Supporting Information

Gold(I)-Catalyzed Enantioselective Bromocyclization Reactions of Allenes

Dillon H. Miles, Marcos Veguillas, and F. Dean Toste*

Department of Chemistry, University of California, Berkeley, California 94720, United States

Table of Contents

1) General Information	S2
2) Synthesis of Allene Substrates (1a-1p)	S2
3) Gold(I)-Catalyzed Enantioselective Bromocyclizations (3a-3p)	S6
4) Synthesis of <i>N</i> -Bromolactams (6a-6c)	S11
5) Cyclization and Subsequent Suzuki Reaction of 1e (7e)	S12
6) References	S12
7) HPLC Traces (3a-3p , 7e)	S13
8) NMR Spectra (1a-1p, 3a-3p, 6a-6c, 7e)	S30
9) Crystal Structure of 3b	S67

General Information

Unless otherwise noted, all reagents were obtained commercially and used without purification. Gold(I) complexes were prepared according to the procedure of Toste^{S1}. (*S*)-AgTRIP was prepared according to the procedure of Toste^{S2}. Nitromethane (MeNO₂) (CHROMASOLV[®], \geq 96%) was obtained from Sigma-Aldrich. Toluene (99.98%) was obtained from EMD chemicals. Gold(I)-catalyzed reactions were performed in screw-cap vials under air without exclusion of moisture. Racemic samples were obtained using 5 mol % (±)-BINAP(AuPNB)₂ as catalyst.

Additional abbreviations. PNB = 4-nitrobenzoate; Ns = 4-nitrobenzenesulfonyl

Chromatography. Analytical thin layer chromatography was performed on EMD glass-backed TLC plates (silica gel 60 F254) and visualized by UV lamp (254 nm), anisaldehyde, or potassium permanganate. Column chromatography was carried out using Fisher 230-400 mesh, grade 60 silica gel. Purified compounds were further dried under high vacuum.

Nuclear magnetic resonance spectra. ¹H and ¹³C spectra were recorded on Bruker AV-300, AVQ-400, or AVB-400 spectrometers. Chemical shifts (δ) are reported in ppm. ¹H NMR spectra were referenced to CHCl₃ (7.26 ppm) and ¹³C NMR spectra were referenced to CDCl₃ (77.0 ppm). ¹³C spectra were recorded with proton decoupling. Peak multiplicities are designated by the following abbreviations: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; br, broad; app, apparent. Coupling constants (*J*) are reported in units of Hz.

HPLC analyses. Chiral high performance liquid chromatography (HPLC) was performed on Shimadzu VP and Shimadzu prominence series instruments using the specified column (4.6 mm x 25 cm).

Mass spectrometry. Mass spectral data were obtained in the QB3/Chemistry Mass Spectrometry Facility, University of California, Berkeley.

X-ray crystallography. Data collection and analysis performed in the X-ray Crystallography Facility, College of Chemistry, University of California, Berkeley.

Synthesis of Allene Substrates

1a-1e, **1g**, **1h**, and **1m-1p** were synthesized according to the methods of Bäckvall^{S3} starting from the corresponding propargyl alcohol. **1i** – **1k** were synthesized according to the method of Toste^{S4} starting from the corresponding homoallenic alcohol. **1I** was synthesized according to the method of Toste^{S4}, using 4-nitrobenznesulfonyl chloride for the final protection step.

N-(5-cyclohexylidenepent-4-en-1-yl)-4-nitrobenzenesulfonamide (1a)

NHNs

Purified by column chromatography on silica gel (hexanes:EtOAc 4:1) to afford **1a** (6.20 g, 77%) as a yellow solid; ¹H **NMR** (400 MHz, CDCl₃): \bar{o} 8.36 (d, *J* = 8.8, 2H), 8.05 (d, *J* = 8.8, 2H), 4.88-4.82 (m, 2H), 3.06 (q, *J* = 6.4, 2H), 2H), 2.02-1.92 (m, 6H), 1.62-1.49 (m, 8H); ¹³C **NMR** (100 MHz, CDCl₃): \bar{o} 198.4, 150.0, 146.1, 128.3, 124.4, 103.5, 87.1, 42.8, 31.6, 28.6, 27.4, 26.07, 26.06; **HRMS** (ESI): found [M+H]⁺ 351.1380 C₁₇H₂₃N₂O₄³²S requires 351.1373

N-(6-methylhepta-4,5-dien-1-yl)-4-nitrobenzenesulfonamide (1b)

_NHNs

Purified by column chromatography on silica gel (hexanes:EtOAc 4:1) to afford **1b** (1.10 g, 77%) as a brown solid; ¹**H NMR** (400 MHz, CDCl₃): δ 8.36 (d, *J* = 8.8, 2H), 8.05 (d, *J* = 8.8, 2H), 4.90-4.82 (m, 2H), 3.05 (q, *J* = 6.4, 2H), 1.92 (q, *J* = 6.8, 2H), 1.62-1.54 (m, 8H); ¹³**C NMR** (100 MHz, CDCl₃): δ 201.8, 150.1, 146.1, 128.3, 124.3, 96.1, 87.2, 42.8, 28.7, 26.0, 20.6; **HRMS** (ESI): found [M+H]⁺ 311.1060 C₁₄H₁₉N₂O₄³²S requires 311.1060

.NHNs

NHTs

NHTs

N-(5-cycloheptylidenepent-4-en-1-yl)-4-nitrobenzenesulfonamide (1c)

Purified by column chromatography on silica gel (hexanes:EtOAc 4:1) to afford **1c** (352 mg, 49%) as a yellow solid; ¹**H NMR** (400 MHz, CDCl₃): δ 8.36 (d, J = 9.2, 2H), 8.05 (d, J = 9.2, 2H), 4.89-4.84 (m, 1H), 4.75-4.71 (m, 1H), 3.07 (q, J = 6.8, 2H), 2.17-2.14 (m, 4H), 1.94 (q, J = 6.4, 2H), 1.62-1.51 (m, 10 H); ¹³**C NMR** (100 MHz, CDCl₃): δ 201.8, 150.0, 146.0, 128.3, 124.4, 105.4, 86.8, 42.8, 32.5, 29.3, 28.7, 28.4, 26.0; **HRMS** (ESI): found [M+H]⁺ 365.1529 C₁₈H₂₅N₂O₄³²S requires 365.1530

N-(5-cyclohexylidenepent-4-en-1-yl)-4-methylbenzenesulfonamide (1d)

Purified by column chromatography on silica gel (hexanes:EtOAc 4:1) to afford **1d** (2.96 g, 48%) as a white solid; ¹**H NMR** (400 MHz, CDCl₃): δ 7.74 (d, *J* = 8.4, 2H), 7.30 (d, *J* = 8.0, 2H), 4.88-4.84 (m, 1H), 4.63-4.60 (m, 1H), 2.96 (q, *J* = 6.8, 2H), 2.42 (s, 3H), 2.02-1.90 (m, 6H), 1.59-1.48 (m, 10H); ¹³**C NMR** (100 MHz, CDCl₃): δ 198.3, 143.3, 137.0, 129.7,127.1, 103.3, 87.3, 42.6, 31.6, 28.6, 27.5, 26.2, 26.1, 21.6; **HRMS** (ESI): found [M+H]⁺ 320.1684 C₁₈H₂₆NO₂³²S requires 320.1679

4-methyl-N-(6-methylhepta-4,5-dien-1-yl)benzenesulfonamide (1e)

Purified by column chromatography on silica gel (hexanes:EtOAc 4:1) to afford **1e** (897 mg, 54%) as a yellow oil; ¹**H NMR** (400 MHz, CDCl₃): δ 7.75 (d, *J* = 8.4, 2H), 7.30 (d, *J* = 8.4, 2H), 4.86-4.83 (m, 1H), 4.72-4.69 (m, 1H), 2.96 (q, *J* = 6.8, 2H), 2.42 (s, 3H), 1.91 (q, *J* = 6.8, 2H), 1.61 (d, *J* = 2.8, 6H), 1.54 (quintet, *J* = 7.2, 2H); ¹³**C NMR** (100 MHz, CDCl₃): δ 201.7, 143.3, 136.9, 129.7, 127.1, 95.7, 87.4, 42.6, 28.7, 26.0, 21.5, 20.6; **HRMS** (ESI): found [M+H]⁺ 280.1365 C₁₅H₂₂NO₂³²S requires 280.1366

4-methyl-*N*-(2,2,6-trimethylhepta-4,5-dien-1-yl)benzenesulfonamide (1f)

Under a nitrogen atmosphere, a solution of *n*-butyllitium (7.1 mL, 13 mmol, 1.8 M in hexanes) was added dropwise to a solution of diisopropylamine (1.7 mL, 12 mmol) in dry THF (10 mL). The mixture was stirred for 15 min at 0°C and cooled to -78 °C. Isobutyronitrile (1.1 mL, 12 mmol) was added slowly and the mixture was stirred for 30 min at -78 °C. A solution of 4-methylpenta-2,3-dien-1-yl methanesulfonate^{S5} (2.15 g, 12 mmol) in dry THF (10 mL) was added via cannula and the mixture was stirred for 14 h while gradually warming to r.t.. The mixture was quenched with sat. $NH_4Cl_{(aq)}$, extracted with ether, washed with brine, dried over MgSO₄, and concentrated *in vacuo*. The crude product purified by column chromatography on silica gel (hexanes:EtOAc 19:1) to afford **A** (310 mg, 17%) as a clear oil.

To a solution of **A** (268 mg, 1.80 mmol) in ether (3.7 mL) at 0 °C was added slightly crushed pellets of LiAlH₄ (82 mg, 2.2 mmol). The reaction was stirred for 2 h at r.t. under a nitrogen atmosphere after which the mixture was carefully quenched with 1 M NaOH_(aq), the solids removed, dried over MgSO₄, and concentrated *in vacuo*. The crude product was dissolved in pyridine (1 mL) and cooled to 0 °C. 4-tolulenesulfonyl chloride (226 mg, 1.18 mmol) was added in one portion and the reaction was stirred for 14 h at r.t.. The mixture was extracted with ether, washed with CuSO_{4(aq)}, washed with brine, dried over MgSO₄, and concentrated *in vacuo*. The crude product was dissolved in over MgSO₄, and concentrated *in vacuo*. The crude product was purified by column chromatography on silica gel (hexanes:EtOAc 4:1) to afford **1f** (147 mg, 61%) as a white solid; ¹**H NMR** (400 MHz, CDCl₃): δ 7.73 (d, *J* = 8.4, 2H), 7.29 (d, *J* = 8.0, 2H), 4.84-4.78 (m, 1H), 4.62-4.59 (m, 1H), 2.71 (d, *J* = 7.2, 2H), 2.42 (s, 3H), 1.83 (d, *J* = 8.0, 2H), 1.61 (d, *J* = 2.8, 6H), 0.86 (s, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 203.3, 143.3, 137.1, 129.7, 127.1, 94.2, 84.2, 52.5, 39.8, 34.5, 24.8, 21.5, 20.5; **HRMS** (ESI): found [M+H]⁺ 308.1676 C₁₇H₂₆NO₂³²S requires 308.1679

NHTs

N-(5-(8,9-dihydro-5H-benzo[7]annulen-7(6H)-ylidene)pent-4-en-1-yl)-4-methylbenzenesulfonamide (1g)

Purified by column chromatography on silica gel (hexanes:EtOAc 9:1) to afford **1g** (927 mg, 90%) as a white solid; ¹**H NMR** (400 MHz, CDCl₃): δ 7.76 (d, *J* = 8.4, 2H), 7.30 (d, *J* = 8.0, 2H), 7.13 (s, 4H), 4.93-4.92 (m, 1H), 4.66-4.63 (m, 1H), 2.98 (q, *J* = 6.8, 2H), 2.88-2.76 (m, 4H), 2.42 (s, 3H), 2.24-2.20 (m, 4H), 1.96 (q, *J* = 6.8, 2H), 1.56 (quintet, *J* = 7.2, 2H); ¹³**C NMR** (100 MHz, CDCl₃): δ 200.8, 143.3, 142.3, 136.9, 129.7, 129.1, 127.1, 126.2, 106.2, 87.0, 42.6, 36.2, 33.6, 28.6, 26.1, 21.5; **HRMS** (ESI): found [M+H]⁺ 382.1833 C₂₃H₂₈NO₂³²S requires 382.1835

N-(5-(1,4-dioxaspiro[4.5]decan-8-ylidene)pent-4-en-1-yl)-4-methylbenzenesulfonamide (1h)

Purified by column chromatography on silica gel (hexanes:EtOAc 3:1) to afford **1h** (667 mg, 92%) as a colorless oil; ¹**H NMR** (400 MHz, CDCl₃): δ 7.73 (d, *J* = 8.4, 2H), 7.29 (d, *J* = 8.0, 2H), 4.92-4.89 (m, 1H), 4.67-4.64 (m, 1H), 3.94 (s, 4H), 2.95 (q, *J* = 6.8, 2H), 2.41 (s, 3H), 2.20-2.17 (m, 4H), 2.94 (q, *J* = 6.4, 2H), 1.70-1.66 (m, 4H), 1.54 (quintet, *J* = 7.2, 2H); ¹³**C NMR** (100 MHz, CDCl₃): δ 198.6, 143.3, 137.0, 129.7, 127.1, 108.3, 100.7, 88.0, 64.3, 42.6, 35.4, 28.65, 28.60, 26.1, 21.5; **HRMS** (ESI): found [M+H]⁺ 378.1730 C₂₁H₃₁NNaO₄³²S requires 378.1734

tert-butyl (4-cyclohexylidenebut-3-en-1-yl)oxycarbamate (1i)

NHTs

Purified by column chromatography on silica gel (hexanes:EtOAc 19:1) to afford **1i** (437 mg, 98%) as a white solid; ¹H **NMR** (400 MHz, CDCl₃): δ 7.14 (br s, 1H), 4.97-4.92 (m, 1H), 3.88 (t, *J* = 7.2, 2H), 2.29 (q, *J* = 6.8, 2H), 2.09-2.06 (m, 4H), 1.56-1.47 (m, 15H); ¹³C **NMR** (100 MHz, CDCl₃): δ 199.1, 156.9, 103.0, 84.4, 81.6, 76.1, 31.6, 28.2, 28.1, 27.4, 26.1; **HRMS** (ESI): found [M+H]⁺ 268.1908 C₁₅H₂₆NO₃ requires 268.1907

tert-butyl (5-methylhexa-3,4-dien-1-yl)oxycarbamate (1j)

NHBoc

Purified by column chromatography on silica gel (hexanes:EtOAc 19:1) to afford **1j** (395 mg, 74%) as a colorless oil; ¹**H NMR** (400 MHz, CDCl₃): δ 7.21 (br s, 1H), 4.95-4.90 (m, 1H), 3.86 (t, *J* = 6.8, 2H), 2.26 (q, *J* = 7.2, 2H), 1.65 (d, *J* = 3.2, 6H), 1.46 (s, 9H); ¹³**C NMR** (100 MHz, CDCl₃): δ 202.4, 157.0, 95.6, 84.5, 81.6, 76.1, 28.2, 20.6; **HRMS** (ESI): found [M+H]⁺ 228.1595 C₁₂H₂₂NO₃ requires 228.1594

tert-butyl (4-cycloheptylidenebut-3-en-1-yl)oxycarbamate (1k)

Purified by column chromatography on silica gel (hexanes:EtOAc 19:1) to afford **1k** (764 mg, 57%) as a yellow oil; ¹**H NMR** (400 MHz, CDCl₃): δ 7.21 (br s, 1H), 4.94-4.91 (m, 1H), 3.87 (t, *J* = 7.2, 2H), 2.27 (q, *J* = 6.8, 2H), 2.21-2.18 (m, 4H), 1.58-1.46 (m, 17H); ¹³**C NMR** (100 MHz, CDCl₃): δ 202.4, 156.9, 104.9, 84.0, 81.5, 76.1, 32.5, 29.3, 28.4, 28.2, 27.9; **HRMS** (ESI): found [M+H]⁺ 282.2064 C₁₆H₂₈NO₃ requires 282.2064

Boc

tert-butyl 1-(4-cyclohexylidenebut-3-en-1-yl)-2-((4-nitrophenyl)sulfonyl)hydrazinecarboxylate (1I)

Purified by column chromatography on silica gel (hexanes:EtOAc 6:1) to afford **1I** (181 mg, 59%) as a white solid; ¹**H NMR** (400 MHz, CDCl₃): δ 8.32 (d, *J* = 8.4, 2H), 8.08 (d, *J* = 9.2, 2H), 6.94 (br s, 1H), 4.83-4.81 (m, 1H), 3.65 (br s, 2H), 2.28-2.24 (m, 2H), 2.05-2.03 (m, 4H), 1.55-1.49 (m, 6H), 1.18 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 199.3, 150.5, 130.1, 123.8, 103.1, 84.8, 82.9, 31.4, 27.7, 27.4, 26.1; **HRMS** (ESI): found [M+Na]⁺ 474.1667 C₂₁H₂₉N₃NaO₆³²S requires 474.1669

4-nitro-*N*-(nona-4,5-dien-1-yl)benzenesulfonamide (1m)

Purified by column chromatography on silica gel (hexanes:EtOAc 4:1) to afford **1m** (1.07 g, 36%) as a brown solid; ¹H **NMR** (400 MHz, CDCl₃): δ 8.36 (d, *J* = 8.4, 2H), 8.06(d, *J* = 8.8, 2H), 5.10-4.96 (m, 3H), 3.04 (q, *J* = 6.4, 2H), 1.98-1.86 (m, 4H), 1.59 (quintet, *J* = 6.8, 2H), 1.37 (sextet, *J* = 7.6, 2H), 1.86 (t, *J* = 7.6, 3H); ¹³C **NMR** (100 MHz, CDCl₃): δ 203.9, 150.0, 145.9, 128.3, 124.4, 91.8, 89.2, 42.7, 30.9, 28.7, 25.6, 22.3, 13.6; **HRMS** (ESI): found [M+H]⁺ 325.1221 C₁₅H₂₁N₂O₄³²S requires 325.1217

6-methylhepta-4,5-dienoic acid (1n)

Purified by acid-base extraction to afford **1n** (3.83 g, 88%) as a yellow oil; ¹**H NMR** (400 MHz, CDCl₃): δ 10.79 (br s, 1H), 5.04-4.98 (m, 1H), 2.44 (t, *J* = 7.2, 2H), 2.26 (q, *J* = 6.0, 2H), 1.65 (d, *J* = 2.8, 6H); ¹³**C NMR** (100 MHz, CDCl₃): δ 201.5, 180.0, 97.2, 87.2, 33.0, 23.8, 20.5; **HRMS** (ESI): found [M-H] 139.0764 C₈H₁₁O₂ requires 139.0765

5-(8,9-dihydro-5H-benzo[7]annulen-7(6H)-ylidene)pent-4-enoic acid (10)

.OH

.OH

Purified by column chromatography on silica gel (hexanes:EtOAc 3:1) to afford **10** (167 mg, 56%) as a white solid; ¹H **NMR** (400 MHz, CDCl₃): δ 10.62 (br s, 1H), 7.13 (s, 4H), 5.10-5.09 (m, 1H), 2.88-2.85 (m, 4H), 2.49 (t, *J* = 7.2, 2H), 2.34-2.26 (m, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 200.5, 179.6, 142.4, 129.1, 126.2, 107.5, 86.8, 36.1, 33.6, 33.0, 23.8; **HRMS** (ESI): found [M-H]⁻ 241.1234 C₁₆H₁₇O₂ requires 241.1234

5-(8,9-dihydro-5H-benzo[7]annulen-7(6H)-ylidene)pent-4-en-1-ol (1p)

Purified by column chromatography on silica gel (hexanes:EtOAc 5:1) to afford **1p** (147 mg, 82%) as a white solid; ¹H **NMR** (300 MHz, CDCl₃): δ 7.14 (s, 4H), 5.10-4.90 (m, 1H), 3.70 (t, *J* = 8.8, 2H), 2.89-2.86 (m, 4H), 2.31-2.28 (m, 4H), 2.08 (q, *J* = 9.2, 2H), 1.69 3.70 (quart., *J* = 9.6, 2H), 1.41 (br s, 1H); ¹³C **NMR** (75.5 MHz, CDCl₃): δ 201.1, 142.7, 129.4, 126.5, 106.4, 88.0, 62.7, 36.6, 34.1, 32.2, 25.8; **HRMS** (ESI): found [M+H]⁺ 229.1589 C₁₆H₂₁O requires 229.1587

Gold(I)-Catalyzed Enantioselective Bromocyclizations

General Procedure A:

Unless otherwise noted, in a one-dram vial, to the specified dinuclear gold(I) catalyst (0.005 mmol) and **6a** (33 mg, 0.20 mmol) was added the specified allene (0.10 mmol) as a solution in $MeNO_2$ (0.5 mL). The mixture was stirred in the dark for the specified time at r.t. at which point the solvent was evaporated under a stream of nitrogen. The residue was purified by column chromatography on silica gel with the specified mobile phase to afford the corresponding vinyl bromide.

General Procedure B:

In a one-dram vial, to (*R*)-DM-BINAP(AuPNB)₂ (7.3 mg, 0.005 mmol) and **6c** (31 mg, 0.15 mmol) was added the specified allene (0.10 mmol) as a solution in MeNO₂ (0.5 mL). The mixture was stirred in the dark for 2 h at r.t. at which point the solvent was evaporated under a stream of nitrogen. The residue was purified by column chromatography on silica gel (pentanes:Et₂O 9:1 to 4:1) to afford the corresponding vinyl bromide.

(S)-2-(bromo(cyclohexylidene)methyl)-1-((4-nitrophenyl)sulfonyl)pyrrolidine (3a)

General procedure **A** was used. $L(AuPNB)_2$: (*R*)-DM-BINAP(AuPNB)₂ (7.3 mg, 0.005 mmol); allene: **1a** (35 mg, 0.10 mmol); time: 12 h; mobile phase (pentanes:DCM 1:1); afforded **3a** (38 mg, 88%) as a white solid; ¹**H NMR** (400 MHz, CDCl₃): δ 8.30 (d, *J* = 8.8, 2H), 7.95 (d, *J* = 8.8, 2H), 5.15 (app t, 1H), 3.86-3.81 (m, 1H), 3.42-3.35 (m, 1H), 2.54-2.48 (m, 1H), 2.40-1.96 (m, 6H), 1.87-1.82 (m,1H), 1.73-1.59 (m, 6H); ¹³**C NMR** (100 MHz, CDCl₃): δ 149.7, 146.2, 142.4, 128.3, 123.9, 121.1, 60.2, 49.5, 35.7, 32.6, 32.1, 27.7, 27.1, 26.3, 25.5; **HRMS** (ESI): found [M+H]⁺ 429.0476 C₁₇H₂₂⁻⁷⁹BrN₂O₄⁻³²S requires 429.0478; **HPLC** Chiralpak IA column (98:2 hexanes:isopropanol, 1.0 mL/min, 250 nm); major enantiomer t_r = 15.24 min, minor enantiomer t_r = 17.07 min, 99% ee; absolute configuration assigned as (*S*) by analogy to **3b**.

(S)-2-(1-bromo-2-methylprop-1-en-1-yl)-1-((4-nitrophenyl)sulfonyl)pyrrolidine (3b)

General procedure **A** was used. **L**(AuPNB)₂: (*R*)-Cl-MeO-BIPHEP(AuPNB)₂ (6.9 mg, 0.005 mmol); allene: **1b** (31 mg, 0.10 mmol); time: 13 h; mobile phase (pentanes:Et₂O 9:1 to 4:1); afforded **3b** (35 mg, 89%) as a white solid; ¹**H NMR** (400 MHz, CDCl₃): δ 8.30 (d, *J* = 8.8, 2H), 7.91 (d, *J* = 8.8, 2H), 5.05 (app t, 1H), 3.85-3.79 (m, 1H), 3.42-3.36 (m, 1H), 2.21-2.05 (m, 2H), 2.01-1.84 (m, 2H), 1.99 (s, 3H), 1.83 (s, 3H); ¹³**C NMR** (100 MHz, CDCl₃): δ 149.7, 146.1, 135.3, 128.3, 123.8, 123.4, 60.8, 49.4, 32.3, 25.8, 25.4, 21.1; **HRMS** (EI): found [M]⁺ 388.0093 C₁₄H₁₇⁷⁹BrN₂O₄³²S requires 388.0092; **HPLC** Chiralpak IA column (97:3 hexanes:isopropanol, 1.0 mL/min, 250 nm); major enantiomer t_r = 12.90 min, minor enantiomer t_r = 13.94 min, 98% ee; absolute configuration assigned as (*S*) by X-ray crystal structure analysis of **3b**; crystals obtained by slow evaporation of toluene solution or by MTBE/hexane vapor diffusion.

(S)-2-(bromo(cycloheptylidene)methyl)-1-((4-nitrophenyl)sulfonyl)pyrrolidine (3c)

General procedure **A** was used. **L**(AuPNB)₂: (*R*)-Cl-MeO-BIPHEP(AuPNB)₂ (6.9 mg, 0.005 mmol); allene: **1c** (36 mg, 0.10 mmol); time: 13 h; mobile phase (pentanes:Et₂O 9:1 to 4:1); afforded **3c** (41 mg, 93%) as a white solid; ¹**H NMR** (400 MHz, CDCl₃): δ 8.29 (d, *J* = 8.8, 2H), 7.94 (d, *J* = 8.8, 2H), 5.08 (app t, 1H), 3.85-3.80 (m, 1H), 3.41-3.35 (m, 1H), 2.67-2.61 (m, 1H), 2.47-2.33 (m, 2H), 2.21-1.75 (m, 6H), 1.67-1.34 (m, 7H); ¹³**C NMR** (100 MHz, CDCl₃): δ 149.7, 146.1, 143.8, 128.3, 124.2, 123.8, 60.5, 49.5, 37.1, 32.8, 32.3, 28.6, 28.4, 27.8, 26.1, 25.5; **HRMS** (ESI): found [M+H]⁺ 443.0633 C₁₈H₂₄⁷⁹BrN₂O₄³²S requires 443.0635; **HPLC** Chiralpak IA column (98:2 hexanes:isopropanol, 1.0 mL/min, 250 nm); major enantiomer t_r = 14.69 min, minor enantiomer t_r = 17.72 min, 99% ee; absolute configuration assigned as (*S*) by analogy to **3b**.

(R)-2-(bromo(cyclohexylidene)methyl)-1-tosylpyrrolidine (3d)

General procedure **A** was used. **L**(AuPNB)₂: (*S*)-DM-BINAP(AuPNB)₂ (7.3 mg, 0.005 mmol); allene: **1d** (32 mg, 0.10 mmol); time: 13 h; purified by preparatory TLC (hexanes:EtOAc 3:1); afforded **3d** (37 mg, 93%) as a white solid; ¹**H NMR** (400 MHz, CDCl₃): δ 7.70 (d, *J* = 8.4, 2H), 7.28 (d, *J* = 7.2, 2H), 4.94 (app t, 1H), 3.67-3.63 (m, 1H), 3.43-3.37 (m, 1H), 2.45-2.32 (m, 4H), 2.42 (s, 3H), 2.02-1.99 (m, 3H), 1.79-1.45 (m, 7H); ¹³**C NMR** (100 MHz, CDCl₃): δ 143.0, 140.8, 136.7, 129.3, 127.3, 122.2, 59.7, 49.4, 35.8, 32.6, 32.1, 27.6, 27.0, 26.4, 25.2, 21.5; **HRMS** (ESI): found [M+H]⁺ 398.0784 C₁₈H₂₅⁷⁹BrNO₂³²S requires 398.0784; **HPLC** Chiralpak IA column (98:2 hexanes:isopropanol, 1.0 mL/min, 250 nm); major enantiomer t_r = 17.50 min, minor enantiomer t_r = 15.99 min, 98% ee; absolute configuration assigned as (*R*) by analogy to **3b**.

(R)-2-(1-bromo-2-methylprop-1-en-1-yl)-1-tosylpyrrolidine (3e)

General procedure **A** was used. $L(AuPNB)_2$: (*S*)-DM-BINAP(AuPNB)₂ (7.3 mg, 0.005 mmol); allene: **1e** (28 mg, 0.10 mmol); time: 14 h; mobile phase (pentane:Et₂O 5:1); afforded **3e** (32 mg, 89%) as a white solid; ¹**H NMR** (400 MHz, CDCl₃): δ 7.68 (d, *J* = 8.4, 2H), 7.27 (d, *J* = 8.0, 2H), 4.86 (app t, 1H), 3.66-3.61 (m, 1H), 3.42-3.36 (m, 1H), 2.41 (s, 3H), 2.08-1.92 (m, 3H), 1.91 (s, 3H), 1.80 (s, 3H), 1.63-1.60 (m, 1H); ¹³**C NMR** (100 MHz, CDCl₃): δ 143.1, 136.7, 133.6, 129.3, 127.4, 124.4, 60.5, 49.3, 32.3, 25.8, 25.2, 21.6, 21.0; **HRMS** (ESI): found [M+H]⁺ 358.0467 C₁₅H₂₁⁷⁹BrNO₂³²S requires 358.0471; **HPLC** Chiralpak IA column (98:2 hexanes:isopropanol, 1.0 mL/min, 250 nm); major enantiomer t_r = 21.12 min, minor enantiomer t_r = 15.85 min, 99% ee; absolute configuration assigned as (*R*) by analogy to **3b**.

(S)-2-(1-bromo-2-methylprop-1-en-1-yl)-4,4-dimethyl-1-tosylpyrrolidine (3f)

General procedure **A** was used except the amounts of **6a** (41 mg, 0.25 mmol) and MeNO₂ (0.625 mL) were increased proportionally to **1f**. **L**(AuPNB)₂: (*R*)-Cl-MeO-BIPHEP(AuPNB)₂ (8.6 mg, 0.0063 mmol); allene: **1f** (38 mg, 0.13 mmol); time: 14h; mobile phase (pentanes:Et₂O 9:1 to 4:1); afforded **3f** (42 mg, 87%) as a white solid; ¹**H NMR** (400 MHz, CDCl₃): δ 7.65 (d, *J* = 8.4, 2H), 7.24 (d, *J* = 8.0, 2H), 4.96 (dd, *J* = 8.8, 7.6, 1H), 3.47 (dd, *J* = 10.0, 1.2, 1H), 3.12 (d, *J* = 10, 1H), 2.40 (s, 3H), 1.92 (s, 3H), 1.90-1.86 (m, 1H), 1.76 (s, 3H), 1.74-1.71 (m, 1H), 1.07 (s, 3H), 0.94 (s, 3H); ¹³**C NMR** (100 MHz, CDCl₃): δ 142.8, 137.7, 133.9, 129.1, 127.2, 124.6, 60.7, 60.4, 45.7, 38.1, 26.3, 25.8, 25.3, 21.6, 21.0; **HRMS** (ESI): found [M+H]⁺ 386.0780 C₁₇H₂₅⁷⁹BrNO₂³²S requires 386.0784; **HPLC** Chiralpak IA column (98:2 hexanes:isopropanol, 1.0 mL/min, 250 nm); major enantiomer t_r = 13.92 min, minor enantiomer t_r = 11.72 min, 91% ee; absolute configuration assigned as (*S*) by analogy to **3b**.

(S)-2-(bromo(8,9-dihydro-5H-benzo[7]annulen-7(6H)-ylidene)methyl)-1-tosylpyrrolidine (3g)

General procedure **A** was used. **L**(AuPNB)₂: (*R*)-Cl-MeO-BIPHEP(AuPNB)₂ (6.9 mg, 0.005 mmol); allene: **1g** (38 mg, 0.10 mmol); time: 14 h; mobile phase (pentanes:Et₂O 4:1); afforded **3g** (40 mg, 86%) as a white solid; ¹**H NMR** (400 MHz, CDCl₃): δ 7.69 (d, *J* = 8.4, 2H), 7.26 (d, *J* = 8.0, 2H), 7.14 (s, 4H), 5.00 (app t, 1H), 3.71-3.66 (m, 1H), 3.45-3.39 (m, 1H), 3.11-3.04 (m, 1H), 2.86-7.32 (m, 3H), 2.66-2.63 (m, 2H), 2.58-2.56 (m, 2H), 2.41 (s, 3H), 2.06-1.93 (m, 3H), 1.65-1.62 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 143.2, 142.5, 141.6, 141.2, 136.8, 129.5, 129.42, 129.39, 127.4, 126.4, 126.3, 125.4, 60.1, 49.5, 37.5, 35.1, 34.2, 33.0, 32.9, 25.3, 21.6; HRMS (ESI): found [M+H]⁺ 460.0938 C₂₃H₂₇⁷⁹BrNO₂³²S requires 460.0940; HPLC Chiralpak AD-H column (95:5 hexanes:isopropanol, 1.0 mL/min, 250 nm); major enantiomer t_r = 18.11 min, minor enantiomer t_r = 15.98 min, 95% ee; absolute configuration assigned as (*S*) by analogy to **3b**.

(*R*)-2-(bromo(1,4-dioxaspiro[4.5]decan-8-ylidene)methyl)-1-tosylpyrrolidine (3h)

General procedure **A** was used except the amounts of **6a** (36 mg, 0.22 mmol) and MeNO₂ (0.54 mL) were increased proportionally to **1h**. **L**(AuPNB)₂: (*S*)-BINAP(AuPNB)₂ (7.3 mg, 0.0054 mmol); allene: **1h** (41 mg, 0.11 mmol); time: 14 h; mobile phase (pentanes:Et₂O 1:1); afforded **3h** (37 mg, 74%) as a white solid; ¹**H NMR** (400 MHz, CDCl₃): δ 7.68 (d, *J* = 8.0, 2H), 7.26 (d, *J* = 8.4, 2H), 4.92 (app t, 1H), 3.96 (s, 4H), 3.70-3.64 (m, 1H), 3.42-3.36 (m, 1H), 2.68-2.61 (m, 1H), 2.57-2.52 (m, 1H), 2.47-2.41 (m, 5H), 2.06-1.99 (m, 3H), 1.88-1.82 (m, 1H), 1.73-1.62 (m, 4H); ¹³**C NMR** (100 MHz, CDCl₃): δ 143.1, 138.4, 136.9, 129.4, 127.3, 123.4, 108.3, 64.45, 64.43, 60.0, 49.4, 35.1, 34.7, 32.7, 32.5, 28.3, 25.3, 21.6; **HRMS** (ESI): found [M+H]⁺ 456.0836 C₂₀H₂₇⁷⁹BrNO₄³²S requires 456.0839; **HPLC** Chiralpak AD-H column (90:10 hexanes:isopropanol, 1.0 mL/min, 250 nm); major enantiomer t_r = 19.40 min, minor enantiomer t_r = 20.57 min, 93% ee; absolute configuration assigned as (*R*) by analogy to **3b**.

(S)-tert-butyl 3-(bromo(cyclohexylidene)methyl)isoxazolidine-2-carboxylate (3i)

General procedure **B** was used. Allene: **1i** (27 mg, 0.10 mmol); afforded **3i** (26 mg, 75%) as a white solid; ¹**H NMR** (400 MHz, CDCl₃): δ 5.27 (app t, 1H), 4.21 (td, *J* = 7.6, 2.8, 1H), 3.72-3.66 (m, 1H), 2.50-2.35 (m, 6H), 1.65-1.52 (m, 15H); ¹³**C NMR** (100 MHz, CDCl₃): δ 156.8, 141.2, 119.6, 81.9, 69.2, 59.4, 35.8, 35.4, 31.8, 28.3, 27.9, 27.1, 26.3; **HRMS** (ESI): found [M+H]⁺ 346.1010 C₁₅H₂₅⁷⁹BrNO₃ requires 346.1012; **HPLC** Regis Whelk-O1 column (98:2 hexanes:isopropanol, 1.0 mL/min, 210 nm); major enantiomer t_r = 25.92 min, minor enantiomer t_r = 21.05 min, 91% ee; absolute configuration assigned as (*S*) by analogy to **3b**.

(S)-tert-butyl 3-(1-bromo-2-methylprop-1-en-1-yl)isoxazolidine-2-carboxylate (3j)

General procedure **B** was used. Allene: **1j** (23 mg, 0.10 mmol); afforded **3j** (26 mg, 83%) as a white solid; ¹**H NMR** (400 MHz, CDCl₃): δ 5.18 (dd, J = 8.8, 7.2, 1H), 4.21 (td J = 8.0, 2.4, 1H), 3.74-3.68 (m, 1H), 2.44-2.37 (m, 2H), 1.95 (s, 3H), 1.91 (s, 3H), 1.48 (s, 9H); ¹³**C NMR** (100 MHz, CDCl₃): δ 156.7, 133.9, 121.8, 81.9, 69.2, 60.0, 35.0, 28.3, 25.9, 20.8; **HRMS** (ESI): found [M+Na]⁺ 328.0516 C₁₂H₂₀⁻⁷⁹BrNNaO₃ requires 328.0519; **HPLC** Regis Whelk-O1 column (98:2 hexanes:isopropanol, 1.0 mL/min, 210 nm); major enantiomer t_r = 27.03 min, minor enantiomer t_r = 23.76 min, 88% ee; absolute configuration assigned as (*S*) by analogy to **3b**.

(S)-tert-butyl 3-(bromo(cycloheptylidene)methyl)isoxazolidine-2-carboxylate (3k)

General procedure **B** was used. Allene: **1k** (28 mg, 0.10 mmol); afforded **3k** (32 mg, 88%) as a white solid; ¹**H NMR** (400 MHz, CDCl₃): δ 5.22 (app t, 1H), 4.21 (td, *J* = 8.0, 2.4, 1H), 3.73-3.67 (m, 1H), 2.67-2.54 (m, 2H), 2.44-2.33 (m, 4H), 1.83-1.72 (m, 1H), 1.63-1.34 (m, 16H); ¹³**C NMR** (100 MHz, CDCl₃): δ 156.7, 142.5, 122.7, 81.9, 69.2, 59.7, 37.2, 35.4, 32.1, 28.5, 28.2, 27.8, 26.1; **HRMS** (ESI): found [M+H]⁺ 360.1165 C₁₆H₂₇⁷⁹BrNO₃ requires 360.1169; **HPLC** Regis Whelk-O1 column (98:2 hexanes:isopropanol, 1.0 mL/min, 210 nm); major enantiomer t_r = 23.90 min, minor enantiomer t_r = 19.45 min, 91% ee; absolute configuration assigned as (*S*) by analogy to **3b**.

(S)-tert-butyl 3-(bromo(cyclohexylidene)methyl)-2-((4-nitrophenyl)sulfonyl)pyrazolidine-1-carboxylate (3I)

In a one-dram vial, to (*R*)-DM-BINAP(AuPNB)₂ (7.3 mg, 0.005 mmol) and **6b** (29 mg, 0.15 mmol) was added allene **1I** (45mg, 0.10 mmol) as a solution in MeNO₂ (0.5 mL). The mixture was stirred in the dark for 17 h at r.t. at which point the solvent was evaporated under a stream of nitrogen. The residue was purified by column chromatography on silica gel (pentanes:Et₂O 9:1 to 4:1) to afford **3I** (42 mg, 80%) as a white foam; ¹H **NMR** (400 MHz, CDCl₃): δ 8.35 (d, *J* = 8.8, 2H), 8.15 (d, *J* = 9.2, 2H), 5.56 (app t, 1H), 4.25-4.21 (m, 1H), 3.23-3.14 (m, 1H), 2.58-2.20 (m, 6H), 1.74-1.50 (m, 6H), 1.19 (s, 9H); ¹³C **NMR** (100 MHz, CDCl₃): δ 150.6, 143.9, 142.4, 130.9, 123.8, 117.3, 82.0, 47.9, 35.9, 32.2, 27.8, 27.2, 26.3; **HRMS** (ESI): found [M+Na]⁺ 552.0773 C₂₁H₂₈⁻⁹BrN₃NaO₆⁻³²S requires 552.0774; **HPLC** Chiralpak IA column (98:2 hexanes:isopropanol, 1.0 mL/min, 232 nm); major enantiomer t_r = 16.30 min, minor enantiomer t_r = 15.58 min, 96% ee; absolute configuration assigned as (*S*) by analogy to **3b**.

(S)-2-(1-bromopent-1-en-1-yl)-1-((4-nitrophenyl)sulfonyl)pyrrolidine (3m)

General procedure **A** was used. **L**(AuPNB)₂: (*R*)-DM-BINAP(AuPNB)₂ (7.3 mg, 0.005 mmol); allene: **1m** (32 mg, 0.10 mmol); time: 18 h; mobile phase (hexanes:Et₂O 4:1); afforded **3m** (30 mg, 74%) as a turbid oil; ¹**H NMR** (400 MHz, CDCl₃): <u>*Z* isomer</u>: δ 8.37 (d, *J* = 8.8, 2H), 8.02 (d, *J* = 8.8, 2H), 6.07 (t, *J* = 6.8, 1H), 4.59-4.56 (m, 1H), 3.67-3.62 (m, 1H), 3.53-3.47 (m, 1H); <u>*E* isomer</u>: δ 8.37 (d, *J* = 8.8, 2H), 8.04 (d, *J* = 8.8, 2H), 5.96 (t, *J* = 7.6, 1H), 5.01-4.97 (m, 1H), 3.87-3.80 (m, 1H), 3.44-3.35 (m, 1H); <u>Unassigned</u>: 2.31-2.21 (m, 1H), 2.15-2.02 (m, 4H), 1.90-1.84 (m, 1H), 1.56-1.43 (m, 2H), 1.01-0.95 (m, 3H); ¹³**C NMR** (100 MHz, CDCl₃): <u>*Z* isomer</u>: δ 149.91, 145.2, 132.3, 128.5, 127.7, 124.1, 66.4, 49.5, 32.9, 32.2, 24.4, 21.5, 13.8; <u>*E* isomer</u>: δ 149.86, 145.8, 136.5, 128.4, 126.2, 124.0, 59.3, 49.4, 32.3, 31.7, 25.4, 22.4, 13.7. **HRMS** (ESI): submitted; **HPLC** Chiralpak IA column (98:2 hexanes:isopropanol, 1.0 mL/min, 250 nm); major enantiomer (*E*) t_r = 14.08 min, minor enantiomer (*E*) t_r = 13.53 min, 91% ee; major enantiomer (*Z*) t_r = 18.92 min, minor enantiomer (*Z*) t_r = 16.35 min, 26% ee; absolute configuration assigned as (*S*) by analogy to **3b**.

NOE experiments:

The diastereometric assignment of **3m** was performed by irradiation of the allylic proton (H₁), which only gave enhancement in one case; this was assigned as (Z) as the H₁-H₂ distance is smaller on average.

(R)-5-(1-bromo-2-methylprop-1-en-1-yl)dihydrofuran-2(3H)-one (3n)

In a one-dram vial, a mixture of (*R*)-DTBM-BINAP(AuCl)₂ (4.2 mg, 0.0025 mmol), (S)-AgTRIP (4.3 mg, 0.005 mmol), and toluene (0.5 mL) was sonicated for 10 min at r.t. at which point **6b** (33 mg, 0.17 mmol) was added and the mixture cooled to -35 °C. A solution of **1n** (14 mg, 0.10 mmol) in toluene (0.5 mL) was added and the mixture stirred for 5 min at -35 °C. The mixture then remained in the dark at -35 °C for 72 h without stirring at which point it was warmed to r.t. and quenched with triethylamine (0.25 mL). The solvent was evaporated under a stream of nitrogen and the residue purified by column chromatography on silica gel (pentanes:Et₂O 2:1 to 1:1) to afford **3n** (20 mg, 90%) as a white solid; ¹**H NMR** (400 MHz, CDCl₃): δ 5.51 (dd, *J* = 7.6, 6.8, 1H), 2.79-2.70 (m, 1H), 2.59-2.50 (m, 1H), 2.40-2.26 (m, 2H), 1.94 (s, 3H), 1.92 (s, 3H); ¹³**C NMR** (100 MHz, CDCl₃): δ 176.7, 137.6, 120.4, 77.6, 28.5, 27.0, 25.9, 21.1; **HRMS** (EI): found [M]⁺ 217.9938 C₈H₁₁⁷⁹BrO₂ requires 217.9942; **HPLC** Chiralpak IA column (96:4 hexanes:isopropanol, 1.0 mL/min, 210 nm); major enantiomer t_r = 14.89 min, minor enantiomer t_r = 13.91 min, 95% ee; absolute configuration assigned as (*R*) by analogy to (*S*)-5-(2-methylprop-1-en-1-yl)dihydrofuran-2(3*H*)-one listed in reference S2.

(R)-5-(bromo(8,9-dihydro-5H-benzo[7]annulen-7(6H)-ylidene)methyl)dihydrofuran-2(3H)-one (3o)

In a one-dram vial, a mixture of (*R*)-DTBM-BINAP(AuCl)₂ (4.2 mg, 0.0025 mmol), (*S*)-AgTRIP (4.3 mg, 0.005 mmol), and toluene (0.5 mL) was sonicated for 10 min at r.t. at which point **6b** (33 mg, 0.17 mmol) was added and the mixture cooled to -35 °C. A solution of **1o** (24 mg, 0.10 mmol) in toluene (0.5 mL) was added and the mixture stirred for 5 min at -35 °C. The mixture then remained in the dark at -35 °C for 72 h without stirring at which point it was warmed to r.t. and quenched with triethylamine (0.25 mL). The solvent was evaporated under a stream of nitrogen and the residue purified by column chromatography on silica gel (pentanes:Et₂O 2:1 to 1:1) to afford **3o** (28 mg, 86%) as a white solid; ¹H NMR (400 MHz, CDCl₃): δ 7.16-7.11 (m, 4H), 5.65 (dd, *J* = 8.0, 6.4, 1H), 2.93-2.53 (m, 10H), 2.38-2.35 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 176.7, 146.5, 141.1, 140.5, 129.5, 129.4, 126.6, 126.4, 121.0, 76.98, 37.4, 35.2, 34.0, 33.2, 28.5, 27.2; HRMS (ESI): found [M+H]⁺ 321.0484 C₁₆H₁₈⁷⁹BrO₂ requires 321.0485; HPLC Chiralpak IA column (95:5 hexanes:isopropanol, 1.0 mL/min, 210 nm); major enantiomer t_r = 17.52 min, minor enantiomer t_r = 16.50 min, 98% ee; absolute configuration assigned as (*R*) by analogy to (*S*)-5-(2-methylprop-1-en-1-yl)dihydrofuran-2(3*H*)-one listed in reference S2.

(R)-2-(bromo(8,9-dihydro-5H-benzo[7]annulen-7(6H)-ylidene)methyl)tetrahydrofuran (3p)

In a one-dram vial, a mixture of (*R*)-DTBM-BINAP(AuCl)₂ (8.3 mg, 0.005 mmol), (*S*)-AgTRIP (8.6 mg, 0.01 mmol), and toluene (0.5 mL) was sonicated for 10 min at r.t. at which point **6b** (33 mg, 0.17 mmol) was added and the mixture cooled to -35 °C. A solution of **1p** (23 mg, 0.10 mmol) in toluene (0.5 mL) was added and the mixture stirred for 5 min at -35 °C. The mixture then remained in the dark at -35 °C for 72 h without stirring at which point it was warmed to r.t. and quenched with triethylamine (0.25 mL). The solvent was evaporated under a stream of nitrogen and the residue purified by column chromatography on silica gel (pentanes:Et₂O 9:1 to 4:1) to afford **3p** (26 mg, 85%) as a white solid; ¹**H NMR** (400 MHz, CDCl₃): δ 7.15-7.11 (m, 4H), 4.97 (app t, 1H), 4.07-4.02 (m, 1H), 3.89-3.84 (m, 1H), 2.92-2.53 (m, 8H), 2.11-2.03 (m, 1H), 2.01-1.88 (m, 3H); ¹³**C NMR** (100 MHz, CDCl₃): δ 143.4, 141.7, 141.1, 129.5, 129.4, 126.4, 126.2, 125.2, 69.1, 37.6, 35.6, 34.5, 33.2, 31.7, 26.7; **HRMS** (ESI): found [M+H]⁺ 307.0692 C₁₆H₂₀⁷⁹BrO requires 307.0692; **HPLC** Chiralpak IC column (98:2 hexanes:isopropanol, 1.0 mL/min, 210 nm); major enantiomer t_r = 9.46 min, minor enantiomer t_r = 10.55 min, 86% ee; absolute configuration assigned as (*R*) by analogy to (*S*)-5-(2-methylprop-1-en-1-yl)dihydrofuran-2(3*H*)-one listed in reference S2.

Synthesis of N-Bromolactams

The syntheses of compounds **6** were developed using reference S6 as a guide. In a sealed vial at -30 °C and protected from ambient light, the lactams are indefinitely stable. Yellowing of the solid occurs at r.t. and in ambient light. 1-bromoazonan-2-one could be prepared in an analogous manner to **6c**. 1-bromopiperidin-2-one could not be prepared using the methods described below.

1-bromopyrrolidin-2-one (6a)

To a mixture of pyrrolidin-2-one (2.00 g, 23.5 mmol), sodium bromate (1.77 g, 11.8 mmol), and concentrated sulfuric acid (0.313 mL, 5.87 mmol) in water (7 mL) was added hydrobromic acid (1.78 mL, 15.7 mmol, 48% w/w in water) dropwise over a period of 5 min. The mixture was then capped and allowed to stir for 1 h at r.t. during which the mixture lightened from dark red to a pale yellow color. The mixture was then cooled to -78 °C for 5 min to induce precipitation and was warmed to r.t.. The solid was collected on a fritted funnel and washed twice with 20 mL of cold water and allowed to dry under a stream of nitrogen while pulling vacuum. The solid was then placed under high vacuum for 4 h to afford **6a** (1.96 g, 51%) as a pale yellow solid; ¹H NMR (400 MHz, CDCl₃): δ 3.58 (t, *J* = 6.8, 2H), 2.37 (t, *J* = 7.2, 2H), 2.22 (quintet, *J* = 7.6, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 174.4, 53.5, 26.6, 19.9; HRMS (EI): found [M]⁺ 162.9631 C₄H₆⁷⁹BrNO requires 162.9633

1-bromoazepan-2-one (6b)

To a mixture of azepan-2-one (2.66 g, 23.5 mmol), sodium bromate (1.77 g, 11.8 mmol), and concentrated sulfuric acid (0.313 mL, 5.87 mmol) in water (7 mL) was added hydrobromic acid (1.78 mL, 15.7 mmol, 48% w/w in water) dropwise over a period of 5 min. The biphasic mixture was then capped and was stirred vigorously for 1 h at r.t. after which it was cooled to -78 °C for 30 min during which the red bottom layer solidified and lightened in color. After warming to r.t., the solid bottom layer was pulverized by vigorous stirring for 2h. The solid was collected on a fritted funnel and washed twice with 20 mL of cold water and allowed to dry under a stream of nitrogen while pulling vacuum. The solid was then placed under high vacuum for 4 h to afford **6b** (2.18 g, 48%) as a pale yellow solid; ¹H **NMR** (400 MHz, CDCl₃): δ 3.82-3.80 (m, 2H), 2.67-2.64 (m, 2H), 1.72-1.61 (m, 6H); ¹³C **NMR** (100 MHz, CDCl₃): δ 174.2, 59.5, 34.9, 29.2, 27.4, 22.9; **HRMS** (EI): found [M]⁺ 190.9949 C₆H₁₀⁷⁹BrNO requires 190.9946

1-bromoazocan-2-one (6c):

To a mixture of azocan-2-one (2.50 g, 19.7 mmol), sodium bromate (1.48 g, 9.83 mmol), and concentrated sulfuric acid (0.262 mL, 4.91 mmol) in water (7 mL) was added hydrobromic acid (1.49 mL, 13.2 mmol, 48% w/w in water) dropwise over a period of 5 min. The biphasic mixture was then capped and was stirred vigorously for 1 h at r.t. after which it was cooled to -78 °C for 30 min during which the red bottom layer solidified and lightened in color. After warming to r.t., the solid bottom layer was pulverized by vigorous stirring for 2 h. The solid was collected on a fritted funnel and washed twice with 20 mL of cold water and allowed to dry under a stream of nitrogen while pulling vacuum. The solid was then placed under high vacuum for 4 h to afford **6c** (2.92 g, 72%) as a white solid; ¹H **NMR** (400 MHz, CDCl₃): δ 3.78 (app t, 2H), 2.63-2.60 (m, 2H), 1.77-1.68 (m, 4H), 1.54-1.50 (m, 2H), 1.41-1.36(m, 2H); ¹³C **NMR** (100 MHz, CDCl₃): δ 174.0, 55.2, 33.4, 29.1, 28.8, 26.0, 22.9; **HRMS** (EI): found [M]⁺ 205.0096 C₇H₁₂⁷⁹BrNO requires 205.0102

Cyclization and Subsequent Suzuki Reaction of 1e

(S)-2-(2-methyl-1-phenylprop-1-en-1-yl)-1-tosylpyrrolidine (7e)

In a one-dram vial, a mixture of (R)-BINAP(AuPNB)₂ (14 mg, 0.010 mmol), **1e** (56 mg, 0.20 mmol), and **6a** (66 mg, 0.40 mmol) was dissolved in MeNO₂ (1.0 mL) and allowed to stir for 16 h at r.t. at which point the solvent was evaporated. The residue was redissolved in 2:1 hexanes:EtOAc (1 mL) and passed through a pipette column packed with silica gel (0.65 g) eluting with additional 2:1 hexanes:EtOAc (6 mL) to remove unreacted **6a**. The solvent was evaporated under a stream of nitrogen and briefly placed under high vacuum to afford crude **3e** (42 mg, 59%) as a yellow solid (96% ee as determined by HPLC).

In a one-dram vial under a nitrogen atmosphere, to a mixture of tris(dibenzylideneacetone)dipalladium(0) (4.6 mg, 0.0050 mmol), 2-dicyclohexylphosphino-2',6'-dimethoxybiphenyl (4.1 mg, 0.010 mmol), crude **3e** (36 mg, 0.10 mmol), phenylboronic acid (24 mg, 0.20 mmol), and finely ground K_3PO_4 (64 mg, 0.30 mmol) was added dry and degassed toluene (0.4 mL). The mixture was vigorously stirred for 3 h at 100 °C at at which point it was passed through a short silica gel plug and the solvent removed under a stream of nitrogen. The product was purified by column chromatography on silica gel (hexanes:EtOAc 9:1) to afford **7e** (19 mg, 52%) as a white solid; ¹H **NMR** (400 MHz, CDCl₃): δ 7.75 (d, *J* = 8.4, 2H), 7.33-7.10 (m, 7H), 4.82 (dd, *J* = 8.4, 5.2, 1H), 3.21-3.15 (m, 1H), 2.89-2.83 (m, 1H), 2.44 (s, 3H), 1.97(s, 3H), 1.82-1.73 (m, 1H), 1.69-1.61 (m, 1H), 1.45 (s, 3H), 1.16-1.03 (m, 2H); ¹³C **NMR** (100 MHz, CDCl₃): δ 143.1, 140.0, 135.4, 135.2, 130.9, 130.1, 129.6, 127.7, 127.4, 126.2, 60.0, 49.5, 31.5, 24.4, 22.8, 21.5, 19.7; **HRMS** (ESI): found [M+H]⁺ 356.1675 C₂₁H₂₆NO₂³²S requires 356.1679; **HPLC** Chiralpak IA column (98:2 hexanes:isopropanol, 1.0 mL/min, 210 nm); major enantiomer t_r = 26.25 min, minor enantiomer t_r = 13.90 min, 93%ee; absolute configuration assigned as (*S*) by analogy to **3e**.

References

- (S1) LaLonde, R. L.; Sherry, B. D.; Kang, E. J.; Toste, F. D. J. Am. Chem. Soc. 2007, 129, 2452.
- (S2) Hamilton, G. L.; Kang, E. J.; Mba, M.; Toste, F. D. Science 2007, 317, 496.
- (S3) Jonasson, C.; Horváth, A.; Bäckvall, J.-E. J. Am. Chem. Soc. 2000, 122, 9600.
- (S4) LaLonde, R. L.; Wang, Z. J.; Mba, M.; Lackner, A. D.; Toste, F. D. Angew. Chem. Int. Ed. 2010, 49, 598.
- (S5) Makino, T.; Itoh, K. J. Org. Chem. 2004, 69, 395.
- (S6) Fujisaki, S.; Hamura, S.; Eguchi, H.; Nishida, A. Bull. Chem. Soc. Jpn. 1993, 66, 2426.

Electronic Supplementary Material (ESI) for Chemical Science This journal is O The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Chemical Science This journal is © The Royal Society of Chemistry 2013

Crystal Structure of 3b

ORTEP Representation:

Experimental Details:

A colorless block 0.120 x 0.100 x 0.100 mm in size was mounted on a Cryoloop with Paratone oil. Data were collected in a nitrogen gas stream at 100(2) K using phi and omega scans. Crystal-to-detector distance was 60 mm and exposure time was 5 seconds per frame using a scan width of 1.0°. Data collection was 99.9% complete to 67.000° in θ . A total of 33759 reflections were collected covering the indices, -9 <=h<=9, -16 <=k<=16, -16 <=l<=17. 2848 reflections were found to be symmetry independent, with an R_{int} of 0.0251. Indexing and unit cell refinement indicated a primitive, orthorhombic lattice. The space group was found to be P 21 21 21 (No. 19). The data were integrated using the Bruker SAINT software program and scaled using the SADABS software program. Solution by charge flipping methods (SUPERFLIP) produced a complete heavy-atom phasing model consistent with the proposed structure. All non-hydrogen atoms were refined anisotropically by full-matrix least-squares (SHELXL-2012). All hydrogen atoms were placed using a riding model. Their positions were constrained relative to their parent atom using the appropriate HFIX command in SHELXL-2012. Absolute stereochemistry was unambiguously determined to be S at C10.

Table S1. Crystal data and structure refinement.

Empirical formula	C14 H17 Br N2 O4 S	
Formula weight	389.26	
Temperature	100(2) K	
Wavelength	1.54178 Å	
Crystal system	Orthorhombic	
Space group	P 21 21 21	
Unit cell dimensions	a = 7.6678(10) Å b = 13.5683(18) Å c = 14.958(2) Å	α= 90°. β= 90°. γ = 90°.
Volume	1556.3(4) Å ³	
Ζ	4	
Density (calculated)	1.661 Mg/m ³	

Absorption coefficient	5.038 mm ⁻¹
F(000)	792
Crystal size	0.120 x 0.100 x 0.100 mm ³
Crystal color/habit	colorless block
Theta range for data collection	4.399 to 68.291°.
Index ranges	-9<=h<=9, -16<=k<=16, -16<=l<=17
Reflections collected	33759
Independent reflections	2848 [R(int) = 0.0251]
Completeness to theta = 67.000°	99.9 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.753 and 0.669
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	2848 / 0 / 202
Goodness-of-fit on F ²	1.183
Final R indices [I>2sigma(I)]	R1 = 0.0159, wR2 = 0.0411
R indices (all data)	R1 = 0.0159, wR2 = 0.0411
Absolute structure parameter	-0.007(4)
Extinction coefficient	0.00218(12)
Largest diff. peak and hole	0.270 and -0.252 e.Å ⁻³

Table S2. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters ($Å^2x$ 10³). U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	х	У	z	U(eq)
C(1)	2069(3)	12457(2)	1873(2)	12(1)
C(2)	3838(4)	12526(2)	1669(2)	14(1)
C(3)	5031(4)	12627(2)	2357(2)	14(1)
C(4)	4408(3)	12671(2)	3225(2)	14(1)
C(5)	2649(4)	12612(2)	3440(2)	15(1)
C(6)	1468(3)	12499(2)	2752(2)	14(1)
C(7)	2021(4)	10818(2)	-14(2)	15(1)
C(8)	1047(4)	9947(2)	-423(2)	20(1)
C(9)	91(4)	9482(2)	370(2)	18(1)
C(10)	-381(3)	10350(2)	995(2)	12(1)
C(11)	-90(3)	10156(2)	1976(2)	12(1)
C(12)	-1262(3)	10169(2)	2629(2)	14(1)
C(13)	-3180(3)	10333(2)	2442(2)	17(1)
C(14)	-859(4)	10024(2)	3599(2)	20(1)
N(1)	5682(3)	12771(2)	3961(2)	20(1)
N(2)	739(3)	11159(2)	650(1)	13(1)
O(1)	5170(3)	13128(2)	4663(1)	34(1)
O(2)	7174(3)	12480(2)	3831(1)	26(1)
O(3)	-1150(2)	12388(1)	1365(1)	17(1)
O(4)	1116(3)	12906(1)	268(1)	17(1)
S(1)	553(1)	12280(1)	984(1)	12(1)
Br(1)	2318(1)	9887(1)	2245(1)	17(1)

Table 3. Bond lengths [Å] and angles [°].

C(1)-C(2)	1.393(4)	C(5)-C(6)	1.379(4)
C(1)-C(6)	1.395(4)	C(5)-H(5)	0.9500
C(1)-S(1)	1.782(3)	C(6)-H(6)	0.9500
C(2)-C(3)	1.383(4)	C(7)-N(2)	1.472(3)
C(2)-H(2)	0.9500	C(7)-C(8)	1.527(4)
C(3)-C(4)	1.385(4)	C(7)-H(7A)	0.9900
C(3)-H(3)	0.9500	C(7)-H(7B)	0.9900
C(4) - C(5)	1.389(4)	C(8)-C(9)	1.529(4)
C(4)-N(1)	1.479(3)	C(8)-H(8A)	0.9900

C(8)-H(8B)	0.9900		C(7)-C(8)-H(8A)	110.9
C(9) - C(10)	1.547(4)		C(9)-C(8)-H(8A)	110.9
C(9)-H(9A)	0.9900		C(7)-C(8)-H(8B)	110.9
C(9)-H(9B)	0.9900		C(9)-C(8)-H(8B)	110.9
C(10)-N(2)	1.485(3)		H(8A)-C(8)-H(8B)	109.0
C(10) - C(11)	1.508(3)		C(8)-C(9)-C(10)	105.5(2)
C(10)-H(10)	1.0000		C(8)-C(9)-H(9A)	110.6
C(11)-C(12)	1.327(3)		C(10)-C(9)-H(9A)	110.6
C(11)-Br(1)	1.925(2)		C(8)-C(9)-H(9B)	110.6
C(12)-C(14)	1.497(4)		C(10)-C(9)-H(9B)	110.6
C(12)-C(13)	1.513(3)		HÌ9Á)-CÌ9)-HÌ9B)	108.8
C(13)-H(13A)	0.9800		N(2)-C(10)-C(11)	112.4(2)
C(13)-H(13B)	0.9800		N(2)-C(10)-C(9)	102.56(19)
C(13)-H(13C)	0.9800		C(11)-C(10)-C(9)	114.9(2)
C(14)-H(14A)	0.9800		N(2)-C(10)-H(10)	108.9
C(14)-H(14B)	0.9800		C(11)-C(10)-H(10)	108.9
C(14)-H(14C)	0.9800		C(9)-C(10)-H(10)	108.9
N(1)-O(1)	1 221(3)		C(12)-C(11)-C(10)	127 8(2)
N(1)-O(2)	1 226(3)		C(12)- $C(11)$ - $Br(1)$	119 91(18)
N(2)-S(1)	1.608(2)		C(10)-C(11)-Br(1)	112 24(16)
O(3)-S(1)	1 4324(19)		C(11)-C(12)-C(14)	124 8(2)
O(4)-S(1)	1 4334(19)		C(11)- $C(12)$ - $C(13)$	121.6(2)
	1.1001(10)		C(14)- $C(12)$ - $C(13)$	1135(2)
C(2)-C(1)-C(6)	121	7(2)	C(12)-C(13)-H(13A)	109.5
C(2)-C(1)-S(1)	118	70(19)	C(12)- $C(13)$ - $H(13B)$	109.5
C(6)-C(1)-S(1)	110	58(19)	H(13A)-C(13)-H(13B)	109.5
C(3)-C(2)-C(1)	110	2(2)	C(12)-C(13)-H(13C)	109.5
C(3)-C(2)-H(2)	120	Δ	H(13A)-C(13)-H(13C)	109.5
C(1)-C(2)-H(2)	120	Δ	H(13B)-C(13)-H(13C)	109.5
C(2)-C(3)-C(4)	118	2(3)	C(12)-C(14)-H(14A)	109.5
C(2)-C(3)-H(3)	120	9	C(12)- $C(14)$ - $H(14B)$	109.5
C(4)-C(3)-H(3)	120	9	H(14A)-C(14)-H(14B)	109.5
C(3)-C(4)-C(5)	123	3(2)	C(12)-C(14)-H(14C)	109.5
C(3)-C(4)-N(1)	118	3(2)	H(14A)-C(14)-H(14C)	109.5
C(5)-C(4)-N(1)	118	3(2)	H(14B)-C(14)-H(14C)	109.5
C(6)-C(5)-C(4)	118	2(2)	O(1)-N(1)-O(2)	124 4(2)
C(6)-C(5)-H(5)	120	9	O(1)-N(1)-C(4)	1177(2)
C(4)-C(5)-H(5)	120	9	O(2)-N(1)-C(4)	1180(2)
C(5)-C(6)-C(1)	119	.4(2)	C(7)-N(2)-C(10)	112.86(19)
C(5)-C(6)-H(6)	120	.3	C(7)-N(2)-S(1)	124.43(18)
C(1)-C(6)-H(6)	120	.3	C(10)-N(2)-S(1)	122.71(17)
N(2)-C(7)-C(8)	100	.7(2)	O(3)-S(1)-O(4)	120.74(12)
N(2)-C(7)-H(7A)) 111	.6	O(3)-S(1)-N(2)	107.49(12)
C(8)-C(7)-H(7A	ý 111	.6	O(4)-S(1)-N(2)	107.60(11)
N(2)-C(7)-H(7B) 111	.6	O(3)-S(1)-C(1)	106.52(12)
C(8)-C(7)-H(7B) 111	.6	O(4)-S(1)-C(1)	106.36(11)
H(7A)-C(7)-H(7	, B) 109	.4	N(2)-S(1)-C(1)	107.51(12)
C(7)-C(8)-C(9)	104	.1(2)		× /

Symmetry transformations used to generate equivalent atoms: -none-

Table 4. Anisotropic displacement parameters (Å²x 10³). The anisotropic displacement factor exponent takes the form: $-2\pi^{2}[h^{2} a^{*2}U^{11} + ... + 2 h k a^{*} b^{*} U^{12}].$

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
C(1)	15(1) 18(1)	11(1)	9(1) 12(1)	0(1)	-2(1) 2(1)	2(1)
C(3)	14(1)	12(1)	16(1)	0(1)	0(1)	1(1)

Electronic Supplementary Material (ESI) for Chemical Science This journal is The Royal Society of Chemistry 2013

C(4)	18(1)	11(1)	14(1)	1(1)	-4(1)	0(1)
C(5)	22(1)	15(1)	8(1)	0(1)	3(1)	3(1)
C(6)	12(1)	15(1)	16(1)	-2(1)	1(1)	3(1)
C(7)	15(1)	16(1)	14(1)	-2(1)	5(1)	-1(1)
C(8)	26(1)	21(1)	13(1)	-5(1)	4(1)	-7(1)
C(9)	21(1)	18(1)	14(1)	-2(1)	0(1)	-5(1)
C(10)	10(1)	14(1)	12(1)	2(1)	-1(1)	-4(1)
C(11)	10(1)	13(1)	13(1)	2(1)	-4(1)	0(1)
C(12)	17(1)	10(1)	14(1)	1(1)	0(1)	-1(1)
C(13)	16(1)	18(1)	18(1)	2(1)	4(1)	-1(1)
C(14)	26(1)	22(1)	12(1)	3(1)	2(1)	-1(1)
N(1)	24(1)	18(1)	16(1)	2(1)	-6(1)	-4(1)
N(2)	14(1)	14(1)	11(1)	0(1)	2(1)	0(1)
O(1)	35(1)	52(1)	14(1)	-10(1)	-6(1)	1(1)
O(2)	20(1)	29(1)	29(1)	-1(1)	-11(1)	3(1)
O(3)	14(1)	22(1)	15(1)	-1(1)	-2(1)	5(1)
O(4)	26(1)	15(1)	10(1)	2(1)	-3(1)	0(1)
S(1)	15(1)	13(1)	9(1)	0(1)	-2(1)	2(1)
Br(1)	14(1)	22(1)	16(1)	1(1)	-4(1)	3(1)

Table 5. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å²x 10^3).

	х	У	Z	U(eq)
H(2)	4220	12506	1065	16
H(3)	6246	12664	2237	17
H(5)	2270	12649	4043	18
H(6)	256	12449	2876	17
H(7A)	3124	10608	273	18
H(7B)	2273	11333	-465	18
H(8A)	1869	9472	-696	24
H(8B)	211	10171	-884	24
H(9A)	852	9004	681	21
H(9B)	-976	9137	166	21
H(10)	-1631	10531	899	15
H(13A)	-3324	10597	1836	26
H(13B)	-3654	10803	2876	26
H(13C)	-3805	9706	2492	26
H(14A)	270	9693	3660	30
H(14B)	-1770	9617	3873	30
H(14C)	-814	10665	3899	30