

# COMSOL MODEL REPORT

Contents

- 1. Global Definitions
  - 1.1. Parameters 1
- 2. Model 1 (mod1)
  - 2.1. Definitions
  - 2.2. Geometry 1
  - 2.3. Transport of Diluted Species (chds)
  - 2.4. Transport of Diluted Species 2 (chds2)
  - 2.5. Mesh 1
- 3. Study 1
  - 3.1. Parametric Sweep
  - 3.2. Stationary
  - 3.3. Solver Configurations
- 4. Results
  - 4.1. Data Sets
  - 4.2. Derived Values
  - 4.3. Tables
  - 4.4. Plot Groups

# **1** Global Definitions

# 1.1 Parameters 1

#### Parameters

| Name  | Expression | Description                            |
|-------|------------|----------------------------------------|
| RG    | 1.5        | RG of glass                            |
| DD    | 400        | limit inside pipette                   |
| D     | 150        | limit behind pipette                   |
| L     | 1          | distance between pipette and substrate |
| RS    | 250        | limit of substrate                     |
| tan   | 0.1405     | tangent of pipette angle               |
| DR    | 1          | diffusion coefficient of reduced form  |
| DO    | 1          | diffusion coefficient of oxidized form |
| gamma | 1.41       | ratio of D in two phases               |
| К     | 2          | partition coefficient                  |
| С     | 1          | initial concentration of R             |
| М     | 10000      | stiff-spring velocity                  |
| EXPN  | 10000      | steady state                           |

# 2 Model 1 (mod1)

# 2.1 Geometry 1



# 2.1.1 Bézier Polygon 2 (b2)

### **Polygon segments**

| Name                     | Value                                                         |
|--------------------------|---------------------------------------------------------------|
| Control points           | {{0, 1, 1 + DD*tan, 0, 0}, {0, 0, DD, DD, 0}}                 |
| Degree                   | {1, 1, 1, 1}                                                  |
| Weights                  | {1, 1, 1, 1, 1, 1, 1, 1}                                      |
| Valid vertex coordinates | $\{\{0, 0\}, \{1, 0\}, \{57.2, 400\}, \{0, 400\}, \{0, 0\}\}$ |

# 2.1.2 Bézier Polygon 1 (b1)

#### **Polygon segments**

| Name                     | Value                                                                                              |
|--------------------------|----------------------------------------------------------------------------------------------------|
| Control points           | {{0, 1, RG, RG + D*tan, RS, RS, 40, 0, 0}, {0, 0, 0, D, D, L, L, L, 0}}                            |
| Degree                   | {1, 1, 1, 1, 1, 1, 1}                                                                              |
| Weights                  | $\{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1$                                                       |
| Valid vertex coordinates | {{0, 0}, {1, 0}, {1.5, 0}, {22.5750000000003, 150}, {250, 150}, {250, 1}, {40, 1}, {0, 1}, {0, 0}} |



# 2.2 Transport of Diluted Species (chds)

### Transport of Diluted Species

#### Selection

| Geometric entity level | Domain   |
|------------------------|----------|
| Selection              | Domain 2 |

#### Equations

$$\nabla \cdot (-D_i \nabla c_i) = R_i$$
$$\mathbf{N}_i = -D_i \nabla c_i$$

Settings

| Description            | Value     |
|------------------------|-----------|
| Convection             | 0         |
| Show equation assuming | std1/stat |

**Used products** 

COMSOL Multiphysics

Chemical Reaction Engineering Module

### 2.2.1 Diffusion



#### Diffusion

#### Selection

| Geometric entity level | Domain   |
|------------------------|----------|
| Selection              | Domain 2 |

# **Equations**

$$\nabla \cdot (-D_i \nabla c_i) = R_i$$
  
$$\mathbf{N}_i = -D_i \nabla c_i$$

### **Settings**

#### Settings

| Description           | Value                                |
|-----------------------|--------------------------------------|
| Diffusion coefficient | {{DR, 0, 0}, {0, DR, 0}, {0, 0, DR}} |
| Diffusion coefficient | {{DO, 0, 0}, {0, DO, 0}, {0, 0, DO}} |

# Used products

COMSOL Multiphysics

### Variables

## Shape functions

| Name | Shape function    | Description   | Shape frame | Selection |
|------|-------------------|---------------|-------------|-----------|
| cR1  | Lagrange (Linear) | Concentration | Material    | Domain 2  |

| Name | Shape function    | Description   | Shape frame | Selection |
|------|-------------------|---------------|-------------|-----------|
| c01  | Lagrange (Linear) | Concentration | Material    | Domain 2  |

## Weak expressions

| Weak expression                                                                                                                         | Integration frame | Selection |
|-----------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------|
| 2*(cR1t*test(cR1) - (chds.Drr_cR1*cR1r +<br>chds.Drz_cR1*cR1z)*test(cR1r) - (chds.Dzr_cR1*cR1r +<br>chds.Dzz_cR1*cR1z)*test(cR1z))*pi*r | Material          | Domain 2  |
| 2*(cO1t*test(cO1) - (chds.Drr_cO1*cO1r +<br>chds.Drz_cO1*cO1z)*test(cO1r) - (chds.Dzr_cO1*cO1r +<br>chds.Dzz_cO1*cO1z)*test(cO1z))*pi*r | Material          | Domain 2  |
| 2*chds.streamline*pi*r                                                                                                                  | Material          | Domain 2  |
| 2*chds.crosswind*pi*r                                                                                                                   | Material          | Domain 2  |

# 2.2.2 Axial Symmetry 1



Axial Symmetry 1

Selection

| Geometric entity level | Boundary   |
|------------------------|------------|
| Selection              | Boundary 3 |

# **Used products**

COMSOL Multiphysics

### 2.2.3 No Flux 1



#### No Flux 1

#### Selection

| Geometric entity level | Boundary        |
|------------------------|-----------------|
| Selection              | Boundaries 6, 8 |

## **Equations**

$$-\mathbf{n} \cdot \mathbf{N}_i = 0$$

## **Used products**

COMSOL Multiphysics





#### Initial Values 1

#### Selection

| Geometric entity level | Domain   |
|------------------------|----------|
| Selection              | Domain 2 |

# **Used products**

COMSOL Multiphysics

### 2.2.5 Concentration 1



**Concentration 1** 

### Selection

| Geometric entity level | Boundary         |
|------------------------|------------------|
| Selection              | Boundaries 9, 11 |

# Equations

 $c_i = c_{0j}$ 

## Settings

### Settings

| Description | Value |
|-------------|-------|
| Species cR1 | 1     |
| Species cO1 | 1     |

# Used products

COMSOL Multiphysics

### Variables

| Name        | Expression | Description   | Selection        |
|-------------|------------|---------------|------------------|
| chds.c0_cR1 | 0          | Concentration | Boundaries 9, 11 |
| chds.c0_cO1 | 0          | Concentration | Boundaries 9, 11 |

### **Constraints**

| Constraint         | Constraint force        | Shape function    | Selection        |
|--------------------|-------------------------|-------------------|------------------|
| -cR1 + chds.c0_cR1 | test(cR1 + chds.c0_cR1) | Lagrange (Linear) | Boundaries 9, 11 |
| -cO1 + chds.c0_cO1 | test(cO1 + chds.c0_cO1) | Lagrange (Linear) | Boundaries 9, 11 |





#### Flux 1

### Selection

| Geometric entity level | Boundary         |
|------------------------|------------------|
| Selection              | Boundaries 5, 10 |

# **Equations**

$$-\mathbf{n}\cdot\mathbf{N}_i = N_{0i}$$

# Settings

### Settings

| Description | Value                                    |
|-------------|------------------------------------------|
| Species cR1 | 1                                        |
| Species cO1 | 1                                        |
| Inward flux | {M*(cO1 - cR1*EXPN), M*(cR1*EXPN - cO1)} |

# Used products

COMSOL Multiphysics

### Variables

| Name        | Expression | Description               | Selection        |
|-------------|------------|---------------------------|------------------|
| chds.cb_cR1 | 0          | Bulk concentration        | Boundaries 5, 10 |
| chds.kc_cR1 | 0          | Mass transfer coefficient | Boundaries 5, 10 |
| chds.cb_cO1 | 0          | Bulk concentration        | Boundaries 5, 10 |

| Name        | Expression | Description               | Selection        |
|-------------|------------|---------------------------|------------------|
| chds.kc_cO1 | 0          | Mass transfer coefficient | Boundaries 5, 10 |

## Weak expressions

| Weak expression                     | Integration frame | Selection        |
|-------------------------------------|-------------------|------------------|
| 2*M*(cO1 - cR1*EXPN)*test(cR1)*pi*r | Material          | Boundaries 5, 10 |
| 2*M*(cR1*EXPN - cO1)*test(cO1)*pi*r | Material          | Boundaries 5, 10 |

#### 2.2.7 Flux 2



### Flux 2

#### Selection

| Geometric entity level | Boundary   |
|------------------------|------------|
| Selection              | Boundary 4 |

### **Equations**

$$-\mathbf{n} \cdot \mathbf{N}_i = N_{0i}$$

# Settings

## Settings

| Description | Value                                 |
|-------------|---------------------------------------|
| Species cR1 | 1                                     |
| Species cO1 | 1                                     |
| Inward flux | {M*(cR2 - K*cR1), M*(cO2 - cO1*EXPN)} |

# **Used products**

COMSOL Multiphysics

### Variables

| Name        | Expression | Description               | Selection  |
|-------------|------------|---------------------------|------------|
| chds.cb_cR1 | 0          | Bulk concentration        | Boundary 4 |
| chds.kc_cR1 | 0          | Mass transfer coefficient | Boundary 4 |
| chds.cb_cO1 | 0          | Bulk concentration        | Boundary 4 |
| chds.kc_cO1 | 0          | Mass transfer coefficient | Boundary 4 |

## Weak expressions

| Weak expression                     | Integration frame | Selection  |
|-------------------------------------|-------------------|------------|
| 2*M*(cR2 - K*cR1)*test(cR1)*pi*r    | Material          | Boundary 4 |
| 2*M*(cO2 - cO1*EXPN)*test(cO1)*pi*r | Material          | Boundary 4 |

# 2.3 Transport of Diluted Species 2 (chds2)



Transport of Diluted Species 2

#### Selection

| Geometric entity level | Domain   |
|------------------------|----------|
| Selection              | Domain 1 |

### Equations

$$\nabla \cdot \left(-D_i \nabla c_i\right) = R_i$$

$$\mathbf{N}_i = -D_i \nabla c_i$$

Settings

| Description            | Value     |
|------------------------|-----------|
| Convection             | 0         |
| Show equation assuming | std1/stat |

#### **Used products**

| COMSOL Multiphysics                  |
|--------------------------------------|
| Chemical Reaction Engineering Module |

### 2.3.1 Diffusion



# Diffusion

### Selection

| Geometric entity level | Domain   |
|------------------------|----------|
| Selection              | Domain 1 |

# Equations

$$\nabla \cdot (-D_i \nabla c_i) = R_i$$
$$\mathbf{N}_i = -D_i \nabla c_i$$

# Settings

### Settings

| Description           | Value                                                  |
|-----------------------|--------------------------------------------------------|
| Diffusion coefficient | {{DR*gamma, 0, 0}, {0, DR*gamma, 0}, {0, 0, DR*gamma}} |

| Description           | Value                                                  |
|-----------------------|--------------------------------------------------------|
| Diffusion coefficient | {{DO*gamma, 0, 0}, {0, DO*gamma, 0}, {0, 0, DO*gamma}} |

## **Used products**

COMSOL Multiphysics

### Variables

## Shape functions

| Name | Shape function    | Description   | Shape frame | Selection |
|------|-------------------|---------------|-------------|-----------|
| cR2  | Lagrange (Linear) | Concentration | Material    | Domain 1  |
| cO2  | Lagrange (Linear) | Concentration | Material    | Domain 1  |

## Weak expressions

| Weak expression                                                                                                                             | Integration frame | Selection |
|---------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------|
| 2*(cR2t*test(cR2) - (chds2.Drr_cR2*cR2r +<br>chds2.Drz_cR2*cR2z)*test(cR2r) - (chds2.Dzr_cR2*cR2r +<br>chds2.Dzz_cR2*cR2z)*test(cR2z))*pi*r | Material          | Domain 1  |
| 2*(cO2t*test(cO2) - (chds2.Drr_cO2*cO2r +<br>chds2.Drz_cO2*cO2z)*test(cO2r) - (chds2.Dzr_cO2*cO2r +<br>chds2.Dzz_cO2*cO2z)*test(cO2z))*pi*r | Material          | Domain 1  |
| 2*chds2.streamline*pi*r                                                                                                                     | Material          | Domain 1  |
| 2*chds2.crosswind*pi*r                                                                                                                      | Material          | Domain 1  |

# 2.3.2 Axial Symmetry 1



Axial Symmetry 1

### Selection

| Geometric entity level | Boundary   |
|------------------------|------------|
| Selection              | Boundary 1 |

# Used products

COMSOL Multiphysics

### 2.3.3 No Flux 1



### No Flux 1

#### Selection

| Geometric entity level | Boundary   |
|------------------------|------------|
| Selection              | Boundary 7 |

## **Equations**

 $-\mathbf{n} \cdot \mathbf{N}_i = 0$ 

# Used products

COMSOL Multiphysics

## 2.3.4 Initial Values 1



#### Initial Values 1

#### Selection

| Geometric entity level | Domain   |
|------------------------|----------|
| Selection              | Domain 1 |

## Settings

#### Settings

| Description   | Value |
|---------------|-------|
| Concentration | С     |

# Used products

COMSOL Multiphysics

### 2.3.5 Concentration 1



#### **Concentration 1**

#### Selection

| Geometric entity level | Boundary   |
|------------------------|------------|
| Selection              | Boundary 2 |

### **Equations**

 $c_i = c_{0j}$ 

#### **Settings**

#### Settings

| Description   | Value  |
|---------------|--------|
| Concentration | {c, 0} |
| Species cR2   | 1      |
| Species cO2   | 1      |

# **Used products**

COMSOL Multiphysics

### Variables

| Name         | Expression | Description   | Selection  |
|--------------|------------|---------------|------------|
| chds2.c0_cR2 | С          | Concentration | Boundary 2 |
| chds2.c0_cO2 | 0          | Concentration | Boundary 2 |

# **Constraints**

| Constraint          | Constraint force         | Shape function    | Selection  |
|---------------------|--------------------------|-------------------|------------|
| -cR2 + chds2.c0_cR2 | test(cR2 + chds2.c0_cR2) | Lagrange (Linear) | Boundary 2 |
| -cO2 + chds2.c0_cO2 | test(cO2 + chds2.c0_cO2) | Lagrange (Linear) | Boundary 2 |





### Flux 1

### Selection

| Geometric entity level | Boundary   |
|------------------------|------------|
| Selection              | Boundary 4 |

## **Equations**

$$-\mathbf{n}\cdot\mathbf{N}_i=N_{0j}$$

### **Settings**

Settings

| Description | Value                                 |
|-------------|---------------------------------------|
| Species cR2 | 1                                     |
| Species cO2 | 1                                     |
| Inward flux | {M*(K*cR1 - cR2), M*(cO1*EXPN - cO2)} |

# Used products

COMSOL Multiphysics

## Variables

| Name         | Expression | Description               | Selection  |
|--------------|------------|---------------------------|------------|
| chds2.cb_cR2 | 0          | Bulk concentration        | Boundary 4 |
| chds2.kc_cR2 | 0          | Mass transfer coefficient | Boundary 4 |
| chds2.cb_cO2 | 0          | Bulk concentration        | Boundary 4 |
| chds2.kc_cO2 | 0          | Mass transfer coefficient | Boundary 4 |

## Weak expressions

| Weak expression                     | Integration frame | Selection  |
|-------------------------------------|-------------------|------------|
| 2*M*(K*cR1 - cR2)*test(cR2)*pi*r    | Material          | Boundary 4 |
| 2*M*(cO1*EXPN - cO2)*test(cO2)*pi*r | Material          | Boundary 4 |

# 2.4 Mesh 1

#### **Mesh statistics**

| Property                | Value  |
|-------------------------|--------|
| Minimum element quality | 0.4558 |
| Average element quality | 0.9298 |
| Triangular elements     | 886352 |
| Edge elements           | 21555  |
| Vertex elements         | 10     |



Mesh 1

### 2.4.1 Size (size)

#### Settings

| Name                    | Value          |
|-------------------------|----------------|
| Maximum element size    | 4.01           |
| Minimum element size    | 0.00802        |
| Resolution of curvature | 0.2            |
| Predefined size         | Extremely fine |

# 3 Study 1

# 3.1 Parametric Sweep

Parameter name: L range(1,1,10)

# 3.2 Solver Configurations

### 3.2.1 Solver 1

### Compile Equations: Stationary (st1)

#### Study and step

| Name           | Value      |
|----------------|------------|
| Use study      | Study 1    |
| Use study step | Stationary |

# Stationary Solver 1 (s1)

#### General

| Name                  | Value      |
|-----------------------|------------|
| Defined by study step | Stationary |

### Fully Coupled 1 (fc1)

#### General

| Name          | Value    |
|---------------|----------|
| Linear solver | Direct 1 |

### Direct 1 (d1)

#### General

| Name   | Value   |
|--------|---------|
| Solver | PARDISO |

### 3.2.2 Parametric 2

# Store Solution 3 (su1)

#### General

| Name     | Value            |
|----------|------------------|
| Solution | Store Solution 3 |

# Store Solution 4 (su2)

#### General

| Name     | Value            |
|----------|------------------|
| Solution | Store Solution 4 |

### Store Solution 5 (su3)

#### General

| Name     | Value            |
|----------|------------------|
| Solution | Store Solution 5 |

## Store Solution 6 (su4)

#### General

| Name     | Value            |
|----------|------------------|
| Solution | Store Solution 6 |

# Store Solution 7 (su5)

#### General

| Name     | Value            |
|----------|------------------|
| Solution | Store Solution 7 |

# Store Solution 8 (su6)

#### General

| Name     | Value            |
|----------|------------------|
| Solution | Store Solution 8 |

# Store Solution 9 (su7)

#### General

| Name     | Value            |
|----------|------------------|
| Solution | Store Solution 9 |

# Store Solution 10 (su8)

#### General

| Name     | Value             |
|----------|-------------------|
| Solution | Store Solution 10 |

# Store Solution 11 (su9)

#### General

| Name     | Value             |
|----------|-------------------|
| Solution | Store Solution 11 |

# Store Solution 12 (su10)

#### General

| Name     | Value             |
|----------|-------------------|
| Solution | Store Solution 12 |

# 4 Results

# 4.1 Data Sets

### 4.1.1 Solution 1

#### Selection

| Geometric entity level | Domain         |
|------------------------|----------------|
| Selection              | Geometry geom1 |

#### Solution

| Name     | Value                 |
|----------|-----------------------|
| Solution | Solver 1              |
| Model    | Save Point Geometry 1 |

## 4.1.2 Solution 2

#### Selection

| Geometric entity level | Domain         |
|------------------------|----------------|
| Selection              | Geometry geom1 |

Solution

| Name     | Value                 |
|----------|-----------------------|
| Solution | Parametric 2          |
| Model    | Save Point Geometry 1 |

# 4.2 Derived Values

# 4.2.1 Line Integration 1

#### Selection

| Geometric entity level | Boundary   |
|------------------------|------------|
| Selection              | Boundary 4 |

#### Data

| Name     | Value      |
|----------|------------|
| Data set | Solution 2 |

### Expression

| Name | Value |
|------|-------|
|      |       |

| Name        | Value                 |
|-------------|-----------------------|
| Expression  | chds2.ndflux_cR2      |
| Description | Normal diffusive flux |

### Integration settings

| Name              | Value |
|-------------------|-------|
| Integration order | On    |

# 4.2.2 Line Integration 2

#### Selection

| Geometric entity level | Boundary   |
|------------------------|------------|
| Selection              | Boundary 5 |

#### Data

| Name     | Value      |
|----------|------------|
| Data set | Solution 2 |

#### Expression

| Name        | Value                 |
|-------------|-----------------------|
| Expression  | chds.ndflux_cR1       |
| Description | Normal diffusive flux |

### Integration settings

| Name              | Value |
|-------------------|-------|
| Integration order | On    |

### 4.2.3 Line Integration 3

#### Selection

| Geometric entity level | Boundary   |
|------------------------|------------|
| Selection              | Boundary 4 |

#### Data

| Name     | Value      |
|----------|------------|
| Data set | Solution 2 |

#### Expression

| Name       | Value           |
|------------|-----------------|
| Expression | chds.ndflux_cO1 |

| Name        | Value                 |
|-------------|-----------------------|
| Description | Normal diffusive flux |

#### Integration settings

| Name              | Value |
|-------------------|-------|
| Integration order | On    |

# 4.3 Tables

# 4.3.1 Table 1

Line Integration 1 (chds.ndflux\_cR1)

#### Table 1

| L  | Normal diffusive flux |
|----|-----------------------|
| 1  | 0.52717               |
| 2  | 0.50913               |
| 3  | 0.50084               |
| 4  | 0.50086               |
| 5  | 0.49609               |
| 6  | 0.49607               |
| 7  | 0.49792               |
| 8  | 0.49475               |
| 9  | 0.49716               |
| 10 | 0.49431               |

## 4.3.2 Table 2

Line Integration 2 (chds.ndflux\_cO1)

Table 2

| L | Normal diffusive flux |
|---|-----------------------|
| 1 | 0.52098               |
| 2 | 0.49365               |
| 3 | 0.47686               |
| 4 | 0.46273               |
| 5 | 0.44947               |
| 6 | 0.43669               |
| 7 | 0.42427               |

| L  | Normal diffusive flux |
|----|-----------------------|
| 8  | 0.41197               |
| 9  | 0.40002               |
| 10 | 0.38817               |

### 4.3.3 Table 3

Line Integration 3 (chds2.ndflux\_cO2)

### Table 3

| L  | Normal diffusive flux |
|----|-----------------------|
| 1  | 0.24203               |
| 2  | 0.1184                |
| 3  | 0.07408               |
| 4  | 0.05284               |
| 5  | 0.04073               |
| 6  | 0.03293               |
| 7  | 0.02754               |
| 8  | 0.02353               |
| 9  | 0.02051               |
| 10 | 0.01811               |

# 4.4 Plot Groups

# 4.4.1 Concentration (chds)



d(10)=10 Surface



4.4.2 Concentration (chds2)

