Supporting Information for

Ammonia Decomposition by Ruthenium Nanoparticles Loaded on Inorganic Electride C12A7:e⁻

Fumitaka Hayashi,¹ Yoshitake Toda,¹ Yoshimi Kanie,¹ Masaaki Kitano,² Yasuhiro Inoue,³ Toshiharu Yokoyama,¹ Michikazu Hara,³ Hideo Hosono^{1,2,3*}

1 Frontier Research Center, Tokyo Institute of Technology, 4259-S2-13 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan.

2 Materials Research Center for Element Strategy, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan

3 Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan.

* corresponding author: hosono@msl.titech.ac.jp

Table	S1.	Activity	and	apparent	activation	energy	for	ammonia	decomposition	on
previo	usly-rep	orted Ru	-loade	ed catalysts	reported ^a					

Entry	0 • • • •	Ru Cont.	Ru Disp.	Temp.	WHSV	Conv. of NH ₃	E _a	TOF	Dec. rate of NH ₃	
	Catalyst	/ wt%	/%	/ °C	$/ mL_{NH3}$ $g_{cat}^{-1} h^{-1}$	/ %	/ kJ mol⁻¹	/ s ⁻¹	$/ kg_{NH3} kg_{cat}^{-1} h^{-1}$	Refs.
1	Ru/Carbon nanotube	4.7	25.6	400	30000	17.7	69.2	0.60	3.65	S1
2	Ru-K/Carbon nanotube	4.5	27.0	400	150000	7.5	56.1	1.22	7.70	S1
3	Ru/MgO	5.0	11.0	400	150000	4.8	62.3	0.45	4.89	S1
4	Ru/TiO ₂	4.8	_ ^b	400	150000	3.8	63.3	_ ^b	3.92	S1
5	Ru/Al ₂ O ₃	5.0	11.5	400	150000	3.4	64.6	0.47	3.47	S1
6	Ru/Al ₂ O ₃	5.0	10.6	400	150000	1.2	80.4	0.43	1.19	S1
7	Ru/nano MgO	2.8	17.8	400	30000	17.5	_ ^b	0.90	3.61	S2
8	Ru-Cs/nano MgO	2.8	17.8	400	30000	23.0	_b	1.18	4.74	S2
9	Ru/Al ₂ O ₃	1.6	77.0	410	3840	40.0	87.8	0.014	1.06	S 3

^{*a*} When the space velocities were extremely-high, or the catalyst was diluted with silica or alumina, a part of previous data was excluded from Table S1 to compare fairly. ^{*b*} Not reported.

Table S2.	Reaction orders with respe	ect to ammonia	and hydrogen for	ammonia deco	mposition
on previous	sly-reported Ru-loaded cata	lysts			

Entry	Catalyst	Temp.	$r = k P_{NH3}^{\alpha} P_{H2}^{\gamma}$			Refs.
		/°C	α	$-\gamma$	-γ/α	
1	Ru/Carbon	350-450	0.69-0.75	1.6-2.0	2.1-2.9	S3
2	Ru film	270-465	1.2	2.0	1.67	S4
3	Ru/Al_2O_3	350-400	0.6	0.9	1.5	S5

References

S1 S. F. Yin, Q. H. Zhang, B. Q. Xu, W. X. Zhu, C. F. Ng, C. T. Au, J. Catal. 2004, 224, 384-396.

S2 J. Zhang, H. Xu, Q. Ge, W. Li, *Catal. Commun.* 2006, 7, 148-152.

S3 M. C. J. Bradford, P. E. Fanning, M. A. Vannice, J. Catal. 1997, 172, 479-484.

S4 S. R. Logan, C. Kemball, *Trans. Faraday Soc.* **1960**, 56, 144-153

S5 A. Amano, H. Taylor, J. Am. Chem. Soc. 1954, 76, 4201-4204.

Derivation of Temkin-Pyzhev equation^{S6,S7}

Temkin and Pyzhev assumed that the decomposition of ammonia consists of the following three processes (a)-(c), and that the processes (a) and (b) is fast, and the process (c) is slow and rate-limiting. Here N_2^* and $N_{(ad)}$ represent the imaginary species of nitrogen in the gas phase and nitrogen adatom. In this mechanism, $N_{(ad)}$ is not in in equilibrium with N_2^* during the overall reaction, but, instead, is in equilibrium with the gas phase H₂ and NH₃.

For equilibrium (a), we obtain $P_{N2^*} = K P_{NH3}^2/P_{H2}^3$ (1), where *K* is the thermodynamic equilibrium constant for process (a). For process (b), we obtain Eq. 2 using the Frumkin-Temkin isotherm, where θ is the fraction of surface covered by nitrogen adatom, and *f* and *a*₀ stand for constants.

$$\boldsymbol{\theta} = (1/f) \ln a_0 \, \mathbf{P}_{\mathrm{N2}^*} \qquad (2)$$

Since the nitrogen desorption rate for process (c) is expressed by the Elovich equation, we get $R_d = k_d \exp(h\theta)$ (3), where R_d is the N₂ desorption rate, and k_d and h are constants. On the present assumption, the ammonia decomposition rate is equal to the N₂ desorption rate, and thus we get Eq. 4, which is known as the Temkin-Pyzhev equation, by substituting Eqs. 1 and 2 into Eq. 3. Here k and n are constants.

 $-d(\mathbf{P}_{\rm NH3})/dt = k (\mathbf{P}_{\rm NH3}^2/\mathbf{P}_{\rm H2}^3)^{\rm n} \qquad (4)$

References

S6 M. Temkin, V. Pyzhev, Acta Physicochim. USSR 1940, 12, 327-356.

S7 J. M. Thomas, W. J. Thomas, In *Principles and practice of heterogeneous catalysis*; VCH: Cambridge, **1997**, pp. 548-551.

Figure S1. TPD (m/z = 14) profile of N₂ for 2 wt%-Ru loaded MgO after heating in a flow of N₂-H₂ mixture at 360 °C for 5 h, annealed in N₂ flowing at 300 °C for 5 h, and cooled to room temperature in N₂ flowing. The peak area is proportional to the heating rate when the peak intensity is integrated with respect to the temperature.

Figure S2. Activation energy estimation of N₂ desorption on Ru-K/C using the Redhead equation. T_{max} : Temperatures corresponding to the peak of N₂ desorption band, the maximum of N₂ desorption rate.

Figure S3. Stability test in NH₃ decomposition under the condition of 600 °C and WHSV=120,000 ml_{NH3} g_{cat}^{-1} h⁻¹: •, Ru/C12A7:e⁻; \bigcirc , Ru/C12A7:O²⁻; \bigtriangledown , Ru-K/C.