Supporting Information

Nanographene / Porphyrin Hybrids – Preparation, Characterization, and Application in Solar Energy Conversion Schemes

Daniel Kiessling,^{a‡} Rubén D. Costa,^a Georgios Katsukis,^a Jenny Malig,^a Fabian Lodermeyer,^a Sebastian Feihl,^a Alexandra Roth,^a Leonie Wibmer,^a Matthias Kehrer,^a Michel Volland,^a Pawel Wagner,^b Gordon G. Wallace,^b David L. Officer,^b and Dirk M. Guldi^{*a}

Figure S1. Absorption spectra of **6a/b** and **7a/b** in THF:water (1:1 v/v).

Figure S2. Upper part – TCSPC-histogram upon excitation at 403 nm of **6a/b** in THF. Lower part – TCSPC-histogram upon excitation at 403 nm of **7a/b** in THF. The detection was performed at the corresponding emission maxima – see Figure 2 in main text. The optical density was 0.2.

Figure S3. Upper part – Dispersions of exfoliated NG in **7a/b** and **6a/b** in THF and THF:water mixtures (1:1, 1:10, and 1:100 v/v), respectively. Lower part – Comparison of stock solution (2 x 10^{-5} M) of **7b** with its corresponding nanographene dispersion in THF and THF:water mixtures (1:1, 1:10, and 1:100 v/v).

Figure S4. Upper part – Raman spectrum (black) of **G7a** upon laser excitation at 532 nm – drop-coated from THF:water (1:1 v/v) onto silicon oxide wafers – and Lorentzian fit of the 2D peak (red). Central part – Raman spectrum of **G6a** upon laser excitation at 532 nm – drop-coated from THF:water (1:1 v/v) onto silicon oxide wafers – and Lorentzian fit of the 2D peak (red). Lower part – Raman spectrum of **G6b** upon laser excitation at 532 nm – drop-coated from THF:water (1:1 v/v) onto silicon oxide (red). Lower part – Raman spectrum of **G6b** upon laser excitation at 532 nm – drop-coated from THF:water (1:1 v/v) onto silicon oxide wafers – and Lorentzian fit of the 2D peak (red).

Figure S5. Upper part – Height profile across line 2 in Figure 4. Central part – height profile across line 3 in Figure 4. Lower part – Height profile across line 4 in Figure 4.

Figure S6. Upper part - TEM images of a drop casted dispersion of **G7b** in THF onto lacey carbon grid right after preparation with scale bars of 1000 nm. The flake size is around 45 μ m² (left) and rolling up of a few-layer graphene flakes during electron beam irradiation (middle and right). Lower part - TEM images of drop casted dispersions of **G6a** (left), **G6b** (middle), and **G7a** (right) in THF:water (1:1 v/v) onto lacey carbon grid with scale bars of 250 nm.

Figure S7. Absorption spectra of G6a/b and G7a/b in THF:water (1:1 v/v). The initial concentration of 6a/b and 7a/b was 2×10^{-5} M.

Figure S8. Upper part – Fluorescence spectra of **6a/b** and **7a/b** in THF upon excitation at 420 and 410 nm for the zinc porphyrins and the free base porphyrins, respectively. The initial concentration of **6a/b** and **7a/b** was 2 x 10^{-5} M. Lower part – Fluorescence spectra of **G6a/b** and **G7a/b** in THF upon excitation at 420 and 410 nm for the zinc porphyrins and the free base porphyrins, respectively. The initial concentration of **6a/b** and **7a/b** was 2 x 10^{-5} M.

Figure S9. Upper part – Differential absorption spectra (visible and near-infrared) obtained upon femtosecond pump probe experiments (387 nm) of **G6a** in THF with several time delays between 0.6 and 9.0 ps at room temperature. Lower part – Time absorption profiles at 575, 850, and 1135 nm monitoring the charge recombination.

Figure S10. Upper part – Differential absorption spectra (visible and near-infrared) obtained upon femtosecond pump probe experiments (387 nm) of **G7a** in THF/water (1:1 v/v) with several time delays between 0.7 and 9.8 ps at room temperature. Lower part – Time absorption profiles at 575, 850, and 1135 nm monitoring the charge recombination.

Figure S11. Upper part – Differential absorption spectra (visible and near-infrared) obtained upon femtosecond pump probe experiments (387 nm) of **G6a** in THF/water (1:1 v/v) with several time delays between 0.7 and 9.8 ps at room temperature. Lower part – Time absorption profiles at 525, 860, and 970 nm monitoring the charge recombination.

Figure S12. Upper part – TEM image of a drop-casted **G7a** dispersion in THF onto lacey carbon grids in the absence of TiO_2 . Lower part – TEM image of a drop-casted **G7a** dispersion in THF onto lacey carbon grids in the presence of an excess amount of TiO_2 .

Figure S1. Cross-sectional SEM images of the TiO_2 -S electrodes soaked with **G7b** in THF for 120 hours at low magnification.

Figure S14. SEM images of TiO₂-S electrodes soaked with **G7b** (top), **G6a** (middle), and **G6b** (bottom) in THF for 120 hours at low magnifications.

Figure S15. Device performance as a function of soaking time for devices with $4\mu m TiO_2$ electrodes and G7b (open symbols) and 7b (close symbols) in THF.

Figure S16. SEM images of TiO₂-S electrodes soaked with graphene suspension (NMP) for 120 hours at low (left) and high (right) magnifications

Table S1. Performance of the DSSCs using TiO_2 -S electrodes soaked with the different porphyrins and nanographene / porphyrin hybrids in THF suspensions.

Dye	Soaking	V _{oc} ^a	I _{sc} ^b	FF ^c	ηα
	time	(V)	(mA/cm ²)	(%)	(%)
	(h)				
7a	2	0.20	0.09	0.39	7.0 10 ⁻⁴
	4	0.36	0.05	0.51	8.0 10 ⁻⁴
	8	0.15	0.05	0.37	2.5 10 ⁻³
	16	0.20	0.05	0.41	4.3 10 ⁻³
G7a	2	0.35	1.34	0.40	0.19
	4	0.39	1.22	0.42	0.20
	8	0.38	1.68	0.40	0.25
	16	0.33	1.23	0.49	0.20
	2	0.27	0.09	0.45	1.1 10 ⁻²
	4	0.38	0.23	0.49	4.4 10 ⁻²
70	8	0.33	0.11	0.49	1.8 10 ⁻²
	16	0.29	0.08	0.50	1.2 10 ⁻²
	2	0.24	0.09	0.45	0.10
G7b	4	0.25	1.12	0.49	0.11
	8	0.29	2.50	0.49	0.27
	16	0.21	1.47	0.50	0.11
6a	2	0.37	0.40	0.45	6.5 10 ⁻²
	4	0.33	0.24	0.43	3.3 10 ⁻²
	8	0.28	0.19	0.43	2.3 10 ⁻²
	16	0.24	0.11	0.43	1.1 10 ⁻²
G6a	2	0.25	1.33	0.44	0.14
	4	0.25	1.83	0.47	0.22
	8	0.25	2.02	0.41	0.21
	16	0.23	1.69	0.40	0.15
6b	2	0.33	0.26	0.51	4.4 10 ⁻²
	4	0.31	0.28	0.51	4.4 10 ⁻²
	8	0.32	0.20	0.50	3.3 10 ⁻²
	16	0.29	0.17	0.44	2.2 10 ⁻²
G6b	2	0.30	2.69	0.46	0.37
	4	0.20	1.63	0.38	0.13
	8	0.18	1.65	0.33	0.10
	16	0.18	1.38	0.33	8.1 10 ⁻²

^aV_{oc} is open-circuit voltage. ^bI_{sc} is short-circuit current. ^cFF is fill factor. ^dη is efficiency.

Table S2. Performance of the DSSCs using TiO_2 -S electrodes soaked with the different porphyrins and nanographene / porphyrin hybrids in THF/water (1:1 v/v) suspensions.

Dye	Soaking	V _{oc} ^a	I _{sc} ^b	۶ FF	<mark>η</mark> ^d
	time	(V)	(mA/cm ²)	(%)	(%)
	(h)				
	2	0.03	0.005	0.44	0.6 10 ⁻⁴
	4	0.04	0.005	0.60	1.1 10 ⁻⁴
	8	0.06	0.006	0.56	2.4 10 ⁻⁴
	16	0.06	0.009	0.56	3.3 10 ⁻⁴
G7a	2	0.14	0.002	0.72	2.4 10 ⁻⁴
	4	0.20	0.007	0.51	7.0 10 ⁻⁴
	8	0.19	0.010	0.53	1.0 10 ⁻³
	16	0.26	0.024	0.48	3.1 10 ⁻³
7b	2	0.06	0.006	0.56	2.2 10 ⁻⁴
	4	0.06	0.003	0.57	1.0 10 ⁻⁴
	8	0.10	0.005	0.34	1.7 10 ⁻⁴
	16	0.25	0.013	0.51	1.7 10 ⁻³
G7b	2	-	-	-	-
	4	0.08	0.006	0.43	2.3 10 ⁻⁴
	8	0.10	0.011	0.43	4.7 10 ⁻⁴
	16	0.18	0.031	0.45	2.5 10 ⁻³
	2	0.07	0.008	0.44	2.4 10 ⁻⁴
60	4	0.09	0.011	0.42	3.7 10 ⁻⁴
Ua	8	0.10	0.016	0.33	5.6 10-4
	16	0.31	0.034	0.50	5.3 10 ⁻³
G6a	2	0.09	0.011	0.48	4.6 10 ⁻⁴
	4	0.27	0.014	0.53	2.0 10 ⁻³
	8	0.29	0.024	0.51	3.4 10 ⁻³
	16	0.30	0.043	0.46	6.0 10 ⁻³
6b	2	0.08	0.005	0.39	1.4 10 ⁻⁴
	4	0.19	0.006	0.50	8.4 10 ⁻⁴
	8	0.12	0.006	0.38	2.6 10 ⁻⁴
	16	0.27	0.022	0.54	3.3 10 ⁻³
G6b	2	0.26	0.024	0.51	3.2 10 ⁻³
	4	0.26	0.029	0.51	3.8 10 ⁻³
	8	0.29	0.029	0.51	4.3 10 ⁻³
	16	0.30	0.031	0.46	4.3 10 ⁻³

^aV_{oc} is open-circuit voltage. ^bI_{sc} is short-circuit current. ^cFF is fill factor. ^dη is efficiency.