Practical, Highly Stereoselective Allyl- and Crotylsilylation of Aldehydes Catalyzed by Readily Available Cinchona Alkaloid Amide

Yuan Huang, Licheng Yang, Panlin Shao
 and Yu $\rm Zhao^*$

Supplementary Information

Table of Contents	page
1. General information	S2
2. General procedure for one-pot preparation of the catalysts	S2
3. Representative procedure for allylation reaction	S5
4. Preliminary kinetic study of the allylation reaction	S6
5. Analytical data of allylation and crotylation reaction products	S7
6. NMR spectra of the products	S26
7. References	S50

1. General Information

Melting point (MP) was obtained on Buchi B-540. Thin layer chromatography (TLC) was performed on Merck pre-coated TLC plates (Merck 60 F254), and compounds were visualized with a UV light at 254nm. Further visualization was achieved by staining with iodine, or potassium permanganate solution followed by heating using a heat gun. Flash chromatography separations were performed on Merck 60 (0.040-0.063 mm) mesh silica gel. ¹H and ¹³C NMR spectra were recorded on a Bruker ACF300 (300 MHz) or AMX500 (500 MHz) spectrometer. Chemical shifts were reported in parts per million (ppm), and the residual solvent peak was used as an internal reference: proton (chloroform δ 7.26), carbon (chloroform δ 77.0) or tetramethylsilane (TMS δ 0.00) was used as a reference. Data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad), coupling constants (Hz) and integration. High resolution mass spectra (HRMS) were obtained on a Finnigan/MAT 95XL-T spectrometer. Optical rotations were recorded on an mrc AP81 automatic polarimeter. Enantiomeric excesses (ee) were determined by HPLC analysis on Agilent HPLC units, including the following instruments: pump, LC-20AD; detector, SPD-20A; column, Chiralcel OD-H, Chiralpak AS-H, AD-H or IC.

All reactions were carried out under nitrogen atmosphere. Liquid reagents were handled with a micropipette. THF was dried on alumina columns using a solvent dispensing system. All commercially available aldehydes, allyltrichlorosilane and *N*, *N*-diisopropylethylamine were purchased for Aldrich and used as received for the reactions without any purification. Aldehyde **1d** and **1e** were prepared based on reported procedure¹⁻². (*E*)- and (*Z*)- crotyltrichlorosilanes were synthesized according to literature procedure³.

2. General procedure for one-pot preparation of the catalysts.

Quinine 3 (5 mmol) and triphenylphosphine (1.6 g, 6 mmol) were dissolved in anhydrous THF (25 mL), and the solution was cooled to 0 °C. Diethyl azodicarboxylate (1.0 g, 6 mmol) was subsequently added. To the resulting solution was added dropwise the solution of diphenyl phosphoryl azide (1.3 mL, 6 mmol) in anhydrous THF (10 mL) at 0 °C. The mixture was allowed to warm to ambient temperature. After 24 h, it was heated to 50°C when more triphenylphosphine (1.7 g, 6.5 mmol) was added, and the mixture was allowed to stir at 50 °C for additional 3 h. After that the solution was cooled to ambient temperature and H_2O (0.5 mL) was added⁴. After the reaction mixture was stirred for another 10 h, 4-(Dimethylamino) acid chloride (1.098 g, 6 mmol) was added in one portion, then the reaction mixture was kept stirring at room temperature for 1 h. Solvents were removed in vacuo, and the residue was dissolved in CH₂Cl₂/10% aqueous HCl (25 mL/25 mL). The aqueous phase was separated and washed with CH_2Cl_2 (25 mL × 4). It was subsequently basified with excess aqueous NH₃, and extracted with CH_2Cl_2 (25mL ×4). The combined organic layers were dried over Na₂SO₄, and concentrated in vacuo. Purification by flash chromatography using silica gel with EtOAc/hexane (v/v = 1/1) then EtOAc/CH₃OH (v/v = 10/1) as an eluent yielded the corresponding amide containing product 11.

Pale yellow solid, 56% yield. **MP**: 78.9-79.7 °C. **TLC** (Methanol: Ethyl acetate, 10:1 v/v): $R_f = 0.30$. ¹**H NMR (300 MHz, CDCl₃)** δ 10.13 (s, 1H), 8.87 (s, 1H), 8.12 (ddd, J = 27.4, 17.0, 13.1 Hz, 4H), 7.87 (s, 1H), 7.69 (s, 1H), 7.47 (dd, J = 9.2, 2.6 Hz, 1H), 5.79 (ddd, J = 17.0, 10.4, 6.6 Hz, 1H), 5.39 – 5.09 (m, 2H), 4.45 (s, 1H), 4.09 (s, 3H), 3.92 (d, J = 25.6 Hz, 1H), 3.61 (dd, J = 13.5, 10.4 Hz, 1H), 3.37 – 2.99 (m, 2H), 2.75 (s, 1H), 2.15 (dd, J = 20.5, 11.2 Hz, 3H), 1.91 (d, J = 13.3 Hz, 1H), 1.32-1.28 (d, J = 1.3 Hz, 2H), 0.89 (d, J = 6.2 Hz, 1H). ¹³C NMR (75 MHz, CDCl₃): δ 165.08, 157.83, 147.64, 141.49, 132.76, 132.12, 131.82, 121.66, 121.53, 121.27, 114.51, 111.54, 56.33, 55.98, 55.56, 41.09, 39.74, 28.05, 27.50, 26.33. **HRMS (ESI)** m/z Calcd for [C₂₇H₂₈N₄O₄, M+H]⁺: 473.2183; Found: 473.2179.

Optical Rotation: $[\alpha]_{D}^{23} = -55 (c1.0, CH_2Cl_2).$

White solid 70% yield. **MP**: 119.1-120.1 °C. **TLC** (Methanol: Ethyl acetate, 10:1 v/v): $R_f = 0.34$. ¹**H NMR** (500 MHz, CDCl₃): δ 8.72 (dd, J = 9.6, 4.6 Hz, 1H), 8.02 (t, J = 8.7 Hz, 1H), 7.78 (d, J = 7.2 Hz, 1H), 7.73 (t, J = 7.8 Hz, 1H), 7.60 (s, 1H), 7.45 (dd, J = 8.8, 4.6 Hz, 1H), 7.42 – 7.32 (m, 1H), 6.65 (t, J = 9.3 Hz, 2H), 5.74 (td, J = 17.3, 9.0 Hz, 1H), 5.11 – 4.87 (m, 2H), 3.99 (d, J = 8.0 Hz, 3H), 3.37 – 3.26 (m, 1H), 3.19 (d, J = 8.5 Hz, 2H), 3.00 (d, J = 10.2 Hz, 6H), 2.84 – 2.66 (m, 2H), 2.33 (s, 2H), 2.21 (s, 1H), 1.79 – 1.57 (m, 3H), 1.47 (d, J = 8.0 Hz, 1H), 1.12 – 0.92 (m, 1H). ¹³C NMR (125 MHz, CDCl₃): δ 167.37, 157.70, 152.60, 147.57, 144.78, 141.29, 131.70, 128.69, 121.53, 120.72, 114.61, 111.01, 102.05, 56.06, 55.64, 40.93, 40.09, 39.60, 27.94, 27.41, 26.19. **HRMS**

(ESI) m/z Calcd for $[C_{29}H_{35}N_4O_2, M+H]^+$: 471.2776; Found: 471.2755. Optical Rotation: $[\alpha]_D^{23} = -50.3 \ (c1.0, CH_2Cl_2).$

White solid. 68% Yield. **MP**: 145.5-146.4 °C. **TLC** (Methanol: Ethyl acetate, 10:1 v/v): $R_f = 0.32$. ¹**H NMR** (500 MHz, CDCl₃): δ 8.89 (d, J = 4.5 Hz, 1H), 8.53 (d, J = 8.5 Hz, 1H), 8.15 (d, J = 8.5 Hz, 1H), 7.73 (t, J = 7.9 Hz, 4H), 7.63 (t, J = 7.5 Hz, 1H), 7.54 (d, J = 4.6 Hz, 1H), 6.67 (d, J = 8.8 Hz, 2H), 5.73 (ddd, J = 17.4, 10.2, 7.6 Hz, 1H), 5.45 (s, 1H), 4.98 (dd, J = 19.7, 13.7 Hz, 2H), 3.31 (dd, J = 13.8, 10.2 Hz, 1H), 3.23 – 3.10 (m, 2H), 3.03 (d, J = 13.2 Hz, 6H), 2.86 – 2.63 (m, 2H), 2.33 (s, 1H), 1.76 – 1.55 (m, 3H), 1.40 (dd, J = 13.2, 10.1 Hz, 1H), 1.07 (dd, J = 13.7, 6.3 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃): δ 167.52, 152.60, 150.08, 148.62, 141.29, 130.43, 128.97, 128.71, 126.57, 123.46, 120.78, 114.60, 111.02, 56.01, 40.84, 40.11, 39.65, 27.85, 27.38, 25.92.

HRMS (ESI) m/z Calcd for $[C_{28}H_{32}N_4O, M+H]^+$: 441.2649; Found: 441.2637. **Optical Rotation**: $[\alpha]_D^{23} = -52.5$ (*c*1.0, CH₂Cl₂).

White solid. 50% yield. **MP**: 178.1-179.2 °C. **TLC** (Hexane: Ethyl acetate, 2:1 v/v): $R_f = 0.4$. ¹**H NMR** (300 MHz, CDCl₃): δ 8.43 – 8.18 (m, 1H), 8.03 – 7.80 (m, 2H), 7.78 – 7.45 (m, 6H), 6.64 (t, *J* = 10.6 Hz, 2H), 6.39 (d, *J* = 7.5 Hz, 1H), 6.16 (dd, *J* = 13.6, 6.8 Hz, 1H), 3.11 – 2.97 (m, 6H), 1.81 (dd, *J* = 13.2, 6.5 Hz, 3H). ¹³**C NMR** (75 MHz, CDCl₃): δ 152.37, 138.75, 133.90, 131.27, 128.62, 128.39, 128.19, 126.47, 125.74, 125.15, 123.66, 122.60, 110.95, 44.87, 40.01, 20.78. **HRMS (ESI)** m/z Calcd for [C₂₁H₂₂N₂O, M+Na]⁺: 341.1625; Found: 341.1635. **Optical Rotation**: [α]_D²³ = -10 (*c*1.0, CH₂Cl₂).

White solid. 63% Yield. **MP**: 71.4-72.5 °C. **TLC** (Methanol: Ethyl acetate, 10:1 v/v): $R_f = 0.38$. ¹**H NMR** (300 MHz, CDCl₃): δ 8.76 (d, J = 4.6 Hz, 1H), 8.04 (d, J = 9.2 Hz, 2H), 7.93 – 7.66 (m, 3H), 7.54 (d, J = 4.6 Hz, 1H), 7.40 (dd, J = 9.2, 2.7 Hz, 1H), 6.72 – 6.52 (m, 2H), 6.08 – 5.90 (m, 1H), 5.37 – 5.16 (m, 2H), 4.04 (s, 3H), 3.43 (d, J = 8.9 Hz, 1H), 3.14 (d, J = 15.7 Hz, 3H), 3.08 – 2.96 (m, 6H), 2.44 (s, 1H), 2.05 (d, J = 16.0 Hz, 2H), 1.84 – 1.60 (m, 3H), 1.54 – 1.41 (m, 1H), 1.19 (d, J = 8.2 Hz, 1H). ¹³C **NMR** (75MHz, CDCl₃): δ 167.37, 157.70, 152.60, 147.57, 144.78, 141.29, 131.70, 128.68, 121.53, 120.72, 114.61, 111.06, 102.05, 56.09, 55.68, 40.93, 40.09, 39.64, 27.94, 27.41, 26.18. **HRMS** (**ESI**) m/z Calcd for [C₂₉H₃₅N₄O₂, M+H]⁺: 471.2749; Found: 471.2771. **Optical Rotation**: [α]_D²³ = +53.5 (*c*1.0, CH₂Cl₂).

3. Representative procedure for allylation reaction.

To a 4 mL vial equipped with a stir bar was added the catalyst (0.03 mmol, 10 mol%). The vial was taken into glovebox, where anhydrous THF (1 mL), DIPEA (0.45 mmol, 1.5 equiv.) and allyltrichlorosilane (0.75 mmol, 2.5 equiv.) were added. The reaction mixture was taken outside the glovebox and the aldehyde (0.3 mmol) was added using a micropipette (open to air). The reaction mixture changed to bright red in color upon addition of aldehyde. The vial was then sealed and the reaction mixture was allowed to stir at ambient temperature for 24 h. The crude reaction mixture was quenched by pouring into a mixture of dichloromethane (5 mL) and saturated NaHCO₃ solution (5 mL). The resulting mixture was vigorously stirred for 1 h, and then extracted with dichloromethane (3 x 20 mL). The combined organic layer was washed with brine (1 x 20 mL), dried over anhydrous Na₂SO₄ and concentrated. Purification by silica gel chromatography yielded the recovered catalyst in quantitative yield and the desired product that was analyzed for purity by NMR and for enantioenrichment by chiral HPLC (Chiralcel OD-H, Chiralpark IC, AS-H or AD-H).

4. Preliminary kinetic studies of the allylation reaction.

Determination of the dependence of the allylation reaction on catalyst:

To a 25 mL vial equipped with a stir bar was added the catalyst (0.036 mmol). The vial was taken into glovebox, where anhydrous THF (3 mL), DIPEA (0.45 mmol) and allyl trichlorosilane (2.5 mmol) were added. The reaction mixture was taken outside the glovebox, and the aldehyde (0.3 mmol) in 3 mL THF was added using a micropipette. The vial was then sealed and the reaction mixture was allowed to stir at ambient temperature. Real time conversion was determined by NMR (500MHz).

Table S1. Effect of initial catalyst concentration [11] on the rate of allylation reaction.

[Catalyst 11] _{initial} (M)	kobs (mM/min)
0.006	0.07
0.0012	0.125
0.018	0.173
0.024	0.199

Figure S1. First order dependence on catalyst of allylation of aldehydes.

5. Analytical data of allylation and crotylation Reaction products.

(R)-1-(benzyloxy) pent-4-en-2-ol (2a, Entry 1, Table 2).

Colorless oil, 83% yield with catalyst **11**, 86% yield with catalyst **14**. **TLC** (Hexane: Ethyl acetate, 5:1 v/v): $R_f = 0.63$. ¹H NMR (300 MHz, CDCl₃): δ 7.44 – 7.32 (m, 5H), 5.87 (ddt, J = 17.2, 10.2, 7.1 Hz, 1H), 5.22 – 5.05 (m, 2H), 4.60 (s, 2H), 3.99 – 3.85 (m, 1H), 3.56 (dd, J = 9.5, 3.4 Hz, 1H), 3.42 (dd, J = 9.5, 7.4 Hz, 1H), 2.42

(d, J = 3.6 Hz, 1H), 2.36 - 2.24 (m, 2H). ¹³C NMR (75 MHz, CDCl₃): δ 137.89, 134.15, 128.39, 127.72, 127.66, 117.62, 73.82, 73.31, 69.65, 37.83.

Optical Rotation (from reaction with catalyst **11**): $[\alpha]^{25}{}_{D} = -6.5$ (0.24, CHCl₃). The absolute configuration of **2a** was assigned by comparing its specific rotation with that of the same compound reported in the literature.⁵ 96% ee. (HPLC condition: Chiralcel OD-H column, *n*-hexane/*i*-PrOH = 99:1, flow rate = 1.0 ml/min, wavelength = 254nm, t_R = 24.09 min for major isomer, t_R = 26.57 min for minor isomer).

(*R*)-1-(benzyloxy) hex-5-en-3-ol (2b, Entry 2, Table 2)

Colorless oil, 89% yield with catalyst 11, 82% yield with catalyst **14.** TLC (Hexane: Ethyl acetate, 5:1 v/v): $R_f = 0.7$. ¹H NMR (500) MHz, CDCl₃): δ 7.45 - 7.26 (m, 5H), 5.95 - 5.79 (m, 1H), 5.24 -5.08 (m, 2H), 4.55 (s, 2H), 3.97 - 3.84 (m, 1H), 3.83 - 3.64 (m, 2H), 2.93 (s, 1H), 2.28 (t, J = 6.5 Hz, 2H), 1.97 – 1.76 (m, 2H). ¹³C NMR (125 MHz, CDCl3):

δ 137.99, 134.89, 128.47, 127.76, 127.69, 117.58, 73.32, 70.32, 68.91, 41.94, 35.90.

Optical Rotation (from reaction with catalyst 11): $\left[\alpha\right]_{D}^{25} = -10.75$ (0.2, CHCl₃). The absolute configuration of 2b was assigned by comparing its specific rotation with that of the same compound reported in the literature⁶. 99% ee. (HPLC condition: Chiralcel OD-H column, *n*-hexane/*i*-PrOH = 99:1, flow rate = 0.5 ml/min, wavelength = 254 nm, t_{R} = 32.93 min for minor isomer, $t_{R} = 33.76$ min for major isomer).

Catalyst 14

(R)-3-hydroxyhex-5-en-1-yl benzoate (2c, Entry 3, Table 2).

Colorless oil, 90% yield with catalyst **11**, 88% yield with catalyst **14**. **TLC** (Hexane: Ethyl acetate, 5:1 v/v): $R_f = 0.56$. ¹H **NMR** (300 MHz, CHCl₃): δ 8.17 – 8.01 (m, 2H), 7.70 – 7.44 (m, 3H), 6.01 – 5.78 (m, 1H), 5.32 – 5.11 (m, 2H), 4.62 (ddd, J = 11.2, 8.5, 5.3 Hz, 1H), 4.47 (dt, J = 11.2, 5.7 Hz, 1H), 3.89 (s,

1H), 2.50 – 2.19 (m, 3H), 2.13 – 1.74 (m, 2H). ¹³C NMR (75 MHz, CDCl₃): δ 166.71, 134.27, 132.93, 129.51, 128.31, 118.31, 67.51, 62.01, 41.89, 35.81. **HRMS (ESI)** m/z Calcd for [C₁₃H₁₆O₃, M+H]⁺: 221.1123; Found:221.1218.

Optical Rotation (from reaction with catalyst **11**): $[\alpha]^{25}_{D} = -8.333$ (0.6, CHCl₃). The absolute configuration of **2c** was assigned by comparing its specific rotation with analogue. 98% ee. (HPLC condition: Chiralpark IC column, *n*-hexane/*i*-PrOH = 97:3, flow rate = 1.0 ml/min, wavelength = 254 nm, $t_{R} = 32.81$ min for major isomer, $t_{R} = 41.08$ min for minor isomer).

(*R*)-1-((*tert*-butyldimethylsilyl)oxy) pent-4-en-2-ol (2d, Entry 4, Table 2).

Colorless oil, 70% yield with catalyst **11**, 73% yield with catalyst **14**. **TLC** (Hexane: Ethyl acetate, 5:1 v/v): $R_f = 0.82$. ¹**H NMR** (500 MHz, CDCl₃): δ 5.90 – 5.77 (m, 1H), 5.14 – 5.04 (m, 2H), 3.89 (dt, *J* = 9.9, 4.9 Hz, 2H), 3.84 – 3.76 (m, 2H), 3.37 (d, *J* = 2.0 Hz, 1H), 2.33 – 2.14 (m, 2H), 0.90 (d, *J* = 6.8 Hz, 9H), 0.08

(d, J = 8.5 Hz, 6H). ¹³C NMR (125 MHz, CDCl₃): δ 135.01, 117.29, 71.25, 62.58, 41.95, 37.76, 25.85, 25.64, -3.60, -5.58.

Optical Rotation (from reaction with catalyst **11**): $[\alpha]^{25}{}_{D} = -6.76$ (0.3, CHCl₃). The absolute configuration of **2d** was assigned by comparing its specific rotation with that of the same compound reported in the literature.⁶ The enantiomeric ratio of the compound was determined after converting to the corresponding 3,5-dinitrobenzate. 95% ee. (HPLC condition: Chiralcel OD-H column, *n*-hexane/*i*-PrOH = 99.5:0.5, flow rate = 0.5 ml/min, wavelength = 254 nm, t_R = 32.81 min for major isomer, t_R = 41.08 min for minor isomer).

Catalyst 14

(*R*)-1-(1H-indol-3-yl) pent-4-en-2-ol (2e, Entry 5, Table 2)

Colorless oil, 75% yield with catalyst **11**. 80% yield with catalyst **14**. **TLC** (Hexane: Ethyl acetate, 5:1 v/v): $R_f = 0.33$. ¹**H NMR** (300 MHz, CDCl₃): δ 8.01 (s, 1H), 7.67 (d, J = 7.8 Hz, 1H), 7.48 – 7.35 (m, 1H), 7.33 – 7.12 (m, 2H), 7.07 – 6.98 (m, 1H), 5.88 (dddd, J = 11.1, 9.3, 7.8, 6.5 Hz, 1H), 5.32 – 5.12 (m, 2H), 3.80 (ddd, J = 12.1, 7.7, 4.6 Hz, 1H), 3.10 – 2.82 (m, 2H), 2.50 – 2.33 (m, 1H), 2.33 – 2.16 (m, 1H), 2.00 – 1.88 (m, 2H).

¹³C NMR (75 MHz, CDCl₃): δ 136.40, 134.79, 127.49, 121.98, 121.20, 119.21, 118.94, 118.21, 116.21, 111.10, 70.31, 42.05, 37.10, 21.35. **HRMS (ESI)** m/z Calcd for [C₁₄H₁₆NO, M]⁺: 215.1237; Found:215.1230.

Optical Rotation (from reaction with catalyst **11**): $[\alpha]_{D}^{25} = -3.083(0.6, CH_2Cl_2)$. The absolute configuration of **2e** was assigned by comparing its specific rotation with analogue. 96% ee. (HPLC condition: Chiralpark IC column, *n*-hexane/*i*-PrOH = 95:5 flow rate = 1 ml/min, wavelength = 254 nm, t_R = 33.56 min for major isomer, t_R = 37.40 min for minor isomer).

Catalyst 11

Catalyst 14

(S)-hex-5-en-3-ol (2f, Entry 6, Table 2).

Colorless oil, 80% yield with catalyst 11, 74% yield with catalyst 14. **TLC** (Hexane: Ethyl acetate, 5:1 v/v): $R_f = 0.82$. ¹H NMR (500 MHz, CDCl₃): δ 5.85 (dddd, J = 11.6, 9.4, 7.8, 6.5 Hz, 1H), 5.19 – 5.12 (m, 2H), 3.67 (s, 1H), 2.39 - 2.28 (m, 1H), 2.22 - 2.14 (m, 1H), 1.68 (s, 2H), 1.38 - 1.26 (m, 10H), 0.90 (t, J = 6.9 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃): δ 134.94,

118.03, 70.71, 41.94, 36.83, 31.82, 29.62, 29.27, 25.67, 22.65, 14.08.

Optical Rotation (from reaction with catalyst 11): $\left[\alpha\right]_{D}^{25} = -18 (0.5, CH_2Cl_2)$. The absolute configuration of 2f was assigned by comparing its specific rotation with that of the same compound reported in the literature⁶. The enantiomeric ratio of the compound was determined after converting to the corresponding 3,5-dinitrobenzate. 96% ee. (HPLC condition: Chiralpark AD-H column, *n*-hexane/*i*-PrOH = 99:1, flow rate = 0.5 ml/min, wavelength = 254 nm, t_{R} = 14.34 min for major isomer, t_{R} = 17.27 min for minor isomer).

(S)-tridec-1-en-4-ol (2g, Entry 7, Table 2).

Colorless oil, 78% yield with catalyst **11**. 71% yield with catalyst **14**. **TLC** (Hexane: Ethyl acetate, 5:1 v/v): $R_f = 0.86$. ¹H NMR (300 MHz, CDCl₃): δ 5.83 (dddd, J = 14.5, 9.5, 7.8, 6.6 Hz, 1H), 5.18 – 5.05 (m, 2H), 3.63 (s, 1H), 2.38 – 2.22 (m, 1H), 2.23 – 2.07 (m, 1H), 1.51 – 1.38 (m, 3H), 1.21 (d, J = 31.6 Hz, 14H), 0.88 (q, J = 6.5 Hz, 3H).

¹³C NMR (75 MHz, CDCl₃): δ 134.85, 117.95, 70.62, 41.84, 36.74, 31.81, 29.61, 29.57, 29.48, 29.23, 25.58, 22.59, 14.02.

Optical Rotation (from reaction with catalyst **11**): $[\alpha]^{25}_{D} = -20.3$ (0.6, CH₂Cl₂). The absolute configuration of **2h** was assigned by comparing its specific rotation with that of the same compound reported in the literature⁶. The enantiomeric ratio of the compound was determined after converting to the corresponding para-dimethylaminobenzate. 96% ee. (HPLC condition: Chiralpark AD-H column, *n*-hexane/*i*-PrOH = 99:1, flow rate = 0.5 ml/min, wavelength = 254 nm, t_{R =} 14.34 min for minor isomer, t_{R =} 17.27 min for major isomer).

Catalyst 14

(R)-1-phenylpent-4-en-2-ol (2h, Entry 8, Table 2)

Colorless oil, 76% yield with catalyst **11**. 71% yield with catalyst **14**. **TLC** (Hexane: Ethyl acetate, 5:1 v/v): $R_f = 0.67$. ¹H **NMR** (300 MHz, CDCl₃): δ 7.47 – 7.18 (m, 5H), 5.87 (dddd, J = 16.2, 9.5, 7.8, 6.6 Hz, 1H), 5.26 – 5.14 (m, 2H), 3.79 – 3.66 (m, 1H), 3.02 – 2.61 (m, 2H), 2.49 – 2.28 (m, 1H), 2.30 – 2.17 (m, 1H), 1.84 (ddd, J = 8.9, 7.2, 3.5 Hz, 2H). ¹³C **NMR** (75 MHz, CDCl₃):

δ 141.99, 134.54, 128.36, 128.33, 125.75, 118.22, 69.88, 41.98, 38.37, 31.97.

Optical Rotation (from reaction with catalyst **11**): $[\alpha]_{D}^{25} = -3.2$ (0.7, CH₂Cl₂). The absolute configuration of **2i** was assigned by comparing its specific rotation with that of the same compound reported in the literature⁶. 97% ee. (HPLC condition: Chiralcel OD-H column, *n*-hexane/*i*-PrOH = 95:5 flow rate = 0.5 ml/min, wavelength = 254 nm, t_R = 14.31 min for major isomer, t_R = 20.65 min for minor isomer).

(S)-tetradeca-1,13-dien-4-ol (2i, Entry 9, Table 2)

Colorless oil, 78% yield with catalyst **11**. 85% yield with catalyst **14**. **TLC** (Hexane: Ethyl acetate, 5:1 v/v): $R_f = 0.86$. ¹H NMR (500 MHz, CDCl₃): $\delta 6.15 - 5.59$ (m, 2H), 5.14 (dd, J = 10.2, 6.5 Hz, 2H), 5.05 – 4.82 (m, 2H), 3.63 (s, 1H), 2.37 – 2.23 (m, 1H), 2.19 – 2.08 (m, 1H), 2.03 (dd, J = 14.4, 6.9 Hz, 2H), 1.69 – 1.54 (m, 1H), 1.40 – 1.20 (m,

14H). ¹³C NMR (125 MHz, CDCl₃): δ 139.22, 134.93, 118.03, 114.11, 70.70, 41.94, 36.82, 33.80, 29.63, 29.54, 29.42, 29.11, 28.92, 25.65. **HRMS (ESI)** m/z Calcd for [C₁₄H₂₆O, M+H]⁺: 211.2043; Found:211.2010.

Optical Rotation (from reaction with catalyst **11**): $[\alpha]_{D}^{25} = -14.2$ (0.58, CH₂Cl₂). The absolute configuration of **2j** was assigned by comparing its specific rotation with analogue. The enantiomeric ratio of the compound was determined after converting to the corresponding 3,5-dinitrobenzate. 97% ee. (HPLC condition: Chiralpark AS-H column, *n*-hexane/*i*-PrOH = 99:1 flow rate = 0.4 ml/min, wavelength = 254 nm, t_R = 14.38 min for minor isomer, t_R = 15.16 min for major isomer).

Catalyst 14

(S, Z)- tetradeca- 1, 11-dien-4-ol (2j, Entry 10, Table 2)

Colorless oil, 83% yield with catalyst **11**. 80% yield with catalyst **14**. **TLC** (Hexane: Ethyl acetate, 5:1 v/v): $R_f = 0.86$. ¹H NMR (300 MHz, CDCl₃): δ 6.06 – 5.64 (m, 1H), 5.42 – 5.26 (m, 2H), 5.18 – 5.05 (m, 2H), 3.63 (s, 1H), 2.39 – 2.22 (m, 1H), 2.19 – 2.07 (m, 1H), 2.01 (dd, J = 13.5, 7.1 Hz, 3H), 1.32 (dd, J = 33.5,

49.2204

50.7796

77.61031

51.74753

27.4 Hz, 12H), 0.95 (t, J = 7.5 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 134.91, 134.59, 129.24, 118.08, 70.69, 41.94, 36.82, 33.80, 29.54, 29.42, 27.06, 25.65, 20.51, 14.39. **HRMS** (ESI) m/z Calcd for [C₁₄H₂₆O, M+H]⁺: 211.2021; Found:211.2036.

Optical Rotation (from reaction with catalyst **11**): $[\alpha]^{25}_{D} = -11.24$ (0.58, CH₂Cl₂). The absolute configuration of **2k** was assigned by comparing its specific rotation with analogue. The enantiomeric ratio of the compound was determined after converting to the corresponding 3,5-dinitrobenzate. 96% ee. (HPLC condition: Chiralpark AD-H column, *n*-hexane/*i*-PrOH = 99:1 flow rate = 0.5 ml/min, wavelength = 254 nm, t_R = 14.38 min for minor isomer, t_R = 15.16 min for major isomer).

1723.46582

0.3587 1670.54907

0.4856

1

2

13.875 MM

15.807 BB

(R)-1-phenylbut-3-en-1-ol (2k, Entry 11, Table 2)

1

2

15.945 MM

17.644 BB

Т

Pale yellow oil, 77% yield with catalyst **11**. 75% yield with catalyst **14**. **TLC** (Hexane: Ethyl acetate, 5:1 v/v): $R_f = 0.71$. ¹H NMR (500 MHz, CDCl₃): δ 7.38-7.27 (m, 5H), 5.82 (ddt, J = 17.2, 10.0, 7.2 Hz, 1H), 5.17 (dd, J = 17.2, 1.2 Hz, 1H), 5.15 (dd, J = 10.4, 1.2 Hz, 1H), 4.74 (dt, J = 6.4, 2.4 Hz, 1H), 2.58-2.6 (m, 2H), 2.06 (d, J = 2.8 Hz, 1H). ¹³C NMR (500 MHz, CDCl₃): δ 143.9, 134.5, 128.5,

127.6, 125.9, 118.5, 73.5, 44.1.

Optical Rotation (from reaction with catalyst **11**): $[\alpha]_{D}^{25} + 34.90$ (c 0.7, CHCl₃). The absolute configuration of **2l** was assigned by comparing its specific rotation with that of the same compound reported in the literature⁷. 90% ee. (HPLC condition: Chiralcel OD-H column, *n*-hexane/*i*-PrOH = 95:5 flow rate = 0.5 ml/min, wavelength = 254 nm, t_R = 16.55 min for major isomer, t_R = 18.61 min for minor isomer).

0.2625

131.20445

0.4545 2769.85913

4.5226 ?

95.4774 ?

(R)-1-(4-nitrophenyl) but-3-en-1-ol (2l, Entry 12, Table 2)

Yellow oil, 83% yield with catalyst **11**. 90% yield with catalyst **14**. **TLC** (Hexane: Ethyl acetate, 5:1 v/v): $R_f = 0.53$. ¹H NMR (300 MHz, CDCl₃): δ 8.23 (d, J = 8.7 Hz, 2H), 7.56 (d, J = 8.5 Hz, 2H), 6.00 – 5.72 (m, 1H), 5.31 – 5.12 (m, 2H), 5.02 – 4.83 (m, 1H), 2.71 – 2.34 (m, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 151.05, 133.13, 126.49, 123.54, 119.52, 72.10, 43.80.

Optical Rotation (from reaction with catalyst **11**): $[\alpha]_{D}^{25} + 56.25$ (c 0.7, CHCl₃). The absolute configuration of **2m** was assigned by comparing its specific rotation with analogue. 92% ee. (HPLC condition: Chiralcel OD-H column, *n*-hexane/*i*-PrOH = 99:1 flow rate = 0.5 ml/min, wavelength = 254 nm, $t_{R} = 92.22$ min for major isomer, $t_{R} = 96.58$ min for minor isomer).

Peak	RetTime	Type	Width	Area	Height	Area
Ŧ	[min]		[min]	[mAU*s]	[mAU]	8
1	93.767	MF T	2.1273	3.03612e4	237.87502	49.1905
2	98.465	FM T	2.3972	3.13606e4	218.03786	50.8095

ŧ	[min]			[min]	[mAU*s]	[mAU]	왕	
1	92.223	MM	Т	2.1002	7178.67383	67.87257	96.0052	
2	96.583	ΜМ	Т	1.4380	298.70679	3.46195	3.9948	

Catalyst 14

(*R*)-1-(4-bromophenyl) but-3-en-1-ol (2m, Entry 13, Table 2)

Yellow oil, 77% yield with catalyst **11**. 80% yield with catalyst **14**. **TLC** (Hexane: Ethyl acetate, 5:1 v/v): $R_f = 0.63$. ¹H NMR (500 MHz, CDCl₃): δ 7.46 (d, J = 8.3 Hz, 2H), 7.21 (d, J = 8.3 Hz, 2H), 5.85 – 5.65 (m, 1H), 5.22 – 5.09 (m, 2H), 4.76 – 4.61 (m, 1H), 2.57 – 2.36 (m, 2H), 2.30 (d, J = 2.7 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃): δ 142.85, 133.96, 131.48, 127.59, 121.26,

118.82, 72.62, 43.78.

Optical Rotation (from reaction with catalyst **11**): $[\alpha]_{D}^{25} = +50.25$ (c 0.5, CHCl₃). The absolute configuration of **2n** was assigned by comparing its specific rotation with that of the same compound reported in the literature⁷. 94% ee. (HPLC condition: Chiralpark AS-H column, *n*-hexane/*i*-PrOH = 99:1 flow rate = 0.4 ml/min, wavelength = 254 nm, t_R = 92.22 min for major isomer, t_R = 96.58 min for minor isomer).

Catalyst 14

(R)-1-(naphthalen-2-yl) but-3-en-1-ol (2n, Entry 14, Table 2)

White solid, 80% yield with catalyst **11**. 89% yield with catalyst **14**. **TLC** (Hexane: Ethyl acetate, 5:1 v/v): $R_f = 0.71$. ¹**H NMR** (300 MHz, CDCl₃): δ 7.87 (dd, J = 7.1, 5.6 Hz, 4H), 7.52 (dd, J = 6.1, 1.9 Hz, 3H), 5.88 (ddt, J = 17.1, 10.1, 7.1 Hz, 1H), 5.29 – 5.16 (m, 2H), 5.03 – 4.87 (m, 1H), 2.65 (dd, J

= 9.0, 6.1 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 141.21, 134.31, 133.21, 132.89, 128.14, 127.89, 127.61, 126.06, 125.74, 124.44, 123.95, 118.44, 73.33, 43.67.

Optical Rotation (from reaction with catalyst **11**): $[\alpha]_{D}^{25} = +11.33$ (c = 0.3, CHCl₃). The absolute configuration of **20** was assigned by comparing its specific rotation with that of the same compound reported in the literature⁷. 94% ee. (HPLC condition: Chiralcel OD-H column, *n*-hexane/*i*-PrOH = 95:5 flow rate = 0.5 ml/min, wavelength = 254 nm, t_R = 32.85 min for minor isomer, t_R = 35.98 min for major isomer).

(4R, 6S)-6, 10-dimethylundeca-1, 9-dien-4-ol (2o and *epi*-2o, Scheme 2)

Colorless oil, 88% yield with catalyst 11. 80% yield with catalyst 14. **TLC** (Hexane: Ethyl acetate, 5:1 v/v): $R_f = 0.86$. ¹H NMR (300 MHz, CDCl₃): δ 5.92 – 5.72 (m, 1H), 5.22 – 5.02 (m, 3H), 3.81 – 3.65 (m, 1H), 2.37 – 2.22 (m, 1H), 2.11 (dd, J = 14.7, 7.0 Hz,

1H), 2.02 - 1.86 (m, 2H), 1.68 (d, J = 0.8 Hz, 3H), 1.60 (s, 3H), 1.47 - 1.32 (m, 3H), 1.25 (s, 1H), 1.20 - 1.02 (m, 2H), 0.92 (d, J = 6.6 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 134.77, 131.17, 124.67, 118.10, 68.64, 44.23, 42.06, 36.63, 29.20, 25.63, 25.26, 20.14, 17.57. HRMS (ESI) m/z Calcd for [C₁₃H₂₄O, M+H]⁺:197.1237; Found:197.1232.

The absolute configuration of **2n** was assigned by comparing its specific rotation with analogue. The enantiomeric ratio of the compound was determined after converting to the corresponding para-dimethylaminobenzate. 96% de. (HPLC condition: Chiralpark AD-H column, *n*-hexane/*i*-PrOH = 99:1 flow rate = 1 ml/min, wavelength = 254 nm, t_{R} = 16.66 min for minor isomer, t_{R} = 19.043 min for major isomer).

Peak	RetTime	Type	Width	Area	Height	Area	
ŧ	[min]		[min]	[mAU*s]	[mAU]	8	
1	16.664	вv	0.3142	176.14960	8.62896	1.9520	
2	19.043	BB	0.3961	8848.03125	337.19958	98.0480	

Catalyst 14

Colorless oil, 78% yield with catalyst 11. 75% yield with catalyst 14. TLC (Hexane: Ethyl acetate, 5:1 v/v): $R_f = 0.67$. ¹H NMR (500 MHz, CDCl₃): δ 7.59 – 7.31 (m, 5H), 6.05 – 5.70 (m, 1H), 5.15 - 5.05 (m, 2H), 4.58 (s, 2H), 3.75 - 3.64 (m, 1H), 3.58 (dd, J = 9.8, 3.1 Hz, 2H), 3.45 (dd, J = 9.5, 7.6 Hz, 1H), 2.38 (dt, J = 13.5, 6.8 Hz, 1H), 1.07 (d, J = 6.9 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃): δ 140.08, 138.4,

128.63, 128.46, 128.06, 115.59, 73.2, 72.8, 40.83, 16.19.

The absolute configuration of 16a was assigned by comparing its specific rotation with that of the same compound reported in the literature⁸. 97% ee. (HPLC condition: Chiralcel OD-H column, *n*-hexane/*i*-PrOH = 99:1 flow rate = 1 ml/min, wavelength = 254 nm, t_{R-1} 17.51 min for minor isomer, $t_{R} = 25.082$ min for major isomer).

#	[min]		[min]	[mAU~S]	[mA0]	-
1	17.514	MM	0.3493	14.46722	6.90337e-1	1.3297
2	25.082	BB	0.5836	1073.56006	28.75398	98.6703

(2R, 3S)-1-(benzyloxy)-3-methylpent-4-en-2-ol (16b, Entry 2, Table 3)

Colorless oil, 78% yield with catalyst **11**. 75% yield with catalyst **14**. **TLC** (Hexane: Ethyl acetate, 5:1 v/v): $R_f = 0.73$. ¹H NMR (300 MHz,CDCl₃): δ 7.44 – 7.32 (m, 5H), 5.79 (ddd, J = 17.4, 10.3, 7.9 Hz, 1H), 5.09 (ddd, J = 9.4, 5.2, 1.3 Hz, 2H), 4.59 (s, 2H), 3.69 (dt, J = 10.7, 3.6 Hz, 1H), 3.61 (dd, J = 9.5, 3.1 Hz, 1H), 3.44

(dd, J = 9.5, 7.7 Hz, 1H), 2.51 (d, J = 3.8 Hz, 1H), 2.38 (dd, J = 14.5, 6.9 Hz, 1H), 1.13 (d, J = 6.8 Hz, 3H). ¹³**C NMR** (75 MHz, CDCl₃): δ 140.30, 137.95, 128.38, 127.69, 127.64, 115.01, 73.37, 73.29, 72.70, 41.03, 15.59.

The absolute configuration of **16b** was assigned by comparing its specific rotation with that of the same compound reported in the literature⁸. 96% ee. (HPLC condition: Chiralcel OD-H column, *n*-hexane/*i*-PrOH = 99:1 flow rate = 1 ml/min, wavelength = 254 nm, t_{R} = 15.99 min for minor isomer, t_{R} = 17.897 min for major isomer).

(3*S*, 4*R*)-1-(benzyloxy)-4-methylhex-5-en-3-ol (16c, Entry 3, Table 3)

Colorless oil, 74% yield with catalyst **11**. 70% yield with catalyst **14**. **TLC** (Hexane: Ethyl acetate, 5:1 v/v): $R_f = 0.70$. ¹H NMR (300 MHz, CDCl₃): δ 7.36 (dd, J = 5.8, 2.1 Hz, 5H), 5.97 – 5.72 (m, 1H), 5.21 – 5.04 (m, 2H), 4.57 (d, J = 2.3 Hz, 2H), 3.73 (dt, J = 12.6, 5.7 Hz, 2H), 2.74 (td, J = 6.1, 1.8 Hz, 1H), 2.31 – 2.18 (m,

1H), 2.06 (s, 1H), 1.78 (dt, J = 7.6, 3.8 Hz, 2H), 1.12 – 1.03 (m, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 140.39, 137.94, 128.35, 127.60, 115.42, 74.09, 73.25, 69.10, 43.94, 33.54, 15.75.

The absolute configuration of **16c** was assigned by comparing its specific rotation with that of the same compound reported in the literature⁶. 96% ee. (HPLC condition: Chiralpark AS-H column, *n*-hexane/*i*-PrOH = 99:1 flow rate = 0.5 ml/min, wavelength = 254 nm, t_{R} = 17.89 min for minor isomer, t_{R} = 21.42 min for major isomer).

(3S, 4S)-1-(benzyloxy)-4-methylhex-5-en-3-ol (16d, Entry 4, Table 3)

Colorless oil, 72% yield with catalyst **11**. 73% yield with catalyst **14**. **TLC** (Hexane: Ethyl acetate, 5:1 v/v): $R_f = 0.73$. ¹H NMR (500 MHz, CDCl₃): δ 7.39 – 7.27 (m, 5H), 5.86 – 5.71 (m, 1H), 5.12 – 4.99 (m, 2H), 4.53 (d, *J* = 6.3 Hz, 2H), 3.77 – 3.69 (m, 1H), 3.69 – 3.62 (m, 2H), 2.86 (d, *J* = 3.2 Hz, 1H), 2.26 (dd, *J* = 13.6,

6.8 Hz,1H), 1.87 – 1.76 (m, 1H), 1.75 – 1.65 (m, 1H), 1.05 (d, J = 6.8 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃): δ 141.00, 137.94, 128.46, 127.75, 127.70, 114.99, 74.52, 73.37, 69.48, 43.87, 33.53, 15.03.

The absolute configuration of **16d** was assigned by comparing its specific rotation with that of the same compound reported in the literature⁶. 95% ee. (HPLC condition: Chiralpark AS-H column, *n*-hexane/*i*-PrOH = 99:1 flow rate = 0.5 ml/min, wavelength = 254 nm, t_{R} = 17.89 min for minor isomer, t_{R} = 21.42 min for major isomer).

Peak	RetTime	Type	Width	Area	Height	Area	
Ŧ	[min]		[min]	[mAU*s]	[mAU]	*	
1	16.732	MM	0.4263	1976.11743	77.24966	2.6185	
2	18.878	BV	0.5839	7.34904e4	1985.20959	97.3815	

Catalyst 14

6. NMR Spectra of the Products

(R)-1-(benzyloxy) pent-4-en-2-ol (2a, Entry 1, Table 2)

(*R*)-1-(benzyloxy)hex-5-en-3-ol (2b, Entry 2, Table 2)

(*R*)-1-((tert-butyldimethylsilyl)oxy)pent-4-en-2-ol (2c, Entry 3, Table 2)

(*R*)-3-hydroxyhex-5-en-1-yl benzoate (2d, Entry 4, Table 2).

(*R*)-1-(1H-indol-3-yl) pent-4-en-2-ol (2e, Entry 5, Table 2)

(S)-hex-5-en-3-ol (2f, Entry 6, Table 2).

(*R*)-tridec-1-en-4-ol (2g, Entry 7, Table 2)

(S)-1-phenylhex-5-en-3-ol (2h, Entry 8, Table 2)

(R)-tetradeca-1,13-dien-4-ol (2i, Entry 9, Table 2)

(S, Z)- tetradeca- 1, 11-dien-4-ol (2j, Entry 10, Table 2)

(R)-1-(4-nitrophenyl) but-3-en-1-ol (2l, Entry 12, Table 2)

(*R*)-1-(4-bromophenyl)but-3-en-1-ol (2m, Entry 13, Table 2)

(R)-1-(naphthalen-2-yl) but-3-en-1-ol (2n, Entry 14, Table 2)

(4*R*, 6*S*)-6, 10-dimethylundeca-1, 9-dien-4-ol (2o, Scheme 2)

.

210 200 190 180 170 160 150 140 130 120 110

100 90 80

(ppm)

70 60

50

40

30 20 10

(2R, 3R)-1-(benzyloxy)-3-methylpent-4-en-2-ol (16a, Entry 1, Table 3)

÷

(3*S*, 4*R*)-1-(benzyloxy)-4-methylhex-5-en-3-ol (16c, Entry 3, Table 3)

1

ī

(3S, 4S)-1-(benzyloxy)-4-methylhex-5-en-3-ol (16d, Entry 4, Table 3)

N-((S)-(6-methoxyquinolin-4-yl)((1S,2S,4S,5R)-5-vinylquinuclidin-2-yl)methyl)-4-nitrobenzamide

 $\label{eq:linear} \begin{array}{l} \mbox{4-(dimethylamino)-$N-((S)-(6-methoxyquinolin-4-yl)((1S,2S,4S,5R)-5-vinylquinuclidin-2-yl)methyl)} benzamide \end{array}$

 $\label{eq:static} \begin{array}{l} \mbox{4-(dimethylamino)-$N-((S)$-quinolin-4-yl((1S,2S,4S,5R)$-5-vinylquinuclidin-2-yl)methyl)} benzamide \end{array}$

$(\it R) - 4 - (dimethylamino) - N - (1 - (naphthalen - 1 - yl)ethyl) benzamide$

 $\label{eq:linear} \begin{array}{l} \mbox{4-(dimethylamino)-$N-((R)-(6-methoxyquinolin-4-yl)((1S,2R,4S,5R)-5-vinylquinuclidin-2-yl)methyl)} benzamide \end{array}$

7. References

- 1. F.-S. Maria, P. Nils, D. S. A. Krystle, D. Christine, F. Annika, G. Morten and L. Kristina, J. Org. Chem. 2009, 74, 2755.
- 2. X. Li, D. Lantrip and P. L. Fuchs, J. Am. Chem. Soc. 2003, 125, 14262.
- 3. K. Iseki, Y. Kuroki, M. Takahashi, S. Kishimoto and Y. Kobayashi, *Tetrahedron* 1997, 53, 3513.
- 4. B. Vakulya, S. Varga, A. Csámpai and T. Soós, Org. Lett. 2005, 7, 1967.
- 5. (a) H. Lachance, X. Lu, M. Gravel and D. G. Hall, J. Am. Chem. Soc. 2003, **125**, 10160. (b) K. Kubota and J. L. Leighton, Angew. Chem. Int. Ed. 2003, **42**, 946.
- 6. V. Rauniyar, H. Zhai and D. G. Hall, J. Am. Chem. Soc. 2008, 130, 8481.
- 7. J. F. Traverse, Y. Zhao, A. H. Hoveyda and M. L. Snapper, Org. Lett. 2005, 7, 3151.
- 8. B. M. Hackman, P. G. Lombardi and J. L. Leighton, Org. Lett. 2004, 6, 4375.