
Photochemical properties of Spinach and its use in selective imaging
(Supporting information)

Pengcheng Wang,[a,b] Jérôme Querard,[a] Sylvie Maurin,[a] Sarang S. Nath,[a]

Thomas Le Saux,[a,c],∗ Arnaud Gautier,[a],∗ Ludovic Jullien[a,c],∗

[a]Ecole Normale Supérieure, Département de Chimie,
UMR CNRS-ENS-UPMC Paris 06 8640 Pasteur,
24, rue Lhomond, 75231 Paris Cedex 05, France.

E-mail: Thomas.Lesaux@ens.fr, Arnaud.Gautier@ens.fr, Ludovic.Jullien@ens.fr

[b]Institut Curie, Centre de Recherche, UMR 176 CNRS-Institut Curie,
26 rue d’Ulm, 75248 Paris, France.

[c]UPMC Univ Paris 06,
4 Place Jussieu, 75232 Paris Cedex 05, France.

1

Electronic Supplementary Material (ESI) for Chemical Science
This journal is © The Royal Society of Chemistry 2013



1 THEORETICAL MODEL FOR THE CIS-DFHBI-SPINACH RNA ASSOCIATION EXPERIMENTS

1 Theoretical model for the cis-DFHBI-Spinach RNA association experiments

In the absence of any photoisomerization, the temporal evolution of the solution composition resulting from

mixing solutions of cis-DFHBI and Spinach RNA is governed by Eq.(1):

R + 1F
k+,1



k−,1

1B (1)

The kinetic law associated with reaction (1) in a homogeneous solution follows:

d1B(t)

dt
= k+,1 1F (t)R(t)− k−,1 1B(t). (2)

Being in excess with respect to R in the series of stopped-flow experiments, the concentration of fluorophore

1F was assumed constant in both mixed solutions such that 1F (t) = 1Ftot. Upon considering the total concen-

tration in R, Rtot = R(t) + 1B(t), Eq. (2) yields:

1B(t) =
k+,11Ftot

k+,11Ftot + k−,1

(
1− e−t/τ1,±

)
Rtot, (3)

with

τ1,± = (k+,11Ftot + k−,1)
−1. (4)

Eq.(3) can be used to derive the temporal dependence of the normalized fluorescence intensity IF (t)/IF (0):

IF (t)

IF (0)
= 1 + q1k+,1Rtotτ1,±

(
1− e−t/τ1,±

)
, (5)

where q1 =
Q1B
Q1F

designates the relative brightness between 1B and 1F.
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2 THEORETICAL ANALYSES

2 Theoretical analyses

In this section, we theoretically analyze the dynamic behavior of the models displayed in Scheme 2 of the Main

Text. Sharing in common nodes and exchanging processes, those dynamic models only differ by the number of

considered nodes and exchanging processes. Instead of exploring stepwise those models, we first consider the

most complete model (shown in Scheme 2d), from which we derive the behavior of the simpler models.

2.1 The generic dynamic model

The generic dynamic model is a four-state mechanism consisting of two trans-DFHBI states (bound and un-

bound) in addition to the previously reported cis states of DFHBI. Both cis- and trans-DFHBI interact with

Spinach RNA to yield the corresponding fluorescent bound states, Spinach-cis-DFHBI and Spinach-trans-

DFHBI. The two isomers interconvert by photoisomerization in both the bound and unbound states while only

trans-cis isomerization may occur by thermally-driven exchange. For simplicity, this section uses the symbols

1F, 2F, 1B, and 2B to represent cis-DFHBI, trans-DFHBI, Spinach-cis-DFHBI, and Spinach-trans-DFHBI

respectively. The associated rate constants are presented in Figure S1, where the superscripts hv and ∆ respec-

tively denote photochemical and thermal contributions.a
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Figure S1: Four-state mechanism accounting for the photochemical and complexation behavior of a pho-
tochromic fluorogen in the presence of a receptor.

The theoretical framework closely mirrors that described in a previous work by Emond et al.1 The concen-

tration profiles within the four state model are governed by the equations:
a1H-NMR evidence suggests a high purity of the 1F state prior to illumination, i.e. k∆

12,F ≪ k∆
21,F . Thermal contributions were

thus neglected for the forward exchange from 1F and 2F to 1B and 2B respectively.
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2.1 The generic dynamic model 2 THEORETICAL ANALYSES

d1B

dt
= − (k1B→1F + k1B→2B) 1B + k2B→1B 2B + k1F→1B R 1F (6)

d2B

dt
= k1B→2B 1B − (k2B→2F + k2B→1B) 2B + k2F→2B R 2F (7)

d1F

dt
= k1B→1F1B − (k1F→1B R+ k1F→2F) 1F + k2F→1F 2F (8)

d2F

dt
= k2B→2F2B + k1F→2F 1F − (k2F→2B R+ k2F→1F) 2F (9)

The temporal dependence of concentrations cannot be obtained in the most general case. However, it can

be analyzed in asymptotic situations according to the nature of the rate-limiting steps, which are associated to

either the photochemical reactions or the complexation reactions. Crossing between both kinetic regimes typi-

cally occurs when the relaxation times associated to the photoisomerization and the complexation reactions are

equal. Relying on the values subsequently extracted for the Spinach system at the micromolar concentrations

used in the present study (vide infra), we predicted that photoisomerization would remain rate-limiting up to

2.25×10−2 ein.s−1.m−2,b a value lying much above our typical light flux. Thus we reduced further theoretical

analysis in the following to the regimes where photoisomerization is rate-limiting.

The different dynamic models shown in Scheme 2 correspond to particular values of the rate constants

involved in Figure S1. The most general situation corresponding to non-zero values is shown in Scheme 2d.

Schemes 2b and 2c are respectively associated to zero values for khν,012,B and khν,021,B + k∆21,B , and for k+,2 and

k−,2, whereas Scheme 2a is associated to zero values for khν,012,B , khν,021,B + k∆21,B , k+,2, and k−,2.

Depending on the values of the rate constants k+,2 and k−,2, two different reduced schemes result from the

reduction of the mechanism displayed in Figure S1 upon considering that photoisomerization is rate-limiting.

In the most general situation, k+,2 and k−,2 adopt non-zero values; then the reduced mechanism involves the

exchange between two reduced species (Figure S2a : Two state model). In contrast, when both k+,2 and k−,2

bOn the one hand, the relaxation time in a regime where photochemistry is rate-limiting was calculated for increasing light intensities
using Eq.(54) and the parameters displayed in Table 1 of the Main Text. On the other hand, the relaxation time in a regime where
complexation is rate-limiting was similarly calculated using Eq.(10) which originates from reducing to the corresponding two state
model in the case Rtot ≪ Ftot:

τF,0
± =

1

k0
+Ftot + k0

−
(10)

with

k0
+ =

k∆
+,1 + k∆

+,2 Khν,∆,0
F

1 +Khν,∆,0
F

(11)

k0
− =

k∆
−,1 + k∆

−,2 Khν,∆,0
B

1 +Khν,∆,0
B

(12)

and

Khν,∆,0
F =

khν,0
12,F

khν,0
21,F + k∆

21,F

(13)

Khν,∆,0
B =

khν,0
12,B

khν,0
21,B + k∆

21,B

. (14)

Then we derived the light intensity for which the two relaxation times were equal.
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2.2 Analysis of the reduced two state model 2 THEORETICAL ANALYSES

are equal to zero, the reduced mechanism involves three species and two exchanges (Figure S2b : Three state

model).

+

1 2

R

k
12

k
21

a

b 1

2Fκ
12,F

k
21,F

2B
κ

12,B

k
21,B

Figure S2: : Models resulting from reduction of the mechanism shown in Figure S1 upon considering that
photoisomerization is rate-limiting. a: Two state model where k+,2 and k−,2 adopt non-zero values; b: Three
state model with k+,2 and k−,2 equal to zero.

2.2 Analysis of the reduced two state model

In the “low”-illumination regime with non-zero values for k+,2 and k−,2 (Figure S2a), it is meaningful to

introduce the average species 1 and 2 (concentrations 1 = 1F + 1B and 2 = 2F + 2B). The “instantaneous”

concentrations in 1F, 1B, 2F and 2B then followc,

1F =
1

1 +K∆
1 R

1 (15)

1B =
K∆

1 R

1 +K∆
1 R

1 (16)

2F =
1

1 +K∆
2 R

2 (17)

2B =
K∆

2 R

1 +K∆
2 R

2 (18)

where

K∆
1 =

k∆+,1

k∆−,1

(19)

K∆
2 =

k∆+,2

k∆−,2

. (20)

Thus Eqs.(6–9) transform into Eq.(21):

d1

dt
= −d2

dt
= −k12 1 + k21 2 (21)

cThe association constants, K∆
1 and K∆

2 are the inverse of the dissociation constants Kd,1 and Kd,2. Furthermore, k+,1 and k−,1

have been replaced with k∆
+,1 and k∆

−,1 to articulate that these rate constants are only affected by temperature rather than light.
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2.2 Analysis of the reduced two state model 2 THEORETICAL ANALYSES

with

k12 =
khν12,F + khν12,B K∆

1 R

1 +K∆
1 R

(22)

k21 =

(
khν21,F + k∆21,F

)
+
(
khν21,B + k∆21,B

)
K∆

2 R

1 +K∆
2 R

. (23)

In the most general case, Eq.(21) has no analytical solution, because k12 and k21 are time-dependent as a

result of the R(t) term. However, a tractable temporal dependence of the concentrations after a light jump from

0 to I0 can be obtained in two regimes:

• The total concentration of the receptor (Rtot) is much larger than that of the fluorogen (Ftot): Rtot ≫

Ftot. Then

k12 =
khν12,F + khν12,B K∆

1 Rtot

1 +K∆
1 Rtot

(24)

k21 =

(
khν21,F + k∆21,F

)
+
(
khν21,B + k∆21,B

)
K∆

2 Rtot

1 +K∆
2 Rtot

. (25)

This case is relevant to analyze the experiments reported in the Main Text when Rtot ≫ Ftot.

• The change of light intensity generates a perturbation of the solution composition of small amplitude. As

a consequence, Eq.(21) can be solved at first order of light perturbation. This case is relevant to analyze

the experiments reported in the Main Text when Ftot ≫ Rtot .

2.2.1 Case Rtot ≫ Ftot

In such a regime, the apparent rate constant k12 and k21 can be considered constant and equal to k012 and k021

given by

k012 =
khν,012,F + khν,012,B K∆

1 Rtot

1 +K∆
1 Rtot

(26)

k021 =

(
khν,021,F + k∆21,F

)
+
(
khν,021,B + k∆21,B

)
K∆

2 Rtot

1 +K∆
2 Rtot

. (27)

Since Ftot = 1 + 2, Eq.(21) becomes:

−
d
(
2− 2

0
)

dt
=

(
k012 + k021

) (
2− 2

0
)

(28)

without any restriction on the amplitude of light jump. Then Eq.(28) leads to

2− 2
0

= 1
0 − 1 = −2

0
exp

(
− t

τ012

)
(29)
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2.2 Analysis of the reduced two state model 2 THEORETICAL ANALYSES

where

2
0

=
K0

12

1 +K0
12

Ftot (30)

1
0

=
1

1 +K0
12

Ftot (31)

1F 0 =
1

1 +K∆
1 Rtot

1
0 (32)

2F 0 =
1

1 +K∆
2 Rtot

2
0 (33)

1B0 =
K∆

1 Rtot

1 +K∆
1 Rtot

1
0 (34)

2B0 =
K∆

2 Rtot

1 +K∆
2 Rtot

2
0 (35)

R0 = Rtot −
(

K∆
1 Rtot

1 +K∆
1 Rtot

+
K∆

2 Rtot

1 +K∆
2 Rtot

K0
12

)
1

1 +K0
12

Ftot ∼ Rtot (36)

τ012 =
1

k012 + k021
(37)

K0
12 =

k012
k021

(38)

In Eqs.(30–38), 20, 10, 1F 0, 1B0, 2F 0, 2B0, R0, τ012, and K0
12 respectively denote the steady-state values of

2, 1, 1F , 1B, 2F , 2B, and R, the apparent relaxation time associated to the photochemical reactions, and the

apparent photoisomerization constant of the fluorogen F, in the presence of light at constant intensity I0.

2.2.2 Case of a perturbation of small amplitude

In this regime, there is no restriction on the relative concentrations of R and F. Thus the apparent rate constant

k12 and k21 cannot be anymore considered constant at the investigated time scale. To be able to perform

analytical calculations, we consider that the light jump generates a perturbation of small amplitude. Then we

solve Eq.(21) at first order of the light perturbation upon writing:

2 = 2
0
+ ε2

1
(t) (39)

1 = 1
0 − ε2

1
(t) (40)

R = R0 + εR1(t) (41)

where 1
0, 20, and R0 denote the steady-state value of the concentrations when light of intensity I0 is applied

on the system.d Note that it is the same first order term which intervenes in Eqs. (39) and (40) since 1 + 2 =

1
0
+ 2

0
= Ftot.

In a first step, the relation existing between 2
1
(t) and εR1(t) is extracted. In relation to Eqs.(15–18), we

dThe analytical expressions of these concentrations cannot be obtained. Indeed the steady-state concentration R0 is governed by a
polynomial equation, which has no analytical solution. In contrast, those values can be derived numerically.

S7

Electronic Supplementary Material (ESI) for Chemical Science
This journal is © The Royal Society of Chemistry 2013



2.2 Analysis of the reduced two state model 2 THEORETICAL ANALYSES

first derive:

1

1 +K∆
i R

=
1

1 +K∆
i R0

(
1− K∆

i R1

1 +K∆
i R0

ε

)
(42)

K∆
i R

1 +K∆
i R

=
K∆

i R0

1 +K∆
i R0

(
1 +

R1

R0
(
1 +K∆

i R0
)ε) (43)

with i = 1 or 2. Derivation of Eqs.(42,43) only requires that K∆
i εR1 ≪ 1+K∆

i R0. This condition is fulfilled

in the most general case as soon as εR1 ≪ R0 where the light jump causes a small change of the concentration

in R. However, it is also interestingly fulfilled without any restriction on the relative values of R0 and εR1

when the R concentration is low enough so as to have K∆
i Rtot ≪ 1. Then one has both K∆

i R0 ≪ 1 and

K∆
i εR1 ≪ 1. This case is relevant to analyze the experiments described in the Main Text.

Then we use Eqs.(16,18) and the conservation law

Rtot = R+ 1B + 2B (44)

to yield

R1 = γ2
1 (45)

with

γ =

K∆
1 R0

1+K∆
1 R0 − K∆

2 R0

1+K∆
2 R0

1 +
K∆

1 1
0

(1+K∆
1 R0)

2 +
K∆

2 2
0

(1+K∆
2 R0)

2

(46)

The temporal dependence of k12 and k21

k12(t) =
khν,012,F + khν,012,B K∆

1 R(t)

1 +K∆
1 R(t)

(47)

k21(t) =

(
khν,021,F + k∆21,F

)
+
(
khν,021,B + k∆21,B

)
K∆

2 R(t)

1 +K∆
2 R(t)

(48)

is then extracted at first order using Eqs.(41,45). We derived

k12(t) = k012 +
(
khν,012,B − khν,012,F

) K∆
1 εγ(

1 +K∆
1 R0

)2 21(t) (49)

k21(t) = k021 +
(
khν,021,B − khν,021,F

) K∆
2 εγ(

1 +K∆
2 R0

)2 21(t) (50)

with

k012 =
khν,012,F + khν,012,B K∆

1 R0

1 +K∆
1 R0

(51)

k021 =

(
khν,021,F + k∆21,F

)
+
(
khν,021,B + k∆21,B

)
K∆

2 R0

1 +K∆
2 R0

. (52)
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2.2 Analysis of the reduced two state model 2 THEORETICAL ANALYSES

Eq.(21) is then solved upon using the expressions (39,40,49,50). We derived

d2
1

dt
+

1

τ012
2
1

= 0 (53)

with

τ012 =
1

k012 + k021 +
(
γ0212

0 − γ0121
0
) (54)

where

γ012 =
(
khν,012,B − khν,012,F

) K∆
1 γ(

1 +K∆
1 R0

)2 (55)

γ021 =
(
khν,021,B − khν,021,F

) K∆
2 γ(

1 +K∆
2 R0

)2 (56)

Considering that the 2 states are not present at initial time, we then obtain:

ε2
1
(t) = 2− 2

0
= 1

0 − 1 = −2
0
exp

(
− t

τ012

)
(57)

where

2
0

=
K0

12

1 +K0
12

Ftot (58)

1
0

=
1

1 +K0
12

Ftot (59)

R0 = Rtot −
(

K∆
1 R0

1 +K∆
1 R0

1
0
+

K∆
2 R0

1 +K∆
2 R0

2
0
)

(60)

K0
12 =

k012
k021

(61)

Equipped with Eqs.(15–18,39,40,42,43) one has also at first order

1F (t) = 1F 0 − 1 +K∆
1 R0 +K∆

1 γ1
0(

1 +K∆
1 R0

)2 ε2
1
(t) (62)

1B(t) = 1B0 +
K∆

1 γ1
0 −K∆

1 R0
(
1 +K∆

1 R0
)(

1 +K∆
1 R0

)2 ε2
1
(t) (63)

2F (t) = 2F 0 +
1 +K∆

2 R0 −K∆
2 γ2

0(
1 +K∆

2 R0
)2 ε2

1
(t) (64)

2B(t) = 2B0 +
K∆

2 γ2
0
+K∆

2 R0
(
1 +K∆

2 R0
)(

1 +K∆
2 R0

)2 ε2
1
(t) (65)

with

1F 0 =
1

1 +K∆
1 R0

1
0 (66)

1B0 =
K∆

1 R0

1 +K∆
1 R0

1
0 (67)

2F 0 =
1

1 +K∆
2 R0

2
0 (68)

2B0 =
K∆

2 R0

1 +K∆
2 R0

2
0 (69)
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2.2 Analysis of the reduced two state model 2 THEORETICAL ANALYSES

In Eqs.(58–65), 20, 10, R0, 1F 0, 1B0, 2F 0, 2B0, τ012, K0
12 respectively denote the steady-state value of 2, 1,

R, 1F , 1B, 2F , 2B, the apparent relaxation time associated to the photochemical reactions, and the apparent

photoisomerization constant of the fluorogen F, in the presence of light at constant intensity I0.

2.2.3 Analysis of the fluorescence emission

Fluorescence emission IF (t) originates from summing the individual contributions of the fluorogen-derived

species 1F, 2F, 1B, and 2B. Denoting Qi for the molecular brightness, one has

IF (t) = (Q1F 1F +Q2F 2F +Q1B1B +Q2B2B) I0 (70)

where the expressions of 1F , 2F , 1B, and 2B depend on the experimental regimes.

The expressions of 1F , 2F , 1B, and 2B can be retrieved from Eqs.(15–18) and (29–38) or (57–69). Then

one has:

IF =

[
A0 + (Q1 −Q2) 2

0
exp

(
− t

τ012

)]
I0 (71)

with

A0 = Q1F 1F
0 +Q2F 2F

0 +Q1B1B
0 +Q2B2B

0 (72)

and

• Case Rtot ≫ Ftot:

Q2 =
Q2F +Q2BK

∆
2 Rtot

1 +K∆
2 Rtot

(73)

Q1 =
Q1F +Q1BK

∆
1 Rtot

1 +K∆
1 Rtot

(74)

• Case of a perturbation of small amplitude:

Q2 =
1 +K∆

2 R0 −K∆
2 γ2

0(
1 +K∆

2 R0
)2 Q2F +

K∆
2 γ2

0
+K∆

2 R0
(
1 +K∆

2 R0
)(

1 +K∆
2 R0

)2 Q2B (75)

Q1 =
1 +K∆

1 R0 +K∆
1 γ1

0(
1 +K∆

1 R0
)2 Q1F +

K∆
1 R0

(
1 +K∆

1 R0
)
−K∆

1 γ1
0(

1 +K∆
1 R0

)2 Q1B (76)

Moreover assuming that the system contains only 1 before illumination and that the brightnesses of both free

states can be neglected in the presence of their corresponding bound states (which is the case in the explored

regime of Spinach RNA concentration), the temporal evolution of photoinduced fluorescence-loss given in

Eq.(71) yields:

IF (t) = IF (0)

[
1 + (Qr − 1)

k012
k012 + k021

(
1− e−(k012+k021)t

)]
(77)

with

Qr =
Q2B

Q1B
×

Kd,1 +Rtot

Kd,2 +Rtot
(78)

where IF (0) is the initial fluorescence intensity at t = 0, IF (t) is the fluorescence intensity at time t, and Q2B

and Q1B denote the molecular brightnesses of 2B and 1B respectively.
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2.2 Analysis of the reduced two state model 2 THEORETICAL ANALYSES

2.2.4 Application to various dynamic models

Photoisomerization of the cis-DFHBI fluorogen In relation to the photoisomerization of the cis-DFHBI

fluorogen in the absence of Spinach RNA which was investigated in an independent experiment, we first derive

the temporal dependence of the normalized fluorescence intensity upon applying a light jump from 0 to I0.

Hence we adapted Eq.(71) to derive

IF (t) = IF (0)

[
1 +

(
Q2F

Q1F
− 1

)
k012

k012 + k021

(
1− e−(k012+k021)t

)]
(79)

with

k012 = khν,012,F (80)

k021 = khν,021,F + k∆21,F . (81)

Photoisomerization and complexation of the cis-DFHBI fluorogen (Scheme 2a) In the regime considered

in the Main Text (Rtot ≫ Ftot), Eq.(77,78) adopt different expressions upon assuming that the system contains

only 1 before illumination and that the brightnesses of both free states can be neglected in the presence of the

bound state(s) (which is the case in the explored regime of Spinach RNA concentration). In the case of the

dynamic model displayed in Scheme 2a, one has

IF (t) = IF (0)

[
1− k012

k012 + k021

(
1− e−(k012+k021)t

)]
(82)

with

k012 =
Kd,1

Kd,1 +Rtot
khν,012,F (83)

k021 = khν,021,F + k∆21,F (84)

When Rtot is much larger than Kd,1, k012 becomes notably vanishing. As a consequence, one expects the

loss of fluorescence amplitude to vanish and the rate of fluorescence decay (k012 + k021) to decrease, when the

total concentration of R is increased.

Photoisomerization of cis-DFHBI and complexation of both cis- and trans-DFHBI stereoisomers (Scheme

2b) In the case of the dynamic model displayed in Scheme 2b, Eqs.(77,78) are valid with

k012 =
Kd,1

Kd,1 +Rtot
k012,F (85)

k021 =
Kd,2

Kd,2 +Rtot
k021,F . (86)

When Rtot is much larger than Kd,1 and Kd,2, both k012 and k021 become notably vanishing. As a conse-

quence, one expects the rate of fluorescence decay (k012 + k021) to vanish when the total concentration of R is

increased.

S11

Electronic Supplementary Material (ESI) for Chemical Science
This journal is © The Royal Society of Chemistry 2013



2.3 Analysis of the reduced three state model 2 THEORETICAL ANALYSES

Photoisomerization of and complexation of both cis- and trans-DFHBI stereoisomers (Scheme 2d) In

the case of the dynamic model displayed in Scheme 2d, Eqs.(77,78) are valid with

k012 =
k012,F Kd,1 + k012,B Rtot

Kd,1 +Rtot
(87)

k021 =
k021,F Kd,2 + k021,B Rtot

Kd,2 +Rtot
. (88)

2.3 Analysis of the reduced three state model

In the “low”-illumination regime with zero values for k+,2 and k−,2 (Figure S2b), one can now introduce only

one average species 1 with concentration 1 = 1F + 1B. The “instantaneous” concentrations in 1F and 1B

again follow,

1F =
1

1 +K∆
1 R

1 (89)

1B =
K∆

1 R

1 +K∆
1 R

1 (90)

where

K∆
1 =

k∆+,1

k∆−,1

. (91)

Thus Eqs.(6–9) transform into Eqs.(92–94):

d1

dt
= − (κ12,F + κ12,B) 1 + k21,F 2F + k21,B 2B (92)

d2F

dt
= κ12,F 1− k21,F 2F (93)

d2B

dt
= κ12,B 1− k21,B 2B (94)

with

κ12,F =
1

1 +K∆
1 R

khν12,F (95)

k21,F = khν21,F (96)

κ12,B =
K∆

1 R

1 +K∆
1 R

khν12,B (97)

k21,B = khν21,B + k∆21,B. (98)

When Rtot ≫ Ftot, the system of linear differential equations (92–94) possesses two non trivial negative

eigenvalues λ+ and λ− associated to two relaxation times τ+ and τ− given in the expression (99)

λ± = − 1

τ±
= −1

2
S ± 1

2

√
S2 − 4 (κ12,Fk21,B + k21,Fk21,B + k21,Fκ12,B) (99)

with

S = κ12,F + k21,F + κ12,B + k21,B. (100)
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2.3 Analysis of the reduced three state model 2 THEORETICAL ANALYSES

Upon assuming that the contribution of the free states 1F and 2F to the overall fluorescence emission can

be neglected, the temporal evolution of the fluorescence emission occurring after a jump of light intensity from

0 to I0 is

IF (t) = 1
0
(
a0 + a+e

λ+t + a−e
λ−t
)
I0 (101)

with

a0 =
1

λ+λ−

K∆
1 Rtot

1 +K∆
1 Rtot

k21,F

[
Q1Bk21,B +Q2Bk

hν
12,B

]
(102)

a+ =
1

λ+ (λ+ − λ−)

K∆
1 Rtot

1 +K∆
1 Rtot

(k21,F + λ+)
[
Q1B (k21,B + λ+) +Q2Bk

hν
12,B

]
(103)

a− =
1

λ− (λ− − λ+)

K∆
1 Rtot

1 +K∆
1 Rtot

(k21,F + λ−)
[
Q1B (k21,B + λ−) +Q2Bk

hν
12,B

]
(104)

where 1
0
= 1F 0 + 1B0 designate the steady-state value of the concentration in cis-species.

With this model, one correspondingly expects a bi-exponential decay of the temporal evolution of the

fluorescence emission.
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3 THEORETICAL COMPUTATIONS

3 Theoretical computations

The equations (54), (71), (66), (67), (68) and (69) have been first used to compute the relaxation time τ012 and the

normalized fluorescence loss (Q1−Q2)2
0

A0+(Q1−Q2)2
0 as well as the steady-state concentrations 1F 0, 1B0, 2F 0, and 2B0

at Rtot = 0.1 µM and Ftot = 1 µM for various values of the light intensity I0 upon using the Spinach-DFHBI

features displayed in Table 1 of the Main Text. The results are displayed in Figure S3.
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Figure S3: Theoretical computation of the dependence of the relaxation time τ012 (a), the normalized fluores-

cence loss (Q1−Q2)2
0

A0+(Q1−Q2)2
0 (b), the free (c; 1F 0: dotted line; 2F 0 : solid line) and bound (d; 1B0: dotted line

; 2B0 : solid line) state concentrations on the light intensity I0 using Eqs. (54), (71), (66), (67), (68) and (69)
respectively. Rtot = 0.1 µM; Ftot = 1 µM.

The same set of equations have been also used to compute the dependence of the relaxation time τ012, the

normalized fluorescence loss (Q1−Q2)2
0

A0+(Q1−Q2)2
0 , and the steady-state concentrations 1F 0, 1B0, 2F 0, and 2B0 at

light intensity I0= 9.0 ×10−9 ein·s−1 for various values of the total concentrations Rtot and Ftot upon using

the Spinach-DFHBI features displayed in Table 1. The results are displayed in Figures S4a,b and S5a,b.

The significance of the relative total concentrations Rtot and Ftot on the relaxation time and on the nor-

malized fluorescence loss is weaker than the one of the light intensity I0. In fact, it essentially reflects the

difference of the photochemical properties between the free and bound DFHBI states (see Table 1).
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4 SUPPLEMENTARY FIGURES
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Figure S4: Theoretical computation of the dependence of the relaxation time τ012 (a) and the normalized flu-

orescence loss (Q1−Q2)2
0

A0+(Q1−Q2)2
0 (b) on the total RNA concentration at Ftot = 1 µM and I0= 9.0 ×10−9 ein·s−1

using Eqs. (54) and (71) respectively.
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Figure S5: Theoretical computation of the dependence of the relaxation time τ012 (a) and the normalized fluo-

rescence loss (Q1−Q2)2
0

A0+(Q1−Q2)2
0 (b) on the total DFHBI concentration at Rtot = 1 µM and I0= 9.0 ×10−9 ein·s−1

using Eqs. (54) and (71) respectively.
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4 SUPPLEMENTARY FIGURES
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Figure S6: Kinetics of cis-DFHBI photoisomerization. a: Temporal evolution of the normalized fluorescence
emission at 510 nm upon illuminating a 100 µM cis-DFHBI solution with 470 nm light (5×10−9 ein.s−1).
Dots: experimental points; solid line: exponential fit with Eq.(3) of the Main Text; b: Dependence of the rate
constant associated to the fluorescence decay k012,F +k021,F on light intensity I0. Markers: experimental points;
solid line: linear fit. Solvent: pH 7.4 Hepes buffer; T = 293 K.
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Figure S7: Decay of fluorescence emission at 498 nm of the Spinach system upon illuminating at 470 nm.
Temporal evolution of the normalized fluorescence emission at 498 nm upon illuminating a solution containing
0.1 µM cis-DFHBI and 1.8 (a) or 20 (b) µM Spinach RNA with 470 nm light (1.7×10−8 ein.s−1). Dots:
experimental points; solid line: exponential fit with Eq.(4) of the Main Text. Solvent: pH 7.4 Hepes buffer; T
= 293 K.
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