SUPPORTING INFORMATION

Enantioselective Synthesis of Hindered Cyclic Dialkyl Ethers via Catalytic Oxa-Michael/Michael Desymmetrization

Michael T. Corbett and Jeffrey S. Johnson

Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290

jsj@unc.edu

Table of Contents	Page
General Information (Methods and Materials)	S2
Synthesis of (<i>E</i>)-3-Mesitylacrylaldehyde (2g)	S3
General Procedure A for the Preparation of rac-4	S4
General Procedure B for the Preparation of 4	S4-S9
Gram Scale Synthesis of 4d	S9-S10
General Procedure C for the Reduction of Aldehydes 4 to Alcohols 5	S10-S13
General Procedure D for the Conversion of 4h and 4j to S1a and S1b	S14-S15
Synthesis of Benzoate 6 from 5a	S15-S16
Synthesis of Epoxide 7 from 4d	S16
Synthesis of Diester 8 from 4n	S16-S17
Synthesis of bis(Tetrahydrofuran) 9 from 4m	S17
Synthesis of Tricycle 10 from 4d	S18
Deuterium Labeling Experiment and Structure Determination of 10	S18-S19
References	S20
¹ H, ¹³ C, and NOESY NMR Spectra	S21-S56
HPLC/SFC Traces	S57-S70

General Information

Methods: Infrared (IR) spectra were obtained using a Jasco 260 Plus Fourier transform infrared spectrometer. Proton and carbon magnetic resonance spectra (¹H NMR, ¹³C NMR, and ¹⁹F NMR) were recorded on a Bruker model DRX 400 or 600 (¹H NMR at 400 MHz or 600 MHz, ¹³C NMR at 101 MHz or 151 MHz, and ¹⁹F NMR at 565 MHz) spectrometer with solvent resonance as the internal standard (¹H NMR: CDCl₃ at 7.26 ppm and ¹³C NMR: CDCl₃ at 77.0 ppm). ¹H NMR data are reported as follows: chemical shift, multiplicity (s = singlet, bs = broad singlet, d = doublet, dd = doublet of doublet, t = triplet, q = quartet, sept = septuplet, oct = octuplet, m = multiplet), coupling constants (Hz), and integration. HPLC analysis was performed on an Agilent Technologies 1200 System equipped with Chiralpak IA, IB, and IC columns (ϕ 4.6 mm x 250 mm, constant flow at 1.00 mL/min). Supercritical fluid chromatography (SFC) was performed on a Berger SFC system equipped with Chiralpak AD, AS, and OD (φ 4.6 mm x 250 mm). Samples were eluted with SFC grade CO₂ at the indicated percentage of MeOH with an oven temperature of 40 °C. Optical rotations were measured using a 2 mL cell with a 1 dm path length on a Jasco DIP 1000 digital polarimeter. Mass spectra were obtained using a Thermo Scientific LTQ FT Ultra instrument with electrospray ionization. Analytical thin layer chromatography (TLC) was performed on Sorbtech 0.25 mm silica gel 60 plates. Visualization was accomplished with UV light and/or aqueous ceric ammonium molybdate solution followed by heating. Purification of the reaction products was carried out by using Siliaflash-P60 silica gel (40-63 µm) purchased from Silicycle. All reactions were carried out with magnetic stirring. Yield refers to isolated yield of analytically pure material unless otherwise noted. Yields and diastereomeric ratios (dr) are reported for a specific experiment and as a result may differ slightly from those found in the tables, which are averages of at least two experiments.

Materials: *p*-Quinols **1**,^[1,2] α , β -unsaturated aldehydes **2**,^[3] and Jørgensen–Hayashi catalysts **3**^[4] were prepared according to known literature procedures. Triethylamine (Et₃N) was freshly distilled from calcium hydride prior to use. Dichloromethane (CH₂Cl₂) and tetrahydrofuran (THF) were dried by passage through a column of neutral alumina under nitrogen prior to use. All other reagents were purchased from commercial sources and were used as received unless otherwise noted.

Synthesis of (E)-3-Mesitylacrylaldehyde (2g)

A flame-dried 100-mL round-bottom flask equipped with a magnetic stir bar was charged with NaH (60%) (0.5 g, 12.5 mmol, 1.25 equiv) suspended in THF (25 mL). The suspension was cooled to 0 °C. Triethyl phosphonoacetate (2.5 mL, 12.5 mmol, 1.25 equiv) was added dropwise. The homogenous solution was allowed to stir at 0 °C for 20 min before mesitaldehyde (**A**) (1.5 mL, 10.0 mmol, 1.00 equiv) was added dropwise. The ice bath was removed and the resulting solution was allowed to stir for 3 h as it slowly warmed to room temperature. The reaction was cooled to 0 °C and quenched with sat. aq. NH₄Cl (25 mL). The reaction was diluted with Et₂O (100 mL) and washed with H₂O (40 mL) and brine (40 mL). The organic layer was dried over MgSO₄, filtered, and concentrated *in vacuo* to afford analytically pure unsaturated ester **B**, which was used without further purification.

A flame-dried 250-mL round-bottom flask equipped with a magnetic stir bar was charged with unsaturated ester **B** in CH₂Cl₂ (100 mL). The solution was cooled to 0 °C. DIBAL (4.0 mL, 22.0 mmol, 2.20 equiv) was added dropwise. The reaction was allowed to stir at 0 °C for 2 h. The reaction was quenched by sequential addition of acetone (25 mL) and 1 N HCl (100 mL). The layers were separated and the aqueous layer was extracted with CH₂Cl₂ (2 x 75 mL). The combined organic extracts were dried over Na₂SO₄, filtered, and concentrated *in vacuo* to afford analytically pure allyl alcohol **C**, which was used without further purification.

A flame-dried 250-mL round-bottom flask equipped with a magnetic stir bar was charged with allyl alcohol **C** in CH₂Cl₂ (100 mL). Activated MnO₂ (4.4 g, 50.0 mmol, 5.00 equiv) was added and the reaction was allowed to stir at room temperature for 16 h. The reaction was filtered through a pad of Celite[®] rinsing with CH₂Cl₂ (3 x 50 mL). The filtrate was concentrated *in vacuo*. The crude residue was purified by column chromatography on silica gel to afford (*E*)-3-mesitylacrylaldehyde (**2g**) (1.27 g, 73% yield) as a white solid (mp 72-73 °C). Analytical data for **2g**: ¹**H NMR** (600 MHz, CDCl₃): δ 9.70 (d, *J* = 7.7 Hz, 1H), 7.68 (d, *J* = 16.3 Hz, 1H), 6.94 (s, 2H), 6.41 (dd, *J* = 16.3, 7.7 Hz, 1H), 2.36 (s, 6H), 2.31 (s, 3H); ¹³**C NMR** (151 MHz, CDCl₃): δ 194.32,[†] 194.28,[‡] 151.5, 139.5, 137.1, 133.5, 130.0, 129.5, 21.2, 21.1 ([†]Rotomer A, [‡]Rotomer B); **IR** (thin film): 1662, 1626, 1136, 1020, 984, 845 cm⁻¹; **TLC** (20% ethyl acetate:hexanes): R_f = 0.49; **HRMS** (ESI): Calcd. for C₁₂H₁₅O ([M+H]⁺): 175.1124, Found: 175.1117.

General Procedure A for the Preparation of rac-4

A 20-mL scintillation vial equipped with a magnetic stir bar was charged with α , β -unsaturated aldehyde **2** (1.50 mmol, 1.5 equiv), rac-**3b** (70.5 mg, 0.20 mmol, 0.2 equiv), and 4-nitrobenzoic acid (33.4 mg, 0.20 mmol, 0.2 equiv) in toluene (4.0 mL, 0.25 M). The solution was stirred for 5 min at room temperature until homogeneous. *p*-Quinol **1** (1.00 mmol, 1.0 equiv) was added, the vial was capped, and the reaction was allowed to stir for 16 h at room temperature. The reaction was diluted with EtOAc (30 mL) and sequentially washed with sat. aq. NaHCO₃ (1 x 15 mL), H₂O (1 x 15 mL), and brine (1 x 15 mL). The organic layer was dried over Na₂SO₄, filtered, and concentrated *in vacuo*. The diastereomeric ratio was determined by ¹H NMR analysis of the crude residue. The crude residue was purified by column chromatography on silica gel to afford rac-**4**.

General Procedure B for the Preparation of 4

Note: No precautions were taken to preclude water or air from the reactions. Reactions were performed in non-flame-dried glassware using reagent grade solvents as received under ambient atmosphere. Reactions can be performed employing CH_2CI_2 or $CHCI_3$ in place of toluene with comparable levels of selectivity, but in slightly reduced yields.

A 20-mL scintillation vial equipped with a magnetic stir bar was charged with α , β -unsaturated aldehyde **2** (1.50 mmol, 1.5 equiv), **3b** (70.5 mg, 0.20 mmol, 0.2 equiv), and 4-nitrobenzoic acid (33.4 mg, 0.20 mmol, 0.2 equiv) in toluene (4.0 mL, 0.25 M). The solution was stirred for 5 min at room temperature until homogeneous. *p*-Quinol **1** (1.00 mmol, 1.0 equiv) was added, the vial was capped, and the reaction was allowed to stir for 16 h at room temperature. The reaction was diluted with EtOAc (30 mL) and sequentially washed with sat. aq. NaHCO₃ (1 x 15 mL), H₂O (1 x 15 mL), and brine (1 x 15 mL). The organic layer was dried over Na₂SO₄, filtered, and concentrated *in vacuo*. The diastereomeric ratio was determined by ¹H NMR analysis of the crude residue. The crude residue was purified by column chromatography on silica gel to afford **4**. The enantiomeric ratio was determined following reduction to **5** (with subsequent benzoate formation for **4h** and **4j**) or olefination to **8**.

(2S,3R,3aR,7aR)-7a-Methyl-5-oxo-2-phenyl-2,3,3a,4,5,7a-

hexahydrobenzofuran-3-carbaldehyde (4a): The title compound was prepared according to General Procedure B using *p*-quinol **1a** (124 mg, 1.00 mmol) and α , β -unsaturated aldehyde **2a** (198 mg, 1.50 mmol) affording a 15:1 (**4a**: Σ others) mixture of diastereomers. Purification provided **4a** (207 mg, 81% yield, >20:1 dr) as a pale yellow oil. The enantiomeric ratio was determined following reduction to **5a**.

Analytical data for **4a**: ¹**H NMR** (600 MHz, CDCl₃): δ 8.99 (d, J = 1.7 Hz, 1H), 7.36-7.33 (m, 2H), 7.29-7.27 (m, 3H), 6.71 (dd, J = 10.3, 1.5 Hz, 1H), 6.08 (d, J = 10.3 Hz, 1H), 5.23 (d, J = 9.7 Hz, 1H), 3.14 (dt, J = 9.5, 1.7 Hz, 1H), 3.06-3.03 (m, 1H), 2.70 (dd, J = 17.4, 5.4 Hz, 1H), 2.55 (d, J = 17.4 Hz, 1H), 1.67 (s, 3H); ¹³**C NMR** (151 MHz, CDCl₃): δ 198.9, 196.4, 152.0, 136.9, 129.8, 128.8, 128.4, 126.3, 79.6, 79.1, 60.4, 43.0, 37.3, 23.2; **IR** (thin film): 2973, 1718, 1679, 1494, 1455, 1122, 1045, 703 cm⁻¹; **TLC** (40% ethyl acetate:hexanes): R_f = 0.50; **HRMS** (ESI): Calcd. for C₁₆H₁₇O₃ ([M+H]⁺): 257.1178, Found: 257.1173; **[α]**_D -116 (c = 1.9, CHCl₃).

(2*S*,3*R*,3*aR*,7*aR*)-2-(4-Methoxyphenyl)-7a-methyl-5-oxo-2,3,3a,4,5,7ahexahydrobenzofuran-3-carbaldehyde (4b): The title compound was prepared according to General Procedure B using *p*-quinol **1a** (124 mg, 1.00 mmol) and α , β unsaturated aldehyde **2b** (243 mg, 1.50 mmol) affording a 9:1 (**4b**: Σ others) mixture of diastereomers. Purification provided **4b** (223 mg, 78% yield, >20:1 dr) as a pale yellow oil. The enantiomeric ratio was determined following reduction to **5b**. Analytical data for **4b**: ¹**H NMR** (400 MHz, CDCl₃): δ 9.02 (d, *J* = 1.8 Hz, 1H), 7.18

(d, J = 8.7 Hz, 2H), 6.87 (d, J = 8.7 Hz, 2H), 6.72 (dd, J = 10.3, 1.8 Hz, 1H), 6.08 (d, J = 10.3 Hz, 1H), 5.19 (d, J = 9.3 Hz, 1H), 3.78 (s, 3H), 3.14-3.04 (m, 2H), 2.70 (dd, J = 17.4, 5.2 Hz, 1H), 2.55 (d, J = 17.4 Hz, 1H), 1.66 (s, 3H); ¹³**C** NMR (101 MHz, CDCl₃): δ 199.1, 196.5, 159.5, 152.1, 129.8, 128.9, 127.7, 114.2, 79.3, 78.9, 60.4, 55.2, 42.9, 37.3, 23.2; **IR** (thin film): 2930, 1717, 1682, 1612, 1513, 1249, 1032, 836 cm⁻¹; **TLC** (40% ethyl acetate:hexanes): $R_f = 0.36$; **HRMS** (ESI): Calcd. for $C_{17}H_{19}O_4$ ([M+H]⁺): 287.1284, Found: 287.1279; **[\alpha]**_D -87 (c = 1.6, CHCl₃).

(2S,3R,3aR,7aR)-7a-Methyl-2-(4-nitrophenyl)-5-oxo-2,3,3a,4,5,7ahexahydrobenzofuran-3-carbaldehyde (4c): The title compound was prepared according to General Procedure B using *p*-quinol 1a (124 mg, 1.00 mmol) and α,βunsaturated aldehyde 2c (266 mg, 1.50 mmol) affording a 17:1 (4c:Σothers) mixture of diastereomers. Purification provided 4c (214 mg, 77% yield, >20:1 dr) as a pale yellow oil. The enantiomeric ratio was determined following reduction to 5c. Analytical data for 4c: ¹H NMR (400 MHz, CDCl₃): δ 9.02 (d, *J* = 2.5 Hz, 1H), 8.22 (d, *J* = 8.8 Hz, 2H), 7.48 (d, *J* = 8.6 Hz, 2H), 6.72 (dd, *J* = 10.3, 2.0 Hz, 1H), 6.13

(d, *J* = 10.3, 1.0 Hz, 1H), 5.32 (d, *J* = 9.6 Hz, 1H), 3.25 (dt, *J* = 9.5, 2.5 Hz, 1H), 3.08-3.03 (m, 1H), 2.73 (dd, *J* = 17.4, 5.4 Hz, 1H), 2.56 (ddd, *J* = 17.4, 2.1, 1.1 Hz, 1H), 1.71 (s, 3H); ¹³**C NMR** (101 MHz, CDCl₃): δ 198.0, 195.9, 151.2, 147.8, 144.2, 130.3, 127.2, 124.1, 80.3, 78.3, 60.5, 43.4, 37.2, 23.3; **IR** (thin film): 2089, 1716, 1681, 1645, 1520, 1457, 1348, 529 cm⁻¹; **TLC** (40% ethyl acetate:hexanes): $R_f = 0.24$; **HRMS** (ESI): Calcd. for $C_{16}H_{16}NO_5$ ([M+H]⁺): 302.1029, Found: 302.1019; **[α]_D** -115 (*c* = 0.5, CHCl₃).

(2S,3R,3aR,7aR)-2-(2-Chlorophenyl)-7a-methyl-5-oxo-2,3,3a,4,5,7a-

hexahydrobenzofuran-3-carbaldehyde (4d): The title compound was prepared according to General Procedure B using *p*-quinol **1a** (124 mg, 1.00 mmol) and α , β -unsaturated aldehyde **2d** (250 mg, 1.50 mmol) affording a 17:1 (**4d**: Σ others) mixture of diastereomers. Purification provided **4d** (273 mg, 94% yield, >20:1 dr) as an off-white solid (mp 150-153 °C). The enantiomeric ratio was determined following reduction to **5d**. Analytical data for **4d**: ¹**H NMR** (600 MHz, CDCl₃): δ 9.09 (d, *J* = 2.0

Hz, 1H), 7.52 (d, J = 7.7 Hz, 1H), 7.34 (d, J = 7.9 Hz, 1H), 7.28 (t, J = 7.6 Hz, 1H), 7.25-7.22 (m, 1H), 6.71 (dd, J = 10.3, 1.9 Hz, 1H), 6.12 (d, J = 10.3 Hz, 1H), 5.47 (d, J = 9.5 Hz, 1H), 3.35 (dt, J = 9.5, 2.0 Hz, 1H), 3.01-2.98 (m, 1H), 2.69 (dd, J = 17.5, 5.5 Hz, 1H), 2.56 (dd, J = 17.5, 1.0 Hz, 1H), 1.68 (s, 3H); ¹³**C** NMR (151 MHz, CDCl₃): δ 198.6,[†] 198.5,[‡] 196.4, 151.7, 135.0, 131.3, 130.4, 129.4, 129.3, 127.34, 127.29, 79.5, 75.9, 58.6, 43.0, 37.3, 23.1 ([†]Rotomer A, [‡]Rotomer B); **IR** (thin film): 1717, 1682, 1653, 1474, 1374, 1120, 1049 cm⁻¹; **TLC** (40% ethyl acetate:hexanes): R_f = 0.51; **HRMS** (ESI): Calcd. for C₁₆H₁₆ClO₃ ([M+H]⁺): 291.0789, Found: 291.0785; **[** α]_D -205 (c = 1.4, CHCl₃).

(2S,3R,3aR,7aR)-2-(2-Methoxyphenyl)-7a-methyl-5-oxo-2,3,3a,4,5,7ahexahydrobenzofuran-3-carbaldehyde (4e): The title compound was prepared according to General Procedure B using *p*-quinol **1a** (124 mg, 1.00 mmol) and α , β unsaturated aldehyde **2e** (243 mg, 1.50 mmol) affording a 14:1 (**4e**: Σ others) mixture of diastereomers. The enantiomeric ratio was determined following reduction to **5e**. Purification provided **4e** (247 mg, 86% yield, >20:1 dr) as a white solid (mp 101-103

^oC). Analytical data for **4e**: ¹**H NMR** (400 MHz, CDCl₃): δ 9.00 (d, *J* = 2.5 Hz, 1H), 7.42 (d, *J* = 7.0 Hz, 1H), 7.23 (dt, *J* = 8.0, 1.6 Hz, 1H), 6.94 (t, *J* = 7.5 Hz, 1H), 6.80 (d, *J* = 10.3, 1.9 Hz, 1H), 6.68 (dd, *J* = 10.3, 1.9 Hz, 1H), 6.06 (dd, *J* = 10.3, 0.7 Hz, 1H), 5.36 (d, *J* = 9.3 Hz, 1H), 3.77 (s, 3H), 3.35 (dt, *J* = 9.2, 2.5 Hz, 1H), 2.89-2.84 (m, 1H), 2.65 (dd, *J* = 17.4, 5.4 Hz, 1H), 2.52 (d, *J* = 17.4 Hz, 1H), 1.63 (s, 3H); ¹³**C NMR** (101 MHz, CDCl₃): δ 199.5, 196.6, 155.1, 152.2, 129.9, 129.0, 126.1, 125.5, 120.7, 109.8, 79.1, 74.5, 58.6, 55.0, 43.1, 37.2, 23.1; **IR** (thin film): 2839, 1717, 1684, 1490, 1296, 1116, 1046, 757 cm⁻¹; **TLC** (40% ethyl acetate:hexanes): R_f = 0.46; **HRMS** (ESI): Calcd. for C₁₇H₁₉O₄ ([M+H]⁺): 287.1284, Found: 287.1279; **[α]**_D -182 (*c* = 1.8, CHCl₃).

(2S,3R,3aR,7aR)-7a-Methyl-5-oxo-2-(2-(trifluoromethyl)phenyl)-2,3,3a,4,5,7ahexahydrobenzofuran-3-carbaldehyde (4f): The title compound was prepared according to General Procedure B using *p*-quinol 1a (124 mg, 1.00 mmol) and α , β unsaturated aldehyde 2f (300 mg, 1.50 mmol) affording a >20:1 (4f: Σ others) mixture of diastereomers. Purification provided 4f (295 mg, 91% yield, >20:1 dr) as a white solid (mp 99-100 °C). The enantiomeric ratio was determined following reduction to

5f. Analytical data for **4f**: ¹**H NMR** (600 MHz, CDCl₃): δ 8.95 (d, J = 1.1 Hz, 1H), 7.65 (d, J = 7.9 Hz, 1H), 7.61 (d, J = 7.9 Hz, 1H), 7.57 (t, J = 7.7 Hz, 1H), 7.41 (t, J = 7.6 Hz, 1H), 6.73 (dd, J = 10.3, 2.0 Hz, 1H), 6.12 (d, J = 10.3 Hz, 1H), 5.52 (d, J = 9.8 Hz, 1H), 3.21 (t, J = 9.5 Hz, 1H), 3.10-3.07 (m, 1H), 2.70 (dd, J = 17.5, 5.4 Hz, 1H), 2.53 (dt, J = 17.5, 1.1 Hz, 1H), 1.68 (s, 3H); ¹³**C NMR** (151 MHz, CDCl₃): δ 198.4,[†] 198.3,[‡] 196.3, 151.5, 135.8, 132.6, 130.4, 128.5, 128.0, 127.1 (q, $J_{C-F} = 30.2$ Hz), 125.8 (q, $J_{C-F} = 6.0$ Hz), 124.0 (q, $J_{C-F} = 273.3$ Hz), 79.6, 74.61,[†] 74.60,[‡] 60.5, 42.6, 37.3, 23.1 ([†]Rotomer A, [‡]Rotomer B); ¹⁹**F NMR** (565 MHz, CDCl₃): δ -59.3; **IR** (thin film): 1717, 1683, 1653, 1314, 1165, 1121, 770 cm⁻¹; **TLC** (40% ethyl acetate:hexanes): $R_f = 0.49$; **HRMS** (ESI): Calcd. for $C_{17}H_{16}F_3O_3$ ([M+H]⁺): 325.1052, Found: 325.1048; **[α]_D**-127 (c = 0.8, CHCl₃).

(2S,3R,3aR,7aR)-2-Mesityl-7a-methyl-5-oxo-2,3,3a,4,5,7a-

hexahydrobenzofuran-3-carbaldehyde (4g): The title compound was prepared according to General Procedure B using *p*-quinol **1a** (124 mg, 1.00 mmol) and α , β -unsaturated aldehyde **2g** (261 mg, 1.50 mmol) affording a 4:1 (**4g**: Σ others) mixture of diastereomers. Purification provided **4g** (215 mg, 72% yield, >20:1 dr) as a pale yellow oil. The enantiomeric ratio was determined following reduction to **5g**. Analytical data for **4g**: ¹**H NMR** (600 MHz, CDCl₃): δ 9.04 (d, *J* = 1.3 Hz, 1H), 6.79

(bs, 2H), 6.68 (dd, J = 10.3, 2.0 Hz, 1H), 6.11 (dd, J = 10.3, 0.8 Hz, 1H), 5.47 (d, J = 10.5 Hz, 1H), 3.18-3.15 (m, 1H), 3.04 (dt, J = 8.9, 1.3 Hz, 1H), 2.73 (dd, J = 17.3, 5.3 Hz, 1H), 2.60 (dd, J = 17.3, 0.9 Hz, 1H), 2.27 (bs, 6H), 2.22 (s, 3H), 1.63 (s, 3H); ¹³**C** NMR (151 MHz, CDCl₃): δ 199.0, 196.8, 152.4, 137.7, 136.2,[†] 135.3,[‡] 131.6,[†] 130.5, 129.4,[‡] 128.7, 79.2, 76.3, 59.02,[†] 58.98, 43.2,[†] 43.1,[‡] 37.8, 22.7, 22.1,[†] 20.8,[‡] 20.71,[†] 20.68[‡] ([†]Rotomer A, [‡]Rotomer B); **IR** (thin film): 2929, 1732, 1684, 1653, 1558, 1507, 1220, 1124 cm⁻¹; **TLC** (40% ethyl acetate:hexanes): R_f = 0.56; **HRMS** (ESI): Calcd. for C₁₉H₂₃O₃ ([M+H]⁺): 299.1648, Found: 299.1643; **[α]_D** -81 (*c* = 1.5, CHCl₃).

(2*S*,3*R*,3a*R*,7a*R*)-7a-Methyl-5-oxo-2-(1-tosyl-1*H*-indol-3-yl)-2,3,3a,4,5,7ahexahydrobenzofuran-3-carbaldehyde (4h): The title compound was prepared according to General Procedure B using *p*-quinol 1a (124 mg, 1.00 mmol) and α , β unsaturated aldehyde 2h (488 mg, 1.50 mmol) affording a 5:1 (4h: Σ others) mixture of diastereomers. Purification provided 4h (328 mg, 73% yield, >20:1 dr) as a viscous pale yellow oil. The enantiomeric ratio was determined following reduction and benzoate formation to S1a. Analytical data for 4h: ¹H NMR (400 MHz, CDCl₃):

δ 9.00 (d, J = 2.0 Hz, 1H), 7.94 (d, J = 8.3 Hz, 1H), 7.72 (d, J = 8.4 Hz, 2H), 7.61 (s, 1H), 7.39 (d, J = 7.8 Hz, 1H), 7.31 (d, J = 7.4 Hz, 1H), 7.22-7.19 (m, 3H), 6.70 (dd, J = 10.3, 1.7 Hz, 1H), 6.11 (d, J = 10.3 Hz, 1H), 5.40 (d, J = 8.6 Hz, 1H), 3.18-3.08 (m, 2H), 2.73 (dd, J = 17.9, 5.1 Hz, 1H), 2.57 (d, J = 17.1 Hz, 1H), 2.31 (s, 3H), 1.69 (s, 3H); ¹³**C** NMR (101 MHz, CDCl₃): δ 198.3, 196.2, 151.5, 145.2, 135.3, 134.8, 130.4, 129.9, 127.7, 126.7, 125.3, 124.2, 123.6, 119.7, 118.7, 113.8, 79.6, 77.2, 73.1, 59.6, 43.3, 37.3, 23.2, 21.5; **IR** (thin film): 2917, 1717, 1698, 1684, 1507, 1457, 1373, 1174 cm⁻¹; **TLC** (40% ethyl acetate:hexanes): R_f = 0.29; **HRMS** (ESI): Calcd. for C₅₀H₄₇N₂O₁₀S₂ ([2M+H]⁺): 899.2673, Found: 899.2696; **[α]**_D -98 (c = 1.2, CHCl₃).

(2S,3R,3aR,7aR)-7a-Methyl-5-oxo-2-(thiophen-2-yl)-2,3,3a,4,5,7ahexahydrobenzofuran-3-carbaldehyde (4i): The title compound was prepared according to General Procedure B using *p*-quinol 1a (124 mg, 1.00 mmol) and α , β unsaturated aldehyde 2i (207 mg, 1.50 mmol) affording a 7:1 (4i: Σ others) mixture of diastereomers. Purification provided 4i (171 mg, 65% yield, >20:1 dr) as a pale yellow oil. The enantiomeric ratio was determined following reduction to 5i. Analytical

data for **4i**: ¹**H NMR** (400 MHz, CDCl₃): δ 9.17 (d, *J* = 1.9 Hz, 1H), 7.28-7.26 (m, 1H), 6.97-6.96 (m, 2H), 6.69 (dd, *J* = 10.3, 1.9 Hz, 1H), 6.04 (dd, *J* = 10.3, 0.9 Hz, 1H), 5.57 (d, *J* = 9.3 Hz, 1H), 3.15 (dt, *J* = 9.8, 1.9 Hz, 1H), 3.10-3.05 (m, 1H), 2.71 (dd, *J* = 17.5, 5.2 Hz, 1H), 2.58 (ddd, *J* = 17.5, 2.0, 1.1 Hz, 1H), 1.65 (s, 3H); ¹³**C NMR** (101 MHz, CDCl₃): δ 198.2, 196.2, 151.7, 141.2, 129.4, 127.2, 125.9, 125.0, 79.9, 75.4, 60.0, 42.9, 36.9, 23.5; **IR** (thin film): 2973, 1868, 1717, 1683, 1558, 1457, 1374, 1120 cm⁻¹; **TLC** (40% ethyl acetate:hexanes): R_f = 0.39; **HRMS** (ESI): Calcd. for C₁₄H₁₅O₃S ([M+H]⁺): 263.0743, Found: 263.0736; **[** α]_D -90 (*c* = 1.3, CHCl₃).

(2*R*,3*R*,3a*R*,7a*R*)-2,7a-Dimethyl-5-oxo-2,3,3a,4,5,7a-hexahydrobenzofuran-3carbaldehyde (4j): The title compound was prepared according to General Procedure B using *p*-quinol **1a** (124 mg, 1.00 mmol) and α , β -unsaturated aldehyde **2j** (105 mg, 1.50 mmol) affording a 7:1 (**4j**: Σ others) mixture of diastereomers. Purification provided **4j** (116 mg, 60% yield, >20:1 dr) as a pale yellow oil. The

enantiomeric ratio was determined following reduction and benzoate formation to **S1b**. Analytical data for **4j**: ¹**H NMR** (600 MHz, CDCl₃): δ 9.72 (d, *J* = 2.1 Hz, 1H), 6.60 (dd, *J* = 10.3, 1.5 Hz, 1H), 5.99 (d, *J* = 10.3 Hz, 1H), 4.32 (dq, *J* = 6.6, 2.2 Hz, 1H), 2.96-2.94 (m, 1H), 2.90 (dt, *J* = 9.0, 2.0 Hz, 1H), 2.64 (dd, *J* = 17.3, 5.4 Hz, 1H), 2.51 (d, *J* = 17.3 Hz, 1H), 1.52 (s, 3H), 1.27 (d, *J* = 6.6 Hz, 3H); ¹³**C NMR** (151 MHz, CDCl₃): δ 200.10,[†] 200.06,[‡] 196.7, 152.5, 129.4, 78.9, 73.7, 59.2, 43.1, 37.3, 23.5, 18.0 ([†]Rotomer A, [‡]Rotomer B); **IR** (thin film): 1716, 1683, 1653, 1541, 1457, 1367, 709 cm⁻¹; **TLC** (40% ethyl acetate:hexanes): R_f = 0.29; **HRMS** (ESI): Calcd. for C₁₁H₁₅O₃ ([M+H]⁺): 195.1022, Found: 195.0995; **[** α]_D -38 (*c* = 0.7, CHCl₃).

(2S,3R,3aR,7aR)-7a-Ethyl-5-oxo-2-phenyl-2,3,3a,4,5,7auran-3-carbaldehyde (4k): The title compound was prepared

hexahydrobenzofuran-3-carbaldehyde (4k): The title compound was prepared according to General Procedure B using *p*-quinol **1b** (138 mg, 1.00 mmol) and α , β -unsaturated aldehyde **2a** (198 mg, 1.50 mmol) affording a 12:1 (**4k**: Σ others) mixture of diastereomers. Purification provided **4k** (212 mg, 78% yield, >20:1 dr) as a pale yellow oil. The enantiomeric ratio was determined following reduction to

5k. Analytical data for **4k**: ¹**H NMR** (600 MHz, CDCl₃): δ 9.02 (d, J = 2.7 Hz, 1H), 7.39-7.29 (m, 5H), 6.77 (dd, J = 15.5, 2.5 Hz, 1H), 6.18 (d, J = 15.5 Hz, 1H), 5.24 (d, J = 13.3 Hz, 1H), 3.21-3.13 (m, 2H), 2.71 (dd, J = 26.4, 7.9 Hz, 1H), 2.55 (d, J = 26.4 Hz, 1H), 2.13-1.93 (m, 2H), 1.20 (t, J = 11.3 Hz, 3H); ¹³**C NMR** (101 MHz, CDCl₃): δ 199.0, 196.6, 151.4, 137.0, 130.6, 128.8, 128.3, 126.3, 81.6, 78.8, 60.7, 40.3, 37.6, 29.8, 8.1; **IR** (thin film): 2972, 1718, 1683, 1576, 1507, 1457, 1396, 1219 cm⁻¹; **TLC** (40% ethyl acetate:hexanes): $R_f = 0.55$; **HRMS** (ESI): Calcd. for C₁₇H₁₉O₃ ([M+H]⁺): 271.1335, Found: 271.1329; **[α]**_D -110 (c = 1.3, CHCl₃).

(2S,3*R*,3*aR*,7*aR*)-7a-IsopropyI-5-oxo-2-phenyI-2,3,3a,4,5,7ahexahydrobenzofuran-3-carbaldehyde (4I): The title compound was prepared according to General Procedure B using *p*-quinol 1c (152 mg, 1.00 mmol) and α , β unsaturated aldehyde 2a (198 mg, 1.50 mmol) affording a 6:1 (4I: Σ others) mixture of diastereomers. Purification provided 4I (202 mg, 71% yield, 10:1 dr) as a pale yellow oil. The enantiomeric ratio was determined following reduction to 5I.

Analytical data for **4**I: ¹**H NMR** (400 MHz, CDCl₃): δ 9.02 (d, *J* = 2.0 Hz, 1H), 7.39-7.29 (m, 5H), 6.75 (dd, *J* = 10.4, 1.7 Hz, 1H), 6.28 (d, *J* = 10.4 Hz, 1H), 5.19 (d, *J* = 9.3 Hz, 1H), 3.34-3.31 (m, 1H), 3.12-3.07 (m, 1H), 2.74 (dd, *J* = 17.7, 6.0 Hz, 1H), 2.53 (d, *J* = 17.7 Hz, 1H), 2.34-2.23 (m, 1H), 1.21 (dd, *J* = 10.1, 7.0 Hz, 6H); ¹³**C NMR** (101 MHz, CDCl₃): δ 199.0, 197.1, 150.5, 136.8, 131.9, 128.9, 128.4, 126.4, 83.6, 78.6, 62.1, 39.1, 38.2, 35.4, 18.0, 17.1; **IR** (thin film): 2967, 1717, 1683, 1636, 1457, 1268, 1222 cm⁻¹; **TLC** (40% ethyl acetate:hexanes): R_f = 0.60; **HRMS** (ESI): Calcd. for C₁₈H₂₁O₃ ([M+H]⁺): 285.1491, Found: 285.1486; **[** α]_D -122 (*c* = 0.8, CHCl₃).

(2*S*,3*R*,3a*R*,7a*R*)-7a-(2-((*tert*-Butyldimethylsilyl)oxy)ethyl)-5-oxo-2-phenyl-2,3,3a,4,5,7a-hexahydrobenzofuran-3-carbaldehyde (4m): The title compound was prepared according to General Procedure B using *p*-quinol 1d (268 mg, 1.00 mmol) and α , β -unsaturated aldehyde 2a (198 mg, 1.50 mmol) affording a 13:1 (4m: Σ others) mixture of diastereomers. Purification provided 4m (329 mg, 82% yield, >20:1 dr) as a pale yellow oil. The enantiomeric ratio was

determined following reduction to **5m**. Analytical data for **4m**: ¹**H NMR** (600 MHz, CDCl₃): δ 8.99 (d, J = 2.3 Hz, 1H), 7.36-7.34 (m, 2H), 7.30-7.27 (m, 3H), 6.75 (dd, J = 10.3, 1.9 Hz, 1H), 6.12 (d, J = 10.3 Hz, 1H), 5.22 (d, J = 9.8 Hz, 1H), 4.03-3.99 (m, 1H), 3.91-3.87 (m, 1H), 3.37-3.34 (m, 1H), 3.13 (dt, J = 9.6, 2.3 Hz, 1H), 2.83 (dd, J = 17.5, 5.5 Hz, 1H), 2.53 (dd, J = 17.5, 1.1 Hz, 1H), 2.24-2.19 (m, 1H), 2.15-2.11 (m, 1H), 0.90 (s, 9H), 0.08 (d, J = 6.9 Hz, 3H); ¹³**C NMR** (151 MHz, CDCl₃): δ 199.0, 197.1, 151.6, 137.0, 130.2, 128.9, 128.5, 126.4, 81.1, 79.0, 60.5, 58.4, 41.4, 39.9, 37.4, 25.8, 18.1, -5.5; **IR** (thin film): 2953, 2856, 1717, 1684, 1472, 1255, 1089, 837 cm⁻¹; **TLC** (40% ethyl acetate:hexanes): $R_f = 0.69$; **HRMS** (ESI): Calcd. for $C_{23}H_{33}O_4$ Si ([M+H]⁺): 401.2149, Found: 401.2144; **[\alpha]**_D -69 (c = 1.2, CHCl₃).

Methyl 3-((2*S*,3*R*,3*aR*,7*aR*)-3-formyl-5-oxo-2-phenyl-2,3,3a,4,5,7ahexahydrobenzofuran-7a-yl)propanoate (4n): The title compound was prepared according to General Procedure B using *p*-quinol 1e (196 mg, 1.00 mmol) and α ,β-unsaturated aldehyde 2a (198 mg, 1.50 mmol) affording a 6:1 (4n:Σothers) mixture of diastereomers. Purification provided 4n (246 mg, 75% yield, >20:1 dr) as a pale yellow oil. The enantiomeric ratio was determined

following olefination to **8**. Analytical data for **4n**: ¹**H NMR** (400 MHz, CDCl₃): δ 8.96 (s, 1H), 7.36-7.22 (m, 5H), 6.71 (d, *J* = 10.4 Hz, 1H), 6.14 (d, *J* = 10.3 Hz, 1H), 5.19 (dd, *J* = 14.8, 1.8 Hz, 1H), 3.68 (s, 3H), 3.15-3.09 (m, 2H), 2.73-2.62 (m, 3H), 2.52 (d, *J* = 17.4 Hz, 1H), 2.38-2.22 (m, 2H); ¹³**C NMR** (101 MHz, CDCl₃): δ 198.6, 196.3, 173.2, 150.3, 136.6, 131.0, 128.9, 128.5, 126.4, 80.5, 79.1, 60.3, 51.8, 40.6, 37.3, 31.4, 28.4; **IR** (thin film): 2952, 1733, 1717, 1683, 1636, 1200, 1028, 755 cm⁻¹; **TLC** (40% ethyl acetate:hexanes): R_f = 0.32; **HRMS** (ESI): Calcd. for C₁₉H₂₁O₅ ([M+H]⁺): 329.1390, Found: 329.1385; **[a]**_D -78 (*c* = 0.9, CHCl₃).

Gram Scale Synthesis of 4d

A 250-mL round bottom flask equipped with a magnetic stir bar was charged with α , β -unsaturated aldehyde **2d** (5.00 g, 30.0 mmol, 1.5 equiv), **3b** (1.41 g, 4.0 mmol, 0.2 equiv), and 4-nitrobenzoic acid (0.67 g, 4.0 mmol, 0.2 equiv) in toluene (80.0 mL, 0.25 M). The solution was stirred for 5 min at room temperature until homogeneous. *p*-Quinol **1a** (2.48 g, 20.0 mmol, 1.0 equiv) was added and the reaction was allowed to stir for 16 h at room temperature. The reaction was diluted with EtOAc (400 mL) and sequentially washed with sat. aq. NaHCO₃ (1 x 100 mL), H₂O (1 x 100 mL), and brine

(1 x 100 mL). The organic layer was dried over Na₂SO₄, filtered, and concentrated *in vacuo*. The diastereomeric ratio was determined by ¹H NMR analysis of the crude residue. The crude residue was purified by column chromatography on silica gel eluting with 20% ethyl acetate:hexanes. The obtained solid was recrystallized from 10% ethyl acetate:hexanes to afford **4d** (4.76 g, 82% yield, >20:1 dr, >99.5:0.5 er) as colorless crystals (mp 150-153 °C).

General Procedure C for the Reduction of Aldehydes 4 to Alcohols 5

A 10-mL round-bottom flask equipped with a magnetic stir bar was charged with aldehyde **4** (1.00 equiv) in MeOH (0.1 M). The solution was cooled to -78 °C. NaBH₄ (0.25 equiv) was added and the reaction was allowed to stir for 15 min at -78 °C. The reaction was quenched with sat. aq. NH₄Cl (2 mL) at -78 °C and allowed to warm to room temperature. After stirring at room temperature for 30 min, the reaction was partitioned between CH_2Cl_2 (15 mL) and H_2O (30 mL). The layers were separated and the aqueous layer was extracted with CH_2Cl_2 (2 x 15 mL). The combined organic extracts were dried over Na₂SO₄, filtered, and concentrated *in vacuo*. The crude residue was purified by column chromatography on silica gel to afford alcohol **5**.

(2*S*,3*S*,3*aR*,7*aR*)-3-(Hydroxymethyl)-7a-methyl-2-phenyl-2,3,3a,4tetrahydrobenzofuran-5(7*aH*)-one (5a): The title compound was prepared according to General Procedure C using aldehyde 4a (90 mg, 0.35 mmol) and NaBH₄ (3.3 mg, 0.09 mmol) affording 5a (83 mg, 92% yield) as a pale yellow oil. Analytical data for 5a: ¹H NMR (600 MHz, CDCl₃): δ 7.35-7.32 (m, 2H), 7.30-7.27 (m, 3H), 6.68 (dd, *J* = 10.3, 1.4 Hz, 1H), 6.02 (d, *J* = 10.3 Hz, 1H), 5.00 (d, *J* = 8.4 Hz, 1H), 3.25-3.19 (m, 2H), 2.71 (d, *J* = 17.2 Hz, 1H), 2.65 (dd, *J* = 16.8, 4.9 Hz,

1H), 2.46-2.39 (m, 2H), 1.62 (s, 3H), 1.40 (bs, 1H); ¹³**C** NMR (151 MHz, CDCl₃): δ 197.7, 152.8, 138.6, 129.0, 128.3, 127.8, 126.4, 80.3, 79.0, 62.5, 49.7, 46.7, 37.9, 23.4; **IR** (thin film): 3445, 2937, 1683, 1456, 1387, 1027, 703 cm⁻¹; **TLC** (50% ethyl acetate:hexanes): R_f = 0.38; **HRMS** (ESI): Calcd. for C₃₂H₃₆NaO₆ ([2M+Na]⁺): 539.2410, Found: 539.2419; **SFC** Chiralpak OD, 9% MeOH, pressure = 150 bar, flow rate = 1.5 mL/min, λ = 210 nm, $t_{R \text{ (minor)}}$ 13.6 min, $t_{R \text{ (major)}}$ 14.7 min, >99.5:0.5 er; $[\alpha]_{D}$ - 117 (*c* = 1.2, CHCl₃).

(2*S*,3*S*,3a*R*,7a*R*)-3-(Hydroxymethyl)-2-(4-methoxyphenyl)-7a-methyl-2,3,3a,4tetrahydrobenzofuran-5(7a*H*)-one (5b): The title compound was prepared according to General Procedure C using aldehyde 4b (129 mg, 0.45 mmol) and NaBH₄ (4.1 mg, 0.11 mmol) affording 5b (108 mg, 83% yield) as a pale yellow oil. Analytical data for 5b: ¹H NMR (400 MHz, CDCl₃): δ 7.21 (d, *J* = 7.9 Hz, 2H), 6.86 (d, *J* = 7.7 Hz, 2H), 6.67 (d, *J* = 10.2 Hz, 1H), 6.01 (d, *J* = 10.2 Hz, 1H), 4.97 (d, *J* = 7.6 Hz, 1H), 3.77 (s, 3H), 3.24-3.23 (m, 2H), 2.72-2.61 (m, 2H), 2.43-2.38 (m, 2H), 1.60 (s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 197.7, 159.1, 152.9, 130.6, 129.0,

127.6, 113.7, 80.0, 78.9, 62.5, 55.2, 49.8, 46.6, 37.8, 23.5; **IR** (thin film): 3420, 2928, 1671, 1514,

1248, 1174, 1033, 835 cm⁻¹; **TLC** (50% ethyl acetate:hexanes): $R_f = 0.24$; **HRMS** (ESI): Calcd. for $C_{17}H_{20}NaO_4$ ([M+Na]⁺): 311.1260, Found: 311.1255; **HPLC** Chiralpak IC, H:IPA = 55:45, flow rate = 1.0 mL/min, $\lambda = 210$ nm, $t_{R (major)}$ 16.0 min, $t_{R (minor)}$ 20.7 min, 98:2 er; $[\alpha]_D$ -99 (c = 1.0, CHCl₃).

(2*S*,3*S*,3*aR*,7*aR*)-3-(Hydroxymethyl)-7a-methyl-2-(4-nitrophenyl)-2,3,3a,4tetrahydrobenzofuran-5(7*aH*)-one (5c): The title compound was prepared according to General Procedure C using aldehyde 4c (135 mg, 0.45 mmol) and NaBH₄ (4.1 mg, 0.11 mmol) affording 5c (109 mg, 80% yield) as a white solid (mp 135-137 °C). Analytical data for 5c: ¹H NMR (400 MHz, CDCl₃): δ 8.17 (d, *J* = 8.7 Hz, 2H), 7.49 (d, *J* = 8.5 Hz, 2H), 6.68 (dd, *J* = 10.2, 1.7 Hz, 1H), 6.03 (d, *J* = 10.2 Hz, 1H), 5.11 (d, *J* = 9.0 Hz, 1H), 3.24-3.16 (m, 2H), 2.74-2.63 (m, 2H), 2.58-2.50 (m, 1H), 2.42-2.39 (m, 1H), 1.65 (s, 3H), 1.59 (bs, 1H); ¹³C NMR (101 MHz, 152.3, 147.3, 146.4, 129.3, 127.6, 123.2, 79.6, 79.6, 62.3, 49.8, 46.9, 37.9, 23.5; **IB**

CDCl₃): δ 197.4, 152.3, 147.3, 146.4, 129.3, 127.6, 123.2, 79.6, 79.6, 62.3, 49.8, 46.9, 37.9, 23.5; **IR** (thin film): 3431, 1671, 1520, 1347, 1231, 1121, 1047 cm⁻¹; **TLC** (50% ethyl acetate:hexanes): $R_f = 0.22$; **HRMS** (ESI): Calcd. for $C_{16}H_{17}NNaO_5$ ([M+Na]⁺): 326.1005, Found: 326.0999; **SFC** Chiralpak OD, 9% MeOH, pressure = 150 bar, flow rate = 3.0 mL/min, $\lambda = 210$ nm, $t_{R \text{ (minor)}}$ 26.1 min, $t_{R \text{ (major)}}$ 28.4 min, >99.5:0.5 er; [α]_p -98 (c = 1.5, CHCl₃).

(2S,3S,3a*R*,7a*R*)-2-(2-Chlorophenyl)-3-(hydroxymethyl)-7a-methyl-2,3,3a,4tetrahydrobenzofuran-5(7a*H*)-one (5d): The title compound was prepared according to General Procedure C using aldehyde 4d (250 mg, 0.86 mmol) and NaBH₄ (8.1 mg, 0.21 mmol) affording 5d (234 mg, 93% yield) as a white solid (mp 147-148 °C). Analytical data for 5d: ¹H NMR (400 MHz, CDCl₃): δ 7.58 (dd, *J* = 7.7, 1.6 Hz, 1H), 7.33-7.19 (m, 3H), 6.67 (dd, *J* = 10.2, 1.1 Hz, 1H), 6.09 (dd, *J* = 10.2, 1.0 Hz, 1H), 5.20 (dd, *J* = 13.8, 5.8 Hz, 1H), 3.32-3.29 (m, 1H), 3.16-3.13 (m, 1H),

2.77 (d, J = 17.3 Hz, 1H), 2.67 (dd, J = 17.3, 5.3 Hz, 1H), 2.58-2.50 (m, 2H), 1.63 (s, 3H), 1.30 (bs, 1H); ¹³**C** NMR (101 MHz, CDCl₃): δ 197.9, 152.3, 136.6, 131.9, 130.2, 129.2, 128.7, 127.4, 126.8, 78.8, 76.8, 62.9, 48.5, 47.3, 38.4, 23.3; **IR** (thin film): 3420, 1683, 1558, 1473, 1374, 1121, 1049, 748 cm⁻¹; **TLC** (50% ethyl acetate:hexanes): $R_f = 0.38$; **HRMS** (ESI): Calcd. for C₁₆H₁₈ClO₃ ([M+H]⁺): 293.0945, Found: 293.0939; **SFC** Chiralpak OD, 9% MeOH, pressure = 150 bar, flow rate = 1.5 mL/min, $\lambda = 210$ nm, $t_{R (minor)}$ 10.2 min, $t_{R (major)}$ 13.1 min, >99.5:0.5 er; **[\alpha]_D** -201 (c = 0.7, CHCl₃).

(2*S*,3*S*,3*aR*,7*aR*)-3-(Hydroxymethyl)-2-(2-methoxyphenyl)-7a-methyl-2,3,3a,4tetrahydrobenzofuran-5(7*aH*)-one (5e): The title compound was prepared according to General Procedure C using aldehyde 4e (200 mg, 0.70 mmol) and NaBH₄ (6.7 mg, 0.17 mmol) affording 5e (176 mg, 87% yield) as a white solid (mp 124-126 °C). Analytical data for 5e: ¹H NMR (600 MHz, CDCl₃): δ 7.51 (d, *J* = 7.4 Hz, 1H), 7.30-7.27 (m, 1H), 7.01 (t, *J* = 7.5 Hz, 1H), 6.89 (d, *J* = 8.2 Hz, 1H), 6.71 (dd, *J* = 10.2, 1.1 Hz, 1H), 6.08 (d, *J* = 10.3 Hz, 1H), 5.26 (d, *J* = 7.9 Hz, 1H), 3.82

(s, 3H), 3.25 (bs, 2H), 2.74-2.67 (m, 2H), 2.53-2.48 (m, 2H), 1.62 (s, 3H), 1.36 (bs, 1H); ¹³**C** NMR (151 MHz, CDCl₃): δ 198.0, 155.5, 153.0, 129.5, 128.6, 127.3, 126.2, 120.8, 110.1, 78.5, 75.2, 62.5, 55.29,[†] 55.25,[‡] 49.2, 46.1, 38.1, 23.4 ([†]Rotomer A, [‡]Rotomer B); **IR** (thin film): 3446, 2929, 1682, 1491, 1244, 1125, 1046, 756 cm⁻¹; **TLC** (50% ethyl acetate:hexanes): R_f = 0.30; **HRMS** (ESI): Calcd. for C₁₇H₂₀NaO₄ ([M+Na]⁺): 311.1260, Found: 311.1254; **SFC** Chiralpak OD, 9% MeOH, pressure = 150 bar, flow rate = 1.5 mL/min, λ = 210 nm, $t_{R \text{ (minor)}}$ 10.9 min, $t_{R \text{ (major)}}$ 12.0 min, >99.5:0.5 er; $[\alpha]_{D}$ - 175 (*c* = 1.5, CHCl₃).

OH

 F_3

(2S,3S,3aR,7aR)-3-(Hydroxymethyl)-7a-methyl-2-(2-(trifluoromethyl)phenyl)-2,3,3a,4-tetrahydrobenzofuran-5(7aH)-one (5f): The title compound was prepared according to General Procedure C using aldehyde 4f (195 mg, 0.60 mmol) and NaBH₄ (5.6 mg, 0.15 mmol) affording 5f (161 mg, 82% yield) as a white solid (mp 133-135 °C). Analytical data for 5f: ¹H NMR (600 MHz, CDCl₃): δ 7.74 (d, *J* = 7.9 Hz, 1H), 7.61 (d, *J* = 7.9 Hz, 1H), 7.54 (t, *J* = 7.6 Hz, 1H), 7.38 (t, *J* = 7.6 Hz, 1H), 6.68 (dd, *J* = 10.3, 2.0 Hz, 1H), 6.08 (dd, *J* = 10.3, 0.9 Hz, 1H), 5.23 (d, *J* = 9.0 Hz,

1H), 3.18 (dd, J = 10.9, 5.0 Hz, 1H), 3.08-3.05 (m, 1H), 2.80 (ddd, J = 17.5, 2.0, 1.1 Hz, 1H), 2.66 (d, J = 17.3 Hz, 1H), 2.50-2.47 (m, 1H), 2.42-2.37 (m, 1H), 1.64 (s, 3H), 1.63 (bs, 1H); ¹³**C** NMR (151 MHz, CDCl₃): δ 198.0, 152.3, 136.7, 131.6, 130.2, 128.1, 127.8, 127.4 (q, $J_{C-F} = 30.4$ Hz), 125.7 (q, $J_{C-F} = 5.6$ Hz), 124.0 (q, $J_{C-F} = 274.2$ Hz), 79.0, 75.8, 63.7, 49.7, 48.5, 38.5, 23.3; ¹⁹**F** NMR (565 MHz, CDCl₃): δ -59.2; **IR** (thin film): 3432, 2931, 1677, 1313, 1163, 1123, 1035, 771 cm⁻¹; **TLC** (50% ethyl acetate:hexanes): $R_f = 0.37$; **HRMS** (ESI): Calcd. for $C_{17}H_{17}F_3NaO_3$ ([M+Na]⁺): 349.1028, Found: 349.1020; **SFC** Chiralpak OD, 9% MeOH, pressure = 150 bar, flow rate = 1.5 mL/min, $\lambda = 210$ nm, $t_{R (minor)} 5.3$ min, $t_{R (maior)} 6.6$ min, 99.5:0.5 er; **[\alpha]**_D -124 (c = 1.5, CHCl₃).

(2S,3S,3aR,7aR)-3-(Hydroxymethyl)-2-mesityl-7a-methyl-2,3,3a,4tetrahydrobenzofuran-5(7aH)-one (5g): The title compound was prepared according to General Procedure C using aldehyde 4g (142 mg, 0.48 mmol) and NaBH₄ (4.5 mg, 0.12 mmol) affording 5g (127 mg, 88% yield) as a pale yellow oil. Analytical data for 5g: ¹H NMR (600 MHz, CDCl₃): δ 6.80 (s, 1H), 6.77 (s, 1H), 6.66 (dd, J = 10.3, 1.9 Hz, 1H), 6.07 (d, J = 10.3 Hz, 1H), 5.24 (d, J = 9.3 Hz, 1H), 3.31-3.28 (m, 2H), 2.78 (d, J = 17.2 Hz, 1H), 2.66 (dd, J = 17.2, 5.2 Hz, 1H), 2.48-2.43 (m, 1H), 2.45 (s, 3H), 2.38-2.36 (m, 1H), 2.22 (s, 3H), 2.18 (s, 3H), 1.35 (bs, 1H);

¹³**C** NMR (151 MHz, CDCl₃): δ 197.9, 153.0, 136.9, 136.4, 135.5, 131.4, 130.3, 130.0, 129.2, 78.7, 77.67,[†] 77.66,[‡] 63.5, 49.3, 48.2, 38.4, 22.9,[†] 22.8,[‡] 20.70,[†] 20.69,[‡] 20.67,[†] 20.66[‡] ([†]Rotomer A, [‡]Rotomer B); **IR** (thin film): 3444, 2925, 1673, 1457, 1371, 1126, 1052, 754 cm⁻¹; **TLC** (50% ethyl acetate:hexanes): $R_f = 0.42$; **HRMS** (ESI): Calcd. for $C_{19}H_{25}O_3$ ([M+H]⁺): 301.1804, Found: 301.1799; **SFC** Chiralpak OD, 9% MeOH, pressure = 150 bar, flow rate = 1.5 mL/min, $\lambda = 210$ nm, t_{R} (minor) 10.1 min, t_{R} (major) 12.1 min, 99:1 er; **[\alpha]**_D -136 (c = 1.5, CHCl₃).

(2*S*,3*S*,3*aR*,7*aR*)-3-(Hydroxymethyl)-7a-methyl-2-(thiophen-2-yl)-2,3,3a,4tetrahydrobenzofuran-5(7*aH*)-one (5i): The title compound was prepared according to General Procedure C using aldehyde 4i (95 mg, 0.36 mmol) and NaBH₄ (3.4 mg, 0.09 mmol) affording 5i (83 mg, 87% yield) as a white solid (mp 99-101 °C). Analytical data for 5i: ¹H NMR (400 MHz, CDCl₃): δ 7.28-7.26 (m, 1H), 7.00-6.96 (m, 2H), 6.67 (dd, *J* = 10.2 Hz, 1H), 5.97 (d, *J* = 10.2 Hz, 1H), 5.39 (d, *J* = 7.9 Hz, 1H), 3.44 (bs, 2H), 2.74-2.63 (m, 2H), 2.57-2.46 (m, 2H), 1.62 (s, 3H), 1.37

(bs, 1H); ¹³**C NMR** (101 MHz, CDCl₃): δ 197.2, 152.7, 143.3, 128.3, 126.9, 125.1, 124.4, 79.7, 77.5, 61.8, 49.7, 45.6, 37.3, 23.8; **IR** (thin film): 3430, 2924, 1672, 1374, 1236, 1115, 1027, 708 cm⁻¹; **TLC** (50% ethyl acetate:hexanes): $R_f = 0.32$; **HRMS** (ESI): Calcd. for C₁₄H₁₆O₃NaS ([M+Na]⁺): 287.0718, Found: 287.0713; **SFC** Chiralpak OD, 9% MeOH, pressure = 150 bar, flow rate = 1.5 mL/min, λ = 210 nm, $t_{R \text{ (minor)}}$ 16.8 min, $t_{R \text{ (major)}}$ 18.6 min, 97:3 er; **[\alpha]**_D -77 (c = 1.2, CHCl₃).

(2S,3S,3aR,7aR)-7a-Ethyl-3-(hydroxymethyl)-2-phenyl-2,3,3a,4-

tetrahydrobenzofuran-5(7a*H***)-one (5k):** The title compound was prepared according to General Procedure C using aldehyde **4k** (189 mg, 0.70 mmol) and NaBH₄ (6.6 mg, 0.18 mmol) affording **5k** (141 mg, 74% yield) as a pale yellow oil. Analytical data for **5k**: ¹H NMR (400 MHz, CDCl₃): δ 7.37-7.26 (m, 5H), 6.72 (dd, J = 10.3, 1.8 Hz, 1H), 6.11 (d, J = 10.3 Hz, 1H), 5.01 (d, J = 8.7 Hz, 1H), 3.27-3.19 (m, 2H), 2.71 (dd, J = 17.3, 1.5 Hz, 1H), 2.64 (dd, J = 17.4, 1.1 Hz, 1H),

2.52-2.40 (m, 2H), 2.08-1.86 (m, 2H), 1.49 (bs, 1H), 1.16 (t, J = 7.5 Hz, 3H); ¹³**C** NMR (101 MHz, CDCl₃): δ 198.1, 152.2, 138.6, 130.0, 128.3, 127.7, 126.4, 81.0, 79.8, 77.2, 62.7, 50.1, 44.3, 38.4, 30.1, 8.1; **IR** (thin film): 3420, 2925, 1683, 1558, 1457, 1027, 703 cm⁻¹; **TLC** (50% ethyl acetate:hexanes): $R_f = 0.34$; **HRMS** (ESI): Calcd. for $C_{17}H_{20}NaO_3$ ([M+Na]⁺): 295.1310, Found: 295.1305; **SFC** Chiralpak OD, 9% MeOH, pressure = 150 bar, flow rate = 1.5 mL/min, λ = 210 nm, t_R (minor) 12.5 min, t_R (major) 14.6 min, >99.5:0.5 er; **[\alpha]**_D -126 (c = 1.6, CHCl₃).

(2S,3S,3aR,7aR)-3-(Hydroxymethyl)-7a-isopropyl-2-phenyl-2,3,3a,4tetrahydrobenzofuran-5(7a*H*)-one (5l): The title compound was prepared according to General Procedure C using aldehyde 4I (108 mg, 0.38 mmol) and NaBH₄ (3.6 mg, 0.09 mmol) affording 5I (81 mg, 74% yield) as a pale yellow oil. Analytical data for 5I: ¹H NMR (400 MHz, CDCl₃): δ 7.37-7.27 (m, 5H), 6.69 (dd, *J* = 10.4, 1.4 Hz, 1H), 6.23 (d, *J* = 10.4 Hz, 1H), 4.97 (d, *J* = 8.5 Hz, 1H), 3.32-3.24 (m, 2H), 2.69-2.59 (m, 3H), 2.40-2.32 (m, 1H), 2.27-2.17 (m, 1H), 1.16 (dd, *J* =

12.4, 6.9 Hz, 6H), 0.92 (bs, 1H); ¹³**C NMR** (101 MHz, CDCl₃): δ 198.2, 150.9, 138.4, 131.5, 128.5, 127.9, 126.3, 82.9, 79.1, 62.7, 51.8, 42.2, 39.8, 35.6, 18.0, 17.1; **IR** (thin film): 3420, 2963, 1683, 1558, 1387, 1265, 1051, 714 cm⁻¹; **TLC** (50% ethyl acetate:hexanes): R_f = 0.41; **HRMS** (ESI): Calcd. for C₁₈H₂₂NaO₃ ([M+Na]⁺): 309.1467, Found: 309.1461; **SFC** Chiralpak OD, 9% MeOH, pressure = 150 bar, flow rate = 1.5 mL/min, λ = 210 nm, $t_{R \text{ (minor)}}$ 11.2 min, $t_{R \text{ (major)}}$ 13.9 min, 99:1 er; **[\alpha]_D** -131 (*c* = 2.0, CHCl₃).

(2S,3S,3aR,7aR)-7a-(2-((*tert*-Butyldimethylsilyl)oxy)ethyl)-3-(hydroxymethyl)-2-phenyl-2,3,3a,4-tetrahydrobenzofuran-5(7a*H*)-one (5m): The title compound was prepared according to General Procedure C using aldehyde 4m (274 mg, 0.68 mmol) and NaBH₄ (6.5 mg, 0.17 mmol) affording 5m (238 mg, 87% yield) as a pale yellow oil. Analytical data for 5m: ¹H NMR (400 MHz, CDCl₃): δ 7.37-7.27 (m, 5H), 6.72 (dd, *J* = 10.3, 1.8 Hz, 1H), 6.07 (d, *J* = 10.3 Hz, 1H), 5.03 (d, *J* = 9.0 Hz, 1H), 4.02-3.97 (m, 1H), 3.93-3.87 (m, 1H),

3.27 (t, J = 5.3 Hz, 2H), 2.78 (dd, J = 17.5, 5.6 Hz, 1H), 2.69-2.64 (m, 2H), 2.49-2.41 (m, 1H), 2.22-2.07 (m, 2H), 0.97 (bs, 1H), 0.89 (s, 9H), 0.08 (d, J = 3.4 Hz, 6H); ¹³**C** NMR (101 MHz, CDCI₃): δ 198.0, 152.1, 138.7, 129.6, 128.4, 127.9, 126.5, 80.4, 80.0, 62.5, 58.6, 50.0, 44.9, 40.4, 38.0, 25.8, 18.1, -5.43, -5.44; **IR** (thin film): 3444, 2953, 1671, 1472, 1255, 1091, 836 cm⁻¹; **TLC** (50% ethyl acetate:hexanes): $R_f = 0.50$; **HRMS** (ESI): Calcd. for $C_{23}H_{34}O_4NaSi$ ([M+Na]⁺): 425.2124, Found: 425.2119; **SFC** Chiralpak AD, 9% MeOH, pressure = 150 bar, flow rate = 1.5 mL/min, $\lambda = 210$ nm, t_R (major) 7.7 min, t_R (minor) 9.3 min, 99:1 er; **[\alpha]**_D -71 (c = 1.0, CHCI₃).

General Procedure D for the Conversion of 4h and 4j to S1a and S1b

A 10-mL round-bottom flask equipped with a magnetic stir bar was charged with aldehyde **4** (1.00 equiv) in MeOH (0.1 M). The solution was cooled to -78 °C. NaBH₄ (0.25 equiv) was added and the reaction was allowed to stir for 15 min at -78 °C. The reaction was quenched with sat. aq. NH₄Cl (2 mL) at -78 °C and allowed to warm to room temperature. After stirring at room temperature for 30 min, the reaction was partitioned between CH_2Cl_2 (15 mL) and H_2O (30 mL). The layers were separated and the aqueous layer was extracted with CH_2Cl_2 (2 x 15 mL). The combined organic extracts were dried over Na₂SO₄, filtered, and concentrated *in vacuo* to afford the crude alcohol, which was used without further purification.

A flame-dried 10-mL round-bottom flask equipped with a magnetic stir bar was charged with the crude alcohol (1.00 equiv) in CH_2CI_2 (0.1 M). 4-Dimethylaminopyridine (0.10 equiv), benzoyl chloride (1.20 equiv), and triethylamine (3.00 equiv) were added sequentially. The reaction was allowed to stir for 60 min at room temperature. The reaction was quenched with sat. aq. NH_4CI (2 mL). The reaction was partitioned between CH_2CI_2 (15 mL) and H_2O (30 mL). The layers were separated and the aqueous layer was extracted with CH_2CI_2 (2 x 15 mL). The combined organic extracts were dried over Na_2SO_4 , filtered, and concentrated *in vacuo*. The crude residue was purified by column chromatography on silica gel to afford benzoate **S1**.

((2*S*,3*S*,3*aR*,7*aR*)-7a-Methyl-5-oxo-2-(1-tosyl-1*H*-indol-3-yl)-2,3,3a,4,5,7ahexahydrobenzofuran-3-yl)methyl benzoate (S1a): The title compound was prepared according to General Procedure D using aldehyde 4h (300 mg, 0.67 mmol) affording S1a (193 mg, 52% yield) as a viscous pale yellow oil. Analytical data for S1a: ¹H NMR (600 MHz, CDCl₃): δ 7.92 (d, *J* = 8.4 Hz, 1H), 7.67 (d, *J* = 8.4 Hz, 2H), 7.64 (s, 1H), 7.54 (d, *J* = 7.1 Hz, 2H), 7.48-7.45 (m, 2H), 7.31-7.27 (m, 3H), 7.16 (t, *J* = 7.5 Hz, 1H), 7.08 (d, *J* = 8.2 Hz, 2H), 6.70 (dd, *J* = 10.3, 1.7 Hz, 1H), 6.14 (d, *J* = 10.3 Hz, 1H), 5.29 (d, *J* = 8.4 Hz, 1H), 4.04 (dd, *J* = 11.3, 7.4 Hz,

1H), 3.90 (dd, J = 11.3, 6.8 Hz, 1H), 2.81-2.72 (m, 3H), 2.49-2.47 (m, 1H), 2.23 (s, 3H), 1.67 (s, 3H); ¹³**C NMR** (151 MHz, CDCl₃): δ 196.9, 165.8, 151.8, 144.9, 135.0, 134.7, 132.8, 130.2, 129.7, 129.2, 128.9, 128.2, 126.5, 124.9, 123.8, 123.7, 123.4, 119.7, 119.5, 113.8, 78.8, 73.8, 64.74, 64.68,[†] 64.6,[‡] 48.3, 46.7, 38.2, 23.5, 21.42,[†] 21.39[‡] ([†]Rotomer A, [‡]Rotomer B); **IR** (thin film): 2974, 1716, 1683, 1372, 1271, 1174, 1120, 750 cm⁻¹; **TLC** (40% ethyl acetate:hexanes): R_f = 0.26; **HRMS** (ESI): Calcd. for C₆₄H₅₈N₂NaO₁₂S₂ ([2M+Na]⁺): 1133.3330, Found: 1133.3330; **SFC** Chiralpak AD, 10% MeOH, pressure = 150 bar, flow rate = 3.0 mL/min, λ = 210 nm, $t_{R \text{ (major)}}$ 18.8 min, $t_{R \text{ (minor)}}$ 27.4 min, >99.5:0.5 er; [α]_D -52 (c = 1.6, CHCl₃).

((2*R*,3*S*,3a*R*,7a*R*)-2,7a-Dimethyl-5-oxo-2,3,3a,4,5,7a-hexahydrobenzofuran-3yl)methyl benzoate (S1b): The title compound was prepared according to General Procedure D using aldehyde 4j (90 mg, 0.46 mmol) affording S1b (32 mg, 23% yield) as a pale yellow oil. Analytical data for S1b: ¹H NMR (600 MHz, CDCl₃): δ 8.02 (dd, *J* = 8.4, 1.1 Hz, 2H), 7.57 (t, *J* = 7.4 Hz, 1H), 7.47-7.44 (m, 2H), 6.62 (dd, *J* = 10.3, 1.8 Hz, 1H), 6.01 (dd, *J* = 10.3, 0.7 Hz, 1H), 4.41 (dd, *J* = 11.2, 6.9

Hz, 1H), 4.30 (d, J = 11.2, 7.0 Hz, 1H), 4.22-4.17 (m, 1H), 2.75 (dd, J = 17.2, 1.0 Hz, 1H), 2.67 (dd, J = 17.2, 5.4 Hz, 1H), 2.51-2.46 (m, 1H), 2.35-2.32 (m, 1H), 1.51 (s, 3H), 1.28 (d, J = 6.6 Hz, 3H); ¹³**C NMR** (151 MHz, CDCl₃): δ 197.3, 166.4, 152.9, 133.2, 129.6, 129.5, 128.9, 128.5, 78.3, 74.31,[†] 74.28,[‡] 64.3, 47.6, 45.3, 37.9, 24.1, 16.7 ([†]Rotomer A, [‡]Rotomer B); **IR** (thin film): 2973, 1717, 1684, 1456, 1273, 1114, 713 cm⁻¹; **TLC** (40% ethyl acetate:hexanes): $R_f = 0.31$; **HRMS** (ESI): Calcd. for $C_{18}H_{20}NaO_4$ ([M+Na]⁺): 323.1260, Found: 323.1252; **SFC** Chiralpak AD, 9% MeOH, pressure = 150 bar, flow rate = 1.5 mL/min, $\lambda = 210$ nm, $t_{R (major)}$ 6.4 min, $t_{R (minor)}$ 8.1 min, 99.5:0.5 er; **[** α **]**_D -9 (c = 1.4, CHCl₃).

Synthesis of Benzoate 6 from 5a

((2S,3S,3aR,7aR)-7a-Methyl-5-oxo-2-phenyl-2,3,3a,4,5,7a-hexahydrobenzofuran-3-yl)methyl 4nitrobenzoate (6): A flame-dried 10-mL round-bottom flask equipped with a magnetic stir bar was charged with alcohol 5a (77 mg, 0.30 mmol, 1.00 equiv) in CH₂Cl₂ (3 mL, 0.1 M). 4-Dimethylaminopyridine (3.7 mg, 0.03 mmol, 0.10 equiv), 4-nitrobenzovl chloride (67 mg, 0.36 mmol, 1.20 equiv), and triethylamine (125 µL, 0.90 mmol, 3.00 equiv) were added sequentially. The reaction was allowed to stir for 60 min at room temperature. The reaction was guenched with sat. aq. NH₄Cl (2 mL). The reaction was partitioned between CH₂Cl₂ (15 mL) and H₂O (30 mL). The layers were separated and the aqueous layer was extracted with CH₂Cl₂ (2 x 15 mL). The combined organic extracts were dried over Na₂SO₄, filtered, and concentrated *in vacuo*. The crude residue was purified by column chromatography on silica gel to afford benzoate 6 (102 mg, 83% yield) as a white solid (mp 125-126 °C). Analytical data for 6: ¹H NMR (400 MHz, CDCl₃): δ 8.15 (d, J = 8.9 Hz, 2H), 7.90 (d, J = 8.8 Hz, 2H), 7.26-7.10 (m, 5H), 6.64 (dd, J = 10.2, 1.8 Hz, 1H), 5.99 (d, J = 10.2 Hz, 1H), 5.03 (d, J = 8.8 Hz, 1H), 3.95-3.83 (m, 2H), 2.74-2.64 (m, 3H), 2.38-2.35 (m, 1H), 1.58 (s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ 196.8, 164.0, 152.4, 150.5, 137.8, 134.9, 130.5, 129.3, 128.3, 128.0, 126.5, 123.5, 80.2, 79.2, 65.6, 47.8, 46.7, 38.0, 23.6; IR (thin film): 2975, 1725, 1683, 1529, 1371, 1279, 1171, 1133 cm⁻¹; **TLC** (40% ethyl acetate:hexanes): $R_f = 0.33$; **HRMS** (ESI): Calcd. for $C_{46}H_{42}N_2NaO_{12}$ ([2M+Na]⁺): 837.2636, Found: 837.2626; [α]_D -50 (*c* = 0.5, CHCl₃).

X-ray suitable crystals were grown by dissolving **6** (100 mg) in a minimal amount of acetone (~0.2 mL) in a 20-mL scintillation vial. Without disturbing the acetone layer, hexanes (~4 mL) was carefully

pipetted on top to form a second layer. The vial was capped and carefully transferred to a freezer (-10 °C) where it was left to age overnight.

(1aR,3aR,4R,5S,6aS,6bS)-5-(2-Chlorophenyl)-6a-methyl-2-oxooctahydrooxireno[2,3-

g]benzofuran-4-carbaldehyde (7): A 10-mL round-bottom flask equipped with a magnetic stir bar was charged with aldehyde 4d (116 mg, 0.40 mmol, 1.0 equiv) in MeOH:CH₂Cl₂ (3:1) (1.6 mL, 0.25 M). The solution was cooled to 0 °C. H₂O₂ (30 wt. % in H₂O) (0.8 mL) and NaOH (20 wt. % in H₂O) (0.2 mL) were sequentially added. The reaction was allowed to at 0 °C for 12 h. The reaction was carefully guenched with sat. aq. Na₂S₂O₃ (5 mL) to remove excess peroxides. The reaction was partitioned between CH₂Cl₂ (15 mL) and H₂O (30 mL). The layers were separated and the aqueous layer was extracted with CH₂Cl₂ (2 x 15 mL). The combined organic extracts were dried over Na₂SO₄, filtered, and concentrated in vacuo. The crude residue was purified by column chromatography on silica gel to afford epoxide 7 (117 mg, 95% yield, >20:1 dr) as a white solid (mp 73 °C). Analytical data for **7**: ¹H NMR (600 MHz, CDCl₃): δ 9.03 (d, *J* = 1.4 Hz, 1H), 7.47 (dd, *J* = 7.6, 1.5 Hz, 1H), 7.36 (dd, J = 7.8, 1.5 Hz, 1H), 7.30-7.24 (m, 2H), 5.54 (d, J = 8.3 Hz, 1H), 3.50 (dd, J = 3.7, 1.8 Hz, 1H), 3.41 (dd, J = 3.7, 0.7 Hz, 1H), 3.33-3.31 (m, 1H), 3.13-3.10 (m, 1H), 3.07 (dd, J = 13.8, 5.3 Hz, 1H), 2.07 (ddd, J = 13.8, 2.6, 0.9 Hz, 1H), 1.77 (s, 3H); ¹³**C NMR** (151 MHz, CDCl₃): δ 206.0, 197.9, 134.1, 131.3, 129.5, 129.4, 127.4, 127.2, 78.2, 76.8, 64.3, 58.7, 55.7, 46.1, 35.3, 23.0; **IR** (thin film): 2978, 1720, 1684, 1653, 1541, 1473, 1375, 1127, 1034 cm⁻¹; **TLC** (20% ethyl acetate:hexanes): $R_f = 0.28$; **HRMS** (ESI): Calcd. for $C_{32}H_{30}Cl_2NaO_8$ ([2M+Na]⁺): 635.1216, Found: 635.1217; $[\alpha]_{D}$ -104 (*c* = 1.3, CHCl₃).

Synthesis of Diester 8 from 4n

(*E*)-Ethyl 3-((2*S*,3*R*,3*aR*,7*aR*)-7*a*-(3-methoxy-3-oxopropyl)-5-oxo-2-phenyl-2,3,3*a*,4,5,7*a*-hexahydrobenzofuran-3-yl)acrylate (8): A flame-dried 10-mL round-bottom flask equipped with a magnetic stir bar was charged with NaH (60%) (23 mg, 0.57 mmol, 1.25 equiv) suspended in THF (2

mL). The suspension was cooled to 0 °C. Triethyl phosphonoacetate (115 uL, 0.57 mmol, 1.25 equiv) was added dropwise. The homogenous solution was allowed to stir at 0 °C for 20 min before a solution of aldehyde 4n (150 mg, 0.46 mmol, 1.00 equiv) in THF (0.5 mL) was added dropwise. The ice bath was removed and the resulting solution was allowed to stir for 3 h as it slowly warmed to room temperature. The reaction was cooled to 0 °C and guenched with sat. ag. NH₄CI (5 mL). The reaction was diluted with Et₂O (30 mL) and washed with H₂O (15 mL) and brine (15 mL). The organic layer was dried over MgSO₄, filtered, and concentrated in vacuo. The crude residue was purified by column chromatography on silica gel to afford diester 8 (176 mg, 96% yield, >20:1 E:Z) as a pale yellow oil. Analytical data for 8: ¹H NMR (600 MHz, CDCl₃): δ 7.31 (t, J = 7.4 Hz, 2H), 7.26-7.23 (m, 1H), 7.17 (d, J = 7.4 Hz, 2H), 6.78 (dd, J = 10.3, 2.0 Hz, 1H), 6.12-6.08 (m, 2H), 5.65 (d, J = 15.5 Hz, 1H), 5.13 (d, J = 9.1 Hz, 1H), 4.10-3.99 (m, 2H), 3.70 (s, 3H), 3.06 (q, J = 9.7 Hz, 1H), 2.74-2.61 (m, 3H), 2.49 (d, J = 17.8 Hz, 1H), 2.46-2.43 (m, 1H), 2.38-2.26 (m, 2H), 1.17 (t, J = 7.1 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃): δ 196.3, 173.4, 165.4, 150.9, 145.7, 138.0, 130.1, 128.4, 127.9, 126.3, 123.2, 81.7, 80.9, 60.3, 52.1, 51.9, 47.2, 36.1, 32.4, 28.6, 14.0; IR (thin film): 1734, 1716, 1683, 1456, 1387, 1248, 1175, 1028 cm⁻¹; **TLC** (50% ethyl acetate:hexanes): R_f = 0.50; **HRMS** (ESI): Calcd. for C₂₃H₂₆NaO₆ ([M+Na]⁺): 421.1627, Found: 421.1622; **SFC** Chiralpak OD, 9% MeOH, pressure = 150 bar, flow rate = 1.5 mL/min, λ = 210 nm, $t_{R (major)}$ 9.4 min, $t_{R (minor)}$ 10.4 min, >99.5:0.5 er; $[\alpha]_{D}$ -17 (*c* = 1.6, CHCl₃).

Synthesis of bis(Tetrahydrofuran) 9 from 4m

(3aS,5S,6R,6aR,9aS)-8-Oxo-5-phenyloctahydro-2H-benzo[1,2-b:2,3-b]difuran-6-carbaldehyde (9): A 20-mL Nalgene[®] scintillation vial equipped with a magnetic stir bar was charged with silvl ether 4m (400 mg, 1.00 mmol, 1.00 equiv) in THF (10 mL, 0.1 M). The solution was cooled to 0 °C. HFpyridine (70% HF) (4 mL) was slowly added to the reaction. The ice bath was removed and the resulting solution was allowed to stir for 3 h as it slowly warmed to room temperature. The reaction was guenched by carefully pipetting the reaction mixture into a beaker containing sat. ag. NaHCO₃ (60 mL). The biphasic solution was diluted with H₂O (40 mL) and extracted with CH₂Cl₂ (3 x 40 mL). The combined organic extracts were dried over Na₂SO₄, filtered, and concentrated in vacuo. The crude residue was purified by column chromatography on silica gel to afford tricycle 9 (235 mg, 82% yield, >20:1 dr) as a pale yellow oil. Analytical data for **9**: ¹H NMR (400 MHz, CDCl₃): δ 9.05 (s, 1H), 7.38-7.34 (m, 2H), 7.31-7.28 (m, 3H), 5.47 (d, J = 8.5 Hz, 1H), 4.17 (t, J = 5.4 Hz, 1H), 4.07 (dt, J = 8.6, 3.1 Hz, 1H), 3.98 (q, J = 8.9 Hz, 1H), 3.20 (q, J = 6.0 Hz, 1H), 3.09 (t, J = 7.2 Hz, 1H), 2.70-2.57 (m, 3H), 2.55-2.49 (m, 1H), 2.43-2.34 (m, 2H); ¹³C NMR (101 MHz, CDCl₃): δ 207.3, 198.8, 136.7, 128.8, 128.4, 125.9, 89.1, 80.4, 80.1, 66.5, 60.6, 43.1, 40.8, 38.9, 38.3; IR (thin film): 1716, 1653, 1636, 1541, 1457, 1397, 1209, 1065 cm⁻¹; **TLC** (40% ethyl acetate:hexanes): $R_f = 0.25$; **HRMS** (ESI): Calcd. for $C_{17}H_{18}NaO_4$ ([M+Na]⁺): 309.1103, Found: 309.1100; $[\alpha]_D$ -72 (c = 1.2, CHCl₃).

Synthesis of Tricycle 10 from 4d

(2S,3R,3aR,7R,7aS)-8-Benzyl-2-(2-chlorophenyl)-7a-methylhexahydro-7,3-

(epiminomethano)benzofuran-5(6H)-one (10): A 10-mL round-bottom flask equipped with a magnetic stir bar was charged with aldehyde 4d (116 mg, 0.40 mmol, 1.00 equiv) and benzylamine (86 mg, 0.80 mmol, 2.00 equiv) in MeOH:AcOH (9:1) (4 mL, 0.1 M). The solution was allowed to stir at room temperature for 4 h. NaBH₃CN (50 mg, 0.80 mmol, 2.00 equiv) was added in one portion resulting in vigorous gas formation. After stirring at room temperature for 30 min, the reaction was quenched with sat. aq. NaHCO₃ (4 mL). The reaction was partitioned between CH_2Cl_2 (15 mL) and sat. aq. NaHCO₃ (30 mL). The layers were separated and the aqueous layer was extracted with CH₂Cl₂ (2 x 15 mL). The combined organic extracts were dried over Na₂SO₄, filtered, and concentrated in vacuo. The crude residue was purified by column chromatography on silica gel to afford tricycle 10 (136 mg, 89% yield, >20:1 dr) as a pale yellow oil. Analytical data for 10: ¹H NMR (600 MHz, CDCl₃): δ 7.59 (d, J = 7.7 Hz, 1H), 7.44 (d, J = 7.2 Hz, 2H), 7.34-7.28 (m, 4H), 7.27-7.24 (m, 1H), 7.20 (dt, J = 7.7, 1.4 Hz, 1H), 5.48 (s, 1H), 3.80 (dd, J = 22.4, 13.7 Hz, 2H), 3.17 (bs, 1H), 2.93-2.88 (m, 2H), 2.61-2.58 (m, 3H), 2.43 (t, J = 3.8 Hz, 1H), 2.30 (dd, J = 17.3, 3.8 Hz, 1H), 2.29-2.27 (m, 1H), 1.71 (s, 3H); ¹³C NMR (151 MHz, CDCl₃): δ 209.5, 141.0, 138.3, 131.3, 129.3, 128.4, 128.3, 128.0, 127.0, 126.4, 80.7, 79.7, 62.4, 57.1, 47.7, 46.9, 40.3, 38.7, 38.5, 22.0; IR (thin film): 2905, 2813, 1707, 1558, 1457, 1338, 1121, 751 cm⁻¹; **TLC** (20% ethyl acetate:hexanes): R_f = 0.28; **HRMS** (ESI): Calcd. for $C_{23}H_{27}CINO_2$ ([M+H]⁺): 382.1575, Found: 382.1568; $[\alpha]_D$ +38 (c = 1.1, $CHCl_3$).

Deuterium Labeling Experiment and Structure Determination

A 10-mL round-bottom flask equipped with a magnetic stir bar was charged with aldehyde **4d** (58 mg, 0.20 mmol, 1.00 equiv) and benzylamine (43 mg, 0.40 mmol, 1.00 equiv) in $CD_3OD:CD_3CO_2D$ (9:1) (2 mL, 0.1 M). The solution was allowed to stir at room temperature for 4 h. NaBH₃CN (25 mg, 0.40 mmol, 2.00 equiv) was added in one portion resulting in vigorous gas formation. After stirring at room temperature for 30 min, the reaction was quenched with sat. aq. NaHCO₃ (2 mL). The reaction was partitioned between CH₂Cl₂ (15 mL) and sat. aq. NaHCO₃ (30 mL). The layers were separated

and the aqueous layer was extracted with CH_2CI_2 (2 x 15 mL). The combined organic extracts were dried over Na_2SO_4 , filtered, and concentrated *in vacuo*. The crude residue was purified by column chromatography on silica gel to afford tricycle **10** (64 mg, 84% yield, >20:1 dr) as a pale yellow oil.

Analysis: Based on deuterium incorporation α -aldehyde, it can be assumed that under the acidic conditions epimerization occurs via enamine/iminum tautomerization. This observation is also consistent with experimental observations related to the time required for condensation/epimerization to occur. When the aldehyde and amine are premixed for shorter periods of time before NaBH₃CN is added, the yield of **10** is lower with the remaining mass being the formation of **5d** via direct reduction of the aldehyde. Deuterium incorporation α -ketone is consistent with protonation following aza-Michael addition, with protonation of the enol from the convex face preferentially. 2D-NMR analysis showed strong nOe interactions consistent with the proposed structure (see p. S56).

References

1) M. C. Carreño, M. González-López, A. Urbano, *Angew. Chem.* **2006**, *118*, 2803–2807; *Angew. Chem. Int. Ed.* **2006**, *45*, 2737–2741.

2) P. D. Brown, A. C. Willis, M. S. Sherburn, A. L. Lawrence, Org. Lett. 2012, 14, 4537–4539.

3) N. T. Patil, V. Singh, Chem. Comm. 2011, 47, 11116–11118.

4) M. Marigo, T. C. Wabnitz, D. Fielenbach, K. A. Jørgensen, *Angew. Chem.* **2005**, *117*, 804–807; *Angew. Chem. Int. Ed.* **2005**, *44*, 794–797.

0 ppm

Electronic Supplementary Material (ESI) for Chemical Science This journal is $\ensuremath{\mathbb{O}}$ The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Chemical Science This journal is $\ensuremath{\mathbb{O}}$ The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Chemical Science This journal is O The Royal Society of Chemistry 2013

Signal 1: LVWD1 A, Wavelength=210 nm

Peak #	RT [min]	Туре	Width [min]	Area [mAU*sec] 	Height [mAU]	Area %
1 2 Totals	13.614 14.738 :	MM MM	0.423 0.606	112.23133 35660.02734 35772.25781	4.41831 980.88129 985.29962	0.3137 99.6863

Electronic Supplementary Material (ESI) for Chemical Science This journal is O The Royal Society of Chemistry 2013

#	Time	Area	Height	Width	Area%	Symmetry
1	16.028	29453	879.7	0.558	50.202	0.762
2	20.519	29216.2	657.8	0.7403	49.798	0.733

_#	Time	Area	Height	Width	Area%	Symmetry
1	15.981	44551.3	1307.7	0.5678	98.019	0.734
2	20.694	900.2	21.7	0.6915	1.981	0.87

Signal 1: LVWD1 A, Wavelength=210 nm

Peak	RT	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*sec]	[mAU]	%
1 2 Totals	26.068 28.638 :	MF FM	1.079 1.199	14754.19629 15415.10938 30169.30469	227.85472 214.35262 442.20734	48.9047 51.0953

Signal 1: LVWD1 A, Wavelength=210 nm

Peak #	RT [min]	Туре	Width [min]	Area [mAU*sec]	Height [mAU]	Area %
 1 2	26.055 28.384	MM MM	0.664 1.131	31.40295 13811.40625	7.88319e-1 203.54843	0.2269 99.7731
Totals	:			13842.80957	204.33675	

Signal 1: LVWD1 A, Wavelength=210 nm

Peak #	RT [min]	Туре	Width [min]	Area [mAU*sec] 	Height [mAU]	Area %
1	10.137	MM	0.363	27608.39648	1268.78271	49.7594
2	13.120	MM	0.484	27875.42188	959.61017	50.2406
Totals	:			55483.82031	2228.39282	

Signal 1: LVWD1 A, Wavelength=210 nm

Peak #	RT [min]	Туре	Width [min]	Area [mAU*sec] 	Height [mAU]	Area %
1	10.151	MM	0.293	65.07142	3.70250	0.1812
2	13.098	MM	0.453	35848.25391	1320.22339	99.8188
Totals	:			35913.32422	1323.92590	

Signal 1: LVWD1 A, Wavelength=210 nm

Peak #	RT [min]	Туре	Width [min]	Area [mAU*sec] 	Height [mAU]	Area %
1 2	10.812 11.996	MM MM	0.345 0.400	21191.79883 21674.41602	1023.13025 902.10376	49.4371 50.5629
Totals	:			42866.21484	1925.23401	

Signal 1: LVWD1 A, Wavelength=210 nm

Peak	RT	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*sec]	[mAU]	%
1 2 Totals	10.902 12.006 :	MM MM	0.280 0.418	61.66599 33084.66016 33146.32422	3.67305 1318.03906 1321.71216	0.1860 99.8140

Signal 1: LVWD1 A, Wavelength=210 nm

Peak #	RT [min]	Туре 	Width [min]	Area [mAU*sec] 	Height [mAU] 	Area %
1	5.258	MM	0.183	23066.86523	2099.76001	49.3622
2	6.630	MM	0.220	23662.95703	1793.04492	50.6378
Totals	:			46729.82031	3892.80493	

Signal 1: LVWD1 A, Wavelength=210 nm

Peak #	RT [min]	Туре	Width [min]	Area [mAU*sec] 	Height [mAU]	Area %
1 2	5.255 6.612	MM MM	0.173 0.241	197.26682 36552.58984	18.96338 2530.95337	0.5368 99.4632
Totals	:			36749.85547	2549.91675	

Signal 1: LVWD1 A, Wavelength=210 nm

Peak #	RT [min]	Туре	Width [min]	Area [mAU*sec] 	Height [mAU]	Area %
1 2 Totals	10.052 12.264	MM MM	0.324 0.390	11443.54102 11399.69922 22843.24023	588.20996 487.26517 1075.47510	50.0960 49.9040

Signal 1: LVWD1 A, Wavelength=210 nm

Peak #	RT [min]	Туре	Width [min]	Area [mAU*sec] 	Height [mAU]	Area %
1	10.113	MM	0.318	706.71490	37.01941	1.0165
2	12.144	MM	0.441	68816.02344	2597.90308	98.9835
Totals	:			69522.74219	2634.92236	

Signal 1: LVWD1 A, Wavelength=210 nm

Peak #	RT [min]	Туре	Width [min]	Area [mAU*sec] 	Height [mAU]	Area %
1	17.080	MF	0.531	11933.84375	374.55807	47.8432
2	18.404	FM	0.643	13009.82324	337.10199	52.1568
Totals	:			24943.66797	711.66003	

Signal 1: LVWD1 A, Wavelength=210 nm

Peak #	RT [min]	Туре	Width [min] 	Area [mAU*sec] 	Height [mAU]	Area %
1	16.775	MM	0.578	40059.43750	1154.59070	97.1087
2	18.619	MM	0.572	1192.73767	34.78268	2.8913
Totals	:			41252.17578	1189.37341	

Me

5k

Signal 1: LVWD1 A, Wavelength=210 nm

Peak	RT	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*sec]	[mAU]	%
1 2 Totals	12.427 14.722	MM MM	0.381 0.493	19978.60156 20248.55078 40227.15234	874.14465 684.43555 1558.58020	49.6645 50.3355

Signal 1: LVWD1 A, Wavelength=210 nm

Peak #	RT [min]	Туре	Width [min]	Area [mAU*sec]	Height [mAU]	Area %
1 2	12.490 14.612	MM MM	0.336 0.507	108.41068 30547.30859	5.38079 1004.37323	0.3536 99.6464
Totals	:			30655.71875	1009.75403	

Me

Signal 1: LVWD1 A, Wavelength=210 nm

Peak #	RT [min]	Туре	Width [min]	Area [mAU*sec] 	Height [mAU]	Area %
1 2	10.891 13.784	MM MM	0.556 0.838	22156.27539 22645.96875	664.01410 450.47635	49.4535 50.5465
Totals	:			44802.24219	1114.49048	

Signal 1: LVWD1 A, Wavelength=210 nm

Peak #	RT [min]	Туре	Width [min]	Area [mAU*sec] 	Height [mAU]	Area %
 1 2	11.196 13.858	MM MM	0.410 0.698	550.22803	22.34335 1191.04919	1.0911 98.9089
Totals	:			50427.50391	1213.39258	

TBSO

6 6.5 7 7.5 8 8.5 9 9.5 10 10.5

Signal	1:	LVWD1	Α,	Wavelength=210	nm

Peak	RT	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*sec]	[mAU]	%
1 2 Totals	7.531 8.763 :	мм мм мм	0.390 0.443	17138.22656 16714.64258 33852.86719	732.43677 628.76929 1361.20605	50.6256 49.3744

Signal 1: LVWD1 A, Wavelength=210 nm

Peak #	RT [min]	Туре	Width [min]	Area [mAU*sec]	Height [mAU]	Area %
-						
1	7.726	MM	0.411	28361.55469	1149.12598	99.0861
2	9.293	MM	0.382	261.58557	11.41118	0.9139
Totals	:			28623.14063	1160.53711	

Signal 1: LVWD1 A, Wavelength=210 nm

Peak RT # [min] 	Туре	Width [min] 	Area [mAU*sec] 	Height [mAU]	Area %
1 18.265 2 25.215 Totals :	MM MM	1.215 2.201	21871.28125 21847.83203 43719.11328	300.09641 165.43869 465.53510	50.0268 49.9732

Signal 1: LVWD1 A, Wavelength=210 nm

Peak	RT	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*sec]	[mAU]	%
. 1	18.769	MM	1.168	29017.80273	414.17654	98.3855
2	27.422	MM		476.19266	4.51676	1.6145
Totals	:			29493.99609	418.69330	

Signal 1: LVWD1 A, Wavelength=210 nm

Peak #	RT [min]	Туре	Width [min]	Area [mAU*sec] 	Height [mAU]	Area %
1 2 Totals	6.363 7.793	FM MM	0.190 0.252	27591.97070 26329.44531 53921.41406	2424.08276 1742.78735 4166.87012	51.1707 48.8293

Signal 1: LVWD1 A, Wavelength=210 nm

Peak #	RT [min]	Туре	Width [min]	Area [mAU*sec] 	Height [mAU]	Area %
1 2 Totals	6.445 8.075 :	FM MM	0.190 0.236	29974.37109 221.06999 30195.44141	2632.51978 15.60210 2648.12183	99.2679 0.7321

Signal 1: LVWD1 A, Wavelength=210 nm

Peak #	RT [min]	Туре	Width [min]	Area [mAU*sec] 	Height [mAU]	Area %
1 2 Totals	9.415 10.481 :	MM MM	0.257 0.282	13160.33301 12721.31250 25881.64453	853.28540 753.00775 1606.29321	50.8481 49.1519

Signal 1: LVWD1 A, Wavelength=210 nm

Peak #	RT [min]	Туре	Width [min]	Area [mAU*sec]	Height [mAU]	Area %
. 1	9.428	MF	0.494	59436.91406	2004.04883	99.7604
2	10.380	FM	0.378	142.77565	6.29405	0.2396
Totals	:			59579.69141	2010.34290	