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Table S1. Activity and apparent activation energy for ammonia decomposition on
previously-reported Ru-loaded catalysts reported *

g e wisy oo o e
Entry Catalyst Refs.

Jwt% /%  /°C é c:}“;]“i /% Jkmol* /s’ kg c'f.a“f,l
1 Ru/Carbon nanotube 4.7 25.6 400 30000 17.7 69.2 0.60 3.65 S1
2 Ru-K/Carbon nanotube 4.5 27.0 400 150000 7.5 56.1 1.22 7.70 S1
3 Ru/MgO 5.0 11.0 400 150000 4.8 62.3 0.45 4.89 S1
4 Ru/TiO, 4.8 -b 400 150000 3.8 63.3 -b 3.92 S1
5 Ru/Al,04 5.0 115 400 150000 3.4 64.6 0.47 3.47 S1
6 Ru/Al,0; 5.0 10.6 400 150000 1.2 80.4 0.43 1.19 S1
7 Ru/nano MgO 28 178 400 30000 17.5 b 0.90 3.61 S2
8 Ru-Cs/nano MgO 2.8 17.8 400 30000 23.0 -b 1.18 4.74 S2
9 Ru/Al,0; 16 77.0 410 3840 40.0 87.8 0.014 1.06 S3

? When the space velocities were extremely-high, or the catalyst was diluted with silica or alumina, a part of
previous data was excluded from Table S1 to compare fairly. ® Not reported.

Table S2. Reaction orders with respect to ammonia and hydrogen for ammonia decomposition
on previously-reported Ru-loaded catalysts

Entry Catalyst Temp. r=kPyu3"Py,” Refs.
/°C a -y -y/a

1 Ru/Carbon 350-450 0.69-0.75 1.6-2.0 2.1-2.9 s3

2 Ru film 270-465 1.2 2.0 1.67 sS4

3 Ru/Al,0, 350-400 0.6 0.9 1.5 S5
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Derivation of Temkin-Pyzhev equatitht’

Temkin and Pyzhev assumed that the decompositioanohonia consists of the following three
processes (a)-(c), and that the processes (a)auisl fast, and the process (c) is slow and ratitiig.

Here N and Nag) represent the imaginary species of nitrogen ingh® phase and nitrogen adatom.
In this mechanism, f is not in in equilibrium with N during the overall reaction, but, instead, is in

equilibrium with the gas phase ldnd NH.
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For equilibrium (a), we obtainy® = K Puua/Pz (1), whereK is the thermodynamic equilibrium
constant for process (a). For process (b), weinlig. 2 using the Frumkin-Temkin isotherm, where
Gis the fraction of surface covered by nitrogentawnia andf anday stand for constants.

6= (1) In ag Pyo- 2)
Since the nitrogen desorption rate for processs(expressed by the Elovich equation, we Riet ky
exphd (3), whereR; is the N desorption rate, anlg andh are constants. On the present assumption,
the ammonia decomposition rate is equal to thed®sorption rate, and thus we get Eq. 4, which is
known as the Temkin-Pyzhev equation, by substiguitgs. 1 and 2 into Eq. 3. Hekeand n are
constants.

~d(Pura)/dt =k (Puna/Pr’)”  (4)
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Figure S1. TPD (m/z = 14) profile of N, for 2 wt%-Ru loaded MgO after heating in a flow of No-H,
mixture at 360 °C for 5 h, annealed in N, flowing at 300 °C for 5 h, and cooled to room temperature

in N, flowing. The peak area is proportional to the heating rate when the peak intensity is
integrated with respect to the temperature.
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Figure S2. Activation energy estimation of N, desorption on Ru-K/C using the Redhead equation.
Tmax. Temperatures corresponding to the peak of N, desorption band, the maximum of N,
desorption rate.
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Figure S3. Stability test in NH3 decomposition under the condition of 600 °C and WHSV=120,000
Minks Gear ™ ™ @, RU/C12AT7:e7; O, Ru/C12A7:0°";V, Ru-K/C.



