Asymmetric Synthesis of Propargylic Alcohols via Aldol Reaction of Aldehydes with Ynals Promoted by Prolinol Ether/Transition Metal/Brønsted Acid Cooperative Catalysis.

Enrique Gómez-Bengoa, Jesús M. García, Sandra Jiménez, Irati Lapuerta, Antonia Mielgo, José M. Odriozola, Itziar Otazo, Jesús Razkin, Iñaki Urruzuno, Silvia Vera, Mikel Oiarbide and Claudio Palomo.^{*,}

Departamento de Química Orgánica I, Facultad de Química, Universidad del País Vasco UPV/EHU, Paseo Manuel Lardizabal 3, 20080 San Sebastián, Spain

SUPPLEMENTARY INFORMATION

Table of Contents

A)	General information	2			
B)	Preparation of aldehydes	2			
C)	Preparation of propargylic aldehydes	10			
D)	General Procedure for the Cross-Aldol reactions	14			
E)	Reaction Scope	16			
F)	Reduction of propargylic aldol adducts				
F	.1) Hydrogenation of aldol adducts 3Ae, 3Bf, 3Ca and 4De				
F	2) Partial reduction of 8Aa, 8Af, 8Ff	35			
G)	Elaboration of Propargylic Alcohols				
C	G.1) Diiodination of adduct 3Af				
C	G.2) Intramolecular hydroamination of aldol adduct 8Cf				
C	G.3) Intramolecular hydroalkoxylation of adduct 3Af	40			
G.4) Intramolecular cycloaddition reaction					
H)	Cross-aldol reaction of aliphatic aldehydes with aromatic aldehydes	43			
I)	Results from other amine catalysts	45			
J)	Determination of the relative and absolute configuration of adducts	46			
F	Relative configuration	46			
A	Absolute configuration	46			
К)	Determination of absolute/relative configuration of 19 by X-Ray analysis	50			
L)	¹ H and ¹³ C RMN of compounds.	58			
M)	HPLC chromatograms of selected products	94			

A) General information

Methylene chloride (CH₂Cl₂) was distilled from CaH₂, THF was dried in a It Pure Solv column. Ethyl acetate and hexane were used as reagent grade. Purification of reaction products was carried out by flash column chromatography using silica gel 60 (0.040-0.063 mm, 230-400 mesh). Analytical thin layer chomatography (TLC) was performed on 0.25 mm silica gel 60-F plates. Visualization was accomplished with UV light and a solution obtained by admixing ammonium molybdate (21 g), cerium sulphate (1 g) and concentrated sulphuric acid (31 ml) in 470 mL of water, followed by heating. Melting points were measured with a Buchi SMP-20 melting point apparatus and are uncorrected. ¹H and ¹³C NMR spectra were recorded on Bruker Advance-300 and are reported in ppm from internal tetramethylsilane (TMS). Analytical high performance liquid chromatography (HPLC) was performed on Waters-600E, equipped with 2996 and 2998 photodiode array UV detector, using Daicel Chiralpak AD-H, AS-H, OD-H, AY-H, IB, IC and IA columns. Optical rotations were recorded on a Jasco P-2000 polarimeter. MS spectra were recorded on an ESI-ion trap Mass spectrometer (Agilent 1100 series LC/MSD, SL model). Amine catalyst 4 was prepared according to previously reported procedure.¹

B) Preparation of aldehydes

Aldehydes **1A-C**, and **1F** were obtained from commercial sources and distilled prior use.

Aldehydes **1D**, **1E**, **1G** and **1H** were prepared according to reported procedures, as follow.

tert-Butyl-5-oxopentanoate (1D)

¹ Gómez-Bengoa, E.; Jimenez, J.; Lapuerta, .I; Mielgo, A.; Oiarbide, M.; Otazo, I.; Velilla, I.; Vera, S.; Palomo, C. *Chem. Sci.* **2012**, *3*, 2949-2957.

Procedure for Step a:²

Glutaric anhydride (10.0 g, 87.6 mmol) was weighed into a dry flask and purged with N₂. Dry toluene (50 mL) was added followed by *N*-hydroxysuccinimide (3.0 g, 26.1 mmol), 4-dimethylaminopyridine (1.07 g, 8.8 mmol), anhydrous *tert*-butanol (24.3 mL, 262.3 mmol), and triethylamine (3.6 mL, 25.8 mmol). The flask was fitted with a reflux condenser, heated to 115 °C, and allowed to stir for 16 h. The solution was cooled to room temperature, diluted with 300 mL EtOAc, and washed with 5% aqueous NaHSO₄ solution (3×, 100 mL) and brine (100 mL). The organic layer was dried over MgSO₄, filtered and concentrated. The crude material was purified by column chromatography on silicagel (eluent hexanes/EtOAc 1:1) to yield 8.32 g (50% yield) of a colorless oil. The physical and spectroscopic data were in agreement with those described in the literature. ¹H NMR (300MHz, CDCl₃): δ 10.83 (bs, 1H), 2.42 (t, *J* = 7.4 Hz, 2H), 2.31 (t, *J* = 2.31 Hz, 2H), 1.92 (m, 2H), 1.45 (s, 9H).

Procedure for Step b:

Thus obtained carboxylic acid (8.2 g, 44 mmol) was dissolved in CH_2Cl_2 (200 mL) and to the solution were successively added hydrochloride *N,O*-dimethylhydroxylamine (4.72 g, 48.4 mmol), 1-hydroxybenzotriazole hydrate (6.53 g, 48.4 mmol), diisopropylethylamine (17 mL, 97 mmol), and EDC·HCl (9.28 g, 48.4 mmol). The mixture was stirred at room temperature for 2 h and then concentrated under vacuum to remove most of the CH_2Cl_2 . The crude material was diluted with EtOAc (300 mL),

² Y. Chi, E. P. English, W. C. Pomerantz, W. S. Horne, L. A. Joyce, L. R. Alexander, W. S. Fleming, E. A. Hopkins, S. H. Gellman *J. Am. Chem. Soc.*. **2007**, *129*, 6050-6055

and washed successively with 5% aqueous NaHSO₄ solution (3× 100 mL), 5% aqueous NaHCO₃ solution (3× 100 mL), and brine (100 mL). The organic layer was dried over MgSO₄, filtered and concentrated to afford 4.8 g (50% yield) of the product as a pale yellow oil which was used without further purification. ¹H NMR (300MHz, CDCl₃) δ 3.68 (s, 3H), 3.18 (s, 3H), 2.48 (t, *J* = 7.4 Hz, 2H), 2.30 (t, *J* = 7.4 Hz, 2H), 1.92 (m, 2H), 1.45 (s, 9H).

Procedure for Step c:

Weinreb amide (5.0 g, 21.6 mmol) was dissolved in dry THF (100 mL) and the solution was cooled to 0 °C under N₂. Diisobutylaluminum hydride (43 mL of a 1.0 M solution in CH₂Cl₂, 43 mmol) was added dropwise. The reaction mixture was allowed to stir at 0 °C for 30 min and then quenched by slow addition of EtOAc (50 mL). The solution was poured into water (200 mL) and extracted with EtOAc (2 × 400 mL). The combined organic layers were washed successively with sat. aqueous NaHCO₃ solution (100 mL) and brine (100 mL), dried over MgSO₄, filtered and concentrated. The crude material was purified by silicagel column chromatography (eluent hexanes/EtOAc 3:1) to yield 2.2 g (59% yield) of a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 9.78 (t, *J* = 1.4 Hz, 1H), 2.51 (td, *J* = 7.3, 1.4 Hz, 2H), 2.28 (t, *J* = 7.3 Hz, 2H), 1.92 (m, 2H), 1.45 (s, 9H).

tert-Butyl 6-oxohexylcarbamate (1E)³

Prepared from *tert*-butyl 6-hydroxyhexylcarbamate (2.0 mL, 10 mmol) by Swern oxidation as follows: A solution of DMSO (2.27 mL, 32.0 mmol) in dichloromethane (16

³ Adapted from: X. Xiao, S. Antony, G. Kohlhagen, Y. Pommier, M. Cushman, *Bioorg. Med. Chem.* 2004, *12*, 5147-5160.

mL) was slowly added to a solution of oxalyl chloride (1.4 mL, 16.0 mmol) in dichloromethane (60 mL) previously cooled to -70 °C. The resulting mixture was stirred at the same temperature for 5 minutes, after which a solution of the precursor alcohol (8.0 mmol) in dichloromethane (16 mL) was added dropwise and stirred for an additional hour at -70 °C. Triethylamine (6.68 mL, 48 mmol) was subsequently slowly added, the resulting mixture allowed to reach 0 °C, and stirred at that temperature for one hour. The resulting mixture was poured into water (40 mL) and diluted with Et₂O (400 mL). The organic layer was separated and washed with brine (2 x 75 mL), dried over MgSO₄ and concentrated under reduced pressure. The crude product was purified by silicagel flash column chromatography (eluent hexane:ethyl acetate). The title compound was obtained as a colorless oil: 1.85 g, (85% yield). The physical and spectroscopic data were in agreement with those described in the literature.

¹H-RMN (300 MHz, CDCl₃) δ: 9.76 (t, *J*= 1.7 Hz,1H), 3.11 (d, *J*= 6.5 Hz, 2H), 2.43, (dt, *J*= 1.7, 7.2, 7.3 Hz, 2H), 1.70-1.23 (m, 6H), 1.44 (s, 9H).

6,6-Dimethoxyhexanal (1G)^{4,5}

⁴ Adapted from: Takeishi, K.; Sugishima, K.; Sasaki, K.; Tanaka, K. Chem. Eur. J. 2004, 10, 5681-5688.

⁵ Adapted from: Lopez, R.; Zalacain, M.; Palomo, C. *Chem. Eur. J.* **2011**, *17*, 2450-2457.

Electronic Supplementary Material (ESI) for Chemical Science This journal is © The Royal Society of Chemistry 2013

Procedure for Step a:

DIBAL (0.95 M in *n*-hexane, 24.4 mL, 23.2 mmol) was added a solution of 3cianopropionaldehyde dimethyl acetal (3.02 mL, 23.5 mmol) in CH_2Cl_2 (120 mL) at -78 ^oC and the resulting mixture was stirred for 1h. The resulting mixture was warmed slowly to RT, and treated with excess saturated aqueous NH_4Cl . The reaction mixture was then diluted with water and extracted with CH_2Cl_2 . The organic layer was washed with water, dried over MgSO₄, and concentrated, which afforded crude 4,4dimethoxybutyraldehyde (2.6 g, 19.6 mmol, 84 %) as a pale yellow oil.

Procedure for Step b:

The aldehyde was added dropwise in CH_2Cl_2 (10 mL) at 0 °C to a solution of formylmethylenetriphenylphosphorane (10 g, 34 mmol, 2 equiv) in CH_2Cl_2 (20 mL). The resulting mixture was stirred at the same temperatura for 2 h, warmed up to 50 °C, and stirred for 24 h. Upon reaction completion, the solvent was removed under reduced pressure and the crude product was purified by flash column chromatography (eluent mixtures EtOAc / Hexane 80:20) to afford the corresponding pure adehyde (50 % yield) as a pale yellow oil.

To a 25 mL flash charged with a solution of enal (948 mg, 6 mmol) in ethanol (12 mL) was added Pd/C (10% wt, 180 mg). The flask was filled with hydrogen gas and stirred for 16 h at room temperature under hydrogen balloon. The mixture was filtered over celite pad and the filtrate was concentrated. Purification on a silica gel column (hexane/AcOEt, 80:20) provided 768 mg of the aldehyde **1G** (4.8 mmol, 80% yield) as a pale yellow oil. ¹H NMR (300 MHz, CDCl₃) δ 9.80 (t, *J* = 1.7 Hz, 1H), 4.39 (dd, *J* = 7.1 Hz, 4.1, 1H), 3.35 (s, 6H), 2.44 (dd, *J* = 8.2, 6.5 Hz, 3H), 1.97 (td, *J* = 7.3, 5.4 Hz, 4H), 1.43 (tdd, *J* = 10.8, 7.2, 4.0 Hz, 2H).

Synthesis of (E)-6-(3,5-dimethylphenoxy)-4-methylhex-4-enal (1H)

Electronic Supplementary Material (ESI) for Chemical Science This journal is O The Royal Society of Chemistry 2013

Procedure for step a (VII)⁶

To a solution of *trans*-geraniol (17.5 mL, 100 mmol) in ether (75 mL) at -20 °C was added a solution of phosphorus tribromide (4.7 mL, 50 mmol) in ether (45 mL) within 10 min, and the reaction mixture was stirred for 4 h. The reaction was quenched with water, extracted with petroleum ether, washed in turn with water, with saturated aqueous NaHCO₃, and brine. The organic layer was dried (MgSO₄) and evaporated at 30 °C to provide (*E*)-geranyl bromide (II) (21.7 g, 99%) of as a labile yellow liquid which was used without further purification. ¹H NMR (300 MHz, CDCl₃) δ 5.53 (tq, *J*= 6.5, 1.5 Hz, 1H), 5.08 (m, 1H), 4.02 (d, *J* = 8.4 Hz, 2H), 2.16 – 2.00 (m, 4H), 1.73 (s, 3H), 1.69 (s, 3H), 1.60 (s, 3H).

Procedure for step b (VIII)⁷

To a stirred suspension of sodium hydride (60% in oil, 1050 mg, 25.25 mmol) in THF (75 mL) at room temperature under argon atmosphere was added 3,5-dimethylphenol (25 mmol) portion wise followed by a catalytic amount of hydroquinone (10% mmol). The mixture was stirred for 0.5 h at room temperature. Hexamethylphosphoramide (HMPA, 17.5 mL) and geranyl bromide (II) (25 mmol) were successively added. The whole mixture was stirred for 1 day. After decomposition of excess sodium hydride with methanol (2 mL), the mixture was poured into ice-water and extracted with ether. The combined organic layers were dried, concentrated and purified by column chromatography on silica gel (hexane-ethyl acetate 95:5 as eluent) to give geranyl aryl ether (III) (70% yield) as a yellow oil. ¹H RMN (300 MHz, CDCl₃) δ 6.56-6.80 (m, 3H),

⁶ Paz, J.L.; Rodroguez, J.A.R.; *J. Braz. Chem. Soc.* **2003**, *14*, 975-981.

⁷ Ishihara, K.; Nakamura, S.; Yamamoto, H. J. Am. Chem. Soc. **1999**, *121*, 4906-4907.

5,50 (tq, J = 6.6, 1.5 Hz, 1H), 5,06-5,14 (m, 1H), 4,51 (d, J = 6,6, 2H), 2,29 (s, 6H), 2,10 (m, 4H) 1,74 (s, 3H), 1,69 (s, 3H), 1,62 (s, 3H).

Procedure for step c (IX)⁸

To a solution of geranyl phenyl ether **(VIII)** (17.6 mmol) in CH_2Cl_2 (45 mL) was added dropwise *m*-chloroperbenzoic acid (4.9 g, 70%, 19.4 mmol) in CH_2Cl_2 (50 mL) at 0 °C. After the addition was complete, the mixture was stirred at 0 °C for another 4 h. The reaction was quenched by the addition of 50 mL of saturated NaHCO₃, the organic phase was separated, and the aqueous phase was extracted with CH_2Cl_2 (3 x 50 mL). The combined organic extracts were washed with brine, dried over Na₂SO₄, and concentrated in vacuum. The crude product was purified by silica gel chromatography (hexane-ethyl acetate 90:10 as eluent) to give **(IV)** (4.11 g, 87%) as a yellow oil. ¹H RMN (300 MHz, CDCl₃) δ 6.54-6.60 (m, 3H), 5.50 (tq, *J* = 6.5, 1.3 Hz, 1H), 4.51 (d, *J* = 6.4 Hz, 2H), 2.71 (t, *J* = 6.2, 1H), 2.28 (s, 6H), 2.21 (m, 2H), 1.76 (s, 3H), 1.68 (m, 2H) 1.31 (s, 3H), 1.27 (s, 3H).

Procedure for step d (IH)⁹

A solution of epoxide (**IX**) (1.0 eq) in THF:H₂O (10:1, 30 mL) was treated sequentially at 0 °C with NaIO₄ (0.6 equiv) and HIO₄⁻2H₂O (1.1 equiv). The resultant biphasic mixture was stirred at 0 °C for 10 min and then warmed to room temperature. After 1 h, the reaction mixture was quenched with saturated aqueous NaHCO₃ (25 mL), poured into

⁸ Surendra. K.; E. J. Corey, J. Am. Chem. Soc. 2008, 130 (27), 8865–8869

⁹ Surendra, K.; Qiu, W.; E. J. Corey, *J. Am. Chem. Soc.*, **2011**, 133 (25), 9724–9726

H₂O (25 mL), and the aqueous layer was extracted with EtOAc (3 x 50 ml). The combined organic layers were washed with brine, dried over Na₂SO₄, and concentrated in *vacuo*. The crude product was purified by silica gel chromatography (hexane-ethyl acetate 95:5 as eluent) to give the desired aldehyde **IH** as orange oil. Yield: 81% (0.8 g). ¹H RMN (300 MHz, CDCl₃) δ 7.79 (t, *J* = 1.6 Hz, 1H), 6.53-6.60 (m, 3H), 5.51 (tq, *J*: = 6.4, 1.3 Hz, 1H), 4.50 (d, *J* = 5.9 Hz, 2H), 2.59 (m, 2H), 2.41 (m, 2H), 2.29 (s, 6H), 1.75 (s, 3H).

Hexane-1,6-dial (9)¹⁰

To a vigorously stirred suspension of chromatographic grade silica gel (105 g) in CH_2Cl_2 (500mL) was added an aqueous solution of $NaIO_4$ (0.65 M, 68.2 mmol), whence a flaky suspension was formed. 1,2-Cyclohexanediol (6.08 g, 52.3 mmol) in CH_2Cl_2 (200 mL) was then added, and the reaction was stirred for 24 h. The mixture was filtere on a sintered glass, and the silica gel was throughly washed with CH_2Cl_2 . Evaporation of the solvent afforded the title compound as a colorleess oil in quantitative yield (5.91 g). No further purification was necessary.

C) Preparation of propargylic aldehydes¹¹

All propargylic aldehydes were synthesized as described below, except octynal (**2a**) and phenyl propynal (**2f**) that are commercially available.

$$R \longrightarrow \frac{1) \text{ n-BuLi, Et}_2O}{2) \text{ DMF}} R \longrightarrow CHO$$

To a round bottomed flask under nitrogen atmosphere filled of dry Et_2O (50 mL) and cooled to -60 °C, were added dropwise *n*-BuLi (50 mmol, 20 mL, 2.5 M in hexane) and then the corresponding alkyne (50 mmol). The reaction mixture was stirred at this

¹⁰ Lopez, S.; Fernandez-Trillo, F.; Midón, P.; Castedo, L.; Saá, C. *J. Org. Chem.* **2005**, *70*, 6346-6352.

¹¹ L. Brandsma, *Preparative Acetylenic Chemistry (Studies in Organic Chemistry 34)* Ed. Elsevier, Amsterdam, **1988**, 97-112

temperature for 30 min after which DMF (4.3 mL, 62.5 mmol) was added slowly. The resulting mixture was removed from the bath, warmed slowly to room temperature and stirred at this temperature for 20 minutes. Finally the reaction mixture was poured slowly into a cold solution of water (25 mL) and HCl conc.(4 mL) and a solution of saturated NaHCO₃ was added dropwise until pH 6-7. The organic layer was separated and the aqueous phase extracted with Et₂O (3x 20 mL). The combined organic layers were dried over MgSO₄, filtered and concentrated under reduce pressure. The crude product was purified by silica gel chromatography unless otherwise stated.

Hex-2-ynal (2b)

Prepared according to general procedure, starting from 1 pentyne (1.9 mL, 20 mmol). Yelow liquid. Yield: 33% (0.6g).

¹**H NMR** (300 MHz, CDCl₃) δ 9.18 (t, J = 0.9 Hz, 1H), 2.39 (td, J = 7.0, 0.8 Hz, 2H), 1.64 (dt, J = 14.5, 7.3 Hz, 2H), 1.02 (t, J = 7.4 Hz, 3H).

5-Methylhex-2-ynal (2c)

Prepared according to general procedure, starting from 4methylpent-1-yne (1.4 mL, 10 mmol). Yelow liquid. Yield: 63% (0.7 g).

¹**H NMR** (300 MHz, CDCl₃) δ 9.19 (t, *J* = 0.8 Hz, 1H), 2.31 (dd, *J* = 6.5, 0.8 Hz, 2H), 1.93 (dt, *J* = 13.3, 6.6 Hz, 1H), 1.02 (d, *J* = 6.7 Hz, 7H).

5-Phenylpent-2-ynal (2d)

Prepared according to general procedure, starting from 4-phenyl-1-butyne (1.4 mL, 10 mmol). Yelow liquid. Yield: 89% (1.41 g).

¹H NMR (400 MHz, CDCl₃) δ 9.18 (t, J = 0.8 Hz, 1H), 7.37-7.24 (m, 5H), 2.94 (t, J = 7.4 Hz, 2H), 2.74 (dt, J = 7.4 Hz, J = 0.7 Hz, 2H).

3-Cyclohexylpropiolaldehyde (2e)¹²

CHO Prepared according to general procedure, starting from ethynylcyclohexane (1.3 mL, 10 mmol). Yelow liquid. Yield: 90% (1.22 g). Spectroscopic data were in agreement with those

previously reported.

¹**H NMR** (300 MHz, CDCl₃) δ 9.23 (d, *J* = 0.8 Hz, 1H), 2.70 – 2.55 (m, 1H), 1.96 – 1.83 (m, 2H), 1.83 – 1.67 (m, 2H), 1.56 (m, 3H), 1.48 – 1.23 (m, 3H).

3-(p-Methoxyphenyl)propiolaldehyde (2g)¹³

Prepared according to general procedure, starting from 1ethynyl-4-methoxybenzene (1.30 g, 10 mmol). The crude material was crystallized from hexane. Yield: 52% (0.83 g).

Colourless crystals. Spectroscopic data were in agreement with those previously reported.

¹**H NMR** (300 MHz, CDCl₃) δ 9.39 (s, 1H), 7.59 – 7.52 (m, 2H), 6.95 – 6.88 (m, 2H), 3.85 (s, 3H).

m-Clorofenilpropinal (2h)¹⁴

Prepared according to general procedure, starting from 1chloro-2-etinylbenzene (1.23 g, 10 mmol). The crude material was purified by flash column chromatography on

silica gel (eluting with hexane/ ethyl acetate 98/2) to give the title compound as a yellow oil. Yield: 56% (0.92 g).

¹H NMR (400 MHz, CDCl₃) δ: 9.48 (s, 1H), 7.65 (t, J = 1.6 Hz, 1H), 7.46 (m, 1H), 7.42 (m, 1H), 7.30 (dd, J = 11.7, 4.0 Hz, 1H).

¹² Y. -L. Shen, W. -T. Wu, Q. Liu, G. -L. Wu, L. -M. Wu. *J. Chem. Res.* **2006**, 545-546.

¹³ S. Ma, J. Liu, S. Li, B. Chen⁻ J. Cheng, J. Kuang, Y. Liu, B. Wan, Y. Wang, J. Ye, Q. Yu, W. Yuan, S. Yu, *Adv. Synth. Cat.* **2011**, *353*, 1005-1017.

¹⁴ C.R. Solorio-Alvarado, A. M. Echavarren, *J. Am. Chem. Soc.* **2010**, *13*2, 11881-11883.

4,4-Diethoxybut-2-ynal (2i)

Prepared according to general procedure, starting from propargyl aldehyde diethyl acetal (1.4 mL, 10 mmol) but the reaction mixture was treated pouring it slowly into a cold solution of 10% citric acid (15 mL) and then a solution of saturated NaHCO3 was added

dropwise until pH 6-7. Yield: 50% (0.78 g).

¹H NMR (400 MHz, CDCl₃) δ 9.30 (d, J = 0.5 Hz, 1H), 5.44 (s, 1H), 3.78 (dq, J = 7.1 Hz, J = 9.4 Hz, 2H), 3.66 (dq, J = 7.1 Hz, J = 9.4 Hz, 2H), 1.28 (t, J = 7.1 Hz, 6H).

6-Chlorohex-2-ynal (2j)

Prepared according to general procedure, starting from 5 chloro-1-pentyne (0.5mL, 5 mmol). Brown liquid. Yield: 56% (0.3g).

¹**H NMR** (300 MHz, CDCl₃) δ 9.18 (s, 1H), 3.66 (t, *J* = 6.2, 2H), 2.64 (t, *J* = 6.9, 2H), 2.18 – 1.96 (m, 2H).

3-(Thiophen-3-yl)propiolaldehyde (2k)

CI

Prepared according to general procedure, starting from 3ethynylthiophene (0.98mL, 10 mmol). Black oil. Yield: 45% (612.8 mg).

¹H NMR (300 MHz, CDCl₃) δ 9.40 (s, 1H), 7.82 (dd, J = 2.9, 1.1, 1H), 7.36 (dd, J = 5.0, 3.0, 1H), 7.24 (d, J = 1.1, 1H).

6-((4-methoxybenzyl)oxy)hex-2-ynal (2l)

Prepared according to general procedure, starting from 1methoxy-4-((pent-4-yn-1-yloxy)methyl)benzene¹⁵ (2g,10 mmol). Brown liquid. Yield: 56% (1.2g).

¹**H NMR** (300 MHz, CDCl₃) δ 9.19 (s, 0H), 7.29 (d, *J* = 8.7, 2H), 6.92 (d, *J* = 8.7, 2H), 4.48 (s, 2H), 3.84 (s, 3H), 3.57 (t, *J* = 5.9, 2H), 2.58 (t, *J* = 7.1, 2H), 1.96 – 1.86 (m, 2H).

¹⁵ K. Frimpong, J. Wzorek, C. Lawlor, K. Spencer, T. Mitzel *J. Org. Chem.* **2009**, *74*, 5861-5870.

0

3-(triisopropylsilyl)propiolaldehyde (2m)

Prepared according to general procedure, starting from triisopropyl(prop-1-yn-1-yl)silane (2.2mL, 10 mmol). Yellow liquid. [•]SiⁱPr₃ Yield: 73% (1.5g).

¹**H NMR** (300 MHz, CDCl₃) δ 9.23 (s, 0H), 1.13 (d, J = 5.5, 18H).

D) General Procedure for the Cross-Aldol reactions

To a solution of the amine catalyst (0.1 mmol, 20 mol %) in THF (0.5 mL) at -60 °C were successively added the corresponding donor aldehyde (0.6 mmol, 1.2 equiv.)¹⁶ the Brønsted acid (0.1 mmol, 20 mol %), Cul (0.05 mmol, 10 mol %) and the ynal (0.5 mmol, 1 equiv.). The resulting solution was stirred at -60 °C for 20 h, and the reaction product was isolated either as alcohol or as acetal following the procedures described below.

The diastereoselectivity of the process was determined by ¹H-NMR analysis of an aliquot by integration of the corresponding signals in the aldehyde region before reduction of the intermediate aldehyde adduct.¹⁷ The ratio of isomers does not change after reduction of the adduct at the indicated temperature.¹⁸ Finally this diastereomer ratio was also confirmed by HPLC analysis in the diol compound.

The corresponding racemic compounds were prepared according to this same procedure, but using rac-4 as the catalyst.

A) Isolation of the reaction product as alcohol: To the above mixture, a suspension of NaBH₄ (4.5 mmol, 8 equiv.) in EtOH (1 mL) was added drop-wise at -60°C, and after reaction completion (monitored by ¹H-NMR), typically (typically 30–60 min), the mixture was quenched with brine (4 mL), and allowed to reach room temperature. After extraction with CH_2Cl_2 (3 x 6 mL), the combined organic phases were washed with brine,

¹⁶ For the reactions with propanal a threefold excess of aldehyde was employed.

¹⁷ In some particular cases because of peak overlapping in the aldehyde region the dr was determined by integration of C<u>H</u>OH. ¹⁸ Partial epimerization has been observed when the reduction is performed at higher temperatures.

dried over MgSO₄, and concentrated under reduced pressure. The resulting crude was purified over silicagel by flash column chromatography to afford the expected adducts.

B) Isolation of the reaction product as dimethyl acetals: To the above mixture 4.5 mL of MeOH, trimethyl orthoformate (0.16 mL, 1.5 mmol) and *p*-toluenesulfonic acid (20.0 mg, 0.1 mmol, 20 mol%) were successively added at -60° C and the mixture was allowed to reach room temperature. After 2 h of stirring, the reaction was quenched with NaHCO₃ sat. (5 mL) and extracted with ethyl acetate (2 x 4 mL). The combined organic layers were washed with brine, dried over MgSO₄ and concentrated. The residue was purified by flash column chromatography on silica gel to afford the expected adducts.¹⁹

¹⁹ Procedure adapted from, T. Kano, Y. Yamaguchi, Y. Tanaka, K. Maruoka, Angew. Chem. Int. Ed. 2007, 46, 1738.

E) Reaction Scope

Tabla S1: Functionalized anti Propargylic Alcohols^a

Entry	R	Ŕ	Product	Yield % ^b	anti:syn ^c	ee% ^d
1	CH₂Ph	$(CH_2)_4CH_3$	8Aa	72	>20:1 (7.8:1)	99
2	CH ₂ Ph	$(CH_2)_2CH_3$	3Ab	68	16:1	99
3	CH₂Ph	(CH ₂) ₂ Ph	3Ad	75	19:1	94
4	CH₂Ph	$c - C_6 H_{11}$	3Ae	73	>20:1 (5.9:1) ^e	93
5	CH₂Ph	Ph	3Af	84	9:1	94
6	CH₂Ph	Ph	8Af	64	8.5:1	94
7	CH₂Ph	$4-OMeC_6H_4$	3Ag	55	10.2:1	92
8	CH₂Ph	3-CI C ₆ H ₄	3Ah	74	7.2:1	91
8	CH₂Ph	CH(OEt) ₂	3Ai	60	14:1	94
9	CH₂Ph	(CH ₂) ₃ Cl	3Aj	65	20:1	99
10	CH ₃	(CH ₂) ₂ Ph	3Bd	75	19:1	>99
11	CH ₃	Ph	3Bf	73	5:1	94
12	CH₃	res S	3Bk	50	9:1	99
13	CH₃	(CH ₂) ₃ OPMB	3Cl	71	9:1	99
14	CH(CH ₃) ₂	$(CH_2)_4CH_3$	3Ca	71	20:1	99
15	CH(CH ₃) ₂	Ph	8Cf	64	9:1	98
16	(CH ₂) ₂ CO ₂ ^t Bu	<i>c</i> -C ₆ H ₁₁	3De	69	>20:1(5.4:1) ^e	99
17	(CH ₂) ₄ NHBoc	(CH ₂) ₂ Ph	3Ed	71	13:1	95
18	$CH_2CH=CH_2$	$(CH_2)_2CH_3$	3Fb	50	>20:1	91
19	$CH_2CH=CH_2$	Ph	8Ff	84	18:1	94
21	$CH_2CH=CH_2$	Si ⁱ Pr₃	8Fm	70	20:1	99
21	(CH ₂) ₃ CH(OMe) ₂	Ph	8Gf	51	>20:1	99
22	2ª	CH ₂ CH(CH ₃) ₂	3Hc	61	>20:1(6:1) ^e	99

^aReactions conducted on a 0.5 mmol scale in 0.5 mL of THF (mol ratio **1/2/4**/BA/Cul, 1.5-1.2:1:0.2: 0.2:0.1.^b Combined yield of the *anti:syn* cross aldol mixture after chromatography. ^c Determined by ¹H-NMR and corroborated by HPLC; data in parentheses refer to reactions carried out with benzoic acid as the sole cocatalyst.^d Determined by chiral HPLC. ^e NO reactions unsing either CuCl or Cul as the sole calatyst.

(2S,3S)-2-Benzyldec-4-yne-1,3-diol (3Aa)

Prepared according to the General Procedure starting from hydrocinnamaldehyde 1A (0.2 mL, 1.5 mmol) and 2-octynal
2a (71 μL, 0.5 mmol). The title compound was obtained as a 9.8:1 mixture of *anti:syn* isomers. The crude material was

purified by flash column chromatography on silica gel (eluting with hexane/ ethyl acetate 80/20) to give the title compound as a colorless oil. Yield: 83 % (107 mg). $[\alpha]_D^{22}$ = -4.18 (*c*= 0.1, 93 % ee, CH₂Cl₂). ¹H NMR (300 MHz, CDCl₃) δ = 7.37 (s, 5H), 4.52 (d, *J*=9.1 Hz, 1H), 4.05 (d, *J*=3.2 Hz, 1H), 3.70 (dd, *J*=11.1, 5.6 Hz, 1H), 3.01 (dd, *J*=13.7, 6.2 Hz, 1H), 2.83 – 2.65 (m, 1H), 2.29 (dtd, *J*=9.1, 7.0, 2.0 Hz, 4H), 2.06 (dtd, *J*=14.6, 5.7, 3.2 Hz, 1H), 1.68 – 1.50 (m, 1H), 1.45 – 1.28 (m, 2H), 0.99 – 0.89 (m, 3H). ¹³C NMR (75 MHz, CDCl₃) δ = 140.3, 129.6, 128.8, 126.6, 77.8, 77.4, 77.0, 65.8, 63.7, 48.5, 34.5, 31.5, 30.7, 28.7, 22.6, 19.1, 14.3. MS (ESI, *m/z*): calcd for C₁₇H₂₄O₂ (M, H⁺), 261.1810; found, 265.1798.

The enantiomeric purity of the major diastereoisomer was determined by HPLC analysis (Daicel Chiralpak IC, hexane/isopropanol 95/5, flow rate= 1 mL/min, retention times: 35.5 min (min.) and 47.1 min (major)).

(2R,3S)-2-benzyl-1,1-dimethoxydec-4-yn-3-ol (8Aa)

Prepared according to the General Procedure starting from hydrocinnamaldehyde **1A** (0.2 mL, 1.5 mmol) and Ph (CH₂)₄CH₃ 2-octynal **2a** (71 μL, 0.5 mmol). The title compound was obtained as a 20:1 mixture of *anti:syn* isomers. The crude material was purified by flash column chromatography on silica gel (eluting with hexane/ethyl acetate 90:10) to give the title compound as colourless oil. Yield: 72 % (109 mg). $[\alpha]_D^{22}$ = 30.7 (*c*= 1, 99 % ee, CH₂Cl₂). ¹H NMR (300 MHz, CDCl₃) δ 7.37 – 7.16 (m, 6H), 4.55 (d, *J* = 3.9, 1H), 4.41 (dd, *J* = 7.7, 4.5, 1H), 3.47 – 3.44 (m, 3H), 3.41 (s, 4H), 2.93 – 2.79 (m, 2H), 2.21 (ddd, *J* = 9.4, 7.1, 2.9, 3H), 1.51 (dt, *J* = 14.0, 7.0, 2H), 1.44 – 1.28 (m, 5H), 0.89 (t, *J* = 7.1, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 140.4, 129.5, 128.6, 126.2, 107.1, 86.8, 80.3, 62.3, 56.4, 55.5, 48.6, 31.2, 28.5, 22.4, 18.9, 14.2. MS (ESI, *m/z*): calcd for C₁₉H₂₈O₃ (M,H⁺),304.4238; found (M-CH₃O),273.185. The enantiomeric purity of the major diastereoisomer was determined by HPLC analysis (Daicel Chiralpak IC, hexane/isopropanol 95/5, flow rate= 1 mL/min, retention times: 14.0 min (major.) and 31.6 min (min)).

(2S,3S)-2-benzyloct-4-yne-1,3-diol (3Ab)

Prepared according to the General Procedure starting from hydrocinnamaldehyde **1A** (0.2 mL, 1.5 mmol) and and 2-hexynal **2b** (48mg, 0.5 mmol). The title compound was obtained as a 20:1 mixture of *anti:syn* isomers. The crude material was purified by flash column chromatography on silica gel (eluting with hexane/ethyl acetate 90:10) to give the title compound as a colorless oil. Yield: 68 % (78 mg). $[\alpha]_D^{22}$ = 15.7 (*c*= 1, 99 % ee, CH₂Cl₂).¹H NMR (300 MHz, CDCl₃) δ 7.37 – 7.20 (m, 5H), 4.53 (t, *J* = 5.2 Hz, 1H), 4.10 – 3.98 (m, 1H), 3.71 (dt, *J* = 10.7, 5.3 Hz, 1H), 3.01 (dd, *J* = 13.7, 6.3 Hz, 1H), 2.80 – 2.69 (m, 1H), 2.26 (td, *J* = 7.0, 2.0 Hz, 2H), 2.16 – 2.02 (m, 2H), 1.64 – 1.55 (m, 4H), 1.08 – 0.98 (m, 3H). MS (ESI, *m/z*): calcd for C₁₅H₂₁O₂ (M,H⁺),233.1542; found (M-CH₃O), 233.1541.

The enantiomeric purity of the major diastereoisomer was determined by HPLC analysis (Daicel Chiralpak IC, hexane/isopropanol 95/5, flow rate= 1 mL/min, retention times: 23.0 min (major.) and 33.8 min (min)).

(2S,3S)-2-Benzyl-7-phenylhept-4-yne-1,3-diol (3Ad)

Prepared according to the General Procedure starting from hydrocinnamaldehyde **1A** (99 μ L, 0.75 mmol) and 5-phenylpent-2ynal **2d** (79 mg, 0.5 mmol). The title compound was obtained as a 19:1 mixture of *anti:syn* isomers. The crude material was purified

by flash column chromatography on silica gel (eluting with hexane/ ethyl acetate 80/20) to give the title compound as a colourless oil. Yield: 75% (111 mg). $[\alpha]_D^{23}$ = -4.38 (*c*=1, 94 % ee, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ = 7.35 – 7.22 (m, 5H), 4.48 (m, 1H), 3.94 (dd, *J*=10.8, 3.2 Hz, 1H), 3.61 (dd, *J*=10.8, 5.6 Hz, 1H), 3.12 (brs, 1H), 2.95 (dd, *J*=14.0, 6.0 Hz, 1H), 2.87 (t, *J*=7.4 Hz, 2H), 2.67 (dd, *J*=14.0, 9.0 Hz, 1H), 2.58 (dt, *J*=7.4, 2.0 Hz, 2H), 2.02 – 1.98 (m, 1H).¹³C NMR (100 MHz, CDCl₃) δ = 140.5, 139.9, 129.2, 128.5, 128.4, 126.4,

126.2, 86.1, 81.1, 65.2, 63.2, 47.9, 34.9, 34.0, 20.8. MS (ESI, m/z): calcd for C₂₀H₂₂O₂ (M, H⁺), 295.1610; found, 295.1615.

The enantiomeric purity of the major diastereoisomer was determined by HPLC analysis (Daicel Chiralpak AS-H hexane/isopropanol 90/10, flow rate= 1 mL/min, retention times: 20.7 min (major.) and 28.6 min (min.).

(2S,3S)-2-Benzyl-5-cyclohexylpent-4-yne-1,3-diol (3Ae)

The crude material was purified by flash column chromatography on silica gel (eluting with hexane/ ethyl acetate 90/10) to give the title compound as a colourless oil. Yield: 73% (100 mg). $[\alpha]_D^{24}$ = -4.6 (*c*=0.85, 93 % ee, CH₂Cl₂). ¹H NMR (300 MHz, CDCl₃) δ = 7.49 – 7.12 (m, 5H), 4.53 (td, *J*=5.0, 1.5 Hz, 1H), 4.10 – 3.97 (m, 1H), 3.70 (dt, *J*=10.8, 5.3 Hz, 1H), 3.01 (dd, *J*=13.7, 6.2 Hz, 1H), 2.74 (dd, *J*=13.7, 8.8 Hz, 1H), 2.60 (d, *J*=5.2 Hz, 1H), 2.47 (ddd, *J*=7.3, 5.3, 2.7 Hz, 1H), 2.30 (d, *J*=5.1 Hz, 1H), 2.06 (ddd, *J*=11.7, 5.8, 2.8 Hz, 1H), 1.89 – 1.25 (m, 10H).¹³C NMR (75 MHz, CDCl₃) δ = 139.9, 129.2, 128.5, 126.2, 91.3, 80.1, 65.3, 63.2, 48.2, 34.1, 32.6, 29.0, 25.8, 24.8. MS (ESI, *m/z*): calcd for C₁₈H₂₄O₂ (M, H⁺), 273.1810; found, 273.1814.

The enantiomeric purity of the major diastereoisomer was determined by HPLC analysis (Daicel Chiralpak IC hexane/isopropanol 90/10, flow rate= 1 mL/min, retention times: 18.9 min (min.) and 24.3 min (major.)).

(2S,3S)-2-Benzyl-5-phenylpent-4-yne-1,3-diol (3Af)

Prepared according to the General Procedure starting from hydrocinnamaldehyde **1A** (0.2 mL, 1.5 mmol) and phenylpropiolaldehyde **2f** (61 μ L, 0.5 mmol). The title compound was obtained as a 9:1 mixture of *anti:syn* isomers. The crude material was

purified by flash column chromatography on silica gel (eluting with hexane/ ethyl acetate 80/20) to give the title compound as a white solid. Yield: 84 % (112 mg). $[\alpha]_D^{25}$ = -

4.3 (*c*= 1, 94 % ee, CH₂Cl₂). M.p.: 82-85 °C. ¹H NMR (300 MHz, CDCl₃) δ = 7.60 – 7.11 (m, 10H), 4.76 (d, *J*=4.2 Hz, 1H), 4.15 (dd, *J*=11.0, 3.1 Hz, 1H), 3.78 (dd, *J*=11.0, 5.3 Hz, 1H), 3.10 (dd, *J*=13.8, 6.4 Hz, 1H), 2.84 (dd, *J*=13.8, 8.7 Hz, 1H), 2.25 – 2.13 (m, 1H). ¹³C NMR (75 MHz, CDCl₃) δ = 140.1, 132.1, 129.6, 128.9, 128.7, 126.7, 122.9, 89.5, 86.7, 65.9, 63.7, 48.3, 34.5. MS (ESI, *m/z*): calcd for C₁₈H₁₈O₂ (M, H⁺), 267.1340; found, 267.1319.

The enantiomeric purity of the major diastereoisomer was determined by HPLC analysis (Daicel Chiralpak AS-H hexane/isopropanol 90/10, flow rate= 1 mL/min, retention times: 14.1 min (major.) and 17.2 min (min)).

(3S,4R)-4-Benzyl-5,5-dimethoxy-1-phenylpent-1-yn-3-ol (8Af)

OMe OH Prepared according to the General Procedure starting from MeO hydrocinnamaldehyde 1A (0.2 mL, 1.5 mmol) and Ph phenylpropiolaldehyde **2f** (61 μ L, 0.5 mmol). The title compound was obtained as a 8.5:1 mixture of *anti:syn* isomers. The crude material was purified by flash column chromatography on silica gel (eluting with hexane/ ethyl acetate 90/10) to give the title compound as a yellow oil. Yield: 64 % (591 mg). $[\alpha]_D^{24}$ = 1.11 (*c*=1, 94% ee, CH₂Cl₂).). ¹H NMR (300 MHz, CDCl₃) δ 7.43 (dd, *J* = 6.7, 3.1 Hz, 1H), 7.35 - 7.20 (m, 8H), 4.69 - 4.64 (m, 1H), 4.64 - 4.62 (m, 1H), 3.49 (s, 3H), 3.46 (s, 3H), 2.95 (qd, J = 13.9, 7.2 Hz, 2H), 2.39 – 2.29 (m, 1H). ¹³C NMR (75 MHz, CDCl₃) δ 140.1, 131.8, 129.5, 129.2, 128.7, 128.5, 128.4, 126.4, 107.1, 89.4, 85.9, 62.5, 56.5, 55.7, 48.6, 31.2. MS (ESI, m/z): calcd for C₂₀H₂₂O₃ (M,H⁺), 310.3869; found 310.1568.

The enantiomeric purity of the major diastereoisomer was determined by HPLC analysis (Daicel Chiralpak IC hexane/isopropanol 98/2, flow rate= 0.5 mL/min, retention times: 30.9 min (min.) and 36.9 min (major)).

(2S,3S)-2-Benzyl-5-(4-methoxyphenyl) pent-4-yne-1,3-diol (3Ag)

Prepared according to the General Procedure starting from hydrocinnamaldehyde **1A** (0.2 mL, 1.5 mmol) and 3-(4methoxyphenyl) propiolaldehyde **2g** (80 mg, 0.5 mmol). The title compound was obtained as a 10.2:1 mixture of *anti:syn*

isomers. The crude material was purified by flash column chromatography on silica gel

(eluting with hexane/ ethyl acetate 90/10) to give the title compound as a white solid. M.p: 120-123 °C. Yield: 55 % (81 mg). $[\alpha]_D^{24}$ = -3.2 (*c*=0.80, 92 % ee, CH₂Cl₂). ¹H NMR (300 MHz, CDCl₃) δ 7.48 – 7.20 (m, 7H), 6.95 – 6.82 (m, 2H), 4.75 (t, *J* = 5.1 Hz, 1H), 4.14 (d, *J* = 10.9 Hz, 1H), 3.85 (s, 3H), 3.82 – 3.72 (m, 1H), 3.08 (dd, *J* = 13.8, 6.4 Hz, 1H), 2.83 (dd, *J* = 13.7, 8.7 Hz, 2H), 2.23 – 2.15 (m, 1H). ¹³C NMR (75 MHz, CDCl₃) δ 139.8, 133.2, 129.2, 128.5, 126.2, 114.5, 114.0, 87.7, 86.3, 65.6, 63.3, 55.3, 48.0, 34.1. MS (ESI, *m/z*): calcd for C₁₉H₂₀O₂ (M, H⁺), 297.1446; found, 297.1429.

The enantiomeric purity of the major diastereoisomer was determined by HPLC analysis (Daicel Chiralpak AS-H hexane/isopropanol 90/10, flow rate= 1 mL/min, retention times: 28.0 min (major.) and 31.1 min (min.)).

(2S,3S)-2-Benzyl-5-(4-chlorophenyl)pent-4-yne-1,3-diol (3Ah)

Prepared according to the General Procedure starting from hydrocinnamaldehyde **1A** (0.2 mL, 1.5 mmol) and mchlorophenylpropynal **2h** (72 mg, 0.5 mmol). The crude material was purified by flash column chromatography on silica gel (eluting with hexane/ EtOAc 90/10) to give the title

compound as a colourless oil. Yield: 74% (111 mg). $[\alpha]_D^{24}$ = -5.7 (c=0.82, 91% ee, CH₂Cl₂). ¹H NMR (300 MHz, CDCl₃) δ 7.36 – 7.20 (m, 9H), 4.75 (d, *J* = 5.2 Hz, 1H), 4.22 – 4.12 (m, 1H), 3.78 (dd, *J* = 11.0, 5.3 Hz, 1H), 3.08 (dd, *J* = 13.8, 6.5 Hz, 1H), 2.84 (dd, *J* = 14.0, 8.5 Hz, 1H), 2.23 – 2.13 (m, 1H).¹³C NMR (75 MHz, CDCl₃) δ 139.6, 134.1, 131.5, 129.8, 129.5, 129.1, 128.7, 128.5, 126.3, 124.2, 90.4, 84.7, 65.3, 63.2, 47.7, 34.1. MS (ESI, *m/z*): calcd for C₁₈H₁₇ClO₂ (M, H⁺), 302.0888; found, 302.0898.

The enantiomeric purity of the major diastereoisomer was determined by HPLC analysis (Daicel Chiralpak AS-H hexane/isopropanol 90/10, flow rate= 1 mL/min, retention times: 11.7min (mayor.) and 14.0min (min.)).

(2S,3S)-2-Benzyl-6,6-diethoxyhex-4-yne-1,3-diol (3Ai)

a 14:1 mixture of anti:syn isomers. The crude material was purified by flash column

chromatography on silica gel (eluting with hexane/ ethyl acetate 80/20) to give the title compound as a yellow oil. Yield: 60% (88 mg). $[\alpha]_D^{25}$ = -1,7 (*c*=1, 94 % ee, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ = 7.32 – 7.20 (m, 5H), 5.33 (d, *J*=1.2 Hz, 1H), 4.57 (d, *J*=4.9, 1H), 4.03 (dd, *J*=3.1, 11.0 Hz, 1H), 3.81-3.72 (m, 3H), 3.69-3.57 (m, 3H), 2.99 (dd, *J*=6.3, 13.7 Hz, 1H), 2.74 (dd, *J*=8.7, 13.7 Hz, 1H), 2.09 – 2.02 (m, 1H), 1.25 (t, *J*=7.1 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ = 139.6, 129.1, 128.4, 126.1, 91.2, 85.6, 81.1, 64.5, 62.7, 61.0, 47.4, 33.9, 14.9. MS (ESI, *m/z*): calcd for C₁₇H₂₄O₄ (M, H⁺), 293,1712; found, 293,1716.

The enantiomeric purity of the major diastereoisomer was determined by HPLC analysis (Phenomenex Lux 3μ Cellulose-4 hexane/isopropanol 93/7, flow rate= 1 mL/min, retention times: 35.8 min (min.) and 48.8 min (major.)).

(2S,3S)-2-Benzyl-8-chlorooct-4-yne-1,3-diol (3Aj)

CI

Prepared according to the General Procedure starting from hydrocinnamaldehyde **1A** (0.13 mL, 1 mmol) and 6-chlorohex-2-ynal **2j** (65.3 mg, 0.5 mmol). The title compound was

obtained as a 20:1 mixture of *anti:syn* isomers. The crude material was purified by flash column chromatography on silica gel (eluting with hexane/ ethyl acetate 80/20) to give the title compound as a colourless oil. Yield: 65% (85 mg). $[\alpha]_D^{25}$ = +-0.25 (*c*=1, 99 % *ee*, CH₂Cl₂). ¹H NMR (300 MHz, CDCl₃) δ 7.46 – 7.19 (m, 6H), 4.51 (s, 1H), 4.04 (d, *J* = 10.8, 1H), 3.67 (t, *J* = 6.3, 3H), 2.99 (dd, *J* = 13.7, 6.2, 2H), 2.73 (dd, *J* = 13.7, 8.7, 1H), 2.46 (td, *J* = 6.8, 1.9, 2H), 2.11 – 1.94 (m, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 139.9, 129.3, 128.6, 126.4, 85.0, 81.5, 65.4, 63.4, 48.0, 43.8, 34.2, 31.4, 16.3.MS (ESI, *m/z*): calcd for C₁₅H₁₉ClO₂ (M, H⁺), 266,76; found 266.75.

The enantiomeric purity of the major diastereoisomer was determined by HPLC analysis (Daicel Chiralpak AD-H hexane/isopropanol 98/2, flow rate= 1 mL/min, retention times: 100 min (mayor.) and 115 min (min.).

(2S,3S)-2-Methyl-7-phenylhept-4-yne-1,3-diol (3Bd)

Prepared according to the General Procedure starting from propionaldehyde **1B** (0.11 ml, 1.5 mmol) and 5-phenylpent-2-ynal **2d** (79 mg, 0.5 mmol). The title compound was obtained as a 19:1 mixture of *anti:syn* isomers. The crude material was purified by

flash column chromatography on silica gel (eluting with hexane/ ethyl acetate 80/20) to give the title compound as a colourless oil. Yield: 75% (82 mg). $[\alpha]_D^{25}$ = +3.7 (*c*=0.2, 99.8 % ee, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ = 7.34 – 7.21 (m, 5H), 4.36 (dt, *J*=6.9, 1.9 Hz, 1H), 3.76 (dd, *J*=11.0, 3.9 Hz, 1H), 3.60 (dd, *J*=11.0, 7.2 Hz, 1H), 2.86 (t, *J*=7.4 Hz, 2H), 2.56 (td, *J*=7.4, 1.9 Hz, 2H), 1.98 – 1.88 (m, 1H), 0.97 (d, *J*=7.0 Hz, 3H).¹³C NMR (100 MHz, CDCl₃) δ = 140.5, 128.5, 128.4, 126.3, 85.7, 80.8, 67.1, 66.5, 41.4, 35.0, 20.8, 13.0. MS (ESI, *m/z*): calcd for C₁₄H₁₈O₂ (M, H⁺), 219,1311; found, 219,1315.

The enantiomeric purity of the major diastereoisomer was determined by HPLC analysis (Daicel Chiralpak AY-H hexane/isopropanol 95/5, flow rate= 1 mL/min, retention times: 26.5 min (major.) and 35.4 min (minor.)).

(2S,3S)-2-Methyl-5-phenylpent-4-yne-1,3-diol (3Bf)

Prepared according to the General Procedure starting from propanal **1B** (0.11 mL, 1.5 mmol) and phenylpropiolaldehyde **2f** (61 μ L, 0.5 mmol). The title compound was obtained as a 5:1 mixture of *anti:syn* isomers. The crude material was purified by flash column chromatography on silica gel (eluting with hexane/ ethyl acetate 80/20) to give the title compound as a yellow oil. Yield: 73% (69 mg). $[\alpha]_D^{22}$ +4.09 (*c*= 0.25, 94 % ee, CH₂Cl₂). ¹H NMR (300 MHz, CDCl₃) δ = 7.54 - 7.28 (m, 5H), 4.67 (d, *J*=6.8 Hz, 1H), 3.94 (dd, *J*=10.9, 4.0 Hz, 1H), 3.76 (dd, *J*=10.9, 7.0 Hz, 1H), 2.20 - 2.07 (m, 1H), 1.14 (d, *J*=7.0 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ = 131.7, 128.4, 122.5, 88.0, 86.2, 66.9, 65.8, 40.4, 12.3. MS (ESI, *m/z*): calcd for C₁₂H₁₄O₂ (M, H⁺), 191.0994; found, 191.0986. The enantiomeric purity of the major diastereoisomer was determined by HPLC analysis (Daicel Chiralpak IC, hexane/isopropanol 90/10, flow rate= 1 mL/min, retention times: 13.7 min (min.) and 15.6 min (major)).

(2S,3S)-2-Methyl-5-(thiophen-3-yl)pent-4-yne-1,3-diol (3Bk)

Prepared according to the General Procedure starting from propanal **1B** (0.11 mL, 1.5 mmol) and 3-(thiophen-3yl)propiolaldehyde **2k** (52 mg , 0.5 mmol). The title compound was obtained as a 9:1 mixture of *anti:syn* isomers. The crude

material was purified by flash column chromatography on silica gel (eluting with hexane/ ethyl acetate 70/30) to give the title compound as a yellow oil. Yield: 50% (49mg). $[\alpha]_D^{25}$ = +6.5 (*c*=1, 99 % ee, CH₂Cl₂). ¹H NMR (300 MHz, CDCl₃) δ 7.49 (dd, *J* = 2.9, 1.0 Hz, 1H), 7.39 – 7.23 (m, 1H), 7.14 (dd, *J* = 5.0, 1.1 Hz, 1H), 4.65 (s, 1H), 3.96 – 3.91 (m, 1H), 3.80 – 3.70 (m, 1H), 2.72 (d, *J* = 3.9 Hz, 1H), 2.24 (m, 1H), 2.12 (ddd, *J* = 12.8, 6.4, 3.4 Hz, 1H), 1.12 (d, *J* = 7.0 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 128.8, 127.9, 124.3, 87.4, 66.4, 65.4, 63.4, 40.37, 24.2, 12.1. MS (ESI, *m/z*): calcd for C₁₀H₁₂O₂S (M, H⁺), 196.27; found 196.27.

The enantiomeric purity of the major diastereoisomer was determined by HPLC analysis (Daicel Chiralpak IC, hexane/isopropanol 93/7, flow rate= 1.2 mL/min, retention times: 31.9 min (min.) and 41.8 min (major)).

(2S,3S)-8-((4-Methoxybenzyl)oxy)-2-methyloct-4-yne-1,3-diol (3Bl)

Prepared according to the General Procedure starting from propanal **1B** (0.11 mL, 1.5 mmol) and 6-((4-methoxybenzyl)oxy)hex-2-ynal **2I** (116 mg, 0.5 mmol). The title compound was obtained as a 9:1 mixture of *anti:syn* isomers. The crude material was purified by flash column chromatography on silica gel (eluting with hexane/ ethyl acetate 70/30) to give the title compound as a yellow oil. Yield: 71% (101.1mg). $[\alpha]_D^{25}$ = +3.5 (*c*=1, 99 % ee, CH₂Cl₂).¹H NMR (300 MHz, CDCl₃) δ 7.26 (d, *J* = 8.7, 2H), 6.88 (d, *J* =

(t, J = 6.6, 2H), 0.98 (d, J = 7.0, 2H). ¹³C NMR (75 MHz, CDCl₃) δ 159.3, 130.6, 129.4, 113.9, 85.9, 80.5, 72.7, 68.5, 67.2, 66.6, 55.4, 41.6, 28.9, 15.7, 13.2. MS (ESI, *m/z*): calcd for C₁₇H₂₄O₄ (M, H⁺), 292.37; found 292.34.

The enantiomeric purity of the major diastereoisomer was determined by HPLC analysis (Daicel Chiralpak OD-H, hexane/isopropanol 95/5, flow rate= 0.75 mL/min, retention times: 46.3 min (min.) and 51.3 min (major)).

(2S,3S)-2-Isopropyldec-4-yne-1,3-diol (3Ca)

obtained as a 16:1 mixture of *anti:syn* isomers. The crude material was purified by flash column chromatography on silica gel (eluting with hexane/ ethyl acetate 80/20) to give the title compound as a colorless oil. Yield: 71% (82 mg). $[\alpha]_D^{22}$ = -4.18 (*c*= 0.1, 99 % *ee*, CH₂Cl₂). ¹H NMR (300 MHz, CDCl₃) δ 4.69 (t, *J* = 5.2 Hz, 1H), 4.15 (dt, *J* = 19.5, 8.8 Hz, 1H), 3.94 - 3.82 (m, 1H), 2.71 (d, *J* = 5.0 Hz, 1H), 2.43 (s, 1H), 2.26 (td, *J* = 7.1, 2.0 Hz, 2H), 1.49 - 1.32 (m, 6H), 1.07 (d, *J* = 6.8 Hz, 4H), 0.95 (dd, *J* = 14.8, 7.1 Hz, 6H). MS (ESI, *m/z*): calcd for C₁₃H₂₅O₂ (M,H⁺),213.1843; found (M-CH₃O), 213.1855.

For determination of the ee, this adduct was derivatized to the saturated monobenzoate ester as follow.

To a 5 mL flask charged with a solution of diol (51 mg, 0.24 mmol) in ethanol (2 mL) was added Pd/C (10% wt, 10 mg). The flask was filled with hydrogen gas and stirred for 16h at rt under hydrogen balloon. The mixture was filtered over celite pad and the filtrate was concentrated. Purification on a silica gel column (hexane/AcOEt, 80:20) provided 31mg of the corresponding saturated diol (31 mg, 0.15 mmol, 62% yield) as a pale yellow oil. ¹H NMR (300 MHz, CDCl₃) δ 4.02 – 3.81 (m, 3H), 3.81 – 3.69 (m, 1H),

2.01 (dq, *J* = 13.6, 6.8 Hz, 1H), 1.63 – 1.57 (m, 2H), 1.42 – 1.23 (m, 10H), 1.04 (d, *J* = 6.8 Hz Hz, 3H), 0.94 (qd, *J* = 6.8, 2.7 Hz, 6H). ¹³C NMR (75 MHz, CDCl₃) δ 77.00, 64.41, 52.98, 39.07, 34.60, 32.43, 32.07, 28.79, 28.59, 25.42, 24.11, 22.22, 16.85.

To a solution of the saturated diol (31 mg, 0.15 mmol) in 1.5 mL of $CH_2Cl_2 - 40$ °C was added pyridine (59 µL, 0.732 mmol) and benzoyl chloride (30 µL, 0.30 mmol) at. After stirring for 2 h, this solution was diluted with 10 mL of ethyl acetate, washed with 2 × 10 mL of 0.5 M HCl aqueous solution, dried over MgSO₄ and concentrated. Purification on a silica gel column (Hexanes/AcOEt, 10/1) provided 32 mg of the ester product (0.1 mmol, 67% yield).

The enantiomeric purity of the major diastereoisomer was determined by HPLC analysis (Daicel Chiralpak IC, hexaneethanol 98/2, flow rate= 1 mL/min, retention times: 15.6 min (major) and 17.6 min (min.)).

(3S,4R)-4-(Dimethoxymethyl)-5-methyl-1-phenylhex-1-yn-3-ol (8Cf)

Prepared according to the General Procedure starting from isovaleraldehyde **1C** (0.16 mL, 1.5 mmol) and phenylpropargyl aldehyde **2f** (0.61 mL, 0.5 mmol). The title compound was obtained as a 9:1 mixture of *anti:syn* isomers. The crude

material was purified by flash column chromatography on silica gel (eluting with hexane/ ethyl acetate 90/10) to give the title compound as a yellow oil. Yield: 58%. (133 mg) $[\alpha]_D^{24}$ = -100.3 (*c*=1, 98 % *ee*, CH₂Cl₂). ¹H NMR (300 MHz, CDCl₃) δ 7.44 (dd, *J* = 6.5, 3.1 Hz, 2H), 7.34 – 7.27 (m, 3H), 4.91 – 4.85 (m, 1H), 4.60 (d, *J* = 4.2 Hz, 1H), 3.61 (d, *J* = 4.5 Hz, 1H), 3.46 (d, *J* = 10.4 Hz, 6H), 2.55 – 2.53 (m, 0H), 2.30 – 2.18 (m, 1H), 1.96 (dt, *J* =

6.7, 4.2 Hz, 1H), 1.06 (dd, J = 11.3, 7.0 Hz, 7H). ¹³C NMR (75 MHz, CDCl₃) δ 131.8, 128.4, 106.9, 62.7, 55.9, 55.0, 51.3, 26.8, 21.4, 20.0. MS (ESI, m/z): calcd for C₁₆H₂₂O₃ (M, H⁺), 262.3441; found, 262.1578.

The enantiomeric purity of the major diastereoisomer was determined by HPLC analysis (Daicel Chiralpak IB, hexane/ethanol 95/5, flow rate= 1 mL/min, retention times: 6 min (min) and 7.2 min (major.)).

(4*S*,5*S*)-tert-Butyl-7-cyclohexyl-5-hydroxy-4-(hydroxymethyl)hept-6ynoate (3De)

Prepared according to the General Procedure starting from *tert*-Butyl-5-oxopentanoate **1D** (258.3 mg, 1.5 mmol) and 3cyclohexylpropiolaldehyde **2e** (136, 1 mmol). The title compound

 $O O^{t}Bu$ was obtained as a 20:1 mixture of *anti:syn* isomers. The crude material was purified by flash column chromatography on silica gel (eluting with hexane/ ethyl acetate 80/20) to give the title compound as a yellow oil. Yield: 52% (160 mg). [α]_D²²=-7.83 (*c*= 1,99% *ee*, CH₂Cl₂). ¹H NMR (300 MHz, CDCl₃) δ 4.45 (d, *J* = 3.3, 1H), 4.00 – 3.94 (m, 1H), 3.72 – 3.60 (m, 2H), 3.53 – 3.43 (m, 1H), 2.33 (t, *J* = 7.2, 3H), 1.86 – 1.63 (m, 9H), 1.42 (s, 12H). ¹³C NMR (75 MHz, CDCl₃) δ 173.6, 90.9, 80.7, 80.1, 65.5, 63.1, 45.9, 33.4, 32.7, 29.1, 28.2, 25.9, 24.9, 22.8.MS (ESI, *m/z*): calcd for C₁₈H₃₀O₄ (M,H⁺), 310.4284; found (M-C₄H₁₀O), 237.1491

For determination of the ee, this adduct was derivatized to the saturated monobenzoate ester as for adduct **3Ac.**

(4S,5R)-tert-Butyl 7-cyclohexyl-5-hydroxy-4-(hydroxymethyl)heptanoate.

Yield: Yellow oil. 85 % (63.9 mg) ¹H NMR (300 MHz, CDCl₃) δ 3.95 (dd, *J* = 11.4, 3.0, 1H), 3.66 – 3.58 (m, 2H), 2.33 (td, *J* = 7.1, 2.1, 2H), 1.81 (q, *J* = 7.2, 2H), 1.69 (s, 7H), 1.58 (d, *J* = 6.8, 3H), 1.45 (s, 9H), 1.24 (t, *J* = 7.0, 4H).

(S)-2-((R)-3-Cyclohexyl-1-hydroxypropyl)-7,7-dimethyl-5-oxooctyl benzoate

Purification on a silica gel column (Hexane/AcOEt 90:10) provided 57.2 mg of the product (0.15 mmol, 50% yield). ¹H NMR (300 MHz, CDCl₃) δ 8.03 (d, *J* = 7.1, 2H), 7.49 (dt, *J* = 15.1, 7.4, 3H), 4.45 (dd, *J* = 9.7, 4.7, 2H), 3.61 (dt, *J* = 8.5, 4.3, 1H), 2.47 – 2.29 (m, 2H), 1.95 – 1.76 (m, 3H), 1.76 – 1.48 (m, 12H), 1.45 (s, 9H), 1.29 – 1.12 (m, 6H), 0.97 – 0.77 (m, 3H).

The enantiomeric purity of the major diastereoisomer was determined by HPLC analysis (Daicel Chiralpak IC, hexane/ethanol 99/1, flow rate= 1 mL/min, retention times: 34.7 min (min.) and 40.6 min (major)).

(25,35)-2-(4-Boc-aminobutyl)-7-phenylhept-4-yne-1,3-diol (3Ed)

Prepared according to the General Procedure starting from 6-Boc-aminohexanal **1E** (140 mg, 0.65 mmol) and 5-phenylpent-2-ynal **2d** (79 mg, 0.5 mmol). The title compound was obtained as a 13:1 mixture of *anti:syn* isomers. The crude material was purified

by flash column chromatography on silica gel (eluting with hexane/ ethyl acetate 80/20) to give the title compound as a colourless oil. Yield: 71% (134 mg). $[\alpha]_D^{23}$ = -1.45 (*c*=0.94, 95 % ee, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ = 7.34 – 7.21 (m, 5H), 4.57 (brs, 1H), 4.45 (m, 1H), 3.98 (m, 1H), 3.68 – 3.62 (m, 1H), 3.22 – 3.08 (m, 2H), 2.95 (br, 1H), 2.86 (t, *J*= 7.6 Hz, 2H), 2.56 (dt, *J*=7.6, 2.0 Hz, 2H), 1.66 – 1.28 (m, 8H), 1.46 (s, 9H).¹³C NMR (100 MHz, CDCl₃) δ = 156.4, 140.6, 128.4, 128.3, 126.3, 85.4,

81.3, 79.3, 65.8, 63.3, 45.9, 39.9, 35.0, 30.3, 28.4, 26.9, 24.0, 20.8. MS (ESI, *m/z*): calcd for C₂₂H₃₃NO₄ (M, H⁺), 376.2410; found, 376.2414.

The enantiomeric purity of the major diastereoisomer was determined by HPLC analysis (Phenomenex Lux 3μ Cellulose-4, hexane/isopropanol 90/10, flow rate= 1.5 mL/min, retention times 33.6 min (min.) and 49.23min (mayor.).

(2S,3S)-2-Allyloct-4-yne-1,3-diol (3Fb)

Prepared according to the General Procedure starting from 4pentenal **1F** (0.6 mL, 0.6 mmol) and hex-2-ynal **2b** (96.1 mg, 0.5 mmol). The title compound was obtained as a 20:1 mixture of *anti:syn* isomers. The crude material was purified by flash column

chromatography on silica gel (eluting with hexane/ ethyl acetate 80/20) to give the title compound as a yellow oil. Yield: 50% (44.8 mg). ¹H NMR (300 MHz, CDCl₃) δ 5.83 (d, *J* = 7.5 Hz, 1H), 5.09 (t, *J* = 13.4 Hz, 2H), 4.49 (s, 1H), 3.97 (s, 1H), 3.71 (s, 1H), 2.45 (d, *J* = 5.4 Hz, 1H), 2.37 (s, 1H), 2.27 – 2.12 (m, 7H), 1.85 (s, 1H), 1.54 (dd, *J* = 14.4, 7.1 Hz, 4H), 1.30 (s, 2H), 1.05 – 0.95 (m, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 136.4, 136.2, 124.6, 117.0, 65.7, 63.9, 46.1, 32.6, 22.2, 20.8, 13.6. MS (ESI, *m/z*): calcd for C₁₁H₁₈O₂ (M,H⁺),183.1400; found,183.1385.

The enantiomeric purity of the major diastereoisomer was determined by chiral HPLC analysis of (4*S*,5*S*)-4-[((triphenylsilyl)oxy)methyl]dec-1-en-6-yn-5-ol prepared from **3Fb**.

Aduct **3Fb** (47.9 mg; 0.26 mmol) was solved in 1.3 mL of anhydrous CH_2Cl_2 and DMAP (0.31 mmol, 38.1 mg) and Ph_3ClSi (0.26 mmol, 76.7 mg) was added at 0 °C. The reaction mixture was allowed to stir at 0 °C for 3 h and then quenched by addition of H_2O (5 mL). The combined organic layers were washed successively with 0.1 M aqueous solution of HCl (10 mL) and sat. aqueous NaHCO₃ solution (10 mL), dried over MgSO₄, filtered and concentrated. Purification on a silica gel column (hexane/AcOEt, 90/10) provided 114 mg of the product (0.2 mmol, 80% yield). ¹H NMR (300 MHz, CDCl₃) δ 7.66 (dd, *J* = 7.8,

1.5 Hz, 6H), 7.46 (dq, J = 17.7, 7.0 Hz, 9H), 5.73 (d, J = 7.2 Hz, 1H), 5.00 (t, J = 12.5 Hz, 2H), 4.61 (s, 1H), 4.23 (d, J = 3.9 Hz, 1H), 3.84 (dd, J = 10.1, 5.3 Hz, 1H), 2.24 – 2.16 (m, 4H), 1.52 (dd, J = 14.5, 7.2 Hz, 2H), 0.98 (t, J = 7.3 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 136.7, 135.6, 133.8, 130.4, 128.1, 116.9, 86.9, 80.2, 65.1, 64.4, 46.1, 32.2, 29.9, 22.3, 20.9. $[\alpha]_D^{24} = + 34.5(c=0.1, 91\% ee, CH_2Cl_2).$

The enantiomeric purity of the major diastereoisomer was determined by HPLC analysis (Daicel Chiralpak IB hexane/isopropanol 99/1, flow rate= 1 mL/min, retention times: 7min (min.) and 16.9 min (major.)).

(3S, 4R)-4-(Dimethoxymethyl)-1-phenylhept-6-en-1-yn-3-ol (8Ff)

Prepared according to the General Procedure starting from 4pentenal **1F** (0.15 mL, 1.5 mmol) and phenyl propargyl aldehyde **2f** (0.61 mL, 0.5 mmol). The title compound was obtained as a 8:1 mixture of *anti:syn* isomers. The crude material was purified

by flash column chromatography on silica gel (eluting with hexane/ ethyl acetate 90/10) to give the title compound as a yellow oil. Yield: 84% (109 mg). $[\alpha]_D^{24}$ = -8.2 (*c*=1.05, 94 % *ee*, CH₂Cl₂). ¹H NMR (300 MHz, CDCl₃) δ 7.51 – 7.31 (m, 5H), 5.94 (ddt, *J* = 17.2, 10.1, 7.2 Hz, 1H), 5.27 – 5.07 (m, 2H), 4.80 (d, *J* = 5.9 Hz, 1H), 4.64 (d, *J* = 4.9 Hz, 1H), 3.50 (s, 3H), 3.49 (s, 3H), 2.55 – 2.37 (m, 2H), 2.20 (ddd, *J* = 10.7, 7.4, 5.7 Hz, 1H). ¹³C NMR (75 MHz, CDCl₃) δ 136.5, 131.6, 128.3, 128.2, 122.4, 117.0, 106.7, 88.9, 85.7, 63.0, 55.9, 54.8, 46.3, 30.3. MS (ESI, *m/z*): calcd for C₁₆H₂₀O₃ (M, H⁺), 261.1446; found, 261.1440.

The enantiomeric purity of the major diastereoisomer was determined by HPLC analysis (Daicel Chiralpak AD-H hexane/isopropanol 95/5, flow rate= 1 mL/min, retention times: 19.8 min (min.) and 22.0 min (major.)).

(3S,4R)-4-(dimethoxymethyl)-1-(triisopropylsilyl)hept-6-en-1-yn-3-ol (8Fm)

 $\begin{array}{c} \mbox{OMe QH} \\ \mbox{MeO} \end{array} \begin{array}{c} \mbox{Prepared according to the General Procedure starting from 4-} \\ \mbox{pentenal } \mbox{IF} (74 \ \mu\text{L}, \ 0.75 \ \text{mmol}) \ \mbox{and } 3- \\ \mbox{(triisopropylsilyl)propiolaldehyde } \mbox{2m} (105.6 \ \text{mg}, \ 0.5 \ \text{mmol}). \end{array}$

The title compound was obtained as a 20:1 mixture of *anti:syn* isomers. The crude material was purified by flash column chromatography on silica gel (eluting with hexane/ ethyl acetate 95/5) to give the title compound as a yellow oil. Yellow oil. Yield:55% (53.4mg). $[\alpha]_D^{25}$ = +11.9 (*c*=11, 99 % ee, CH₂Cl₂).¹H NMR (500 MHz, CDCl₃) δ 5.90 (d, *J* = 7.6, 1H), 5.17 (d, *J* = 17.0, 1H), 5.08 (d, *J* = 10.0, 1H), 4.64 (d, *J* = 4.8, 1H), 4.62 – 4.55 (m, 1H), 3.45 (d, *J* = 1.4, 6H), 2.41 (d, *J* = 7.4, 2H), 2.07 (s, 1H), 1.11 (s, 18H). ¹³C NMR (126 MHz, CDCl₃) δ 136.9, 117.2, 107.6, 106.8, 63.1, 56.2, 54.9, 46.3, 29.7, 18.8, 11.4. MS (ESI, *m/z*): calcd for C₁₉H₂₈O₃ (M,H⁺),340.57; found (M-2CH₃O),177.1306.

The enantiomeric purity of the major diastereoisomer was determined by chiral HPLC analysis of (((3S,4R)-4-(dimethoxymethyl)-1-(triisopropylsilyl)hept-6-en-1-yn-3-yl)oxy)triphenylsilane prepared from **8Fm**.

Adduct **8Fm** (121 mg; 0.3 mmol) was solved in 1.5 mL of anhydrous CH_2Cl_2 and DMAP (0.45 mmol, 55 mg) and Ph₃ClSi (0.45 mmol, 132.7 mg) was added at rt. The reaction mixture was allowed to stir at rt for 3 h and then quenched by addition of H₂O (5 mL). The combined organic layers were washed successively with 0.1 M aqueous solution of HCl (10 mL) and sat. aqueous NaHCO₃ solution (10 mL), dried over MgSO₄, filtered and concentrated. Purification triturated with ethanol provided 134 mg of the product (0.22 mmol, 75% yield). ¹H NMR (300 MHz, CDCl₃) δ 7.74 – 7.59 (m, 5H), 7.38 (dt, *J* = 13.9, 6.8, 10H), 6.16 – 5.95 (m, 1H), 5.11 – 4.88 (m, 2H), 4.75 (d, *J* = 4.5, 1H), 4.35 (d, *J* = 7.5, 1H), 3.21 (s, 3H), 3.10 (s, 3H), 2.64 (dd, *J* = 14.0, 7.4, 1H), 2.35 (dd, *J* = 13.6, 7.0, 1H), 2.10 – 1.98 (m, 1H), 1.15 – 1.08 (m, 3H), 1.09 – 0.99 (m, 18H). ¹³C NMR (75 MHz, CDCl₃) δ 138.7, 135.8, 134.3, 130.1, 127.9, 115.0, 106.7, 105.9, 64.8, 53.8, 47.7, 30.7, 18.8, 11.4.

The enantiomeric purity of the major diastereoisomer was determined by HPLC analysis (Daicel Chiralpak AY-H, hexane/isopropanol 98/2, flow rate= 0.5 mL/min, retention times: 4.9 min (major.) and 15 min (min.)).

(3S,4R)-4-(Dimethoxymethyl)-8,8-dimethoxy-1-phenyloct-1-yn-3-ol (8Gf)

Prepared according to the General Procedure starting from OMe OH 6,6-dimethoxyhexanal 1G (0.17 mL, 1.5 mmol) and phenyl MeO propargyl aldehyde 2f (0.61 mL, 0.5 mmol). The title compound was obtained as a 16:1 mixture of *anti:syn* isomers. OMe material was purified by flash column ÓMe The crude chromatography on silica gel (eluting with hexane/ ethyl acetate 80/20) to give the title compound as a colorless oil. Yield: 51% (82 mg). $[\alpha]_{D}^{22}$ -6.18 (*c*= 0.1, 99 % *ee*, CH_2Cl_2). ¹H NMR (300 MHz, CDCl₃) δ 7.59 – 7.32 (m, 4H), 4.78 (t, J = 5.9 Hz, 1H), 4.67 (d, J = 4.5 Hz, 1H), 4.41 (t, J = 5.4 Hz, 1H), 3.54 (t, J = 3.0 Hz, 1H), 3.50 (d, J = 1.4 Hz, 1H), 3.40 – 3.30 (m, 6H), 2.07 (dd, J = 7.4, 3.0 Hz, 1H), 1.80 – 1.46 (m, 6H). ¹³C NMR (75 MHz, CDCl₃) δ 131.6, 128.3, 122.7, 107.2, 104.4, 89.3, 85.3, 63.0, 56.3, 55.2, 52.7, 46.2, 32.7, 24.9, 22.5.

The enantiomeric purity of the major diastereoisomer was determined by HPLC analysis (Daicel Chiralpak IC, hexane/isopropanol 90/10, flow rate= 1 mL/min, retention times: 23.1 min (min.) and 25.7 min (major)).

(E)-2-(4-(3,5-Dimethylphenoxy)-2-methylbut-2-en-1-yl)-7-methyloct-4yne-1,3-diol (3Hc)

Prepared according to the General Procedure starting from (*E*)-6-(3,5-dimethylphenoxy)-4-methylhex-4-enal **1H** (139.4 mg, 0.6 mmol) and 5-methylhex-2-ynal **2c** (55 mg, 0.5 mmol). The title compound was obtained as a 20:1 mixture of *anti:syn* isomers. The crude material was purified by flash column chromatography on silica gel (eluting with hexane/ ethyl acetate 80/20) to give

the title compound as a yellow oil. Yield: 61% (103.3 mg) $[\alpha]_D^{24}$ = 6.5 (*c*=1, 99% *ee*, CH₂Cl₂)¹H-NMR (300 MHz, CDCl3) δ 6.60 (s, 1H), 6.53 (s, 2H), 5.58 (s, 1H), 4.51 (d, *J* = 6.4 Hz, 3H), 3.93 (s, 1H), 3.67 (d, *J* = 5.6 Hz, 1H), 2.42 (s, 2H), 2.28 (s, 5H), 2.13 (dd, *J* = 6.5, 2.0 Hz, 3H), 1.97 (s, 1H), 1.88 – 1.79 (m, 1H), 1.76 (s, 2H), 0.98 (d, *J* = 6.6 Hz, 5H). ¹³C NMR (75 MHz, CDCl₃) δ 158.9, 139.3, 138.8, 136.2, 122.7, 112.6, 86.0, 81.1, 65.7, 64.6,

63.7, 44.2, 38.1, 28.1, 28.0, 22.1, 21., 16.6. MS (ESI, *m*/*z*): calcd for C₂₂H₃₂O₃ (M,H⁺), 344.4877; found (M-H₂O), 327.2324

The enantiomeric purity of the major diastereoisomer was determined by HPLC analysis (Daicel Chiralpak AD-H, hexane/isopropanol 97/3, flow rate= 1 mL/min, retention times: 31.1 min (min.) and 36.6 min (major)).

F) Reduction of propargylic aldol adducts

F.1) Hydrogenation of aldol adducts 3Ae, 3Bf, 3Ca and 4De

To a solution of **3Ae**, **3Bf**, **3Ca** or **3De** in EtOH (2 mL) was added 20 wt% Pd/C (60 mg). The reaction mixture was stirred at room temperature under H_2 atmosphere overnight, then filtered through Celite[®] and concentrated under vacuum.

(2S,3R)-2-Benzyl-5-cyclohexylpentane-1,3-diol (12)

Prepared according to the General Procedure starting from **3Ae**. The title compound was obtained as white solid. Yield: 83% (0.41 mmol, 114 mg). $[\alpha]_D^{20} = +13.1$ (*c*=1, 93 % *ee*, CH₂Cl₂). ¹H NMR (300 MHz, CDCl₃) $\delta = 7.68 - 7.39$ (m, 5H), 4.19 (dd, *J*=11.0, 2.9 Hz, 1H), 4.04-3.91 (m, 1H), 3.86 (dd, *J*=11.0, 4.6 Hz, 1H), 3.21 - 2.85 (m, 4H), 2.07 - 1.00 (m, 14H). ¹³C NMR (75 MHz, CDCl₃) $\delta = 140.4$, 129.1, 129.0, 128.4, 126.0, 75.3, 62.8, 45.9, 37.7, 35.2, 33.5, 33.4, 33.3, 33.0, 30.3, 26.6, 26.3.

(2S,3R)-2-Methyl-5-phenylpentane-1,3-diol (13)

 $\begin{array}{c} \mbox{Prepared according to the General Procedure starting from$ **3Bf** $. The title compound was obtained as a colorless oil. Yield: 83% (0.41 mmol, 80.5 mg). [<math>\alpha$]_D²⁰ = +4.15 (*c*=0.25, CH₂Cl₂)¹H NMR (300 MHz, CDCl₃) δ = 7.51 - 7.05 (m, 4H), 3.84 (dd, *J*=10.8, 3.8 Hz, 1H), 3.67 (dd, *J*=10.8, 7.1 Hz, 1H), 3.00 - 2.82 (m, 1H), 2.82 - 2.70 (m, 1H), 2.02 - 1.71 (m, 3H), 0.94 (d, *J*=7.0 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ = 142.5, 128.8, 126.3, 77.0, 68.0, 40.4, 37.5, 32.1, 14.2.

(2S,3R)-2-isopropyldecane-1,3-diol (14)

For the detailed experimental procedure and characterization data of **14**, see page S25.

(4S,5R)-tert-butyl 7-cyclohexyl-5-hydroxy-4-(hydroxymethyl)heptanoate (15)

For the detailed experimental procedure and characterization data of **15**, see page S27.

F.2) Partial reduction of 8Aa, 8Af, 8Ff.

A solution of sodium bis(2-methoxyethoxy)aluminium hydride (Red-Al) (3.60 mL, 1.2 mmol, 65% in toluene) was added dropwise to a solution of **8Aa**, **8Af** or **8Ff** (0.8 mmol) in diethyl ether (2 mL) at 0 °C. The reaction mixture was allowed to stir for 12 h at room temperature. An aqueous solution of saturated potassium sodium tartrate (4 mL) was slowly added at 0 °C to quench the reaction and then the whole mixture was extracted twice with diethyl ether (2 x 2mL). The combined organic extracts were washed with brine (5 mL) and dried over MgSO₄ and evaporated under reduced pressure to give the desired compound, which was not further purified.

(2R,3R,E)-2-Benzyl-1,1-dimethoxydec-4-en-3-ol (16)

OMe OH
MeOPrepared according to the General Procedure starting from
8Aa (1 mmol). The title compound was obtained as yellow oil.
Yield: 88% (0.88 mmol, 270.7 mg). ¹H NMR (300 MHz, CDCl₃) δ 7.32 - 7.15 (m, 6H), 5.74 - 5.63 (m, 1H), 5.44 (dd, J = 15.3, 6.8 Hz, 1H), 4.28 (d, J = 3.4 Hz,
1H), 4.16 (dd, J = 11.6, 6.1 Hz, 1H), 3.46 (d, J = 4.7 Hz, 1H), 3.44 (s, 3H), 3.35 (s, 3H), 2.71
(qd, J = 13.9, 7.2 Hz, 2H), 2.12 - 1.98 (m, 3H), 1.41 - 1.24 (m, 7H), 0.87 (t, J = 6.8 Hz, 3H).
¹³C NMR (75 MHz, CDCl₃) δ 140.8, 133.0, 131.6, 129.4, 128.5, 126.1, 107.6, 72.3, 56.6,
55.6, 48.1, 32.4, 32.3, 31.6, 29.0, 22.7, 14.2.

(3R,4R,E)-4-Benzyl-5,5-dimethoxy-1-phenylpent-1-en-3-ol (17)

Prepared according to the General Procedure starting from **8Af** MeO Ph (1.5 mmol). The title compound was obtained as yellow oil. Yield: 98 % (1.4 mmol, 464 mg). ¹H NMR (300 MHz, CDCl₃) δ 7.38 – 7.16 (m, 12H), 6.63 (d, J = 15.9 Hz, 1H), 6.20 (dd, J = 15.9, 6.2 Hz, 1H), 4.37 (d, J = 6.3 Hz, 1H), 4.34 (d, *J* = 3.4 Hz, 1H), 3.59 (d, *J* = 5.3 Hz, 1H), 3.46 (s, 3H), 3.39 (s, 3H), 2.83 – 2.77 (m, 2H), 2.20 (s, 1H). ¹³C NMR (75 MHz, CDCl₃) δ 131.7, 130.7, 129.4, 128.71, 127.6, 126.6, 126.2, 107.5, 72.0, 56.8, 55.8, 48.5, 32.1.

(3R,4R,E)-4-(Dimethoxymethyl)-1-phenylhepta-1,6-dien-3-ol (18)

Prepared according to the General Procedure starting from **8Ff** (0.8 mmol). The title compound was obtained as yellow oil. Yield: 98 % (1.4 mmol, 464 mg). Yield: 82% (172mg) ¹H NMR (300 MHz, CDCl₃) δ = 7.51 – 7.19 (m, 6H), 6.64 (s, 1H), 6.30 (d,

J=6.7 Hz, 1H), 5.95 – 5.78 (m, 1H), 5.20 – 5.05 (m, 3H), 4.49 (d, J=4.5 Hz, 1H), 3.50 (s, 2H), 3.46 (s, 3H), 2.33 – 2.22 (m, 2H), 2.07 – 1.97 (m, 1H). ¹³C NMR (75 MHz, CDCl₃) δ = 136.5, 131.1, 130.9, 128.5, 127.5, 126.5, 116.8, 107.3, 72.6, 56.2, 54.8, 54.8, 46.2, 30.9.

G) Elaboration of Propargylic Alcohols

The present direct cross aldol approach also enables rapid acces to a variety of optically active structural motifs with at least two contigous stereogenic centers, thereby complementing previous catalyst-controlled asymmetric entries to propargylic alcohols, such as the reduction of ynones, te alkynylation of carbonyls or the 1,2-addition of organometallic reagents,²⁰ methods that generally provide a sole new stereocenter.

²⁰ a) Cozzi, P. G.; Hilgraf, R.; Zimmermann, N. *Eur. J. Org. Chem* **2004**, 4095-4105. b) Pu, L. *Tetrahedron* **2003**, *59*, 9873-9886. c) Lu, G; Li, Y.M, X. S. Li, A.S. C. Chan *Coord. Chem. Rev.* **2005**, *249*, 1736-1744.
G.1) Diiodination of adduct 3Af

To a solution of **3Af** (1 mmol, 266 mg) in CH₂Cl₂ (3 mL) were added HBF₄ (2 mmol, 0.56 ml, 48 wt % solution in H₂O) and commercially available IPy₂BF₄ (1 mmol, 372 mg) at room temperature. After stirring for 3 h, the solution was quenched with water (6 mL), extracted with CH₂Cl₂ (2 x 3mL), washed with sodium thiosulfate (5 % aqueous solution, 5 mL), dried over MgSO₄, and evaporated under reduced pressure. The crude material revealed the presence of two compounds. The first one was the starting material (43%) and the second one was identified as compound **19** by ¹H-NMR spectroscopy and X-Ray analysis. The substances were separated by flash column chromatography on silica gel (eluting with hexane/Ethyl acetate, 80:20) and compound **19** was finally crystallized from hexane/CH₂Cl₂. Yield: 53% .¹H NMR (300 MHz, CDCl₃) δ 7.52 – 7.04 (m, 9H), 4.49 (d, *J* = 8.4 Hz, 1H), 3.98 (dd, *J* = 11.0, 2.8 Hz, 1H), 3.79 (dd, *J* = 11.0, 5.9 Hz, 1H), 2.84 (d, *J* = 4.0 Hz, 1H), 2.64 (dd, *J* = 13.6, 11.1 Hz, 1H), 2.44 (m, 1H). ¹³C NMR (75 MHz, CDCl₃) δ 147.6, 139.3, 129.2, 128.5, 128.0, 126.4, 112.5, 96.8, 83.6, 62.3, 48.2, 33.7. M.p.:170-179°C

G.2) Intramolecular hydroamination of aldol adduct 8Cf.

General procedure for the synthesis of adducts 20a and 20b²¹

Step 1:

To a solution of **8Cf** (1.7 mmol) in CH₂Cl₂ (1.9mL) toluenesulfonyl isocyanate (1.7 mmol) was added. After stirring the resulting solution for 20 h at room temperature the solvent was removed. The crude material was purified by flash column chromatography on silica gel (eluting with hexane/ ethyl acetate 70:30) to give compound N-tosyl carbamate product as a white solid. Yield: 78 % ¹H-NMR (300 MHz, CDCl₃) δ 7.95 (d, *J* = 8.4 Hz, 2H), 7.53 (s, 1H), 7.41 – 7.18 (m, 8H), 5.78 (d, *J* = 5.2 Hz, 1H), 4.46 (d, *J* = 6.6 Hz, 1H), 3.34 (d, *J* = 2.7 Hz, 7H), 2.39 (s, 3H), 2.22 – 2.09 (m, 1H), 2.10 – 2.02 (m, 1H), 1.05 (dd, *J* = 10.1, 7.0 Hz, 8H). ¹³C NMR (75 MHz, CDCl₃) δ 149.3, 145.0, 131.7, 129.5, 128.7, 128.4, 128.2, 104.1, 84.6, 67.2, 54.1, 54.0, 49.0, 26.0, 21.7, 21.5, 19.8.

²¹ Adapted from: a) Tamaru, Y; Kimura, M; Tanaka, S; Kura, S. Yoshida, Z. *Bull. Chem. Soc. Jpn.* 1994, *67*, 2838-2849
b) Ohe, K.; Ishihara, T.; Chatani, Y. K.; Murai, S. *J. Org. Chem.* **1991**, *56*, 2267-2268.

Step 2²²:

To a stirred solution of (3S,4R)-4-(dimethoxymethyl)-5-methyl-1-phenylhex-1-yn-3-yl tosylcarbamate (0.46 mmol, 212 mg), in CH_2Cl_2 (0.5 ml) was added AgOAc (100 mol%, 76.8 mg). The reaction mixture was stirred for 48h at 65 °C and then filtered through a pad of celite with a washing with 10 ml of CH_2Cl_2 . After removal of filtrate solvent in vacuum the residue was purified by silica gel flash column chromatography on silica gel (eluting with hexane/ethyl acetate 95:5) to afford pure compounds **20'** as white oil (10 %) and **20** as white oil (87 %).

(*R*)-6-((*R*)-1,1-Dimethoxy-3-methylbutan-2-yl)-4-phenyl-3,6-dihydro-2H-1,3-oxazin-2one (20')

6.7, 1H), 0.94 (dd, J = 9.7, 6.9, 7H). ¹³C NMR (75 MHz, CDCl₃) δ 192.0, 145.8 138.7, 132.6, 128.4, 128.3, 126.7, 105.9, 54.1, 53.9, 46.0, 28.9, 21.0, 19.0. MS (ESI, m/z):calcd for C₁₇H₂₃NO₄ (M,H⁺), 305,3688; found, (M- Ph): 231.1385.

(S,Z)-4-Benzylidene-5-((R)-1,1-dimethoxy-3-methylbutan-2-yl)oxazolidin-2-one (20)

 $\begin{array}{c} O \\ MeO \\ MeO \\ Ph \end{array} \begin{array}{c} O \\ NH \\ MeO \\ Ph \end{array} \begin{array}{c} O \\ NH \\ MeO \\ Ph \end{array} \begin{array}{c} O \\ NH \\ MeO \\ Ph \end{array} \begin{array}{c} O \\ NH \\ NMR (300 \text{ MHz, CDCl}_3) \text{ } \delta \text{ } 7.93 (dd, J = 8.3, 1.4 \text{ Hz, 2H}), \text{ } 7.51 \\ (dq, J = 8.5, 7.1 \text{ Hz, 3H}), 6.96 - 6.80 (m, 2H), 4.48 (d, J = 7.0 \end{array}$

²² Adapted from: Vasudev, R.; Looper, R. E. J. Am. Chem. Soc. 2011, 133, 20172-20174.

Hz, 1H), 3.37 (d, J = 8.5 Hz, 6H), 2.48 (dd, J = 12.6, 8.1 Hz, 1H), 2.13 – 2.00 (m, 1H), 0.93 (dd, J = 17.6, 6.9 Hz, 8H). ¹³C NMR (75 MHz, CDCl₃) δ 190.5, 146.1, 138.0, 132.5, 128.7, 128.6, 128.4, 104.8, 77.4, 77.0, 76.5, 54.0, 53.5, 52.0, 28.1, 21.5, 18.1. MS (ESI, m/z):calcd for C₁₇H₂₃NO₄ (M,H⁺), 305,3688; found, (M- Ph): 231.1385.

G.3) Intramolecular hydroalkoxylation of adduct 3Af²³

To a stirred mixture of **3Af** (266 mg, 1 mmol) and H₂O (54mg, 3 mmol) in MeCN (3.3 mL), was added a solution of Hg(OTf)₂ (0.1M MeCN soln, 0.1 mL, 0.01 mmol) at 0⁰C, and the mixture was stirred for 1 hour at the same temperatura. After addition of Et₃N (15 μ L) and then brine (3 mL), the organic materials were extrated with Et₂O. Dried and concentrated extract was subjeted to a column chromatography on SiO₂ using hexane and EtOAc (2:1) as an eluent to give the compound **21** (173.1 mg, 65% yield) as a colerless oil. ¹H NMR (300 MHz, CDCl3) δ 7.65 – 7.59 (m, 1H), 7.41 – 7.29 (m, 10H), 5.50 (s, 1H), 5.49 – 5.47 (m, 0H), 4.59 (s, 1H), 4.36 (dd, *J* = 8.4, 6.9 Hz, 1H), 4.24 (t, *J* = 8.7 Hz, 1H), 3.07 (dd, *J* = 13.5, 7.4 Hz, 1H), 2.79 – 2.67 (m, 2H), 2.62 (dd, *J* = 8.2, 6.1 Hz, 1H). ¹³C NMR (75 MHz, CDCl₃) δ 151.5, 140.6, 136.2, 129.1, 128.8, 128.3, 127.8, 126.1, 124.9, 97.0, 74.7, 64.1, 62.6, 59.7, 45.1, 35.1. MS (ESI, m/z):calcd for C₁₈H₁₉O₂ (M,H⁺), 267.1385; found: 267.1382.

A small amount (28.4 mg, 10% yield) of hydrated side product was also obtained.

²³ Nishizawa, M.; Takemoto, T.; Sasaki, I.; Nakano, M; Ho, E.; Namba, K.; Yamamoto, H.; Imagawa, H. Synlett **2009**, 1175-1179.

G.4) Intramolecular cycloaddition reaction²⁴

Alter silylation of **8Ff** with TBS-Cl and DMAP system under standard conditions, to a solution of TBS ether (134mg, 0.36 mmol, 1 equiv) in DCM (1 mL) at room temperature was added $Co_2(CO)_8$ (1 equiv) and was stirred for 30 min. Then the TMANO (3 equiv) was added at -10°C and the mixture was allowed to warm to room temperatura and stirred at room temperature until the starting material disappeared (4-16 hours) at which time usually purple precipitate had formed. The mixture was passed though a small plug of silica gel and the filtrate was concentrated in vacuo and purifield by silica gel chromatography to give the exo product (53 %), and endo product (14 %).¹H NMR (300 MHz, CDCl₃) δ 7.60 – 7.34 (m, 6H), 4.86 (s, 1H), 4.15 (t, *J* = 7.6 Hz, 1H), 3.37 (s, 3H), 3.35 (s, 3H), 2.96 – 2.80 (m, 1H), 2.76 – 2.62 (m, 1H), 2.47 – 2.36 (m, 1H), 2.35 – 2.16 (m, 2H), 1.21 – 1.03 (m, 1H), 0.91 (s, 9H), 0.09 (s, 3H), 0.03 (s, 3H).¹³C NMR (75 MHz, CDCl₃) δ 208.9, 179.9, 134.6, 131.3, 128.7, 128.4, 106.2, 70.3, 54.9, 53.6, 42.6, 40.3, 30.9, 25.7, -4.0, -5.0. MS (ESI, m/z):calcd for C₂₃H₃₅O₄Si (M,H⁺), 403,2289; found: 403.2305.

 ²⁴ a) Turlington, M.; Yue, Y.; Yu, X.-Q.; Pu, L. *J. Org. Chem.* 2010, *75*, 6941-6952. b) Mukai, C.; Sonobe, H.;
 Kim, J. S. ; Hanaoka, M. *J.Org. Chem.* 2000, *65*, 6654-6659.

H) Cross-aldol reaction of aliphatic aldehydes with aromatic aldehydes

Table S2

0 └─── + R 1.2eq	O F 1eq	a) 4 (20 PhCO Cul (1 THF (b) NaBH	<i>i</i> Bu <i>i</i> Bu <i>i</i> Bu OSiPh ₃ a) 4 (20 mol%) PhCOOH (20 mol%) Cul (10 mol%) THF (1M), -60°C b) NaBH ₄ , EtOH, -60°C, 1h		OH
R	R ₁	Time(h)	Yield(%) ^a	anti:syn ^{b,c}	ee (%) ^d
CH_2Ph	4-CN	24	60	5:1 (4:1) ^d	97
CH_2Ph	4-NO ₂	24	45	4:1 (4:1) ^d	95 ^e
CH ₂ CH=CH ₂	4-CN	48	50	3:1 (3:1) ^d	97

^aReactions conducted at 0.5mmol scale, using 1.2 equiv. of aldehyde donor,THF (0.5mL). ^b Determined by ¹H-RMN and corroborated by HPLC.^cData in parenthesis refer to reactions carried out with benzoic acid as the sole cocatalyst.^dDetermined by chiral HPLC.^eReaction carried out at -40 ^oC because of the low solubility of p-nitrobenzaldehyde in THF at -60 ^oC. Some extent of homoaldolization was observed.

4-((1S,2S)-2-Benzyl-1,3-dihydroxypropyl)benzonitrile (23)

Prepared according to the General Procedure starting from hydrocinnamaldehyde 1A

(79 μ L, 0.6 mmol) and 4-formylbenzonitrile (65.6 mg, 0.5 mmol). The title compound was obtained as a 5:1 mixture of *anti:syn* isomers. The crude material was purified by flash column chromatography on silica gel (eluting with hexane/

ethyl acetate 50/50) to give the title compound as a yellow oil. Yield: 60 % (80 mg). ¹H NMR (300 MHz, CDCl₃) δ 7.66 (t, *J* = 8.5 Hz, 2H), 7.51 (dd, *J* = 19.8, 8.4 Hz, 3H), 7.24 (ddd, *J* = 28.6, 14.4 Hz, 7.2, 7H), 7.03 (d, *J* = 6.7 Hz, 1H), 5.21 (s, 1H), 4.86 (s, 1H), 3.71 (d, *J* = 11.7 Hz, 2H), 3.61 (s, 1H), 3.50 (d, *J* = 4.6 Hz, 1H), 3.35 (s, 1H), 2.87 (d, *J* = 6.9 Hz, 1H), 2.85 – 2.78 (m, 1H), 2.78 – 2.71 (m, 1H), 2.70 – 2.63 (m, 1H), 2.54 (dd, *J* = 13.8, 4.3 Hz, 1H).

(1S,2S)-2-benzyl-1-(4-nitrophenyl)propane-1,3-diol (24)

Prepared according to the General Procedure starting from hydrocinnamaldehyde 1A

(79 μL, 0.6 mmol) and 4-nitrobenzaldehyde (75.6 mg, 0.5 mmol). The title compound was obtained as a 4:1 mixture of ^O₂ anti:syn isomers. The crude material was purified by flash

column chromatography on silica gel (eluting with hexane/ ethyl acetate 50/50) to give the title compound as a yellow oil. Yield: 45 % (64.6 mg). ¹H NMR (500 MHz, CDCl₃) δ 8.29 – 8.21 (m, 5H), 7.60 (d, *J* = 8.7 Hz, 2H), 7.54 (d, *J* = 8.6 Hz, 5H), 7.33 – 7.14 (m, 7H), 7.03 (d, *J* = 7.5 Hz, 2H), 5.27 (s, 1H), 4.91 (s, 2H), 4.84 (s, 2H), 3.77 (s, 1H), 3.70 (s, 3H), 3.62 (d, *J* = 4.6 Hz, 3H), 2.85 (d, *J* = 6.8 Hz, 2H), 2.82 – 2.75 (m, 2H), 2.67 (s, 2H), 2.55 (s, 1H).

4-((1S,2S)-1-Hydroxy-2-(hydroxymethyl)pent-4-en-1-yl)benzonitrile (25)

Prepared according to the General Procedure starting from 4pentenal **1F** (60 μ L, 0.6 mmol) and 4-formylbenzonitrile (65.6 mg, 0.5 mmol). The title compound was obtained as a 3:1 mixture of *anti:syn* isomers. The crude material was purified by

flash column chromatography on silica gel (eluting with hexane/ ethyl acetate 70/30) to give the title compound as a yellow oil. Yield: 50 % (55 mg). ¹H NMR (300 MHz, CDCl₃) δ 7.67 (d, *J* = 2.3 Hz, 2H), 7.49 (d, *J* = 8.1 Hz, 2H), 5.74 (t, *J* = 15.1 Hz, 1H), 5.17 – 5.00 (m, 2H), 4.86 (t, *J* = 5.3 Hz, 1H), 3.87 – 3.68 (m, 2H), 3.46 (d, *J* = 4.8 Hz, 0H), 3.30 (s, 1H), 2.17 (dd, *J* = 14.3, 8.0 Hz, 3H), 1.96 (d, *J* = 24.6 Hz, 2H).

I) Results from other amine catalysts

O O Ph	\sim	a) Amine (; PhCO ₂ H Metal sa	20mol%) OF 1 (20mol%) alt (10%)		\sim
1A	2a	b) NaBH ₄	EtOH	3Aa	l –
Amine	Metal salt	Time(h)	Conversion (%) ^{b,c}	anti:syn ^d	<i>ee</i> (%) ^e
Ph Ph N OSiMe ₃ H 5	 Cu(OAc)₂∙H₂O	20 20	45 74(54)	3:1 2:1	ND 97
$ \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $	 Cul	20 20	60 73(48)	1.5:1 1.5:1	97 99
$Ar Ar OSiMe_3 7: Ar: 3,5 (CF_3)_2C_6H_3$	 Cul	20 20	30 33	n.d 2.5:1	ND 98

Table S3: Aldol reaction of **1A** with **2a** using α , α -diarylprolinol ethers as catalysts.

^a Reactions conducted on a 0.5 mmol scale in 0.5 mL of THF (mol ratio of **1/2**/amine, 1.5:1:0.2); ^b Determined by ¹H NMR. ^c Conversions were essentially the same after 48 h of reaction. Numbers in parentheses refer to isolated yields by column chromatography. ^d Determined by ¹H NMR of an aliquot in the aldehyde product before reduction, and confirmed in the crude alcohol products. ^e *ee* of major diastereomer determined by chiral HPLC. ND: not determined.

Table	S4 :	Aldol	reaction	of	1A	with	2a	using	representative	bifunctional	amine
catalys	sts ^a										

		a) Amine (2 THF, temp	20 mol%) perature	он он	
 1A	2a	b) NaBH _{4,} E	EtOH, -40 °C	Ph	
				ent	-3Aa
Amine	T (ºC)	t (h)	Yield (%) ^b	anti:syn ^c	<i>ee</i> (%) ^d
(L)-Proline ^e	0	48	40/30	1:1	ND
Ph Ph OH H	0 -20	72 48	60 NR	2:1	90
$Ar Ar OH H Ar: 3,5 (CF_3)_2C_6H_3$	0 -20	72 48	52 NR	1:1 	97

^a Reactions conducted on a 0.5 mmol scale in 0.5 mL of THF (mol ratio of **1/2**/amine, 3:1:0.2). ^b Isolated yield of cross aldol product/self-aldol (dehydration). ^c Determined by ¹H NMR. ^d Determined by chiral HPLC. ^e No Brønsted acid added; DMF as solvent; syringe pump was not used. N.R: no reaction; N.D.: not determined.

J) Determination of the relative and absolute configuration of adducts

Relative configuration

Assignment the relative *syn* and *anti* configuration to adducts was primarily made on the bases of the J_{2,3} coupling constants and then by NOESY experiments. In general ${}^{3}J_{2,3}$ (*anti*) ${}^{3}J_{2,3}$ (*syn*) for diols ²⁵.

Absolute configuration

The absolute configuration was determined by correlating HPLC chromatograms with literature values as follow:

1) The non selective reaction between hydrocinnamaldehyde **1A** and phenyl propargyl aldehyde (**2f**) promoted by racemic catalyst **4** followed by reduction and hydrogenation led to the racemic sample of the corresponding adduct containing the two *syn/anti* diastereomers.

²⁵ Heathcock, C.H. "The Aldol Addition Reaction" in "Asymmetric Synthesis"; Morrison J.D., Ed.; Academic Press: New York, 1983; Vol 3, Chapter 2, pp. 111-212.

2) Self aldol reaction of hydrocinnamaldehyde **1A** using *L*-Proline as catalyst, provided the corresponding adduct as a 80:20 *anti/syn* mixture of diastereomers.²⁶

²⁶ Experimental procedure adapted from: I.K. Mangion, A. B. Northrup, D. W. C. MacMillan. *Angew. Chem. Int. Ed.* **2004**, *43*, 6722-24

3) The reaction between aldehydes 1A and 2f in the presence of catalyst 3, followed by reduction and subsequent hydrogenation of the resulting 3Af adduct, provided stereoisomer (2S, 3R)-anti, the opposite enantiomer to obtained using L-proline as catalyst.

Configuration of the other adducts was established by assuming a uniform reaction mechanism and by X-ray analysis of compound **19** (see below).

(2S, 3R)-2-Benzyl-5-phenylpentane-1,3-diol

Prepared according to the General Procedure starting from hydrocinnamaldehyde **1A** (0.2 mL, 1.5 mmol) and phenylpropiolaldehyde **2f** (61 μL, 0.5 mmol). The crude material was purified by flash column chromatography on silica gel (eluent hexane/ ethyl acetate 80/20) to give compound **3Ab** as a white solid. The solid was then dissolved in EtOH (2 mL) 20 wt% Pd/C (60 mg) was added and the mixture was stirred at room temperature under H₂ atmosphere (1 atm) overnight. The mixture was then filtered trough Celite[®] and concentrated under vacuum. The title compound was obtained as colourless oil. Mixture of isomers *anti:syn* 85:15. Yield: 70 % (94mg). $[\alpha]_D^{24}$ = +15.9 (*c*=1,dr 85:15, 93 % ee CH₂Cl₂).

(2R,3S)-2-Benzyl-5-phenylpentane-1,3-diol

Prepared according to the procedure reported in the literature²⁷ using *L*-proline as catalyst. The physical and spectroscopic data were in agreement with those described in the literature.²⁸ $[\alpha]_{D}^{24}$ = +7.4 (*c*=1, dr 75:25, 99 % ee, CH₂Cl₂).

The enantiomeric purity of the major and minor diastereoisomers was determined by HPLC analysis (Daicel Chiralpak IB hexane/isopropanol/EtOH 98/1/1, flow rate= 1 mL/min, retention times: *syn*: 38.3 min (minor) and 54.9min (major); *anti:* 42.3 min (major) and 48.0 min (minor)).

²⁷ Adapted from the literature (A. B. Northrup, D.W.C MacMillan, *J. Am. Chem. Soc.* **2002**, *124*, 6798-6799.), but without using syringe pump

²⁸.A. Seifert, U. Scheffler, M. Markert, R Mahrwald; *Org. Lett*, **2010**, *12*.1660.

K) Determination of absolute/relative configuration of 19 by X-Ray analysis.

ORTEP diagram of compound 19

Absolute configuration of **19** (*2S, 3S*) was unequivocally established by a single-crystal Xray analysis (absolute structure parameter: 0.04(2); Flack, H. D. Acta Cryst. **1983** A39, 876).

Crystallographic Studies Suitable single crystals of the title compound for X-ray study were grown from a solution in dichloromethane/hexane. Crystal data and refinement are summarized in Table S5 for compound **19** A colourless prism (0.15 × 0.09 × 0.02 mm) was selected and mounted on a Bruker X8 APEX area diffractometer. Unit-cell parameters were determined from 1271 frames of intensity data covering 0.3^o in ω over a hemisphere of the reciprocal space by combination of three exposure sets, and refined by the least-squares method. Intensities were collected with graphite monochromatized Mo- $K\alpha$ radiation ($\lambda = 0.71073$ Å), using the $\omega/2\theta$ scan-technique. A total of 3395 indepent reflections for **19** were measured in the range 2.43 $\leq \theta \leq$ 25.08. Lorentz-polarization and absorption corrections were made.

The structures were solved by direct methods using the SHELXS computer program^[1] and refined by the full-matrix least-squares method with the SHELX97 computer program,^[1] using 3395 reflections for **19**. The function minimized were $\Sigma w||Fo|^2 - |Fc|^2|^2$, where $w = [\sigma^2(I) + (0.0382P)^2 + 0.0000P]^{-1}$ for **19** and $P = (|Fo|^2 + 2|Fc|^2)/3$. f, f' and f'' were taken from International Tables of X-ray Crystallography.^[2] All hydrogen atoms were computed and refined using a riding model. The final R (on F) factor was 0.0235, wR (on $|F|^2$) = 0.0659 and goodness of fit = 1.164 for all observed reflections. The number of refined parameters was 203. Max. shift/esd = 0.001, Mean shift/esd = 0.00. Max. and min. peaks in final difference synthesis was 0.674 and -0.576 eÅ⁻³, respectively.

Table S5. Crystal data and structure refinement for 19.

Identification code	Itot7.35		
Empirical formula	C18 H18 I2 O2		
Formula weight	520.12		
Temperature	298(2) К		
Wavelength	0.71073 Å		
Crystal system	Orthorhombic		
Space group	P2(1)2(1)2(1)		
Unit cell dimensions	a = 7.7537(2) Å	? = 90°.	
	b = 8.7833(3) Å	? = 90°.	
	c = 28.0793(10) Å	? = 90°.	
Volume	1912.29(11) Å ³		
Z	4		
Density (calculated)	1.807 Mg/m ³		
Absorption coefficient	3.293 mm ⁻¹		
F(000)	992		
Crystal size	0.15 x 0.09 x 0.02 mm ³		
Theta range for data collection	2.43 to 25.08°.		
Index ranges	-9<=h<=9, -10<=k<=10, -3	3<=l<=33	
Reflections collected	20538		
Independent reflections	3395 [R(int) = 0.0475]		
Completeness to theta = 25.08°	99.8 %		
Absorption correction	Semi-empirical from equivalents		
Max. and min. transmission	0.9477 and 0.6379		
Refinement method	Full-matrix least-squares	on F ²	

Data / restraints / parameters	3395 / 0 / 203
Goodness-of-fit on F ²	1.164
Final R indices [I>2sigma(I)]	R1 = 0.0204, wR2 = 0.0485
R indices (all data)	R1 = 0.0235, wR2 = 0.0659
Absolute structure parameter	-0.05(4)
Largest diff. peak and hole	0.674 and -0.576 e.Å ⁻³

Table S6. Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (Å²x 10^3) for **19**. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	x	У	Z	U(eq)	
I(1)	11818(1)	3963(1)	1938(1)	21(1)	
I(2)	6315(1)	6641(1)	1489(1)	24(1)	
O(1)	4554(5)	1679(5)	2200(1)	21(1)	
O(2)	6423(5)	4094(4)	2369(1)	20(1)	
C(1)	8210(7)	5113(6)	1762(2)	18(1)	
C(2)	9854(7)	5480(6)	1710(2)	17(1)	
C(3)	10576(7)	6887(6)	1492(2)	19(1)	
C(4)	11342(8)	6828(7)	1046(2)	34(2)	
C(5)	12059(9)	8137(8)	848(2)	44(2)	
C(6)	12060(9)	9464(8)	1095(2)	39(2)	
C(7)	11341(8)	9525(7)	1553(2)	33(1)	
C(8)	10610(8)	8231(6)	1749(2)	25(1)	
C(9)	7463(6)	3671(6)	1973(2)	16(1)	
C(10)	6476(6)	2706(6)	1613(2)	16(1)	
C(11)	5793(6)	1259(6)	1847(2)	20(1)	
C(12)	7589(7)	2293(6)	1178(2)	20(1)	
C(13)	6552(7)	1652(6)	768(2)	21(1)	
C(14)	6835(9)	179(7)	601(2)	29(1)	
C(15)	5318(8)	2527(8)	542(2)	29(1)	
C(16)	4354(9)	1993(9)	171(2)	41(2)	
C(17)	4638(9)	535(9)	12(2)	42(2)	
C(20)	5867(10)	-367(8)	223(2)	42(2)	

I(1)-C(2)	2.122(5)	C(16)-C(17)	1.374(11)
I(2)-C(1)	2.133(5)	C(16)-H(16A)	0.9300
O(1)-C(11)	1.430(6)	C(17)-C(20)	1.373(10)
O(1)-H(1A)	0.86(5)	C(17)-H(17A)	0.9300
O(2)-C(9)	1.422(6)	C(20)-H(20A)	0.9300
O(2)-H(2A)	0.8200		
C(1)-C(2)	1.323(8)	C(11)-O(1)-H(1A)	108(3)
C(1)-C(9)	1.514(7)	C(9)-O(2)-H(2A)	109.5
C(2)-C(3)	1.490(7)	C(2)-C(1)-C(9)	128.0(5)
C(3)-C(8)	1.384(8)	C(2)-C(1)-I(2)	118.1(4)
C(3)-C(4)	1.387(8)	C(9)-C(1)-I(2)	113.8(4)
C(4)-C(5)	1.394(9)	C(1)-C(2)-C(3)	127.6(5)
C(4)-H(4A)	0.9300	C(1)-C(2)-I(1)	120.4(4)
C(5)-C(6)	1.356(10)	C(3)-C(2)-I(1)	112.1(4)
C(5)-H(5A)	0.9300	C(8)-C(3)-C(4)	119.7(5)
C(6)-C(7)	1.404(9)	C(8)-C(3)-C(2)	120.0(5)
C(6)-H(6A)	0.9300	C(4)-C(3)-C(2)	120.1(5)
C(7)-C(8)	1.383(8)	C(3)-C(4)-C(5)	120.0(6)
C(7)-H(7A)	0.9300	C(3)-C(4)-H(4A)	120.0
C(8)-H(8A)	0.9300	C(5)-C(4)-H(4A)	120.0
C(9)-C(10)	1.526(7)	C(6)-C(5)-C(4)	120.3(6)
C(9)-H(9A)	0.9800	C(6)-C(5)-H(5A)	119.8
C(10)-C(11)	1.526(7)	C(4)-C(5)-H(5A)	119.8
C(10)-C(12)	1.538(7)	C(5)-C(6)-C(7)	120.1(6)
C(10)-H(10A)	0.9800	C(5)-C(6)-H(6A)	120.0
C(11)-H(11A)	0.9700	C(7)-C(6)-H(6A)	120.0
C(11)-H(11B)	0.9700	C(8)-C(7)-C(6)	119.7(6)
C(12)-C(13)	1.512(7)	C(8)-C(7)-H(7A)	120.1
C(12)-H(12A)	0.9700	C(6)-C(7)-H(7A)	120.1
C(12)-H(12B)	0.9700	C(7)-C(8)-C(3)	120.1(5)
C(13)-C(15)	1.382(8)	C(7)-C(8)-H(8A)	120.0
C(13)-C(14)	1.394(8)	C(3)-C(8)-H(8A)	120.0
C(14)-C(20)	1.385(9)	O(2)-C(9)-C(1)	107.7(4)
C(14)-H(14A)	0.9300	O(2)-C(9)-C(10)	112.3(4)
C(15)-C(16)	1.366(9)	C(1)-C(9)-C(10)	113.3(4)
C(15)-H(15A)	0.9300	O(2)-C(9)-H(9A)	107.8

Table S7. Bond lengths [Å] and angles $[\circ]$ for **19**.

C(1)-C(9)-H(9A)	107.8	H(12A)-C(12)-H(12B)	107.8
C(10)-C(9)-H(9A)	107.8	C(15)-C(13)-C(14)	118.0(5)
C(9)-C(10)-C(11)	110.6(4)	C(15)-C(13)-C(12)	120.7(5)
C(9)-C(10)-C(12)	112.1(4)	C(14)-C(13)-C(12)	121.2(5)
C(11)-C(10)-C(12)	109.9(4)	C(20)-C(14)-C(13)	119.6(6)
C(9)-C(10)-H(10A)	108.1	C(20)-C(14)-H(14A)	120.2
C(11)-C(10)-H(10A)	108.1	C(13)-C(14)-H(14A)	120.2
C(12)-C(10)-H(10A)	108.1	C(16)-C(15)-C(13)	122.6(6)
O(1)-C(11)-C(10)	108.5(4)	C(16)-C(15)-H(15A)	118.7
O(1)-C(11)-H(11A)	110.0	C(13)-C(15)-H(15A)	118.7
C(10)-C(11)-H(11A)	110.0	C(15)-C(16)-C(17)	118.6(7)
O(1)-C(11)-H(11B)	110.0	C(15)-C(16)-H(16A)	120.7
C(10)-C(11)-H(11B)	110.0	C(17)-C(16)-H(16A)	120.7
H(11A)-C(11)-H(11B)	108.4	C(20)-C(17)-C(16)	120.6(6)
C(13)-C(12)-C(10)	113.2(4)	C(20)-C(17)-H(17A)	119.7
C(13)-C(12)-H(12A)	108.9	C(16)-C(17)-H(17A)	119.7
C(10)-C(12)-H(12A)	108.9	C(17)-C(20)-C(14)	120.4(6)
C(13)-C(12)-H(12B)	108.9	C(17)-C(20)-H(20A)	119.8
C(10)-C(12)-H(12B)	108.9	C(14)-C(20)-H(20A)	119.8

Symmetry transformations used to generate equivalent atoms:

	U^{11}	U ²²	U ³³	U ²³	U ¹³	U^{12}
I(1)	12(1)	22(1)	30(1)	1(1)	1(1)	0(1)
I(2)	18(1)	19(1)	35(1)	8(1)	-2(1)	1(1)
O(1)	20(2)	18(2)	24(2)	5(2)	9(2)	-1(2)
O(2)	20(2)	18(2)	22(2)	-1(2)	7(2)	-2(2)
C(1)	20(3)	14(2)	20(2)	-1(2)	-2(2)	2(2)
C(2)	19(3)	14(3)	18(3)	0(2)	0(2)	1(2)
C(3)	17(3)	20(3)	19(3)	2(2)	-6(2)	-5(2)
C(4)	37(4)	36(3)	28(3)	0(3)	6(3)	-18(3)
C(5)	47(4)	52(4)	33(3)	3(3)	3(3)	-24(4)
C(6)	29(4)	40(4)	48(4)	24(3)	-13(3)	-21(3)
C(7)	36(3)	21(3)	42(4)	3(3)	-13(3)	-7(3)
C(8)	29(3)	22(3)	25(3)	3(3)	-2(2)	-5(3)
C(9)	11(2)	16(3)	20(2)	-2(2)	0(2)	3(2)
C(10)	10(3)	20(3)	18(2)	6(2)	1(2)	1(2)
C(11)	16(3)	22(3)	24(3)	-1(2)	4(2)	0(2)
C(12)	19(3)	20(3)	23(3)	-2(2)	3(2)	2(2)
C(13)	26(3)	25(3)	12(2)	3(2)	5(2)	-6(3)
C(14)	38(3)	24(3)	24(3)	0(2)	7(3)	-4(3)
C(15)	25(3)	37(4)	24(3)	9(3)	-1(3)	-1(3)
C(16)	34(4)	65(5)	24(3)	10(3)	-6(3)	-3(4)
C(17)	43(4)	64(5)	19(3)	0(3)	-6(3)	-21(4)
C(20)	57(5)	45(4)	25(3)	-9(3)	14(3)	-17(4)

Table S8. Anisotropic displacement parameters (Å²x 10³) for **19**. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h²a^{*2}U¹¹ + ... + 2 h k a^{*} b^{*} U¹²]

_

	Х	У	Z	U(eq)
H(1A)	4290(70)	880(60)	2363(18)	13(14)
H(2A)	5648	3469	2403	30
H(4A)	11377	5913	879	41
H(5A)	12540	8101	544	53
H(6A)	12537	10335	960	47
H(7A)	11356	10430	1725	40
H(8A)	10141	8265	2053	30
H(9A)	8424	3057	2094	19
H(10A)	5486	3300	1501	19
H(11A)	5259	610	1609	24
H(11B)	6734	701	1993	24
H(12A)	8192	3197	1071	25
H(12B)	8448	1551	1273	25
H(14A)	7669	-434	742	35
H(15A)	5138	3519	646	34
H(16A)	3521	2604	28	49
H(17A)	3992	155	-240	51
H(20A)	6051	-1350	111	51

Table S9. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10³) for **19**.

Table S10. Torsion angles [°] for 19

C(9)-C(1)-C(2)-C(3)	178.5(5)	I(2)-C(1)-C(9)-C(10)	62.0(5)
I(2)-C(1)-C(2)-C(3)	1.9(7)	O(2)-C(9)-C(10)-C(11)	-58.8(5)
C(9)-C(1)-C(2)-I(1)	0.0(8)	C(1)-C(9)-C(10)-C(11)	178.8(4)
I(2)-C(1)-C(2)-I(1)	-176.6(2)	O(2)-C(9)-C(10)-C(12)	178.2(4)
C(1)-C(2)-C(3)-C(8)	78.7(7)	C(1)-C(9)-C(10)-C(12)	55.8(6)
I(1)-C(2)-C(3)-C(8)	-102.8(5)	C(9)-C(10)-C(11)-O(1)	64.8(5)
C(1)-C(2)-C(3)-C(4)	-106.6(7)	C(12)-C(10)-C(11)-O(1)	-171.0(4)
I(1)-C(2)-C(3)-C(4)	72.0(6)	C(9)-C(10)-C(12)-C(13)	-167.0(4)
C(8)-C(3)-C(4)-C(5)	-3.4(9)	C(11)-C(10)-C(12)-C(13)	69.6(6)
C(2)-C(3)-C(4)-C(5)	-178.2(6)	C(10)-C(12)-C(13)-C(15)	63.3(6)
C(3)-C(4)-C(5)-C(6)	2.0(11)	C(10)-C(12)-C(13)-C(14)	-118.1(5)
C(4)-C(5)-C(6)-C(7)	0.2(11)	C(15)-C(13)-C(14)-C(20)	-1.0(8)
C(5)-C(6)-C(7)-C(8)	-0.9(10)	C(12)-C(13)-C(14)-C(20)	-179.6(5)
C(6)-C(7)-C(8)-C(3)	-0.5(9)	C(14)-C(13)-C(15)-C(16)	1.4(9)
C(4)-C(3)-C(8)-C(7)	2.7(9)	C(12)-C(13)-C(15)-C(16)	180.0(5)
C(2)-C(3)-C(8)-C(7)	177.5(5)	C(13)-C(15)-C(16)-C(17)	-0.9(10)
C(2)-C(1)-C(9)-O(2)	120.4(6)	C(15)-C(16)-C(17)-C(20)	0.0(10)
I(2)-C(1)-C(9)-O(2)	-62.8(4)	C(16)-C(17)-C(20)-C(14)	0.3(10)
<i>C</i> (2)- <i>C</i> (1)- <i>C</i> (9)-C(10)	-114.7(6)	C(13)-C(14)-C(20)-C(17)	0.2(9)

Symmetry transformations used to generate equivalent atoms:

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)	
O(1)-H(1A)O(2)#1	0.86(5)	1.82(6)	2.682(5)	172(5)	
O(1)-H(1A)I(2)#1	0.86(5)	3.32(5)	3.741(4)	113(4)	
O(2)-H(2A)O(1)	0.82	1.88	2.613(5)	149.0	
O(2)-H(2A)I(1)#2	0.82	3.27	3.772(4)	121.9	

Table S11. Hydrogen bonds for 19 [Å and °].

Symmetry transformations used to generate equivalent atoms:

#1 -x+1,y-1/2,-z+1/2 #2 x-1,y,z

L) ¹H and ¹³C RMN of compounds.

Electronic Supplementary Material (ESI) for Chemical Science This journal is The Royal Society of Chemistry 2013

S67

Electronic Supplementary Material (ESI) for Chemical Science This journal is The Royal Society of Chemistry 2013

S70

Electronic Supplementary Material (ESI) for Chemical Science This journal is O The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Chemical Science This journal is The Royal Society of Chemistry 2013

S76

Electronic Supplementary Material (ESI) for Chemical Science This journal is The Royal Society of Chemistry 2013

M) HPLC chromatograms of selected products

Processed Channel Descr.: 2998 Ch2 210nm@2.4nm

		Processed Channel Descr.	RT	Area	% Area	Height
$\left(\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	1	2998 Ch2 210nm@2.4nm	39,366	2263704	3,31	28641
3Aa	2	2998 Ch2 210nm@2.4nm	49,816	66023952	96,69	562380

PDA 210nm, Chiralpak IC, 95:5 hex:ipr, f:1mL/min

PDA 209nm, Chiralpak IC, 95:5 hex:ipr, f:1 mL/min

Processed Channel Descr.: 2998 Ch1 254nm@2.4nm

		Processed Channel Descr.	RT	Area	% Area	Height
	1	2998 Ch1 254nm@2.4nm	23,005	7638919	47,27	50844
2	2	2998 Ch1 254nm@2.4nm	33,833	8521675	52,73	53980

Processed Channel Descr.: PDA 209,8

nm					
	Processed Channel Descr.	RT	Area	% Area	Height
1	PDA 209,8 nm	19,688	8030630	96,78	49408
2	PDA 209,8 nm	28,888	267337	3,22	3563

PDA 220nm, Chiralpak AS-H, 90:10 hex:ipr, f:1 mL/min

	Processed C	hannel	Descr.: P	DA 217	5 nm
	Processed Channel Descr.	RT	Area	% Area	Height
1	PDA 217.5 nm	20.456	72215410	97.87	1547174
2	PDA 217.5 nm	29.982	1574188	2.13	35063

PDA 210nm, Chiralpak IC, 90:10 hex:ipr, f:1mL/min

Processed Channel Descr.: PDA 210,0 nm

	Processed Channel Descr.	RT	Area	% Area	Height
1	PDA 210,0 nm	18,508	15563763	50,04	365883
2	PDA 210,0 nm	24,320	15538789	49,96	284030

(±)*anti-*3Ae

Processed Channel Descr.: PDA 210,0 nm

\sim		Processed Channel Descr.	RT	Area	% Area	Height
	1	PDA 210,0 nm	18,973	1924681	4,69	52776
\checkmark	2	PDA 210,0 nm	24,338	39085502	95,31	691688

PDA 240nm, Chiralpak AS-H, 90:10 hex:ipr, f:1mL/min Processed Channel Descr.: PDA 240,0 nm

Processed Channel Descr.: PDA 240,0 nm

	Processed Channel Descr.	RT	Area	% Area	Height
1	PDA 240,0 nm	14,131	137379555	97,11	2319140
2	PDA 240,0 nm	17,407	4083750	2,89	69693

PDA 240nm, Chiralpak IC, 98:2 hex:ipr, f:05mL/min

_	Processed Channel Descr.: PDA 210					0,0 nm
		Processed Channel Descr.	RT	Area	% Area	Height
Ī	1	PDA 210,0 nm	31,294	12131233	50,58	170537
	2	PDA 210,0 nm	36,323	11851663	49,42	151805

Processed Channel Descr.: PDA 210,0

	nm							
	Processed Channel Descr.	RT	Area	% Area	Height			
1	PDA 210,0 nm	30,913	253398	2,67	5972			
2	PDA 210,0 nm	36,912	9243051	97,33	117740			

PDA 240nm, Chiralpak AS-H, 90:10 hex:ipr, f:1 mL/min

(±)*anti*-3Ag

nm							
	Processed Channel Descr.	RT	Area	% Area	Height		
1	PDA 240,0 nm	28,118	3287985	51,41	43503		
2	PDA 240,0 nm	30,952	3107720	48,59	39630		

Processed Channel Descr.: PDA 240,0

Processed Channel Descr.: PDA 240,0 nm

		Processed Channel Descr.	RT	Area	% Area	Height
	1	PDA 240,0 nm	27,990	83366956	95,97	1028432
e	2	PDA 240,0 nm	31,131	3500131	4,03	42865

PDA 240nm, Chiralpak AS-H, 90:10 hex:ipr, f:1 mL/min

Height

1674406

66162

PDA 208.0 nm, Phenomenex Lux 32 Cellulose-4, 93 : 7 hex : ipr, f: 1 mL/min

PDA 240nm, Chiralpak AD-H, 98:2 hex:ipr, f:1 mL/min

Processed Ch	annel L	Descr.: P	DA 210),0 nm
Processed			0/ 0	

	Processed Channel Descr.	RT	Area	% Area	Height
1	PDA 210,0 nm	55,794	3016962	6,65	16803
2	PDA 210,0 nm	65,219	3774808	8,32	16200
3	PDA 210,0 nm	104,689	19451537	42,89	85214
4	PDA 210,0 nm	112,681	19108239	42,13	74861

Processed Channel Descr.: PDA 210,0 nm

	Processed Channel Descr.	RT	Area	% Area	Height
1	PDA 210,0 nm	100,886	18983398	100,00	64457

PDA 210nm, Chiralpak AY-H, 95:5 hex:ipr, f:1 mL/min

Processed Channel Descr.: PDA 211.9 nm								
	Processed Channel Descr.	RT	Area	% Area	Height			
1	PDA 211.9 nm	26.644	55924034	59.53	985210			
2	PDA 211.9 nm	32.114	6866605	7.31	78522			
3	PDA 211.9 nm	35.005	31146529	33.16	481322			

(±)*anti*-3Bd

3Bd

Processed Channel Descr.: PDA 208.4 nm							
	Processed Channel Descr.	RT	Area	% Area	Height		
1	PDA 208.4 nm	26.558	60759401	94.83	1119080		
2	PDA 208.4 nm	31.837	3239118	5.06	56806		

75713

0.12

2750

35.467

1.50-26.558 1.00-AU 31.837 35.467 0.50-0.00-24.00 26.00 30.00 28.00 32.00 34.00 36.00 Minutes

PDA 208.4 nm

3

PDA 254.1nm, Chiralpak IC, 90:10 hex:ipr, f:1mL/min

Processed Channel Descr.: PDA 254.3 nm

	Processed Channel Descr.	RT	Area	% Area	Height
1	PDA 254.3 nm	14.285	322132	2.10	9375
2	PDA 254.3 nm	16.410	15005305	97.90	292813

3Bf

PDA 208.0 nm, Daicel Chiralpak IC-3 93 : 7 hex : ipr, f: 1.2 mL/min

		Processed Channel Descr.	RT	Area	% Area	Height
OH OH	1	PDA 215.0 nm	23.746	3102156	5.40	97838
	2	PDA 215.0 nm	25.933	2941034	5.12	84795
(+)anti-3Bk	3	PDA 215.0 nm	31.534	24562707	42.76	578382
(⊥ <i>janu-</i> 30K	4	PDA 215.0 nm	41.821	26830736	46.71	466338

Processed Channel Descr.: PDA 215.0 nm

Processed Channel Descr.: PDA 215.0 nm

		Processed Channel Descr.	RT	Area	% Area	Height
	1	PDA 215.0 nm	23.915	3419753	8.14	104377
	2	PDA 215.0 nm	26.157	743910	1.77	21025
5	3	PDA 215.0 nm	31.957	367740	0.88	8984
	4	PDA 215.0 nm	41.832	37486650	89.22	567037

el	RT	Area	% Area	Height
	31.957	331909	0.86	8599
	41.832	38186368	99.14	577829

PDA 225.0 nm, Daicel Chiralcel OD-H ,95 : 5 hex : ipr, f: 0.75 mL/min

он он		Processed Channel Descr.	RT	Area	% Area	Height
ОРМВ	1	PDA 225.0 nm	42,013	2067904	4,258	21047
(+)anti-3Bl	2	PDA 225.0 nm	45,973	20761994	42,752	168818
(_)anti-SBI	3	PDA 225.0 nm	51,200	25733573	52,990	172220

Processed Channel Descr.: PDA 225.0 nm

Processed Channel Descr.: PDA 225.0 nm

3BI

Processed Channel Descr.: PDA 225.0 nm

	Processed Channel Descr.	RT	Area	% Area	Height
1	PDA 225.0 nm	46,320	100850	0,248	1241
2	PDA 225.0 nm	51,333	40588685	99,752	261661

OBz OH	
Ì	$\left(\right)_{4}$

deriv. (±)anti-3Ca

Processed Channel Descr.: PDA 225.5 nm							
	Processed Channel Descr.	RT	Area	% Area	Height		
1	PDA 225.5 nm	15.577	6945095	50.99	230890		
2	PDA 225.5 nm	17.598	6674108	49.01	172715		

	Processed Channel Descr.: PDA 209.8 nm							
	Processed Channel Descr.	RT	Area	% Area	Height			
1	PDA 209.8 nm	15.509	36180568	100.00	892057			

deriv. 3Ca

PDA 240nm, Chiralpak AY-H, 90:10 hex:ipr, f:1mL/min

Processed Channel Descr.: PDA 240,0 nm

	Processed Channel Descr.	RT	Area	% Area	Height
1	PDA 240,0 nm	8,356	50518329	50,10	2103434
2	PDA 240,0 nm	9,551	50315308	49,90	1930338

Processed Channel Descr.: PDA 240,0 nm

		Processed Channel Descr.	RT	Area	% Area	Height
ו	1	PDA 240,0 nm	8,482	63648367	96,92	2458930
	2	PDA 240,0 nm	9,726	2021843	3,08	70139

Processed Channel Descr.: PDA 210,0

Processed Channel Descr.: PDA 240,0 nm

	Processed Channel Descr.	RT	Area	% Area	Height
1	PDA 240,0 nm	6,003	324987	0,63	18395
2	PDA 240,0 nm	7,283	51651122	99,37	2115425

PDA 218nm, Chiralpak IC, 99:1 hex:Et, f:1mL/min

Pr	Processed Channel Descr.: PDA 218,0 nm								
	Processed Channel Descr.	RT	Area	% Area	Height				
1	PDA 218,0 nm	29,879	5989969	11,26	62019				
2	PDA 218,0 nm	37,293	21189331	39,84	134316				
3	PDA 218,0 nm	43,556	21594696	40,60	133255				
4	PDA 218,0 nm	54,750	4413243	8,30	23553				

Processed Channel Descr.: PDA 218,0 nm

	Processed Channel Descr.	RT	Area	% Area	Height
1	PDA 218,0 nm	34,971	77334	0,13	1823
2	PDA 218,0 nm	40,645	60933758	99,87	333168

3De

PDA 207.0 nm, Phenomenex Lux 3µ Cellulose-4,

90 :10 hex :ipr, f :1.5 mL/min

PDA 207.0 nm, Phenomenex Lux 3µ Cellulose-4,

90 :10 hex :ipr, f :1.5 mL/min

PDA 210nm, Chiralpak IB, 99:1 hex:ipr, f:1mL/min

Processed Channel Descr.: PDA 209,8

nm					
	Processed Channel Descr.	RT	Area	% Area	Height
1	PDA 209,8 nm	7,575	365534	4,33	10439
2	PDA 209,8 nm	16,949	8080611	95,67	70102

PDA 240nm, Chiralpak AD-H, 95:5 hex:ipr, f:0.5 mL/min

	Processed Channel Descr.	RT	Area	% Area	Height
1	PDA 240,0 nm	19,781	2824138	2,24	64368
2	PDA 240,0 nm	22,014	123181399	97,76	1807772

PDA 240nm, Chiralpak AY-H, hex f:1 mL/min

Processed Channel Descr.: PDA 240.0

	Processed Channel Descr.	RT	Area	% Area	Height
1	PDA 240.0 nm	4.084	1151453	42.36	64124
2	PDA 240.0 nm	4.858	1566586	57.64	59833

Processed Channel Descr.: PDA 234.1

PDA 240nm, Chiralpak IB, 95:5 hex:ipr, f:1mL/min

Processed Channel Descr.: PDA 243.4 nm

	Processed Channel Descr.	RT	Area	% Area	Height
1	PDA 243.4 nm	23.105	4379286	49.27	85241
2	PDA 243.4 nm	25.719	4508588	50.73	80296

	Processed Channel Descr.: PDA 243.4 nm							
	Processed Channel Descr.	RT	Area	% Area	Height			
1	PDA 243.4 nm	25.111	15052120	100.00	224132			

PDA 240nm, Chiralpak AD-H, 97:3 hex:ipr, f:1mL/min

Processed Channel Descr.: PDA 210,0 nm Processed RT Area % Area Height Channel Descr. PDA 210.0 nm 1 32,330 102202564 57,69 717221 2 PDA 210,0 nm 37,265 74965294 42,31 572864

(±)anti-**3Hc**

Processed Channel Descr.: PDA 240,0

1111								
	Processed Channel Descr.	RT	Area	% Area	Height			
1	PDA 240,0 nm	31,105	14786	0,37	330			
2	PDA 240,0 nm	36,602	3966787	99,63	31375			

