5, 69.8, 69.0, 58.6, 55.5, 44.7, 43.5, 41.0, 24.1 ppm; **IR** (neat): 3297, 2924, 2854, 2251, 2053, 1717, 1510, 1246, 1146, 907, 733 cm⁻¹; **HRMS** (ESI): $C_{21}H_{22}CINO_3 [M+H]^+$ calcd: 372.1361, found: 372.1359.

(*S*)-1-(2-(4-methoxyphenyl)-1,2,3,4-tetrahydroisoquinolin-1-yl)butan-2-one: yellow oil, 63% yield; 30% *ee* determined by HPLC on a Chiralpak OD-H column (hexane/2-propanol = 80/20, flow rate = 1.0 mL/min, 254nm, $t_{major} = 15.25$ min, $t_{minor} = 7.19$ min); $[\alpha]^{20}_{D} = -6$ (c = 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ 7.10-7.16 (m, 4 H), 6.89-6.92 (d, J = 9.3 Hz, 2 H), 6.79-6.82 (d, J = 9.0 Hz, 2 H), 5.25-5.29 (t, J = 6.6 Hz, 1 H), 3.74 (s, 3 H), 3.41-3.59 (m, 2 H), 2.95-3.07 (m, 2 H), 2.68-2.78 (m, 2 H), 2.25-2.32 (m, 2 H), 0.94-0.99 (t, J = 7.2 Hz, 3 H) ppm; ¹³C NMR (75 MHz, CDCl₃): δ 210.0, 153.2, 143.7, 138.4, 134.3, 128.9, 126.8, 126.6, 118.1, 114.7, 56.2, 55.6, 48.7, 42.9, 37.0, 26.9, 7.5 ppm; IR (neat): 3313, 3061, 2933, 2833, 2061, 1710, 1511, 1460, 1245, 949, 756 cm⁻¹; HRMS (ESI): C₂₀H₂₃NO₂ [M+Na]⁺ calcd: 332.1621, found: 332.1626.

5.0 Mechanistic Experiments and Proposed Reaction Pathways

The possible reaction pathways of this novel oxidative coupling of N-aryl tetrahydroisoquinolines with simple ketones is assumed to involve a single-electron transfer (SET) radical mechanism. When DDQ reacts with the **1a**, a single-electron transfer from **1a** would occur to afford the radical cation, which was subsequently transferred to iminium cation as a key intermediate. To trap the radical intermediate, the same equivalent of TEMPO or 2,6-di-tert-butyl-4-methylphenol (BHT) was respectively added to this reaction system. With addition of TEMPO, no significant change in the yield and stereoselective of the coupling product could be detected, and the addition product of N-aryl tetrahydroisoquinolines with TEMPO was not formed either. However, the situation was changed when BHT was added, which the yield of the coupling product was decreased from 65 to

23%, although little influence on stereoselectivity.

6.0 X-ray Structure of 31:

Bond precision:		C-C = 0.0037 A		Wavelength=0.71070	
Cell:	a=6.7008(2)		b=14.8959(6)	c=16.9986(6)	
	alpha=90		beta=93.806(3)	gamma=90	
Temperature	: 292 K				

Calculated

Reported

Volume	1692.96(10)		1692.96(11)
Space group	P 21/n		P 1 21/n 1
Hall group	-P 2yn		-P 2yn
Moiety formula	C20 H20 F N O	S	C20 H20 F N O S
Sum formula	C20 H20 F N O	S	C20 H20 F N O S
Mr	341.44		341.43
Dx,g cm-3	1.340		1.340
Z	4		4
Mu (mm-1)	0.207		0.207
F000	720.0		720.0
F000'	720.80		
h,k,lmax	9,20,22		8,19,22
Nref	4317		3798
Tmin,Tmax	0.936,0.950		0.879,1.000
Tmin'	0.936		
Correction method= MUI	LTI-SCAN		
Data completeness= 0.880)	Theta(max)= 28.600	
R(reflections)= 0.0540(2	638)	wR2(reflections)= 0 .	1823(3798)
S = 1.014	Npar= 217		

7.0 References

[1] X.-Z. Shu, X.-F. Xia, Y.-F. Yang, K.-G. Ji, X.-Y. Liu, Y.-M. Liang, J. Org. Chem. 2009, 74, 7464-7469.

[2] Z. Li, C.-J. Li, J. Am. Chem. Soc. 2005, 127, 6968-6969.

[3] N. A. Paras, D. W. C. MacMillan, J. Am. Chem. Soc. 2002, 124, 7894-7895

[4] Y. Hayashi, H. Gotoh, T. Hayashi, M. Shoji, Angew. Chem. Int. Ed. 2005, 44, 4212-4215.

[5] Z. Qiao, Z. Shafiq, L. Liu, Z.-B. Yu, Q.-Y. Zheng, D. Wang, Y.-J. Chen, *Angew. Chem. Int. Ed.*2010, 49, 7294-7298.

7.0 Copies of HPLC Spectra of Racemic /Chiral Products

HPLC using an OD (n-Hexane/iPrOH= 80/20, flow rate 1.0 mL/min

	Retention Time	Area	% Area	Height	Int Type	Peak Type
1	4.803	1050934	95.12	101644	bb	Unknown
2	5.489	53972	4.88	7483	bb	Unknown

HPLC using an OD (*n*-Hexane/*i*PrOH= 60/40, flow rate 1.0 mL/min

	Retention Time	Area	% Area	Height	Int Type	Peak Type
1	4.582	696241	50.59	94271	bb	Unknown
2	5.340	680135	49.41	54531	bb	Unknown

	Retention Time	Area	% Area	Height	Int Type	Peak Type
1	4.581	3984697	91.79	443349	bb	Unknown
2	5.414	360424	8.21	49434	bb	Unknown

	Retention Time	Area	% Area	Height	Int Type	Peak Type
1	5.062	424732	88.76	43877	bb	Unknown
2	6.327	53795	11.24	5888	bb	Unknown

HPLC using an AS (*n*-Hexane/*i*PrOH= 99/1, flow rate 1.0 mL/min

	Retention Time	Area	% Area	Height	Int Type	Peak Type
1	11.788	7791813	45.56	134488	VV	Unknown
2	13.896	9308697	54.44	128497	Vb	Unknown

	Retention Time	Area	% Area	Height	Int Type	Peak Type
1	12.776	142743	6.23	3821	bb	Unknown
2	14.925	2147374	93.77	30673	bb	Unknown

	Retention Time	Area	% Area	Height	Int Type	Peak Type
1	8.750	1044253	80.77	52752	bb	Unknown
2	13.184	248566	19.23	9859	bb	Unknown

HPLC using an OD (n-Hexane/iPrOH= 80/20, flow rate 1.0 mL/min

	Retention Time	Area	% Area	Height	Int Type	Peak Type
1	5.608	1518781	97.07	124585	bb	Unknown
2	6.482	45854	2.93	2812	bb	Unknown

	Retention Time	Area	% Area	Height	Int Type	Peak Type
1	6.622	9665184	50.36	831741	bb	Unknown
2	8.940	9527637	49.64	589565	bb	Unknown

	Retention Time	Area	% Area	Height	Int Type	Peak Type
1	6.771	2258635	91.44	187924	bb	Unknown
2	9.224	211400	8.56	17961	bb	Unknown

HPLC using an OD (n-Hexane/iPrOH= 80/20, flow rate 1.0 mL/min

HPLC using an OD (n-Hexane/iPrOH= 80/20, flow rate 1.0 mL/min

9.586

2543916

94.87

118049

bb

Unknown

	Retention Time	Area	% Area	Height	Int Type	Peak Type
1	5.449	3130095	46.18	273432	bb	Unknown
2	6.175	3648083	53.82	260348	bb	Unknown

4.36

20452

bb

Unknown

HPLC using an OD (n-Hexane/iPrOH= 80/20, flow rate 1.0 mL/min

6.641

184007

2

	Retention Time	Area	% Area	Height	Int Type	Peak Type
1	5.307	3277759	90.10	379588	bb	Unknown
2	6.127	360149	9.90	45671	bb	Unknown

	Retention Time	Area	% Area	Height	Int Type	Peak Type
1	5.558	2320873	54.08	230969	VV	Unknown
2	5.997	1970322	45.92	187553	VB	Unknown

	Retention Time	Area	% Area	Height	Int Type	Peak Type
1	5.613	7626239	84.81	742107	bb	Unknown
2	6.010	1365829	15.19	161143	bb	Unknown

HPLC using an OD (n-Hexane/iPrOH= 90/10, flow rate 1.0 mL/min

	Retention Time	Area	% Area	Height	Int Type	Peak Type
1	6.819	3697313	50.82	304768	bb	Unknown
2	8.046	3578170	49.18	244176	bb	Unknown

	Retention Time	Area	% Area	Height	Int Type	Peak Type
1	6.868	6569912	88.28	547515	bb	Unknown
2	8.076	871913	11.72	75521	bb	Unknown

Electronic Supplementary Material (ESI) for Chemical Science This journal is O The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Chemical Science This journal is © The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Chemical Science This journal is O The Royal Society of Chemistry 2013

92.112-----

 192.9

 162.9

 051.2

 252.2

 L92.2

 L62.2

20.29 27.14 27.98		
64.49		
22.03 26.31		
20.011 10.03 20.011 20.021		
6I.84I	3d Br	
₽ <i>L</i> •IIZ		

82 28	•₽ТТ •9ТТ •6ТТ	
€8 ₱Т 09 9 <i>L</i> ८9	152 152' 150' 134' 132	

08.541 —

09°EST —

67.802 ----

Electronic Supplementary Material (ESI) for Chemical Science This journal is O The Royal Society of Chemistry 2013

94.4S	
30.05 31.40 33.56	///
94.14 86.54	
67.25 98.72	

L₽	•	₽	Ţ	Ţ	
09	•	6	Ţ	Ţ	
τ8 8τ 78 0 <i>1</i>		S L L 6	2 7 7 7	ד ד ד	\geq
61.	٠	Þ	3	T.	

08.541-----

£9.802 —

Electronic Supplementary Material (ESI) for Chemical Science This journal is O The Royal Society of Chemistry 2013

000.0-----

Electronic Supplementary Material (ESI) for Chemical Science This journal is © The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Chemical Science This journal is O The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Chemical Science This journal is O The Royal Society of Chemistry 2013

