Asymmetric Synthesis of Propargylic Alcohols via Aldol Reaction of Aldehydes with Ynals Promoted by Prolinol Ether/Transition Metal/Brønsted Acid Cooperative Catalysis.

Enrique Gómez-Bengoa, Jesús M. García, Sandra Jiménez, Irati Lapuerta, Antonia Mielgo, José M. Odriozola, Itziar Otazo, Jesús Razkin, Iñaki Urruzuno, Silvia Vera, Mikel Oiarbide and Claudio Palomo.*

Departamento de Química Orgánica I, Facultad de Química, Universidad del País Vasco
UPV/EHU, Paseo Manuel Lardizabal 3, 20080 San Sebastián, Spain

SUPPLEMENTARY INFORMATION

Table of Contents

A) General information 2
B) Preparation of aldehydes 2
C) Preparation of propargylic aldehydes 10
D) General Procedure for the Cross-Aldol reactions. 14
E) Reaction Scope 16
F) Reduction of propargylic aldol adducts 33
F.1) Hydrogenation of aldol adducts 3Ae, 3Bf, 3Ca and 4De 33
F.2) Partial reduction of $8 \mathrm{Aa}, 8 \mathrm{Af}, 8 \mathrm{Ff}$ 35
G) Elaboration of Propargylic Alcohols 36
G.1) Diiodination of adduct 3Af 37
G.2) Intramolecular hydroamination of aldol adduct 8Cf. 38
G.3) Intramolecular hydroalkoxylation of adduct 3Af 40
G.4) Intramolecular cycloaddition reaction 41
H) Cross-aldol reaction of aliphatic aldehydes with aromatic aldehydes 43
I) Results from other amine catalysts 45
J) Determination of the relative and absolute configuration of adducts 46
Relative configuration 46
Absolute configuration 46
K) Determination of absolute/relative configuration of19 by X-Ray analysis. 50
L) ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ RMN of compounds. 58
M) HPLC chromatograms of selected products 94

A) General information

Methylene chloride $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ was distilled from CaH_{2}, THF was dried in a It Pure Solv column. Ethyl acetate and hexane were used as reagent grade. Purification of reaction products was carried out by flash column chromatography using silica gel 60 (0.040-0.063 mm, 230-400 mesh). Analytical thin layer chomatography (TLC) was performed on 0.25 mm silica gel 60-F plates. Visualization was accomplished with UV light and a solution obtained by admixing ammonium molybdate (21 g), cerium sulphate (1 g) and concentrated sulphuric acid (31 ml) in 470 mL of water, followed by heating. Melting points were measured with a Buchi SMP-20 melting point apparatus and are uncorrected. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on Bruker Advance-300 and are reported in ppm from internal tetramethylsilane (TMS). Analytical high performance liquid chromatography (HPLC) was performed on Waters-600E, equipped with 2996 and 2998 photodiode array UV detector, using Daicel Chiralpak AD-H, AS-H, OD-H, AY-H, IB, IC and IA columns. Optical rotations were recorded on a Jasco P-2000 polarimeter. MS spectra were recorded on an ESI-ion trap Mass spectrometer (Agilent 1100 series LC/MSD, SL model). Amine catalyst 4 was prepared according to previously reported procedure. ${ }^{1}$

B) Preparation of aldehydes

Aldehydes 1A-C, and 1F were obtained from commercial sources and distilled prior use.
Aldehydes 1D, 1E, 1G and $\mathbf{1 H}$ were prepared according to reported procedures, as follow.

tert-Butyl-5-oxopentanoate (1D)

[^0]
Procedure for Step a: ${ }^{2}$

Glutaric anhydride ($10.0 \mathrm{~g}, 87.6 \mathrm{mmol}$) was weighed into a dry flask and purged with N_{2}. Dry toluene (50 mL) was added followed by N -hydroxysuccinimide ($3.0 \mathrm{~g}, 26.1$ mmol), 4-dimethylaminopyridine ($1.07 \mathrm{~g}, 8.8 \mathrm{mmol}$), anhydrous tert-butanol (24.3 mL , 262.3 mmol), and triethylamine ($3.6 \mathrm{~mL}, 25.8 \mathrm{mmol}$). The flask was fitted with a reflux condenser, heated to $115{ }^{\circ} \mathrm{C}$, and allowed to stir for 16 h . The solution was cooled to room temperature, diluted with 300 mL EtOAc, and washed with 5% aqueous NaHSO_{4} solution ($3 \times 100 \mathrm{~mL}$) and brine (100 mL). The organic layer was dried over MgSO_{4}, filtered and concentrated. The crude material was purified by column chromatography on silicagel (eluent hexanes/EtOAc 1:1) to yield 8.32 g (50% yield) of a colorless oil. The physical and spectroscopic data were in agreement with those described in the literature. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 10.83(\mathrm{bs}, 1 \mathrm{H}), 2.42(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.31(\mathrm{t}, \mathrm{J}=$ $2.31 \mathrm{~Hz}, 2 \mathrm{H}), 1.92(\mathrm{~m}, 2 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H})$.

Procedure for Step b:

Thus obtained carboxylic acid ($8.2 \mathrm{~g}, 44 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{~mL})$ and to the solution were successively added hydrochloride N, O-dimethylhydroxylamine (4.72 g, 48.4 mmol), 1-hydroxybenzotriazole hydrate ($6.53 \mathrm{~g}, 48.4 \mathrm{mmol}$), diisopropylethylamine ($17 \mathrm{~mL}, 97 \mathrm{mmol}$), and EDC $\cdot \mathrm{HCl}(9.28 \mathrm{~g}, 48.4 \mathrm{mmol})$. The mixture was stirred at room temperature for 2 h and then concentrated under vacuum to remove most of the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The crude material was diluted with EtOAc (300 mL),

[^1]and washed successively with 5% aqueous NaHSO_{4} solution ($3 \times 100 \mathrm{~mL}$), 5% aqueous NaHCO_{3} solution ($3 \times 100 \mathrm{~mL}$), and brine (100 mL). The organic layer was dried over MgSO_{4}, filtered and concentrated to afford 4.8 g (50% yield) of the product as a pale yellow oil which was used without further purification. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.68$ $(\mathrm{s}, 3 \mathrm{H}), 3.18(\mathrm{~s}, 3 \mathrm{H}), 2.48(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.30(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.92(\mathrm{~m}, 2 \mathrm{H}), 1.45(\mathrm{~s}$, 9 H).

Procedure for Step c:

Weinreb amide ($5.0 \mathrm{~g}, 21.6 \mathrm{mmol}$) was dissolved in dry THF (100 mL) and the solution was cooled to $0^{\circ} \mathrm{C}$ under N_{2}. Diisobutylaluminum hydride (43 mL of a 1.0 M solution in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 43 \mathrm{mmol}$) was added dropwise. The reaction mixture was allowed to stir at $0^{\circ} \mathrm{C}$ for 30 min and then quenched by slow addition of EtOAc (50 mL). The solution was poured into water (200 mL) and extracted with EtOAc ($2 \times 400 \mathrm{~mL}$). The combined organic layers were washed successively with sat. aqueous NaHCO_{3} solution (100 mL) and brine (100 mL), dried over MgSO_{4}, filtered and concentrated. The crude material was purified by silicagel column chromatography (eluent hexanes/EtOAc 3:1) to yield $2.2 \mathrm{~g}\left(59 \%\right.$ yield) of a colorless oil. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.78(\mathrm{t}, \mathrm{J}=1.4 \mathrm{~Hz}, 1 \mathrm{H})$, 2.51 (td, J = 7.3, 1.4 Hz, 2H), 2.28 (t, J = $7.3 \mathrm{~Hz}, 2 \mathrm{H}$), 1.92 (m, 2H), 1.45 (s, 9H).

tert-Butyl 6-oxohexylcarbamate (1E) ${ }^{3}$

Prepared from tert-butyl 6-hydroxyhexylcarbamate ($2.0 \mathrm{~mL}, 10 \mathrm{mmol}$) by Swern oxidation as follows: A solution of DMSO ($2.27 \mathrm{~mL}, 32.0 \mathrm{mmol}$) in dichloromethane (16

[^2]mL) was slowly added to a solution of oxalyl chloride ($1.4 \mathrm{~mL}, 16.0 \mathrm{mmol}$) in dichloromethane (60 mL) previously cooled to $-70{ }^{\circ} \mathrm{C}$. The resulting mixture was stirred at the same temperature for 5 minutes, after which a solution of the precursor alcohol (8.0 mmol) in dichloromethane (16 mL) was added dropwise and stirred for an additional hour at $-70{ }^{\circ} \mathrm{C}$. Triethylamine ($6.68 \mathrm{~mL}, 48 \mathrm{mmol}$) was subsequently slowly added, the resulting mixture allowed to reach $0^{\circ} \mathrm{C}$, and stirred at that temperature for one hour. The resulting mixture was poured into water (40 mL) and diluted with $\mathrm{Et}_{2} \mathrm{O}$ $(400 \mathrm{~mL})$. The organic layer was separated and washed with brine ($2 \times 75 \mathrm{~mL}$), dried over MgSO_{4} and concentrated under reduced pressure. The crude product was purified by silicagel flash column chromatography (eluent hexane:ethyl acetate). The title compound was obtained as a colorless oil: 1.85 g , (85% yield). The physical and spectroscopic data were in agreement with those described in the literature.
${ }^{1} \mathrm{H}-\mathrm{RMN}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 9.76(\mathrm{t}, \mathrm{J}=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.11(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.43$, (dt, J= $1.7,7.2,7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.70-1.23(\mathrm{~m}, 6 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H})$.

6,6-Dimethoxyhexanal (1G) 4,5

[^3]
Procedure for Step a:

DIBAL (0.95 M in n-hexane, $24.4 \mathrm{~mL}, 23.2 \mathrm{mmol}$) was added a solution of 3 cianopropionaldehyde dimethyl acetal ($3.02 \mathrm{~mL}, 23.5 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(120 \mathrm{~mL})$ at -78 ${ }^{\circ} \mathrm{C}$ and the resulting mixture was stirred for 1 h . The resulting mixture was warmed slowly to RT , and treated with excess saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$. The reaction mixture was then diluted with water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was washed with water, dried over MgSO_{4}, and concentrated, which afforded crude 4,4dimethoxybutyraldehyde ($2.6 \mathrm{~g}, 19.6 \mathrm{mmol}, 84$) as a pale yellow oil.

Procedure for Step b:

The aldehyde was added dropwise in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ to a solution of formylmethylenetriphenylphosphorane ($10 \mathrm{~g}, 34 \mathrm{mmol}, 2$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$. The resulting mixture was stirred at the same temperatura for 2 h , warmed up to 50 ${ }^{\circ} \mathrm{C}$, and stirred for 24 h . Upon reaction completion, the solvent was removed under reduced pressure and the crude product was purified by flash column chromatography (eluent mixtures EtOAc / Hexane 80:20) to afford the corresponding pure adehyde (50 \% yield) as a pale yellow oil.

Procedure for Step c:

1G
To a 25 mL flash charged with a solution of enal ($948 \mathrm{mg}, 6 \mathrm{mmol}$) in ethanol (12 mL) was added Pd/C (10% wt, 180 mg). The flask was filled with hydrogen gas and stirred for 16 h at room temperature under hydrogen balloon. The mixture was filtered over celite pad and the filtrate was concentrated. Purification on a silica gel column (hexane/AcOEt, 80:20) provided 768 mg of the aldehyde $\mathbf{1 G}(4.8 \mathrm{mmol}, 80 \%$ yield) as a pale yellow oil. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.80(\mathrm{t}, \mathrm{J}=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{dd}, \mathrm{J}=7.1 \mathrm{~Hz}$, $4.1,1 \mathrm{H}$), $3.35(\mathrm{~s}, 6 \mathrm{H}), 2.44(\mathrm{dd}, \mathrm{J}=8.2,6.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.97(\mathrm{td}, \mathrm{J}=7.3,5.4 \mathrm{~Hz}, 4 \mathrm{H}), 1.43$ (tdd, $J=10.8,7.2,4.0 \mathrm{~Hz}, 2 \mathrm{H}$).

Synthesis of (E)-6-(3,5-dimethylphenoxy)-4-methylhex-4-enal (1H)

Procedure for step a (VII) ${ }^{6}$

VI
a) PBr_{3}

In
 99\%

To a solution of trans-geraniol ($17.5 \mathrm{~mL}, 100 \mathrm{mmol}$) in ether (75 mL) at $-20^{\circ} \mathrm{C}$ was added a solution of phosphorus tribromide ($4.7 \mathrm{~mL}, 50 \mathrm{mmol}$) in ether (45 mL) within 10 min , and the reaction mixture was stirred for 4 h . The reaction was quenched with water, extracted with petroleum ether, washed in turn with water, with saturated aqueous NaHCO_{3}, and brine. The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated at $30^{\circ} \mathrm{C}$ to provide (E)-geranyl bromide (II) ($21.7 \mathrm{~g}, 99 \%$) of as a labile yellow liquid which was used without further purification. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.53$ (tq, J=6.5, 1.5 $\mathrm{Hz}, 1 \mathrm{H}), 5.08(\mathrm{~m}, 1 \mathrm{H}), 4.02(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.16-2.00(\mathrm{~m}, 4 \mathrm{H}), 1.73(\mathrm{~s}, 3 \mathrm{H}), 1.69(\mathrm{~s}$, $3 H), 1.60(\mathrm{~s}, 3 \mathrm{H})$.

Procedure for step b (VIII) ${ }^{7}$

To a stirred suspension of sodium hydride (60% in oil, $1050 \mathrm{mg}, 25.25 \mathrm{mmol}$) in THF (75 mL) at room temperature under argon atmosphere was added 3,5-dimethylphenol (25 mmol) portion wise followed by a catalytic amount of hydroquinone ($10 \% \mathrm{mmol}$). The mixture was stirred for 0.5 h at room temperature. Hexamethylphosphoramide (HMPA, 17.5 mL) and geranyl bromide (II) (25 mmol) were successively added. The whole mixture was stirred for 1 day. After decomposition of excess sodium hydride with methanol (2 mL), the mixture was poured into ice-water and extracted with ether. The combined organic layers were dried, concentrated and purified by column chromatography on silica gel (hexane-ethyl acetate 95:5 as eluent) to give geranyl aryl ether (III) (70% yield) as a yellow oil. ${ }^{1} \mathrm{H}$ RMN $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.56-6.80(\mathrm{~m}, 3 \mathrm{H})$,

[^4]$5,50(\mathrm{tq}, \mathrm{J}=6.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5,06-5,14(\mathrm{~m}, 1 \mathrm{H}), 4,51(\mathrm{~d}, \mathrm{~J}=6,6,2 \mathrm{H}), 2,29(\mathrm{~s}, 6 \mathrm{H}), 2,10$ $(\mathrm{m}, 4 \mathrm{H}) 1,74(\mathrm{~s}, 3 \mathrm{H}), 1,69(\mathrm{~s}, 3 \mathrm{H}), 1,62(\mathrm{~s}, 3 \mathrm{H})$.

Procedure for step c (IX) ${ }^{8}$

To a solution of geranyl phenyl ether (VIII) (17.6 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(45 \mathrm{~mL})$ was added dropwise m-chloroperbenzoic acid ($4.9 \mathrm{~g}, 70 \%, 19.4 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. After the addition was complete, the mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for another 4 h . The reaction was quenched by the addition of 50 mL of saturated NaHCO_{3}, the organic phase was separated, and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$. The combined organic extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuum. The crude product was purified by silica gel chromatography (hexane-ethyl acetate $90: 10$ as eluent) to give (IV) ($4.11 \mathrm{~g}, 87 \%$) as a yellow oil. ${ }^{1} \mathrm{H}$ RMN ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.54-6.60(\mathrm{~m}, 3 \mathrm{H}), 5.50(\mathrm{tq}, \mathrm{J}=6.5,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{~d}, \mathrm{~J}=6.4 \mathrm{~Hz}$, $2 \mathrm{H}), 2.71(\mathrm{t}, \mathrm{J}=6.2,1 \mathrm{H}), 2.28(\mathrm{~s}, 6 \mathrm{H}), 2.21(\mathrm{~m}, 2 \mathrm{H}), 1.76(\mathrm{~s}, 3 \mathrm{H}), 1.68(\mathrm{~m}, 2 \mathrm{H}) 1.31(\mathrm{~s}$, $3 \mathrm{H}), 1.27(\mathrm{~s}, 3 \mathrm{H})$.

Procedure for step $d(\mathrm{IH})^{9}$

A solution of epoxide (IX) (1.0 eq) in THF: $\mathrm{H}_{2} \mathrm{O}(10: 1,30 \mathrm{~mL})$ was treated sequentially at $0{ }^{\circ} \mathrm{C}$ with NaIO_{4} (0.6 equiv) and $\mathrm{HIO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (1.1 equiv). The resultant biphasic mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 10 min and then warmed to room temperature. After 1 h , the reaction mixture was quenched with saturated aqueous $\mathrm{NaHCO}_{3}(25 \mathrm{~mL})$, poured into

[^5]$\mathrm{H}_{2} \mathrm{O}(25 \mathrm{~mL})$, and the aqueous layer was extracted with EtOAc ($3 \times 50 \mathrm{ml}$). The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The crude product was purified by silica gel chromatography (hexane-ethyl acetate 95:5 as eluent) to give the desired aldehyde IH as orange oil. Yield: $81 \%(0.8 \mathrm{~g})$. ${ }^{1} \mathrm{H}$ RMN $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.79(\mathrm{t}, \mathrm{J}=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.53-6.60(\mathrm{~m}, 3 \mathrm{H}), 5.51(\mathrm{tq}, \mathrm{J}:=6.4$, $1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{~d}, \mathrm{~J}=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.59(\mathrm{~m}, 2 \mathrm{H}), 2.41(\mathrm{~m}, 2 \mathrm{H}), 2.29(\mathrm{~s}, 6 \mathrm{H}), 1.75(\mathrm{~s}, 3 \mathrm{H})$.

Hexane-1,6-dial (9) ${ }^{10}$

To a vigorously stirred suspension of chromatographic grade silica gel (105 g) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (500 mL) was added an aqueous solution of $\mathrm{NaIO}_{4}(0.65 \mathrm{M}, 68.2 \mathrm{mmol})$, whence a flaky suspension was formed. 1,2-Cyclohexanediol ($6.08 \mathrm{~g}, 52.3 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{~mL})$ was then added, and the reaction was stirred for 24 h . The mixture was filtere on a sintered glass, and the silica gel was throughly washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Evaporation of the solvent afforded the title compound as a colorleess oil in quantitative yield (5.91 g). No further purification was necessary.

C) Preparation of propargylic aldehydes ${ }^{11}$

All propargylic aldehydes were synthesized as described below, except octynal (2a) and phenyl propynal ($\mathbf{2 f}$) that are commercially available.

$$
\mathrm{R}=\stackrel{\text { 1) } n-\mathrm{BuLi}, \mathrm{Et}_{2} \mathrm{O}}{\text { 2) } \mathrm{DMF}} \mathrm{R}=\mathrm{CHO}
$$

To a round bottomed flask under nitrogen atmosphere filled of $\mathrm{dry}_{\mathrm{Et}}^{2} \mathrm{O}(50 \mathrm{~mL})$ and cooled to $-60{ }^{\circ} \mathrm{C}$, were added dropwise n-BuLi ($50 \mathrm{mmol}, 20 \mathrm{~mL}, 2.5 \mathrm{M}$ in hexane) and then the corresponding alkyne (50 mmol). The reaction mixture was stirred at this

[^6]temperature for 30 min after which DMF ($4.3 \mathrm{~mL}, 62.5 \mathrm{mmol}$) was added slowly. The resulting mixture was removed from the bath, warmed slowly to room temperature and stirred at this temperature for 20 minutes. Finally the reaction mixture was poured slowly into a cold solution of water (25 mL) and HCl conc. $(4 \mathrm{~mL})$ and a solution of saturated NaHCO_{3} was added dropwise until pH 6-7. The organic layer was separated and the aqueous phase extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4}, filtered and concentrated under reduce pressure. The crude product was purified by silica gel chromatography unless otherwise stated.

Hex-2-ynal (2b)

Prepared according to general procedure, starting from 1 pentyne
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.18(\mathrm{t}, J=0.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{td}, J=7.0,0.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.64$
$(\mathrm{dt}, J=14.5,7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.02(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.

5-Methylhex-2-ynal (2c)

${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.19(\mathrm{t}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.31(\mathrm{dd}, J=6.5,0.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.93$ (dt, $J=13.3,6.6 \mathrm{~Hz}, 1 \mathrm{H}$), 1.02 (d, $J=6.7 \mathrm{~Hz}, 7 \mathrm{H})$.

5-Phenylpent-2-ynal (2d)

$5 \mathrm{H}), 2.94(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.74(\mathrm{dt}, J=7.4 \mathrm{~Hz}, J=0.7 \mathrm{~Hz}, 2 \mathrm{H})$.

3-Cyclohexylpropiolaldehyde (2e) ${ }^{12}$

 $(1.22 \mathrm{~g})$. Spectroscopic data were in agreement with those previously reported.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.23(\mathrm{~d}, \mathrm{~J}=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.70-2.55(\mathrm{~m}, 1 \mathrm{H}), 1.96-1.83(\mathrm{~m}$, $2 H), 1.83-1.67(m, 2 H), 1.56(m, 3 H), 1.48-1.23(m, 3 H)$.

3-(p-Methoxyphenyl)propiolaldehyde (2g) ${ }^{13}$

Prepared according to general procedure, starting from 1-ethynyl-4-methoxybenzene ($1.30 \mathrm{~g}, 10 \mathrm{mmol}$). The crude material was crystallized from hexane. Yield: 52% (0.83 g). Colourless crystals. Spectroscopic data were in agreement with those previously reported.
${ }^{1}{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.39(\mathrm{~s}, 1 \mathrm{H}), 7.59-7.52(\mathrm{~m}, 2 \mathrm{H}), 6.95-6.88(\mathrm{~m}, 2 \mathrm{H}), 3.85$ ($\mathrm{s}, 3 \mathrm{H}$).

m-Clorofenilpropinal (2h) ${ }^{14}$

Prepared according to general procedure, starting from 1-chloro-2-etinylbenzene ($1.23 \mathrm{~g}, 10 \mathrm{mmol}$). The crude material was purified by flash column chromatography on silica gel (eluting with hexane/ ethyl acetate 98/2) to give the title compound as a yellow oil. Yield: 56\% (0.92 g).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 9.48(\mathrm{~s}, 1 \mathrm{H}), 7.65(\mathrm{t}, \mathrm{J}=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{~m}, 1 \mathrm{H}), 7.42(\mathrm{~m}$, 1 H), 7.30 ($\mathrm{dd}, \mathrm{J}=11.7,4.0 \mathrm{~Hz}, 1 \mathrm{H}$).

[^7]
4,4-Diethoxybut-2-ynal (2i)

Prepared according to general procedure, starting from propargyl aldehyde diethyl acetal ($1.4 \mathrm{~mL}, 10 \mathrm{mmol}$) but the reaction mixture was treated pouring it slowly into a cold solution of 10% citric acid (15 mL) and then a solution of saturated NaHCO 3 was added dropwise until pH 6-7. Yield: 50\% (0.78 g).
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.30(\mathrm{~d}, \mathrm{~J}=0.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.44(\mathrm{~s}, 1 \mathrm{H}), 3.78(\mathrm{dq}, \mathrm{J}=7.1 \mathrm{~Hz}, \mathrm{~J}=$ $9.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.66(\mathrm{dq}, J=7.1 \mathrm{~Hz}, J=9.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.28(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H})$.

6-Chlorohex-2-ynal (2j)

3-(Thiophen-3-yl)propiolaldehyde (2k)

Prepared according to general procedure, starting from 3ethynylthiophene ($0.98 \mathrm{~mL}, 10 \mathrm{mmol}$). Black oil. Yield: 45\% (612.8 $\mathrm{mg})$.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.40(\mathrm{~s}, 1 \mathrm{H}), 7.82(\mathrm{dd}, J=2.9,1.1,1 \mathrm{H}), 7.36(\mathrm{dd}, \mathrm{J}=5.0,3.0$, $1 \mathrm{H}), 7.24(\mathrm{~d}, \mathrm{~J}=1.1,1 \mathrm{H})$.

6-((4-methoxybenzyl)oxy)hex-2-ynal (2I)

Prepared according to general procedure, starting from 1-methoxy-4-((pent-4-yn-1-yloxy)methyl)benzene ${ }^{15} \quad(2 g, 10$ mmol). Brown liquid. Yield: 56\% (1.2g).
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.19(\mathrm{~s}, \mathrm{OH}), 7.29(\mathrm{~d}, \mathrm{~J}=8.7,2 \mathrm{H}), 6.92(\mathrm{~d}, \mathrm{~J}=8.7,2 \mathrm{H}), 4.48$ $(\mathrm{s}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.57(\mathrm{t}, J=5.9,2 \mathrm{H}), 2.58(\mathrm{t}, J=7.1,2 \mathrm{H}), 1.96-1.86(\mathrm{~m}, 2 \mathrm{H})$.

[^8]
3-(triisopropylsilyl)propiolaldehyde (2m)

Prepared according to general procedure, starting from triisopropyl(prop-1-yn-1-yl)silane (2.2mL, 10 mmol). Yellow liquid. Yield: 73\% (1.5g).
${ }^{1} \mathrm{H}$ NMR (300 MHz, CDCl ${ }_{3}$) $\delta 9.23(\mathrm{~s}, \mathrm{OH}), 1.13(\mathrm{~d}, \mathrm{~J}=5.5,18 \mathrm{H})$.

D) General Procedure for the Cross-Aldol reactions

To a solution of the amine catalyst ($0.1 \mathrm{mmol}, 20 \mathrm{~mol} \%$) in THF (0.5 mL) at $-60{ }^{\circ} \mathrm{C}$ were successively added the corresponding donor aldehyde ($0.6 \mathrm{mmol}, 1.2$ equiv. $)^{16}$ the Brønsted acid ($0.1 \mathrm{mmol}, 20 \mathrm{~mol} \%$), Cul ($0.05 \mathrm{mmol}, 10 \mathrm{~mol} \%$) and the ynal (0.5 mmol , 1 equiv.). The resulting solution was stirred at $-60^{\circ} \mathrm{C}$ for 20 h , and the reaction product was isolated either as alcohol or as acetal following the procedures described below.

The diastereoselectivity of the process was determined by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis of an aliquot by integration of the corresponding signals in the aldehyde region before reduction of the intermediate aldehyde adduct. ${ }^{17}$ The ratio of isomers does not change after reduction of the adduct at the indicated temperature. ${ }^{18}$ Finally this diastereomer ratio was also confirmed by HPLC analysis in the diol compound.

The corresponding racemic compounds were prepared according to this same procedure, but using rac-4 as the catalyst.
A) Isolation of the reaction product as alcohol: To the above mixture, a suspension of NaBH_{4} ($4.5 \mathrm{mmol}, 8$ equiv.) in $\mathrm{EtOH}\left(1 \mathrm{~mL}\right.$) was added drop-wise at $-60^{\circ} \mathrm{C}$, and after reaction completion (monitored by ${ }^{1} \mathrm{H}-\mathrm{NMR}$), typically (typically 30-60 min), the mixture was quenched with brine (4 mL), and allowed to reach room temperature. After extraction with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 6 \mathrm{~mL})$, the combined organic phases were washed with brine,

[^9]dried over MgSO_{4}, and concentrated under reduced pressure. The resulting crude was purified over silicagel by flash column chromatography to afford the expected adducts.
B) Isolation of the reaction product as dimethyl acetals: To the above mixture 4.5 mL of MeOH , trimethyl orthoformate ($0.16 \mathrm{~mL}, 1.5 \mathrm{mmol}$) and p-toluenesulfonic acid ($20.0 \mathrm{mg}, 0.1 \mathrm{mmol}, 20 \mathrm{~mol} \%$) were successively added at $-60^{\circ} \mathrm{C}$ and the mixture was allowed to reach room temperature. After 2 h of stirring, the reaction was quenched with NaHCO_{3} sat. (5 mL) and extracted with ethyl acetate ($2 \times 4 \mathrm{~mL}$). The combined organic layers were washed with brine, dried over MgSO_{4} and concentrated. The residue was purified by flash column chromatography on silica gel to afford the expected adducts. ${ }^{19}$

[^10]E) Reaction Scope

8

Tabla S1: Functionalized anti Propargylic Alcohols ${ }^{\text {a }}$

Entry	R	R	Product	Yield \% ${ }^{\text {b }}$	anti:syn ${ }^{\text {c }}$	$e e \%{ }^{\text {d }}$
1	$\mathrm{CH}_{2} \mathrm{Ph}$	$\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}_{3}$	8Aa	72	>20:1 (7.8:1)	99
2	$\mathrm{CH}_{2} \mathrm{Ph}$	$\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{3}$	3Ab	68	16:1	99
3	$\mathrm{CH}_{2} \mathrm{Ph}$	$\left(\mathrm{CH}_{2}\right)_{2} \mathrm{Ph}$	3Ad	75	19:1	94
4	$\mathrm{CH}_{2} \mathrm{Ph}$	$c-\mathrm{C}_{6} \mathrm{H}_{11}$	3Ae	73	>20:1 $\mathbf{(5 . 9 : 1) ~}^{\text {e }}$	93
5	$\mathrm{CH}_{2} \mathrm{Ph}$	Ph	3Af	84	9:1	94
6	$\mathrm{CH}_{2} \mathrm{Ph}$	Ph	8Af	64	8.5:1	94
7	$\mathrm{CH}_{2} \mathrm{Ph}$	4-OMeC ${ }_{6} \mathrm{H}_{4}$	3Ag	55	10.2:1	92
8	$\mathrm{CH}_{2} \mathrm{Ph}$	$3-\mathrm{Cl} \mathrm{C6} \mathrm{H}_{4}$	3Ah	74	7.2:1	91
8	$\mathrm{CH}_{2} \mathrm{Ph}$	$\mathrm{CH}(\mathrm{OEt})_{2}$	3Ai	60	14:1	94
9	$\mathrm{CH}_{2} \mathrm{Ph}$	$\left(\mathrm{CH}_{2}\right)_{3} \mathrm{Cl}$	3Aj	65	20:1	99
10	CH_{3}	$\left(\mathrm{CH}_{2}\right)_{2} \mathrm{Ph}$	3Bd	75	19:1	>99
11	CH_{3}	Ph	3Bf	73	5:1	94
12	CH_{3}		3Bk	50	9:1	99
13	CH_{3}	$\left(\mathrm{CH}_{2}\right)_{3} \mathrm{OPMB}$	3 Cl	71	9:1	99
14	$\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$	$\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}_{3}$	3Ca	71	20:1	99
15	$\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$	Ph	8Cf	64	9:1	98
16	$\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CO}_{2}{ }^{\text {t }} \mathrm{Bu}$	c- $\mathrm{C}_{6} \mathrm{H}_{11}$	3De	69	>20:1(5.4:1) ${ }^{\text {e }}$	99
17	$\left(\mathrm{CH}_{2}\right)_{4} \mathrm{NHBoc}$	$\left(\mathrm{CH}_{2}\right)_{2} \mathrm{Ph}$	3Ed	71	13:1	95
18	$\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$	$\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{3}$	3Fb	50	>20:1	91
19	$\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$	Ph	8Ff	84	18:1	94
21	$\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$	$\mathrm{Si}^{\mathbf{i}} \mathrm{Pr}_{3}$	8Fm	70	20:1	99
21	$\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}(\mathrm{OMe})_{2}$	Ph	8Gf	51	>20:1	99
22		$\mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$	3 Hc	61	>20:1(6:1) ${ }^{\text {e }}$	99

[^11]
(2S,3S)-2-Benzyldec-4-yne-1,3-diol (3Aa)

Prepared according to the General Procedure starting from
 hydrocinnamaldehyde $1 \mathrm{~A}(0.2 \mathrm{~mL}, 1.5 \mathrm{mmol})$ and 2-octynal 2a ($71 \mu \mathrm{~L}, 0.5 \mathrm{mmol}$). The title compound was obtained as a 9.8:1 mixture of anti:syn isomers. The crude material was purified by flash column chromatography on silica gel (eluting with hexane/ ethyl acetate $80 / 20$) to give the title compound as a colorless oil. Yield: $83 \%(107 \mathrm{mg}) \cdot[\alpha]_{\mathrm{D}}{ }^{22}=$ $-4.18\left(c=0.1,93 \%\right.$ ee, $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.37(\mathrm{~s}, 5 \mathrm{H}), 4.52(\mathrm{~d}, \mathrm{~J}=9.1$ Hz, 1H), 4.05 (d, J=3.2 Hz, 1H), 3.70 (dd, J=11.1, $5.6 \mathrm{~Hz}, 1 \mathrm{H}$), 3.01 (dd, J=13.7, $6.2 \mathrm{~Hz}, 1 \mathrm{H}$), $2.83-2.65$ (m, 1H), 2.29 (dtd, J=9.1, 7.0, $2.0 \mathrm{~Hz}, 4 \mathrm{H}$), 2.06 (dtd, J=14.6, 5.7, 3.2 Hz, 1H), $1.68-1.50(\mathrm{~m}, 1 \mathrm{H}), 1.45-1.28(\mathrm{~m}, 2 \mathrm{H}), 0.99-0.89(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $=140.3,129.6,128.8,126.6,77.8,77.4,77.0,65.8,63.7,48.5,34.5,31.5,30.7,28.7$, 22.6, 19.1, 14.3. $\mathrm{MS}(E S I, m / z)$: calcd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{2}\left(\mathrm{M}, \mathrm{H}^{+}\right)$, 261.1810; found, 265.1798.

The enantiomeric purity of the major diastereoisomer was determined by HPLC analysis (Daicel Chiralpak IC, hexane/isopropanol 95/5, flow rate $=1 \mathrm{~mL} / \mathrm{min}$, retention times: 35.5 min (min.) and 47.1 min (major)).

(2R,3S)-2-benzyl-1,1-dimethoxydec-4-yn-3-ol (8Aa)

Prepared according to the General Procedure starting from hydrocinnamaldehyde $\mathbf{1 A}(0.2 \mathrm{~mL}, 1.5 \mathrm{mmol})$ and 2-octynal 2a ($71 \mu \mathrm{~L}, 0.5 \mathrm{mmol}$). The title compound was obtained as a 20:1 mixture of anti:syn isomers. The crude material was purified by flash column chromatography on silica gel (eluting with hexane/ethyl acetate 90:10) to give the title compound as colourless oil. Yield: 72 \% (109 mg). $[\alpha]_{D}{ }^{22}=30.7$ ($c=1,99 \%$ ee, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.37-7.16(\mathrm{~m}, 6 \mathrm{H}), 4.55(\mathrm{~d}, \mathrm{~J}=3.9,1 \mathrm{H}), 4.41(\mathrm{dd}, \mathrm{J}=$ $7.7,4.5,1 \mathrm{H}$), $3.47-3.44(\mathrm{~m}, 3 \mathrm{H}), 3.41(\mathrm{~s}, 4 \mathrm{H}), 2.93-2.79(\mathrm{~m}, 2 \mathrm{H}), 2.21(\mathrm{ddd}, \mathrm{J}=9.4,7.1$, $2.9,3 \mathrm{H}), 1.51(\mathrm{dt}, \mathrm{J}=14.0,7.0,2 \mathrm{H}), 1.44-1.28(\mathrm{~m}, 5 \mathrm{H}), 0.89(\mathrm{t}, \mathrm{J}=7.1,3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}(75$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 140.4,129.5,128.6,126.2,107.1,86.8,80.3,62.3,56.4,55.5,48.6,31.2$, 28.5, 22.4, 18.9, 14.2. MS (ESI, m / z): calcd for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{3}\left(\mathrm{M}, \mathrm{H}^{+}\right), 304.4238$; found ($\mathrm{M}-$ $\left.\mathrm{CH}_{3} \mathrm{O}\right), 273.185$.

The enantiomeric purity of the major diastereoisomer was determined by HPLC analysis (Daicel Chiralpak IC, hexane/isopropanol 95/5, flow rate $=1 \mathrm{~mL} / \mathrm{min}$, retention times: 14.0 min (major.) and $31.6 \mathrm{~min}(\mathrm{~min})$).

(2S,3S)-2-benzyloct-4-yne-1,3-diol (3Ab)

Prepared according to the General Procedure starting from hydrocinnamaldehyde $1 \mathrm{~A}(0.2 \mathrm{~mL}, 1.5 \mathrm{mmol})$ and and 2-hexynal 2b ($48 \mathrm{mg}, 0.5 \mathrm{mmol}$). The title compound was obtained as a 20:1 mixture of anti:syn isomers. The crude material was purified by flash column chromatography on silica gel (eluting with hexane/ethyl acetate 90:10) to give the title compound as a colorless oil. Yield: $68 \%(78 \mathrm{mg}) \cdot[\alpha]_{\mathrm{D}}{ }^{22}=15.7\left(c=1,99 \% \mathrm{ee}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.37-7.20(\mathrm{~m}, 5 \mathrm{H}), 4.53(\mathrm{t}, \mathrm{J}=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.10-3.98(\mathrm{~m}, 1 \mathrm{H})$, 3.71 (dt, J = 10.7, 5.3 Hz, 1H), 3.01 (dd, J = 13.7, $6.3 \mathrm{~Hz}, 1 \mathrm{H}$), $2.80-2.69(\mathrm{~m}, 1 \mathrm{H}), 2.26$ (td, $J=7.0,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.16-2.02(\mathrm{~m}, 2 \mathrm{H}), 1.64-1.55(\mathrm{~m}, 4 \mathrm{H}), 1.08-0.98(\mathrm{~m}, 3 \mathrm{H}) . \mathrm{MS}$ (ESI, $\mathrm{m} / \mathrm{z})$: calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{O}_{2}\left(\mathrm{M}, \mathrm{H}^{+}\right), 233.1542$; found ($\mathrm{M}-\mathrm{CH}_{3} \mathrm{O}$), 233.1541.

The enantiomeric purity of the major diastereoisomer was determined by HPLC analysis (Daicel Chiralpak IC, hexane/isopropanol 95/5, flow rate $=1 \mathrm{~mL} / \mathrm{min}$, retention times: 23.0 min (major.) and $33.8 \mathrm{~min}(\mathrm{~min})$).

(2S,3S)-2-Benzyl-7-phenylhept-4-yne-1,3-diol (3Ad)

Prepared according to the General Procedure starting from hydrocinnamaldehyde $1 \mathrm{~A}(99 \mu \mathrm{~L}, 0.75 \mathrm{mmol})$ and 5-phenylpent-2ynal 2d ($79 \mathrm{mg}, 0.5 \mathrm{mmol}$). The title compound was obtained as a 19:1 mixture of anti:syn isomers. The crude material was purified by flash column chromatography on silica gel (eluting with hexane/ ethyl acetate 80/20) to give the title compound as a colourless oil. Yield: 75% (111 mg). $[\alpha]_{D}{ }^{23}=-4.38(c=1,94$ \% ee, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.35-7.22(\mathrm{~m}, 5 \mathrm{H}), 4.48(\mathrm{~m}, 1 \mathrm{H}), 3.94(\mathrm{dd}$, $J=10.8,3.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.61 (dd, J=10.8, $5.6 \mathrm{~Hz}, 1 \mathrm{H}$), 3.12 (brs, 1H), 2.95 (dd, J=14.0, 6.0 Hz , 1H), 2.87 (t, J=7.4 Hz, 2H), 2.67 (dd, J=14.0, $9.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.58 (dt, J=7.4, $2.0 \mathrm{~Hz}, 2 \mathrm{H}$), 2.02 $-1.98(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=140.5,139.9,129.2,128.5,128.4,126.4$,
126.2, 86.1, 81.1, 65.2, 63.2, 47.9, 34.9, 34.0, 20.8. MS (ESI, m / z): calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{2}$ (M, H^{+}), 295.1610; found, 295.1615.

The enantiomeric purity of the major diastereoisomer was determined by HPLC analysis (Daicel Chiralpak AS-H hexane/isopropanol 90/10, flow rate $=1 \mathrm{~mL} / \mathrm{min}$, retention times: 20.7 min (major.) and 28.6 min (min.).

(2S,3S)-2-Benzyl-5-cyclohexylpent-4-yne-1,3-diol (3Ae)

Prepared according to the General Procedure starting from
 hydrocinnamaldehyde $1 \mathrm{~A}(0.2 \mathrm{~mL}, \quad 1.5 \mathrm{mmol})$ and 3cyclohexylpropiolaldehyde $\mathbf{2 e}(68 \mathrm{mg}, 0.5 \mathrm{mmol})$. The title compound was obtained as a 20:1 mixture of anti:syn isomers. The crude material was purified by flash column chromatography on silica gel (eluting with hexane/ ethyl acetate 90/10) to give the title compound as a colourless oil. Yield: $73 \%(100 \mathrm{mg}) .[\alpha]_{\mathrm{D}}{ }^{24}=-4.6\left(c=0.85,93 \%\right.$ ee, $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.49-$ 7.12 (m, 5H), 4.53 (td, J=5.0, 1.5 Hz, 1H), $4.10-3.97$ ($\mathrm{m}, 1 \mathrm{H}$), 3.70 ($\mathrm{dt}, \mathrm{J}=10.8,5.3 \mathrm{~Hz}$, 1H), 3.01 (dd, $J=13.7,6.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.74 (dd, $J=13.7,8.8 \mathrm{~Hz}, 1 \mathrm{H}$), $2.60(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.47 (ddd, J=7.3, 5.3, 2.7 Hz, 1H), 2.30 (d, J=5.1 Hz, 1H), 2.06 (ddd, J=11.7, 5.8, 2.8 Hz , 1H), $\left.1.89-1.25(\mathrm{~m}, 10 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(75} \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=139.9,129.2,128.5,126.2,91.3$, 80.1, 65.3, 63.2, 48.2, 34.1, 32.6, 29.0, 25.8, 24.8. MS (ESI, m / z): calcd for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{2}$ (M, H^{+}), 273.1810; found, 273.1814.

The enantiomeric purity of the major diastereoisomer was determined by HPLC analysis (Daicel Chiralpak IC hexane/isopropanol 90/10, flow rate $=1 \mathrm{~mL} / \mathrm{min}$, retention times: 18.9 min (min.) and 24.3 min (major.)).

(2S,3S)-2-Benzyl-5-phenylpent-4-yne-1,3-diol (3Af)

Prepared according to the General Procedure starting from
 hydrocinnamaldehyde $1 \mathrm{~A} \quad(0.2 \mathrm{~mL}, \quad 1.5 \mathrm{mmol})$ and phenylpropiolaldehyde $2 f(61 \mu \mathrm{~L}, 0.5 \mathrm{mmol})$. The title compound was obtained as a 9:1 mixture of anti:syn isomers. The crude material was purified by flash column chromatography on silica gel (eluting with hexane/ ethyl acetate $80 / 20$) to give the title compound as a white solid. Yield: $84 \%(112 \mathrm{mg}) \cdot[\alpha]_{D}{ }^{25}=-$
4.3 ($c=1,94$ \% ee, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). M.p.: 82-85 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.60-7.11(\mathrm{~m}$, $10 \mathrm{H}), 4.76(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{dd}, J=11.0,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{dd}, J=11.0,5.3 \mathrm{~Hz}, 1 \mathrm{H})$, 3.10 (dd, J=13.8, $6.4 \mathrm{~Hz}, 1 \mathrm{H}$), 2.84 (dd, J=13.8, $8.7 \mathrm{~Hz}, 1 \mathrm{H}$), $2.25-2.13(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=140.1,132.1,129.6,128.9,128.7,126.7,122.9,89.5,86.7,65.9$, 63.7, 48.3, 34.5. $\mathrm{MS}(E S I, m / z)$: calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{2}\left(\mathrm{M}, \mathrm{H}^{+}\right)$, 267.1340; found, 267.1319.

The enantiomeric purity of the major diastereoisomer was determined by HPLC analysis (Daicel Chiralpak AS-H hexane/isopropanol 90/10, flow rate $=1 \mathrm{~mL} / \mathrm{min}$, retention times: 14.1 min (major.) and $17.2 \mathrm{~min}(\mathrm{~min})$).

(3S,4R)-4-Benzyl-5,5-dimethoxy-1-phenylpent-1-yn-3-ol (8Af)

Prepared according to the General Procedure starting from hydrocinnamaldehyde $1 \mathrm{~A} \quad(0.2 \mathrm{~mL}, 1.5 \mathrm{mmol})$ and phenylpropiolaldehyde $\mathbf{2 f}$ (61 $\mu \mathrm{L}, 0.5 \mathrm{mmol})$. The title compound was obtained as a 8.5:1 mixture of anti:syn isomers. The crude material was purified by flash column chromatography on silica gel (eluting with hexane/ ethyl acetate $90 / 10$) to give the title compound as a yellow oil. Yield: $64 \%(591 \mathrm{mg}) .[\alpha]_{\mathrm{D}}{ }^{24}=$ 1.11 ($c=1,94 \%$ ee, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$).). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.43(\mathrm{dd}, J=6.7,3.1 \mathrm{~Hz}, 1 \mathrm{H})$, $7.35-7.20(\mathrm{~m}, 8 \mathrm{H}), 4.69-4.64(\mathrm{~m}, 1 \mathrm{H}), 4.64-4.62(\mathrm{~m}, 1 \mathrm{H}), 3.49(\mathrm{~s}, 3 \mathrm{H}), 3.46(\mathrm{~s}, 3 \mathrm{H})$, $2.95(\mathrm{qd}, \mathrm{J}=13.9,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.39-2.29(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{CNMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 140.1$, $131.8,129.5,129.2,128.7,128.5,128.4,126.4,107.1,89.4,85.9,62.5,56.5,55.7,48.6$, 31.2. $\mathrm{MS}(\mathrm{ESI}, m / z)$: calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{3}\left(\mathrm{M}, \mathrm{H}^{+}\right), 310.3869$; found 310.1568 .

The enantiomeric purity of the major diastereoisomer was determined by HPLC analysis (Daicel Chiralpak IC hexane/isopropanol 98/2, flow rate $=0.5 \mathrm{~mL} / \mathrm{min}$, retention times: 30.9 min (min.) and 36.9 min (major)).

(2S,3S)-2-Benzyl-5-(4-methoxyphenyl) pent-4-yne-1,3-diol (3Ag)

Prepared according to the General Procedure starting from
 hydrocinnamaldehyde $1 \mathrm{~A}(0.2 \mathrm{~mL}, 1.5 \mathrm{mmol})$ and 3 -(4methoxyphenyl) propiolaldehyde $\mathbf{2 g}$ ($80 \mathrm{mg}, 0.5 \mathrm{mmol}$). The title compound was obtained as a 10.2:1 mixture of anti:syn isomers. The crude material was purified by flash column chromatography on silica gel
(eluting with hexane/ ethyl acetate $90 / 10$) to give the title compound as a white solid. M.p: 120-123 ${ }^{\circ}$ C. Yield: $55 \%(81 \mathrm{mg}) .[\alpha]_{\mathrm{D}}{ }^{24}=-3.2\left(c=0.80,92 \%\right.$ ee, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.48-7.20(\mathrm{~m}, 7 \mathrm{H}), 6.95-6.82(\mathrm{~m}, 2 \mathrm{H}), 4.75(\mathrm{t}, \mathrm{J}=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{~d}, \mathrm{~J}=$ $10.9 \mathrm{~Hz}, 1 \mathrm{H}$), $3.85(\mathrm{~s}, 3 \mathrm{H}), 3.82-3.72(\mathrm{~m}, 1 \mathrm{H}), 3.08(\mathrm{dd}, \mathrm{J}=13.8,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.83(\mathrm{dd}, \mathrm{J}=$ $13.7,8.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.23-2.15(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 139.8, 133.2, 129.2, 128.5, 126.2, 114.5, 114.0, 87.7, 86.3, 65.6, 63.3, 55.3, 48.0, 34.1. MS (ESI, m/z): calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{2}\left(\mathrm{M}, \mathrm{H}^{+}\right)$, 297.1446; found, 297.1429.

The enantiomeric purity of the major diastereoisomer was determined by HPLC analysis (Daicel Chiralpak AS-H hexane/isopropanol 90/10, flow rate $=1 \mathrm{~mL} / \mathrm{min}$, retention times: 28.0 min (major.) and 31.1 min (min.)).

(2S,3S)-2-Benzyl-5-(4-chlorophenyl)pent-4-yne-1,3-diol (3Ah)

Prepared according to the General Procedure starting from hydrocinnamaldehyde $1 \mathrm{~A}(0.2 \mathrm{~mL}, 1.5 \mathrm{mmol})$ and m chlorophenylpropynal $\mathbf{2 h}$ ($72 \mathrm{mg}, 0.5 \mathrm{mmol}$). The crude material was purified by flash column chromatography on silica gel (eluting with hexane/ EtOAc 90/10) to give the title compound as a colourless oil. Yield: $74 \%(111 \mathrm{mg}) .[\alpha]_{\mathrm{D}}{ }^{24}=-5.7$ ($\mathrm{c}=0.82$, 91% ee, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.36-7.20(\mathrm{~m}, 9 \mathrm{H}), 4.75(\mathrm{~d}, \mathrm{~J}=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.22-4.12(\mathrm{~m}$, 1 H), 3.78 (dd, $J=11.0,5.3 \mathrm{~Hz}, 1 \mathrm{H}$), 3.08 (dd, $J=13.8,6.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.84 (dd, $J=14.0,8.5$ $\mathrm{Hz}, 1 \mathrm{H}), 2.23-2.13(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 139.6,134.1,131.5,129.8$, 129.5, 129.1, 128.7, 128.5, 126.3, 124.2, 90.4, 84.7, 65.3, 63.2, 47.7, 34.1. MS (ESI, m / z): calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{ClO}_{2}\left(\mathrm{M}, \mathrm{H}^{+}\right), 302.0888$; found, 302.0898 .

The enantiomeric purity of the major diastereoisomer was determined by HPLC analysis (Daicel Chiralpak AS-H hexane/isopropanol 90/10, flow rate= $1 \mathrm{~mL} / \mathrm{min}$, retention times: 11.7min (mayor.) and 14.0min (min.)).

(2S,3S)-2-Benzyl-6,6-diethoxyhex-4-yne-1,3-diol (3Ai)

Prepared according to the General Procedure starting from hydrocinnamaldehyde 1A ($99 \mu \mathrm{l}, 0.75 \mathrm{mmol}$) and 4,4-diethoxybut-2-ynal $2 \mathbf{i}$ ($78 \mathrm{mg}, 0.5 \mathrm{mmol}$). The title compound was obtained as a $14: 1$ mixture of anti:syn isomers. The crude material was purified by flash column
chromatography on silica gel (eluting with hexane/ ethyl acetate 80/20) to give the title compound as a yellow oil. Yield: $60 \%(88 \mathrm{mg}) .[\alpha]_{\mathrm{D}}{ }^{25}=-1,7\left(c=1,94 \%\right.$ ee, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.32-7.20(\mathrm{~m}, 5 \mathrm{H}), 5.33(\mathrm{~d}, \mathrm{~J}=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{~d}, \mathrm{~J}=4.9,1 \mathrm{H})$, 4.03 (dd, J=3.1, $11.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.81-3.72 (m, 3H), 3.69-3.57 (m, 3H), 2.99 (dd, J=6.3, 13.7 $\mathrm{Hz}, 1 \mathrm{H}), 2.74(\mathrm{dd}, \mathrm{J}=8.7,13.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.09-2.02(\mathrm{~m}, 1 \mathrm{H}), 1.25(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=139.6,129.1,128.4,126.1,91.2,85.6,81.1,64.5,62.7,61.0,47.4$, 33.9, 14.9. $\mathrm{MS}(E S I, m / z)$: calcd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{4}\left(\mathrm{M}, \mathrm{H}^{+}\right)$, 293,1712; found, 293,1716.

The enantiomeric purity of the major diastereoisomer was determined by HPLC analysis (Phenomenex Lux 3μ Cellulose-4 hexane/isopropanol 93/7, flow rate= $1 \mathrm{~mL} / \mathrm{min}$, retention times: 35.8 min (min.) and 48.8 min (major.)).

(2S,3S)-2-Benzyl-8-chlorooct-4-yne-1,3-diol (3Aj)

Prepared according to the General Procedure starting from hydrocinnamaldehyde $1 \mathrm{~A}(0.13 \mathrm{~mL}, 1 \mathrm{mmol})$ and 6 -chlorohex-2-ynal 2 j ($65.3 \mathrm{mg}, 0.5 \mathrm{mmol}$). The title compound was obtained as a 20:1 mixture of anti:syn isomers. The crude material was purified by flash column chromatography on silica gel (eluting with hexane/ ethyl acetate $80 / 20$) to give the title compound as a colourless oil. Yield: $65 \%(85 \mathrm{mg}) .[\alpha]_{\mathrm{D}}{ }^{25}=+-0.25$ ($c=1,99 \% e e$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.46-7.19(\mathrm{~m}, 6 \mathrm{H}), 4.51(\mathrm{~s}, 1 \mathrm{H}), 4.04(\mathrm{~d}, \mathrm{~J}=10.8$, 1 H), 3.67 (t, J = 6.3, 3H), 2.99 (dd, J = 13.7, 6.2, 2H), 2.73 (dd, J = 13.7, 8.7, 1H), 2.46 (td, J $=6.8,1.9,2 \mathrm{H}), 2.11-1.94(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 139.9,129.3,128.6$, 126.4, 85.0, 81.5, 65.4, 63.4, 48.0, 43.8, 34.2, 31.4, 16.3.MS (ESI, m / z): calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{ClO}_{2}\left(\mathrm{M}, \mathrm{H}^{+}\right), 266,76$; found 266.75 .

The enantiomeric purity of the major diastereoisomer was determined by HPLC analysis (Daicel Chiralpak AD-H hexane/isopropanol 98/2, flow rate $=1 \mathrm{~mL} / \mathrm{min}$, retention times: 100 min (mayor.) and 115 min (min.).

(2S,3S)-2-Methyl-7-phenylhept-4-yne-1,3-diol (3Bd)

Prepared according to the General Procedure starting from propionaldehyde 1B ($0.11 \mathrm{ml}, 1.5 \mathrm{mmol}$) and 5-phenylpent-2-ynal 2d ($79 \mathrm{mg}, 0.5 \mathrm{mmol}$). The title compound was obtained as a 19:1 mixture of anti:syn isomers. The crude material was purified by flash column chromatography on silica gel (eluting with hexane/ ethyl acetate 80/20) to give the title compound as a colourless oil. Yield: $75 \%(82 \mathrm{mg}) .[\alpha]_{D}{ }^{25}=+3.7(c=0.2,99.8$ \% ee, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.34-7.21(\mathrm{~m}, 5 \mathrm{H}), 4.36(\mathrm{dt}, \mathrm{J}=6.9,1.9 \mathrm{~Hz}$, 1 H), 3.76 ($\mathrm{dd}, \mathrm{J}=11.0,3.9 \mathrm{~Hz}, 1 \mathrm{H}$), 3.60 (dd, J=11.0, $7.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.86 (t, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$), 2.56 (td, J=7.4, 1.9 Hz, 2H), $1.98-1.88(\mathrm{~m}, 1 \mathrm{H}), 0.97(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=140.5,128.5,128.4,126.3,85.7,80.8,67.1,66.5,41.4,35.0,20.8$, 13.0. MS (ESI, m / z): calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{2}\left(\mathrm{M}, \mathrm{H}^{+}\right), 219,1311$; found, 219,1315.

The enantiomeric purity of the major diastereoisomer was determined by HPLC analysis (Daicel Chiralpak AY-H hexane/isopropanol 95/5, flow rate $=1 \mathrm{~mL} / \mathrm{min}$, retention times: 26.5 min (major.) and 35.4 min (minor.)).

(2S,3S)-2-Methyl-5-phenylpent-4-yne-1,3-diol (3Bf)

Prepared according to the General Procedure starting from propanal
 1B ($0.11 \mathrm{~mL}, 1.5 \mathrm{mmol}$) and phenylpropiolaldehyde $2 \mathrm{f}(61 \mu \mathrm{~L}, 0.5$ $\mathrm{mmol})$. The title compound was obtained as a 5:1 mixture of anti:syn isomers. The crude material was purified by flash column chromatography on silica gel (eluting with hexane/ ethyl acetate $80 / 20$) to give the title compound as a yellow oil. Yield: $73 \%(69 \mathrm{mg}) .[\alpha]_{\mathrm{D}}{ }^{22}=+4.09\left(c=0.25,94 \% \mathrm{ee}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$). ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $=7.54-7.28(\mathrm{~m}, 5 \mathrm{H}), 4.67(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{dd}, \mathrm{J}=10.9,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.76$ (dd, $J=10.9,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.20-2.07(\mathrm{~m}, 1 \mathrm{H}), 1.14(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=131.7,128.4,122.5,88.0,86.2,66.9,65.8,40.4,12.3 . \mathrm{MS}(E S I, m / z): ~ c a l c d ~ f o r ~$ $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{2}\left(\mathrm{M}, \mathrm{H}^{+}\right), 191.0994 ;$ found, 191.0986 .

The enantiomeric purity of the major diastereoisomer was determined by HPLC analysis (Daicel Chiralpak IC, hexane/isopropanol 90/10, flow rate= $1 \mathrm{~mL} / \mathrm{min}$, retention times: 13.7 min (min.) and 15.6 min (major)).

(2S,3S)-2-Methyl-5-(thiophen-3-yl)pent-4-yne-1,3-diol (3Bk)

Prepared according to the General Procedure starting from propanal 1B ($0.11 \mathrm{~mL}, 1.5 \mathrm{mmol}$) and 3-(thiophen-3$\mathrm{yl})$ propiolaldehyde $\mathbf{2 k}$ ($52 \mathrm{mg}, 0.5 \mathrm{mmol}$). The title compound was obtained as a 9:1 mixture of anti:syn isomers. The crude material was purified by flash column chromatography on silica gel (eluting with hexane/ ethyl acetate 70/30) to give the title compound as a yellow oil. Yield: 50\% (49mg). $[\alpha]_{\mathrm{D}}{ }^{25}=+6.5$ ($c=1,99 \% \mathrm{ee}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.49$ (dd, J=2.9, $1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.14(\mathrm{dd}, \mathrm{J}=5.0,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{~s}, 1 \mathrm{H}), 3.96-3.91(\mathrm{~m}$, 1 H), $3.80-3.70(\mathrm{~m}, 1 \mathrm{H}), 2.72(\mathrm{~d}, \mathrm{~J}=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.24(\mathrm{~m}, 1 \mathrm{H}), 2.12(\mathrm{ddd}, \mathrm{J}=12.8,6.4,3.4$ $\mathrm{Hz}, 1 \mathrm{H}), 1.12(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 128.8,127.9,124.3,87.4$, 66.4, 65.4, 63.4, 40.37, 24.2, 12.1. . MS (ESI, m/z): calcd for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{2} \mathrm{~S}\left(\mathrm{M}, \mathrm{H}^{+}\right)$, 196.27; found 196.27.

The enantiomeric purity of the major diastereoisomer was determined by HPLC analysis (Daicel Chiralpak IC, hexane/isopropanol 93/7, flow rate= $1.2 \mathrm{~mL} / \mathrm{min}$, retention times: 31.9 min (min.) and 41.8 min (major)).

(2S,3S)-8-((4-Methoxybenzyl)oxy)-2-methyloct-4-yne-1,3-diol (3BI)

Prepared according to the General Procedure starting from propanal 1B $(0.11 \mathrm{~mL}, 1.5$ mmol) and 6-((4-methoxybenzyl)oxy)hex-2-ynal 21 ($116 \mathrm{mg}, 0.5 \mathrm{mmol}$). The title compound was obtained as a 9:1 mixture of anti:syn isomers. The crude material was purified by flash column chromatography on silica gel (eluting with hexane/ ethyl acetate $70 / 30$) to give the title compound as a yellow oil. Yield: 71% (101.1 mg). $[\alpha]_{D}{ }^{25}=$ $+3.5\left(c=1,99 \%\right.$ ee, $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.26(\mathrm{~d}, \mathrm{~J}=8.7,2 \mathrm{H}), 6.88(\mathrm{~d}, \mathrm{~J}=$

$8.7,2 \mathrm{H}$), $4.44(\mathrm{~s}, 2 \mathrm{H}), 4.34(\mathrm{~d}, \mathrm{~J}=6.8,1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H})$,
3.75 ($\mathrm{d}, \mathrm{J}=3.8,1 \mathrm{H}$), $3.67-3.58(\mathrm{~m}, 1 \mathrm{H}), 3.52(\mathrm{t}, \mathrm{J}=6.2$, 2H), 2.34 (dd, J = 7.1, 5.1, 2H), $1.97-1.88$ (m, 1H), 1.80 ($\mathrm{t}, \mathrm{J}=6.6,2 \mathrm{H}$), 0.98 ($\mathrm{d}, \mathrm{J}=7.0,2 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.3,130.6,129.4$, 113.9, 85.9, 80.5, 72.7, 68.5, 67.2, 66.6, 55.4, 41.6, 28.9, 15.7, 13.2. . MS (ESI, m / z): calcd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{4}\left(\mathrm{M}, \mathrm{H}^{+}\right)$, 292.37; found 292.34.

The enantiomeric purity of the major diastereoisomer was determined by HPLC analysis (Daicel Chiralpak OD-H, hexane/isopropanol 95/5, flow rate $=0.75 \mathrm{~mL} / \mathrm{min}$, retention times: 46.3 min (min.) and 51.3 min (major)).

(2S,3S)-2-Isopropyldec-4-yne-1,3-diol (3Ca)

Prepared according to the General Procedure starting from isovaleraldehyde 1 C ($0.2 \mathrm{~mL}, 1.5 \mathrm{mmol}$) and 2octynal 2a ($48 \mathrm{mg}, 0.5 \mathrm{mmol}$). The title compound was obtained as a 16:1 mixture of anti:syn isomers. The crude material was purified by flash column chromatography on silica gel (eluting with hexane/ ethyl acetate 80/20) to give the title compound as a colorless oil. Yield: $71 \%(82 \mathrm{mg}) .[\alpha]_{\mathrm{D}}{ }^{22}=-4.18$ ($c=0.1,99 \% e e$, $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.69(\mathrm{t}, \mathrm{J}=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{dt}, J=19.5,8.8 \mathrm{~Hz}, 1 \mathrm{H})$, $3.94-3.82(\mathrm{~m}, 1 \mathrm{H}), 2.71(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{~s}, 1 \mathrm{H}), 2.26(\mathrm{td}, J=7.1,2.0 \mathrm{~Hz}, 2 \mathrm{H})$, $1.49-1.32(\mathrm{~m}, 6 \mathrm{H}), 1.07$ (d, $J=6.8 \mathrm{~Hz}, 4 \mathrm{H}$), 0.95 (dd, $J=14.8,7.1 \mathrm{~Hz}, 6 \mathrm{H}$). MS (ESI, m/z): calcd for $\mathrm{C}_{13} \mathrm{H}_{25} \mathrm{O}_{2}\left(\mathrm{M}, \mathrm{H}^{+}\right), 213.1843$; found ($\mathrm{M}-\mathrm{CH}_{3} \mathrm{O}$), 213.1855.

For determination of the ee, this adduct was derivatized to the saturated monobenzoate ester as follow.

To a 5 mL flask charged with a solution of diol ($51 \mathrm{mg}, 0.24 \mathrm{mmol}$) in ethanol (2 mL) was added $\mathrm{Pd} / \mathrm{C}(10 \% \mathrm{wt}, 10 \mathrm{mg})$. The flask was filled with hydrogen gas and stirred for 16 h at rt under hydrogen balloon. The mixture was filtered over celite pad and the filtrate was concentrated. Purification on a silica gel column (hexane/AcOEt, 80:20) provided 31mg of the corresponding saturated diol ($31 \mathrm{mg}, 0.15 \mathrm{mmol}, 62 \%$ yield) as a pale yellow oil. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.02$ - $3.81(\mathrm{~m}, 3 \mathrm{H}), 3.81-3.69(\mathrm{~m}, 1 \mathrm{H})$,
2.01 (dq, J = 13.6, $6.8 \mathrm{~Hz}, 1 \mathrm{H}$), $1.63-1.57$ (m, 2H), $1.42-1.23$ (m, 10H), $1.04(\mathrm{~d}, \mathrm{~J}=6.8$ $\mathrm{Hz} \mathrm{Hz}, 3 \mathrm{H}$), 0.94 (qd, $J=6.8,2.7 \mathrm{~Hz}, 6 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 77.00,64.41$, $52.98,39.07,34.60,32.43,32.07,28.79,28.59,25.42,24.11,22.22,16.85$.

To a solution of the saturated diol ($31 \mathrm{mg}, 0.15 \mathrm{mmol}$) in 1.5 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}-40^{\circ} \mathrm{C}$ was added pyridine ($59 \mu \mathrm{~L}, 0.732 \mathrm{mmol}$) and benzoyl chloride ($30 \mu \mathrm{~L}, 0.30 \mathrm{mmol}$) at. After stirring for 2 h , this solution was diluted with 10 mL of ethyl acetate, washed with $2 \times$ 10 mL of 0.5 M HCl aqueous solution, dried over MgSO_{4} and concentrated. Purification on a silica gel column (Hexanes/AcOEt, 10/1) provided 32 mg of the ester product (0.1 mmol, 67% yield).

The enantiomeric purity of the major diastereoisomer was determined by HPLC analysis (Daicel Chiralpak IC, hexaneethanol 98/2, flow rate $=1 \mathrm{~mL} / \mathrm{min}$, retention times: 15.6 \min (major) and 17.6 min (min.)).

(3S,4R)-4-(Dimethoxymethyl)-5-methyl-1-phenylhex-1-yn-3-ol (8Cf)

Prepared according to the General Procedure starting from
 isovaleraldehyde 1C ($0.16 \mathrm{~mL}, 1.5 \mathrm{mmol}$) and phenylpropargyl aldehyde 2 f ($0.61 \mathrm{~mL}, 0.5 \mathrm{mmol}$). The title compound was obtained as a 9:1 mixture of anti:syn isomers. The crude material was purified by flash column chromatography on silica gel (eluting with hexane/ ethyl acetate 90/10) to give the title compound as a yellow oil. Yield: 58\%. (133 $\mathrm{mg})[\alpha]_{\mathrm{D}}{ }^{24}=-100.3\left(c=1,98 \% e e, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.44(\mathrm{dd}, \mathrm{J}=6.5$, $3.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.34-7.27(\mathrm{~m}, 3 \mathrm{H}), 4.91-4.85(\mathrm{~m}, 1 \mathrm{H}), 4.60(\mathrm{~d}, \mathrm{~J}=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{~d}, \mathrm{~J}=$ $4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.46(\mathrm{~d}, \mathrm{~J}=10.4 \mathrm{~Hz}, 6 \mathrm{H}), 2.55-2.53(\mathrm{~m}, 0 \mathrm{H}), 2.30-2.18(\mathrm{~m}, 1 \mathrm{H}), 1.96(\mathrm{dt}, \mathrm{J}=$
$6.7,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.06(\mathrm{dd}, \mathrm{J}=11.3,7.0 \mathrm{~Hz}, 7 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 131.8,128.4$, 106.9, $62.7,55.9,55.0,51.3,26.8,21.4,20.0$. $\mathrm{MS}(E S I, m / z)$: calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{3}\left(\mathrm{M}, \mathrm{H}^{+}\right)$, 262.3441; found, 262.1578.

The enantiomeric purity of the major diastereoisomer was determined by HPLC analysis (Daicel Chiralpak IB, hexane/ethanol 95/5, flow rate= $1 \mathrm{~mL} / \mathrm{min}$, retention times: 6 min (min) and 7.2 min (major.)).

(4S,5S)-tert-Butyl-7-cyclohexyl-5-hydroxy-4-(hydroxymethyl)hept-6ynoate (3De)

Prepared according to the General Procedure starting from tert-Butyl-5-oxopentanoate 1D ($258.3 \mathrm{mg}, 1.5 \mathrm{mmol}$) and 3cyclohexylpropiolaldehyde $\mathbf{2 e}(136,1 \mathrm{mmol})$. The title compound was obtained as a 20:1 mixture of anti:syn isomers. The crude material was purified by flash column chromatography on silica gel (eluting with hexane/ ethyl acetate 80/20) to give the title compound as a yellow oil. Yield: 52\% (160 $\mathrm{mg}) \cdot[\alpha]_{\mathrm{D}}{ }^{22}=-7.83\left(c=1,99 \%\right.$ ee, $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.45(\mathrm{~d}, \mathrm{~J}=3.3,1 \mathrm{H})$, $4.00-3.94(\mathrm{~m}, 1 \mathrm{H}), 3.72-3.60(\mathrm{~m}, 2 \mathrm{H}), 3.53-3.43(\mathrm{~m}, 1 \mathrm{H}), 2.33(\mathrm{t}, \mathrm{J}=7.2,3 \mathrm{H}), 1.86-$ $1.63(\mathrm{~m}, 9 \mathrm{H}), 1.42(\mathrm{~s}, 12 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 173.6,90.9,80.7,80.1,65.5,63.1$, 45.9, 33.4, 32.7, 29.1, 28.2, 25.9, 24.9, 22.8.MS (ESI, m / z): calcd for $\mathrm{C}_{18} \mathrm{H}_{30} \mathrm{O}_{4}\left(\mathrm{M}, \mathrm{H}^{+}\right)$, 310.4284; found ($\mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}$), 237.1491

For determination of the ee, this adduct was derivatized to the saturated monobenzoate ester as for adduct 3Ac.

(4S,5R)-tert-Butyl 7-cyclohexyl-5-hydroxy-4-(hydroxymethyl)heptanoate.
Yield: Yellow oil. 85 \% (63.9 mg) ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.95(\mathrm{dd}, J=11.4,3.0,1 \mathrm{H}$), $3.66-3.58(\mathrm{~m}, 2 \mathrm{H}), 2.33(\mathrm{td}, J=7.1,2.1,2 H), 1.81(\mathrm{q}, J=7.2,2 \mathrm{H}), 1.69(\mathrm{~s}, 7 \mathrm{H}), 1.58(\mathrm{~d}, J$ $=6.8,3 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}), 1.24(\mathrm{t}, \mathrm{J}=7.0,4 \mathrm{H})$.

(S)-2-((R)-3-Cyclohexyl-1-hydroxypropyl)-7,7-dimethyl-5-oxooctyl benzoate

Purification on a silica gel column (Hexane/AcOEt 90:10) provided 57.2 mg of the product ($0.15 \mathrm{mmol}, 50 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.03$ (d, J = 7.1, 2 H), 7.49 $(\mathrm{dt}, J=15.1,7.4,3 \mathrm{H}), 4.45(\mathrm{dd}, J=9.7,4.7,2 \mathrm{H}), 3.61(\mathrm{dt}, J=8.5,4.3,1 \mathrm{H}), 2.47-2.29(\mathrm{~m}$, $2 H), 1.95-1.76(\mathrm{~m}, 3 \mathrm{H}), 1.76-1.48(\mathrm{~m}, 12 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}), 1.29-1.12(\mathrm{~m}, 6 \mathrm{H}), 0.97-$ 0.77 (m, 3H).

The enantiomeric purity of the major diastereoisomer was determined by HPLC analysis (Daicel Chiralpak IC, hexane/ethanol 99/1, flow rate $=1 \mathrm{~mL} / \mathrm{min}$, retention times: 34.7 $\min (m i n$.$) and 40.6 \mathrm{~min}$ (major)).

(2S,3S)-2-(4-Boc-aminobutyl)-7-phenylhept-4-yne-1,3-diol (3Ed)

Prepared according to the General Procedure starting from 6-Boc-aminohexanal 1E (140 mg, 0.65 mmol) and 5-phenylpent-2ynal 2d ($79 \mathrm{mg}, 0.5 \mathrm{mmol}$). The title compound was obtained as a 13:1 mixture of anti:syn isomers. The crude material was purified by flash column chromatography on silica gel (eluting with hexane/ ethyl acetate $80 / 20$) to give the title compound as a colourless oil. Yield: 71% $(134 \mathrm{mg}) .[\alpha]_{\mathrm{D}}{ }^{23}=-1.45\left(c=0.94,95 \%\right.$ ee, $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.34-$ $7.21(\mathrm{~m}, 5 \mathrm{H}), 4.57($ brs, 1 H$), 4.45(\mathrm{~m}, 1 \mathrm{H}), 3.98(\mathrm{~m}, 1 \mathrm{H}), 3.68-3.62(\mathrm{~m}, 1 \mathrm{H}), 3.22-3.08$ (m, 2H), 2.95 (br, 1H), 2.86 (t, J= 7.6 Hz, 2H), 2.56 (dt, J=7.6, 2.0 Hz, 2H), $1.66-1.28(\mathrm{~m}$, $8 \mathrm{H}), 1.46(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=156.4,140.6,128.4,128.3,126.3,85.4$,
81.3, 79.3, 65.8, 63.3, 45.9, 39.9, 35.0, 30.3, 28.4, 26.9, 24.0, 20.8. MS (ESI, m/z): calcd for $\mathrm{C}_{22} \mathrm{H}_{33} \mathrm{NO}_{4}\left(\mathrm{M}, \mathrm{H}^{+}\right), 376.2410$; found, 376.2414.

The enantiomeric purity of the major diastereoisomer was determined by HPLC analysis (Phenomenex Lux 3μ Cellulose-4, hexane/isopropanol 90/10, flow rate= $1.5 \mathrm{~mL} / \mathrm{min}$, retention times 33.6 min (min.) and 49.23min (mayor.).

(2S,3S)-2-Allyloct-4-yne-1,3-diol (3Fb)

Prepared according to the General Procedure starting from 4pentenal $1 \mathbf{F}$ ($0.6 \mathrm{~mL}, 0.6 \mathrm{mmol}$) and hex-2-ynal $\mathbf{2 b}$ ($96.1 \mathrm{mg}, 0.5$ $\mathrm{mmol})$. The title compound was obtained as a 20:1 mixture of anti:syn isomers. The crude material was purified by flash column chromatography on silica gel (eluting with hexane/ ethyl acetate 80/20) to give the title compound as a yellow oil. Yield: $50 \%(44.8 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.83$ (d, J = $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{t}, \mathrm{J}=13.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.49(\mathrm{~s}, 1 \mathrm{H}), 3.97(\mathrm{~s}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 1 \mathrm{H}), 2.45(\mathrm{~d}, \mathrm{~J}=5.4$ $\mathrm{Hz}, 1 \mathrm{H}), 2.37$ (s, 1H), $2.27-2.12(\mathrm{~m}, 7 \mathrm{H}), 1.85(\mathrm{~s}, 1 \mathrm{H}), 1.54$ (dd, J = 14.4, 7.1 Hz, 4H), 1.30 $(\mathrm{s}, 2 \mathrm{H}), 1.05-0.95(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 136.4,136.2,124.6,117.0,65.7$, 63.9, 46.1, 32.6, 22.2, 20.8, 13.6. MS (ESI, m / z): calcd for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{O}_{2}\left(\mathrm{M}, \mathrm{H}^{+}\right), 183.1400$; found,183.1385.

The enantiomeric purity of the major diastereoisomer was determined by chiral HPLC analysis of (4S,5S)-4-[((triphenylsilyl)oxy)methyl]dec-1-en-6-yn-5-ol prepared from 3Fb.

Aduct 3Fb (47.9 mg ; 0.26 mmol) was solved in 1.3 mL of anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and DMAP $(0.31 \mathrm{mmol}, 38.1 \mathrm{mg})$ and $\mathrm{Ph}_{3} \mathrm{ClSi}(0.26 \mathrm{mmol}, 76.7 \mathrm{mg})$ was added at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was allowed to stir at $0^{\circ} \mathrm{C}$ for 3 h and then quenched by addition of $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$. The combined organic layers were washed successively with 0.1 M aqueous solution of $\mathrm{HCl}(10 \mathrm{~mL})$ and sat. aqueous NaHCO_{3} solution (10 mL), dried over MgSO_{4}, filtered and concentrated. Purification on a silica gel column (hexane/AcOEt, 90/10) provided 114 mg of the product ($0.2 \mathrm{mmol}, 80 \%$ yield). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.66$ (dd, $\mathrm{J}=7.8$,
$1.5 \mathrm{~Hz}, 6 \mathrm{H}$), $7.46(\mathrm{dq}, \mathrm{J}=17.7,7.0 \mathrm{~Hz}, 9 \mathrm{H}), 5.73(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.00(\mathrm{t}, \mathrm{J}=12.5 \mathrm{~Hz}$, 2 H), $4.61(\mathrm{~s}, 1 \mathrm{H}), 4.23(\mathrm{~d}, \mathrm{~J}=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{dd}, J=10.1,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.24-2.16(\mathrm{~m}$, 4 H), $1.52(\mathrm{dd}, \mathrm{J}=14.5,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 0.98(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 136.7, 135.6, 133.8, 130.4, 128.1, 116.9, 86.9, 80.2, 65.1, 64.4, 46.1, 32.2, 29.9, 22.3, 20.9. $[\alpha]_{\mathrm{D}}{ }^{24}=+34.5\left(c=0.1,91 \%\right.$ ee, $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

The enantiomeric purity of the major diastereoisomer was determined by HPLC analysis (Daicel Chiralpak IB hexane/isopropanol 99/1, flow rate= $1 \mathrm{~mL} / \mathrm{min}$, retention times: $7 \mathrm{~min}(\min$.$) and 16.9 \mathrm{~min}$ (major.)).

(3S, 4R)-4-(Dimethoxymethyl)-1-phenylhept-6-en-1-yn-3-ol (8Ff)

Prepared according to the General Procedure starting from 4-
 pentenal 1 ($0.15 \mathrm{~mL}, 1.5 \mathrm{mmol}$) and phenyl propargyl aldehyde $2 f(0.61 \mathrm{~mL}, 0.5 \mathrm{mmol})$. The title compound was obtained as a 8:1 mixture of anti:syn isomers. The crude material was purified by flash column chromatography on silica gel (eluting with hexane/ ethyl acetate 90/10) to give the title compound as a yellow oil. Yield: $84 \%(109 \mathrm{mg}) .[\alpha]_{D}{ }^{24}=-8.2(c=1.05,94 \%$ $e e, \mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.51-7.31(\mathrm{~m}, 5 \mathrm{H}), 5.94(\mathrm{ddt}, \mathrm{J}=17.2,10.1,7.2$ $\mathrm{Hz}, 1 \mathrm{H}), 5.27-5.07(\mathrm{~m}, 2 \mathrm{H}), 4.80(\mathrm{~d}, \mathrm{~J}=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{~d}, \mathrm{~J}=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.50(\mathrm{~s}, 3 \mathrm{H})$, 3.49 (s, 3H), $2.55-2.37(\mathrm{~m}, 2 \mathrm{H}), 2.20$ (ddd, $J=10.7,7.4,5.7 \mathrm{~Hz}, 1 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right)$ (136.5, 131.6, 128.3, 128.2, 122.4, 117.0, 106.7, 88.9, 85.7, 63.0, 55.9, 54.8, 46.3, 30.3. $\mathrm{MS}(E S I, m / z)$: calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{3}\left(\mathrm{M}, \mathrm{H}^{+}\right)$, 261.1446; found, 261.1440 .

The enantiomeric purity of the major diastereoisomer was determined by HPLC analysis (Daicel Chiralpak AD-H hexane/isopropanol 95/5, flow rate $=1 \mathrm{~mL} / \mathrm{min}$, retention times: 19.8 min (min.) and 22.0 min (major.)).

(3S,4R)-4-(dimethoxymethyl)-1-(triisopropylsilyl)hept-6-en-1-yn-3-ol

 (8Fm)

Prepared according to the General Procedure starting from 4pentenal 1F (74 $\mu \mathrm{L}, \quad 0.75 \mathrm{mmol})$ and 3(triisopropylsilyl)propiolaldehyde $\mathbf{2 m}$ ($105.6 \mathrm{mg}, 0.5 \mathrm{mmol}$).

The title compound was obtained as a 20:1 mixture of anti:syn isomers. The crude material was purified by flash column chromatography on silica gel (eluting with hexane/ ethyl acetate $95 / 5$) to give the title compound as a yellow oil. Yellow oil. Yield:55\% (53.4mg). $[\alpha]_{D}{ }^{25}=+11.9\left(c=11,99 \%\right.$ ee, $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $5.90(\mathrm{~d}, \mathrm{~J}=7.6,1 \mathrm{H}), 5.17(\mathrm{~d}, \mathrm{~J}=17.0,1 \mathrm{H}), 5.08(\mathrm{~d}, \mathrm{~J}=10.0,1 \mathrm{H}), 4.64(\mathrm{~d}, \mathrm{~J}=4.8,1 \mathrm{H}), 4.62$ $-4.55(\mathrm{~m}, 1 \mathrm{H}), 3.45(\mathrm{~d}, J=1.4,6 \mathrm{H}), 2.41(\mathrm{~d}, \mathrm{~J}=7.4,2 \mathrm{H}), 2.07(\mathrm{~s}, 1 \mathrm{H}), 1.11(\mathrm{~s}, 18 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 136.9,117.2,107.6,106.8,63.1,56.2,54.9,46.3,29.7,18.8$, 11.4. $\mathrm{MS}(\mathrm{ESI}, \mathrm{m} / \mathrm{z})$: calcd for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{3}\left(\mathrm{M}, \mathrm{H}^{+}\right), 340.57$; found $\left(\mathrm{M}-2 \mathrm{CH}_{3} \mathrm{O}\right), 177.1306$.

The enantiomeric purity of the major diastereoisomer was determined by chiral HPLC analysis of (((3S,4R)-4-(dimethoxymethyl)-1-(triisopropylsilyl)hept-6-en-1-yn-3yl)oxy)triphenylsilane prepared from $\mathbf{8 F m}$.

Adduct 8 Fm ($121 \mathrm{mg} ; 0.3 \mathrm{mmol}$) was solved in 1.5 mL of anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and DMAP ($0.45 \mathrm{mmol}, 55 \mathrm{mg}$) and $\mathrm{Ph}_{3} \mathrm{ClSi}(0.45 \mathrm{mmol}, 132.7 \mathrm{mg}$) was added at rt . The reaction mixture was allowed to stir at rt for 3 h and then quenched by addition of $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$. The combined organic layers were washed successively with 0.1 M aqueous solution of $\mathrm{HCl}(10 \mathrm{~mL})$ and sat. aqueous NaHCO_{3} solution (10 mL), dried over MgSO_{4}, filtered and concentrated. Purification triturated with ethanol provided 134 mg of the product ($0.22 \mathrm{mmol}, 75 \%$ yield). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.74-7.59(\mathrm{~m}, 5 \mathrm{H}), 7.38(\mathrm{dt}, \mathrm{J}=$ 13.9, 6.8, 10H), $6.16-5.95(\mathrm{~m}, 1 \mathrm{H}), 5.11-4.88(\mathrm{~m}, 2 \mathrm{H}), 4.75$ (d, J = 4.5, 1H), 4.35 (d, J = $7.5,1 \mathrm{H}$), 3.21 (s, 3H), 3.10 (s, 3H), 2.64 (dd, J = 14.0, 7.4, 1H), 2.35 (dd, J = 13.6, 7.0, 1H), $2.10-1.98(\mathrm{~m}, 1 \mathrm{H}), 1.15-1.08(\mathrm{~m}, 3 \mathrm{H}), 1.09-0.99(\mathrm{~m}, 18 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right)$ $\delta 138.7,135.8,134.3,130.1,127.9,115.0,106.7,105.9,64.8,53.8,47.7,30.7$, 18.8, 11.4.

The enantiomeric purity of the major diastereoisomer was determined by HPLC analysis (Daicel Chiralpak AY-H, hexane/isopropanol 98/2, flow rate $=0.5 \mathrm{~mL} / \mathrm{min}$, retention times: 4.9 min (major.) and $15 \mathrm{~min}(\min$.$)).$

(3S,4R)-4-(Dimethoxymethyl)-8,8-dimethoxy-1-phenyloct-1-yn-3-ol (8Gf)

Prepared according to the General Procedure starting from 6,6-dimethoxyhexanal 1G ($0.17 \mathrm{~mL}, 1.5 \mathrm{mmol}$) and phenyl propargyl aldehyde $2 f(0.61 \mathrm{~mL}, 0.5 \mathrm{mmol})$. The title compound was obtained as a 16:1 mixture of anti:syn isomers. The crude material was purified by flash column chromatography on silica gel (eluting with hexane/ ethyl acetate $80 / 20$) to give the title compound as a colorless oil. Yield: $51 \%(82 \mathrm{mg}) .[\alpha]_{\mathrm{D}}{ }^{22}=-6.18$ ($c=0.1,99 \% e e$, $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.59-7.32(\mathrm{~m}, 4 \mathrm{H}), 4.78(\mathrm{t}, \mathrm{J}=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{~d}$, $J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{t}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{t}, \mathrm{J}=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.50(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H})$, $3.40-3.30(\mathrm{~m}, 6 \mathrm{H}), 2.07(\mathrm{dd}, \mathrm{J}=7.4,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.80-1.46(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 131.6, 128.3, 122.7, 107.2, 104.4, 89.3, 85.3, 63.0, 56.3, 55.2, 52.7, 46.2, 32.7, 24.9, 22.5.

The enantiomeric purity of the major diastereoisomer was determined by HPLC analysis (Daicel Chiralpak IC, hexane/isopropanol 90/10, flow rate $=1 \mathrm{~mL} / \mathrm{min}$, retention times: 23.1 min (min.) and 25.7 min (major)).

(E)-2-(4-(3,5-Dimethylphenoxy)-2-methylbut-2-en-1-yl)-7-methyloct-4-yne-1,3-diol (3Hc)

Prepared according to the General Procedure starting from $(E)-6-$ (3,5-dimethylphenoxy)-4-methylhex-4-enal 1 H ($139.4 \mathrm{mg}, 0.6$ mmol) and 5 -methylhex-2-ynal 2c ($55 \mathrm{mg}, 0.5 \mathrm{mmol}$). The title compound was obtained as a 20:1 mixture of anti:syn isomers. The crude material was purified by flash column chromatography on silica gel (eluting with hexane/ ethyl acetate $80 / 20$) to give the title compound as a yellow oil. Yield: 61% (103.3 mg) $[\alpha]_{\mathrm{D}}{ }^{24}=6.5$ ($c=1,99 \% ~ e e$, $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)^{1} \mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz}, \mathrm{CDCl} 3) \delta 6.60(\mathrm{~s}, 1 \mathrm{H}), 6.53(\mathrm{~s}, 2 \mathrm{H}), 5.58(\mathrm{~s}, 1 \mathrm{H}), 4.51(\mathrm{~d}, \mathrm{~J}=6.4$ $\mathrm{Hz}, 3 \mathrm{H}$), $3.93(\mathrm{~s}, 1 \mathrm{H}), 3.67(\mathrm{~d}, \mathrm{~J}=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{~s}, 2 \mathrm{H}), 2.28(\mathrm{~s}, 5 \mathrm{H}), 2.13(\mathrm{dd}, \mathrm{J}=6.5$, $2.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.97(\mathrm{~s}, 1 \mathrm{H}), 1.88-1.79(\mathrm{~m}, 1 \mathrm{H}), 1.76(\mathrm{~s}, 2 \mathrm{H}), 0.98(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 158.9, 139.3, 138.8, 136.2, 122.7, 112.6, 86.0, 81.1, 65.7, 64.6,
63.7, 44.2, 38.1, 28.1, 28.0, 22.1, 21., 16.6. $\mathrm{MS}(\mathrm{ESI}, \mathrm{m} / \mathrm{z})$: calcd for $\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{O}_{3}\left(\mathrm{M}, \mathrm{H}^{+}\right)$, 344.4877; found $\left(\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right), 327.2324$

The enantiomeric purity of the major diastereoisomer was determined by HPLC analysis (Daicel Chiralpak AD-H, hexane/isopropanol 97/3, flow rate $=1 \mathrm{~mL} / \mathrm{min}$, retention times: 31.1 min (min.) and 36.6 min (major)).

F) Reduction of propargylic aldol adducts

$12 \mathrm{R}: \mathrm{CH}_{2} \mathrm{Ph} \quad \mathrm{R}^{1}: c-\mathrm{C}_{6} \mathrm{H}_{11} ; 83 \%$
13 R : $\mathrm{Me} \mathrm{R}^{1}$: Ph ; 83\%
14 R: $\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{R}^{\prime}:\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}_{3} ; 62 \%$
15R: $\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CO}_{2}{ }^{\mathrm{t}} \mathrm{Bu}, \mathrm{R}^{\prime}: \mathrm{c}-\mathrm{C}_{6} \mathrm{H}_{11}: 85 \%$

8Aa R: $\mathrm{CH}_{2} \mathrm{Ph}$ R': $\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}_{3}$
8Af R: $\mathrm{CH}_{2} \mathrm{Ph}$ R': Ph
8Ff R: $\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2} \mathrm{R}$: Ph

$16 \mathrm{R}: \mathrm{CH}_{2} \mathrm{Ph} \quad \mathrm{R}^{1}:\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}_{3} ; 88 \%$
$17 \mathrm{R}: \mathrm{CH}_{2} \mathrm{Ph} \mathrm{R}^{1}: \mathrm{Ph}$; 98%
18 R: $\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$ R': $\mathrm{Ph} ; 82 \%$

F.1) Hydrogenation of aldol adducts 3Ae, 3Bf, 3Ca and 4De

To a solution of 3Ae, 3Bf, 3Ca or 3De in EtOH (2 mL) was added $20 \mathrm{wt} \% \mathrm{Pd} / \mathrm{C}(60 \mathrm{mg}$). The reaction mixture was stirred at room temperature under H_{2} atmosphere overnight, then filtered through Celite ${ }^{\circledR}$ and concentrated under vacuum.
(2S,3R)-2-Benzyl-5-cyclohexylpentane-1,3-diol (12)

Prepared according to the General Procedure starting from 3Ae. The title compound was obtained as white solid. Yield: 83\% (0.41 $\mathrm{mmol}, 114 \mathrm{mg}) .[\alpha]_{\mathrm{D}}{ }^{20}=+13.1\left(c=1,93 \% e e, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}(300$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.68-7.39(\mathrm{~m}, 5 \mathrm{H}), 4.19(\mathrm{dd}, \mathrm{J}=11.0,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.04-3.91(\mathrm{~m}, 1 \mathrm{H}), 3.86$ (dd, J=11.0, $4.6 \mathrm{~Hz}, 1 \mathrm{H}$), $3.21-2.85(\mathrm{~m}, 4 \mathrm{H}), 2.07-1.00(\mathrm{~m}, 14 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=140.4,129.1,129.0,128.4,126.0,75.3,62.8,45.9,37.7,35.2,33.5,33.4,33.3$, 33.0, 30.3, 26.6, 26.3.
(2S,3R)-2-Methyl-5-phenylpentane-1,3-diol (13)

Prepared according to the General Procedure starting from 3Bf. The title compound was obtained as a colorless oil. Yield: 83% (0.41 mmol , $80.5 \mathrm{mg}) \cdot[\alpha]_{\mathrm{D}}{ }^{20}=+4.15\left(c=0.25, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=$ $7.51-7.05(\mathrm{~m}, 4 \mathrm{H}), 3.84(\mathrm{dd}, J=10.8,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{dd}, \mathrm{J}=10.8,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.00-$ $2.82(\mathrm{~m}, 1 \mathrm{H}), 2.82-2.70(\mathrm{~m}, 1 \mathrm{H}), 2.02-1.71(\mathrm{~m}, 3 \mathrm{H}), 0.94(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=142.5,128.8,126.3,77.0,68.0,40.4,37.5,32.1,14.2$.

(2S,3R)-2-isopropyldecane-1,3-diol (14)

For the detailed experimental procedure and characterization data of 14, see page S25.
(4S,5R)-tert-butyl 7-cyclohexyl-5-hydroxy-4-(hydroxymethyl)heptanoate (15)
For the detailed experimental procedure and characterization data of 15, see page S27.

F.2) Partial reduction of 8Aa, 8Af, 8ff.

A solution of sodium bis(2-methoxyethoxy)aluminium hydride (Red-Al) ($3.60 \mathrm{~mL}, 1.2$ $\mathbf{m m o l}, 65 \%$ in toluene) was added dropwise to a solution of $\mathbf{8 A a}, \mathbf{8 A f}$ or $\mathbf{8 F f}$ (0.8 mmol) in diethyl ether (2 mL) at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was allowed to stir for 12 h at room temperature. An aqueous solution of saturated potassium sodium tartrate (4 mL) was slowly added at $0{ }^{\circ} \mathrm{C}$ to quench the reaction and then the whole mixture was extracted twice with diethyl ether ($2 \times 2 \mathrm{~mL}$). The combined organic extracts were washed with brine (5 mL) and dried over MgSO_{4} and evaporated under reduced pressure to give the desired compound, which was not further purified.

(2R,3R,E)-2-Benzyl-1,1-dimethoxydec-4-en-3-ol (16)

Prepared according to the General Procedure starting from 8Aa (1 mmol). The title compound was obtained as yellow oil. Yield: $88 \%(0.88 \mathrm{mmol}, 270.7 \mathrm{mg}) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.32-7.15(\mathrm{~m}, 6 \mathrm{H}), 5.74-5.63(\mathrm{~m}, 1 \mathrm{H}), 5.44(\mathrm{dd}, J=15.3,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{~d}, J=3.4 \mathrm{~Hz}$, 1 H), 4.16 (dd, J = 11.6, 6.1 Hz, 1H), 3.46 (d, J = $4.7 \mathrm{~Hz}, 1 \mathrm{H}$), $3.44(\mathrm{~s}, 3 \mathrm{H}), 3.35(\mathrm{~s}, 3 \mathrm{H}), 2.71$ ($q d, J=13.9,7.2 \mathrm{~Hz}, 2 \mathrm{H}$), $2.12-1.98(\mathrm{~m}, 3 \mathrm{H}), 1.41-1.24(\mathrm{~m}, 7 \mathrm{H}), 0.87(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 140.8,133.0,131.6,129.4,128.5,126.1,107.6,72.3,56.6$, 55.6, 48.1, 32.4, 32.3, 31.6, 29.0, 22.7, 14.2.

(3R,4R,E)-4-Benzyl-5,5-dimethoxy-1-phenylpent-1-en-3-ol (17)

Prepared according to the General Procedure starting from 8Af
 (1.5 mmol). The title compound was obtained as yellow oil. Yield: $98 \%(1.4 \mathrm{mmol}, 464 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.38-7.16$ (m, 12H), $6.63(\mathrm{~d}, \mathrm{~J}=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.20(\mathrm{dd}, J=15.9,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H})$,
$4.34(\mathrm{~d}, \mathrm{~J}=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{~d}, \mathrm{~J}=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.46(\mathrm{~s}, 3 \mathrm{H}), 3.39(\mathrm{~s}, 3 \mathrm{H}), 2.83-2.77(\mathrm{~m}$, 2 H), $2.20(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 131.7, 130.7, 129.4, 128.71, 127.6, 126.6, 126.2, 107.5, 72.0, 56.8, 55.8, 48.5, 32.1.
(3R,4R,E)-4-(Dimethoxymethyl)-1-phenylhepta-1,6-dien-3-ol (18)

Prepared according to the General Procedure starting from 8Ff $(0.8 \mathrm{mmol})$. The title compound was obtained as yellow oil. Yield: 98 \% ($1.4 \mathrm{mmol}, 464 \mathrm{mg}$). Yield: $82 \%(172 \mathrm{mg})^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.51-7.19(\mathrm{~m}, 6 \mathrm{H}), 6.64(\mathrm{~s}, 1 \mathrm{H}), 6.30(\mathrm{~d}$, $J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.95-5.78(\mathrm{~m}, 1 \mathrm{H}), 5.20-5.05(\mathrm{~m}, 3 \mathrm{H}), 4.49(\mathrm{~d}, \mathrm{~J}=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.50(\mathrm{~s}, 2 \mathrm{H})$, $3.46(\mathrm{~s}, 3 \mathrm{H}), 2.33-2.22(\mathrm{~m}, 2 \mathrm{H}), 2.07-1.97(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=136.5$, $131.1,130.9,128.5,127.5,126.5,116.8,107.3,72.6,56.2,54.8,54.8,46.2,30.9$.

G) Elaboration of Propargylic Alcohols

The present direct cross aldol approach also enables rapid acces to a variety of optically active structural motifs with at least two contigous stereogenic centers, thereby complementing previous catalyst-controlled asymmetric entries to propargylic alcohols, such as the reduction of ynones, te alkynylation of carbonyls or the 1,2addition of organometallic reagents, ${ }^{20}$ methods that generally provide a sole new stereocenter.

[^12]
G.1) Diiodination of adduct 3Af

To a solution of $3 \mathbf{A f}(1 \mathrm{mmol}, 266 \mathrm{mg})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ were added $\mathrm{HBF}_{4}(2 \mathrm{mmol}, 0.56$ $\mathrm{ml}, 48 \mathrm{wt} \%$ solution in $\mathrm{H}_{2} \mathrm{O}$) and commercially available $\mathrm{PPy}_{2} \mathrm{BF}_{4}(1 \mathrm{mmol}, 372 \mathrm{mg})$ at room temperature. After stirring for 3 h , the solution was quenched with water (6 mL), extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 3 \mathrm{~mL})$, washed with sodium thiosulfate (5% aqueous solution, 5 mL), dried over MgSO_{4}, and evaporated under reduced pressure. The crude material revealed the presence of two compounds. The first one was the starting material (43\%) and the second one was identified as compound 19 by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectroscopy and X-Ray analysis. The substances were separated by flash column chromatography on silica gel (eluting with hexane/Ethyl acetate, 80:20) and compound 19 was finally crystallized from hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$. Yield: 53%. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.52-7.04(\mathrm{~m}, 9 \mathrm{H}), 4.49(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{dd}, \mathrm{J}=11.0,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{dd}, J=$ 11.0, $5.9 \mathrm{~Hz}, 1 \mathrm{H}$), $2.84(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.64(\mathrm{dd}, J=13.6,11.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{~m}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 147.6,139.3,129.2,128.5,128.0,126.4,112.5,96.8,83.6$, 62.3, 48.2, 33.7. М.р.:170-179으

G.2) Intramolecular hydroamination of aldol adduct 8Cf.

General procedure for the synthesis of adducts $\mathbf{2 0} a$ and $\mathbf{2 0 b}{ }^{21}$

Step 1:

To a solution of $8 \mathbf{C f}(1.7 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.9 \mathrm{~mL})$ toluenesulfonyl isocyanate (1.7 mmol) was added. After stirring the resulting solution for 20 h at room temperature the solvent was removed. The crude material was purified by flash column chromatography on silica gel (eluting with hexane/ ethyl acetate 70:30) to give compound N -tosyl carbamate product as a white solid. Yield: $78 \%{ }^{1} \mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.95(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.53(\mathrm{~s}, 1 \mathrm{H}), 7.41-7.18(\mathrm{~m}, 8 \mathrm{H}), 5.78(\mathrm{~d}, \mathrm{~J}=5.2 \mathrm{~Hz}$, $1 \mathrm{H}), 4.46(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.34(\mathrm{~d}, \mathrm{~J}=2.7 \mathrm{~Hz}, 7 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 2.22-2.09(\mathrm{~m}, 1 \mathrm{H})$, $2.10-2.02(\mathrm{~m}, 1 \mathrm{H}), 1.05(\mathrm{dd}, \mathrm{J}=10.1,7.0 \mathrm{~Hz}, 8 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 149.3$, 145.0, 131.7, 129.5, 128.7, 128.4, 128.2, 104.1, 84.6, 67.2, 54.1, 54.0, 49.0, 26.0, 21.7, 21.5, 19.8.

[^13]Step $\mathbf{2}^{22}$:

To a stirred solution of (3S,4R)-4-(dimethoxymethyl)-5-methyl-1-phenylhex-1-yn-3-yl tosylcarbamate ($0.46 \mathrm{mmol}, 212 \mathrm{mg}$), in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{ml})$ was added $\mathrm{AgOAc}(100 \mathrm{~mol} \%$, 76.8 mg). The reaction mixture was stirred for 48 h at $65{ }^{\circ} \mathrm{C}$ and then filtered through a pad of celite with a washing with 10 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. After removal of filtrate solvent in vacuum the residue was purified by silica gel flash column chromatography on silica gel (eluting with hexane/ethyl acetate 95:5) to afford pure compounds 20' as white oil (10 $\%$) and 20 as white oil (87%).

(R)-6-((R)-1,1-Dimethoxy-3-methylbutan-2-yl)-4-phenyl-3,6-dihydro-2H-1,3-oxazin-2one (20')

Colorless oil. Yield: $10 \%[\alpha]_{\mathrm{D}}{ }^{25}=+21.7\left(\mathrm{c}=0.98, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.95(\mathrm{dd}, \mathrm{J}=8.4,1.4,2 \mathrm{H}$), $7.58-7.42$ (m, $3 H), 6.97$ (d, J = 11.9, 1H), $6.29-6.19$ (m, 1H), 4.41 (d, J = 5.6, 1 H), $3.77-3.65(\mathrm{~m}, 1 \mathrm{H}), 3.34(\mathrm{~d}, \mathrm{~J}=9.0,6 \mathrm{H}$), 1.97 ($\mathrm{dd}, \mathrm{J}=13.2$, $6.7,1 \mathrm{H}$) , 0.94 (dd, $J=9.7,6.9,7 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 192.0,145.8$ 138.7, 132.6, 128.4, 128.3, 126.7, 105.9, 54.1, 53.9, 46.0, 28.9, 21.0, 19.0. MS (ESI, m/z):calcd for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{NO}_{4}\left(\mathrm{M}, \mathrm{H}^{+}\right), 305,3688$; found, ($\mathrm{M}-\mathrm{Ph}$): 231.1385.
(S,Z)-4-Benzylidene-5-((R)-1,1-dimethoxy-3-methylbutan-2-yl)oxazolidin-2-one (20)

Colorless oil. Yield: $87 \% \cdot[\alpha]_{\mathrm{D}}{ }^{25}=+38.8\left(c=1.08, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}-$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.93$ ($\mathrm{dd}, \mathrm{J}=8.3,1.4 \mathrm{~Hz}, 2 \mathrm{H}$), 7.51 (dq, J = 8.5, $7.1 \mathrm{~Hz}, 3 \mathrm{H}$), $6.96-6.80(\mathrm{~m}, 2 \mathrm{H}), 4.48(\mathrm{~d}, \mathrm{~J}=7.0$

[^14]$\mathrm{Hz}, 1 \mathrm{H}), 3.37(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 6 \mathrm{H}), 2.48(\mathrm{dd}, \mathrm{J}=12.6,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.13-2.00(\mathrm{~m}, 1 \mathrm{H}), 0.93$ (dd, J = 17.6, 6.9 Hz, 8H). ${ }^{13} \mathrm{CNMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 190.5,146.1,138.0,132.5,128.7$, 128.6, 128.4, 104.8, 77.4, 77.0, 76.5, 54.0, 53.5, 52.0, 28.1, 21.5, 18.1. MS (ESI, m / z):calcd for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{NO}_{4}\left(\mathrm{M}, \mathrm{H}^{+}\right), 305,3688$; found, (M-Ph): 231.1385.

G.3) Intramolecular hydroalkoxylation of adduct 3Af ${ }^{23}$

To a stirred mixture of $3 \mathrm{Af}(266 \mathrm{mg}, 1 \mathrm{mmol})$ and $\mathrm{H}_{2} \mathrm{O}(54 \mathrm{mg}, 3 \mathrm{mmol})$ in $\mathrm{MeCN}(3.3$ $\mathrm{mL})$, was added a solution of $\mathrm{Hg}(\mathrm{OTf})_{2}(0.1 \mathrm{M} \mathrm{MeCN}$ soln, $0.1 \mathrm{~mL}, 0.01 \mathrm{mmol})$ at $0^{0} \mathrm{C}$, and the mixture was stirred for 1 hour at the same temperatura. After addition of $\mathrm{Et}_{3} \mathrm{~N}$ $(15 \mu \mathrm{~L})$ and then brine (3 mL), the organic materials were extrated with $\mathrm{Et}_{2} \mathrm{O}$. Dried and concentrated extract was subjeted to a column chromatography on SiO_{2} using hexane and EtOAc (2:1) as an eluent to give the compound 21 ($173.1 \mathrm{mg}, 65 \%$ yield) as a colerless oil. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 7.65-7.59(\mathrm{~m}, 1 \mathrm{H}), 7.41-7.29(\mathrm{~m}, 10 \mathrm{H})$, $5.50(\mathrm{~s}, 1 \mathrm{H}), 5.49-5.47(\mathrm{~m}, 0 \mathrm{H}), 4.59(\mathrm{~s}, 1 \mathrm{H}), 4.36(\mathrm{dd}, J=8.4,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{t}, \mathrm{J}=$ $8.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.07(\mathrm{dd}, J=13.5,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.79-2.67(\mathrm{~m}, 2 \mathrm{H}), 2.62(\mathrm{dd}, J=8.2,6.1 \mathrm{~Hz}$, 1H). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 151.5,140.6,136.2,129.1,128.8,128.3,127.8,126.1$, 124.9, 97.0, 74.7, 64.1, 62.6, 59.7, 45.1, 35.1. MS (ESI, m / z):calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{O}_{2}\left(\mathrm{M}, \mathrm{H}^{+}\right)$, 267.1385; found: 267.1382 .

A small amount ($28.4 \mathrm{mg}, 10 \%$ yield) of hydrated side product was also obtained.

[^15]
G.4) Intramolecular cycloaddition reaction ${ }^{24}$

8Ff
b) TMANO (3 equiv)
$\mathrm{Co}_{2}(\mathrm{CO})_{8}$ (1equiv)
$\mathrm{CH}_{2} \mathrm{Cl}_{2},-20^{\circ} \mathrm{C}$-r.t, 16 h

TBS $={ }^{\mathrm{t}} \mathrm{BuMe}_{2} \mathrm{SiCl}$
TMANO = trimethylamine N -oxide

Alter silylation of $\mathbf{8 F f}$ with TBS-CI and DMAP system under standard conditions, to a solution of TBS ether ($134 \mathrm{mg}, 0.36 \mathrm{mmol}, 1$ equiv) in DCM (1 mL) at room temperature was added $\mathrm{Co}_{2}(\mathrm{CO})_{8}$ (1 equiv) and was stirred for 30 min . Then the TMANO (3 equiv) was added at -100 C and the mixture was allowed to warm to room temperatura and stirred at room temperature until the starting material disappeared (4-16 hours) at which time usually purple precipitate had formed. The mixture was passed though a small plug of silica gel and the filtrate was concentrated in vacuo and purifield by silica gel chromatography to give the exo product (53%), and endo product (14%). ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.60-7.34(\mathrm{~m}, 6 \mathrm{H}), 4.86(\mathrm{~s}, 1 \mathrm{H}), 4.15(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.37(\mathrm{~s}, 3 \mathrm{H})$, $3.35(\mathrm{~s}, 3 \mathrm{H}), 2.96-2.80(\mathrm{~m}, 1 \mathrm{H}), 2.76-2.62(\mathrm{~m}, 1 \mathrm{H}), 2.47-2.36(\mathrm{~m}, 1 \mathrm{H}), 2.35-2.16$ $(\mathrm{m}, 2 \mathrm{H}), 1.21-1.03(\mathrm{~m}, 1 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right)$ (208.9, 179.9, 134.6, 131.3, 128.7, 128.4, 106.2, 70.3, 54.9, 53.6, 42.6, 40.3, 30.9, 25.7, -4.0, -5.0. MS (ESI, m/z):calcd for $\mathrm{C}_{23} \mathrm{H}_{35} \mathrm{O}_{4} \mathrm{Si}\left(\mathrm{M}, \mathrm{H}^{+}\right)$, 403,2289; found: 403.2305.

[^16]

H) Cross-aldol reaction of aliphatic aldehydes with aromatic aldehydes

Table S2

${ }^{a}$ Reactions conducted at 0.5 mmol scale, using 1.2 equiv. of aldehyde donor, THF (0.5 mL). ${ }^{b}$ Determined by ${ }^{1} \mathrm{H}$-RMN and corroborated by HPLC. ${ }^{\text {c }}$ Data in parenthesis refer to reactions carried out with benzoic acid as the sole cocatalyst. ${ }^{\text {d }}$ Determined by chiral HPLC. ${ }^{\mathrm{e}}$ Reaction carried out at $-40{ }^{\circ} \mathrm{C}$ because of the low solubility of p-nitrobenzaldehyde in THF at -60 ${ }^{\circ}$ C. Some extent of homoaldolization was observed.

4-((1S,2S)-2-Benzyl-1,3-dihydroxypropyl)benzonitrile (23)

Prepared according to the General Procedure starting from hydrocinnamaldehyde 1A ($79 \mu \mathrm{~L}, 0.6 \mathrm{mmol}$) and 4-formylbenzonitrile ($65.6 \mathrm{mg}, 0.5$
 $\mathrm{mmol})$. The title compound was obtained as a 5:1 mixture of anti:syn isomers. The crude material was purified by flash column chromatography on silica gel (eluting with hexane/ ethyl acetate $50 / 50$) to give the title compound as a yellow oil. Yield: $60 \%(80 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.66(\mathrm{t}, \mathrm{J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.51(\mathrm{dd}, \mathrm{J}=19.8,8.4 \mathrm{~Hz}, 3 \mathrm{H}), 7.24$ (ddd, J = 28.6, 14.4 Hz, 7.2, 7H), 7.03 (d, J = 6.7 Hz, 1H), 5.21 (s, 1H), 4.86 (s, 1H), 3.71 (d, J = 11.7 Hz, 2H), 3.61 (s, 1H), 3.50 (d, J = 4.6 Hz, 1H), 3.35 (s, 1H), 2.87 (d, J = 6.9 Hz, 1 H), $2.85-2.78(\mathrm{~m}, 1 \mathrm{H}), 2.78-2.71(\mathrm{~m}, 1 \mathrm{H}), 2.70-2.63(\mathrm{~m}, 1 \mathrm{H}), 2.54(\mathrm{dd}, \mathrm{J}=13.8,4.3$ $\mathrm{Hz}, 1 \mathrm{H})$.
(1S,2S)-2-benzyl-1-(4-nitrophenyl)propane-1,3-diol (24)
Prepared according to the General Procedure starting from hydrocinnamaldehyde 1A
 ($79 \mu \mathrm{~L}, 0.6 \mathrm{mmol}$) and 4-nitrobenzaldehyde ($75.6 \mathrm{mg}, 0.5$ $\mathrm{mmol})$. The title compound was obtained as a 4:1 mixture of anti:syn isomers.The crude material was purified by flash column chromatography on silica gel (eluting with hexane/ ethyl acetate 50/50) to give the title compound as a yellow oil. Yield: $45 \%(64.6 \mathrm{mg}) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.29-8.21(\mathrm{~m}, 5 \mathrm{H}), 7.60(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.54(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 5 \mathrm{H}), 7.33-7.14(\mathrm{~m}, 7 \mathrm{H})$, $7.03(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.27(\mathrm{~s}, 1 \mathrm{H}), 4.91(\mathrm{~s}, 2 \mathrm{H}), 4.84(\mathrm{~s}, 2 \mathrm{H}), 3.77(\mathrm{~s}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H})$, $3.62(\mathrm{~d}, \mathrm{~J}=4.6 \mathrm{~Hz}, 3 \mathrm{H}), 2.85(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.82-2.75(\mathrm{~m}, 2 \mathrm{H}), 2.67(\mathrm{~s}, 2 \mathrm{H}), 2.55(\mathrm{~s}$, $1 \mathrm{H})$.

4-((1S,2S)-1-Hydroxy-2-(hydroxymethyl)pent-4-en-1-yl)benzonitrile (25)

Prepared according to the General Procedure starting from 4-
 pentenal $1 \mathrm{~F}(60 \mu \mathrm{~L}, 0.6 \mathrm{mmol})$ and 4-formylbenzonitrile (65.6 $\mathrm{mg}, 0.5 \mathrm{mmol}$). The title compound was obtained as a $3: 1$ mixture of anti:syn isomers. The crude material was purified by flash column chromatography on silica gel (eluting with hexane/ ethyl acetate 70/30) to give the title compound as a yellow oil. Yield: 50% (55 mg). ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.67(\mathrm{~d}, \mathrm{~J}=2.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.49(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.74(\mathrm{t}, \mathrm{J}=15.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.17-$ $5.00(\mathrm{~m}, 2 \mathrm{H}), 4.86(\mathrm{t}, \mathrm{J}=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.87-3.68(\mathrm{~m}, 2 \mathrm{H}), 3.46(\mathrm{~d}, \mathrm{~J}=4.8 \mathrm{~Hz}, 0 \mathrm{H}), 3.30(\mathrm{~s}$, 1 H), 2.17 ($\mathrm{dd}, \mathrm{J}=14.3,8.0 \mathrm{~Hz}, 3 \mathrm{H}$), 1.96 ($\mathrm{d}, \mathrm{J}=24.6 \mathrm{~Hz}, 2 \mathrm{H}$).

I) Results from other amine catalysts

Table S3: Aldol reaction of 1A with 2a using α, α-diarylprolinol ethers as catalysts.

		a) Amine ($20 \mathrm{~mol} \%$) $\mathrm{PhCO}_{2} \mathrm{H}$ (20mol\%) Metal salt (10\%)		3Aa	
Amine	Metal salt	Time(h)	Conversion (\%) ${ }^{\text {b,c }}$	$a n t i: s y n{ }^{\text {d }}$	$e e(\%)^{e}$
	$\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\begin{gathered} 45 \\ 74(54) \end{gathered}$	$\begin{aligned} & 3: 1 \\ & 2: 1 \end{aligned}$	$\begin{gathered} \text { ND } \\ 97 \end{gathered}$
	Cul	$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\begin{gathered} 60 \\ 73(48) \end{gathered}$	$\begin{aligned} & 1.5: 1 \\ & 1.5: 1 \end{aligned}$	$\begin{aligned} & 97 \\ & 99 \end{aligned}$
	Cul	20 20	30 33	$\begin{gathered} \text { n.d } \\ \text { 2.5:1 } \end{gathered}$	$\begin{aligned} & \text { ND } \\ & 98 \end{aligned}$

${ }^{\text {a }}$ Reactions conducted on a 0.5 mmol scale in 0.5 mL of THF (mol ratio of $\mathbf{1} / \mathbf{2} / \mathrm{amine}, 1.5: 1: 0.2$); ${ }^{\mathrm{b}}$ Determined by ${ }^{1} \mathrm{H}$ NMR. ${ }^{\mathrm{C}}$ Conversions were essentially the same after 48 h of reaction. Numbers in parentheses refer to isolated yields by column chromatography. ${ }^{d}$ Determined by ${ }^{1} \mathrm{H}$ NMR of an aliquot in the aldehyde product before reduction, and confirmed in the crude alcohol products. ${ }^{e}$ ee of major diastereomer determined by chiral HPLC. ND: not determined.

Table S4: Aldol reaction of 1A with 2a using representative bifunctional amine catalysts ${ }^{\text {a }}$

${ }^{a}$ Reactions conducted on a 0.5 mmol scale in 0.5 mL of THF (mol ratio of 1/2/amine, 3:1:0.2). ${ }^{\mathrm{b}}$ Isolated yield of cross aldol product/self-aldol (dehydration). ${ }^{c}$ Determined by ${ }^{1} \mathrm{H}$ NMR. ${ }^{d}$ Determined by chiral HPLC. ${ }^{e}$ No Brønsted acid added; DMF as solvent; syringe pump was not used. N.R: no reaction; N.D.: not determined.

J) Determination of the relative and absolute configuration of adducts

Relative configuration

Assignment the relative syn and anti configuration to adducts was primarily made on the bases of the $J_{2,3}$ coupling constants and then by NOESY experiments. In general ${ }^{3} J_{2,3}$ (anti) $)^{3} \mathrm{~J}_{2,3}$ (syn) for diols ${ }^{25}$.

syn-3Bb

anti-3Bb

Absolute configuration

The absolute configuration was determined by correlating HPLC chromatograms with literature values as follow:

1) The non selective reaction between hydrocinnamaldehyde 1 A and phenyl propargyl aldehyde (2f) promoted by racemic catalyst 4 followed by reduction and hydrogenation led to the racemic sample of the corresponding adduct containing the two syn/anti diastereomers.

[^17]

(2R, 3S)-anti

Ph

2) Self aldol reaction of hydrocinnamaldehyde 1 A using L-Proline as catalyst, provided the corresponding adduct as a 80:20 anti/syn mixture of diastereomers. ${ }^{26}$

[^18]3) The reaction between aldehydes $\mathbf{1 A}$ and $\mathbf{2 f}$ in the presence of catalyst 3, followed by reduction and subsequent hydrogenation of the resulting 3Af adduct, provided stereoisomer ($2 S, 3 R$)-anti, the opposite enantiomer to obtained using L-proline as catalyst.

(2S, 3S)-syn

(2R, 3S)-anti

(2S, 3R)-anti

(2R,3R)-syn

Configuration of the other adducts was established by assuming a uniform reaction mechanism and by X-ray analysis of compound 19 (see below).

(2S,3R)-2-Benzyl-5-phenylpentane-1,3-diol

Prepared according to the General Procedure starting from
 hydrocinnamaldehyde $1 \mathrm{~A} \quad(0.2 \mathrm{~mL}, \quad 1.5 \mathrm{mmol})$ and phenylpropiolaldehyde $2 f(61 \mu \mathrm{~L}, 0.5 \mathrm{mmol})$. The crude material was purified by flash column chromatography on silica gel (eluent
hexane/ ethyl acetate $80 / 20$) to give compound 3Ab as a white solid. The solid was then dissolved in $\mathrm{EtOH}(2 \mathrm{~mL}) 20 \mathrm{wt} \% \mathrm{Pd} / \mathrm{C}(60 \mathrm{mg})$ was added and the mixture was stirred at room temperature under H_{2} atmosphere (1 atm) overnight. The mixture was then filtered trough Celite ${ }^{\circledR}$ and concentrated under vacuum. The title compound was obtained as colourless oil. Mixture of isomers anti:syn 85:15. Yield: 70% (94 mg). [$\alpha]_{\mathrm{D}}{ }^{24}=$ +15.9 ($c=1$,dr 85:15, 93 \% ee $\mathrm{CH}_{2} \mathrm{Cl}_{2}$).

(2R,3S)-2-Benzyl-5-phenylpentane-1,3-diol

Prepared according to the procedure reported in the literature ${ }^{27}$ using L-proline as catalyst. The physical and spectroscopic data were in agreement with those described in the literature. ${ }^{28}[\alpha]_{D}{ }^{24}=+7.4\left(c=1, \operatorname{dr} 75: 25,99 \% \mathrm{ee}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

The enantiomeric purity of the major and minor diastereoisomers was determined by HPLC analysis (Daicel Chiralpak IB hexane/isopropanol/EtOH 98/1/1, flow rate= 1 $\mathrm{mL} / \mathrm{min}$, retention times: syn: 38.3 min (minor) and 54.9min (major); anti: 42.3 min (major) and 48.0 min (minor)).

[^19]
K) Determination of absolute/relative configuration of19 by X-Ray analysis.

ORTEP diagram of compound 19

Absolute configuration of $19(2 S, 3 S)$ was unequivocally established by a single-crystal Xray analysis (absolute structure parameter: 0.04(2); Flack, H. D. Acta Cryst. 1983 A39, 876).

Crystallographic Studies Suitable single crystals of the title compound for X-ray study were grown from a solution in dichloromethane/hexane. Crystal data and refinement are summarized in Table S5 for compound 19 A colourless prism ($0.15 \times$ $0.09 \times 0.02 \mathrm{~mm}$) was selected and mounted on a Bruker X8 APEX area diffractometer. Unit-cell parameters were determined from 1271 frames of intensity data covering 0.30 in ω over a hemisphere of the reciprocal space by combination of three exposure sets, and refined by the least-squares method. Intensities were collected with graphite monochromatized Mo-K α radiation ($\lambda=0.71073 \AA$ A), using the $\omega / 2 \theta$ scan-technique. A total of 3395 indepent reflections for 19 were measured in the range $2.43 \leq \theta \leq 25.08$. Lorentz-polarization and absorption corrections were made.

The structures were solved by direct methods using the SHELXS computer program ${ }^{[1]}$ and refined by the full-matrix least-squares method with the SHELX97 computer program, ${ }^{[1]}$ using 3395 reflections for 19. The function minimized were $\Sigma \mathrm{w}\left||\mathrm{Fo}|^{2}-\right.$ $\left.|\mathrm{Fc}|^{2}\right|^{2}$, where $w=\left[\sigma^{2}(I)+(0.0382 P)^{2}+0.0000 \mathrm{P}\right]^{-1}$ for 19 and $P=\left(|\mathrm{Fo}|^{2}+2|\mathrm{Fc}|^{2}\right) / 3 . \mathrm{f}, \mathrm{f}^{\prime}$ and f " were taken from International Tables of X-ray Crystallography. ${ }^{[2]}$ All hydrogen atoms were computed and refined using a riding model. The final R (on F) factor was $0.0235, w R\left(o n|F|^{2}\right)=0.0659$ and goodness of fit $=1.164$ for all observed reflections. The number of refined parameters was 203. Max. shift/esd $=0.001$, Mean shift/esd $=$ 0.00. Max. and min. peaks in final difference synthesis was 0.674 and $-0.576 e^{-3}$, respectively.

Table S5. Crystal data and structure refinement for 19.

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=25.08^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method

Itot7.35
C18 H18 1202
520.12

298(2) K
0.71073 Å

Orthorhombic
P2(1)2(1)2(1)
$a=7.7537(2) \AA \quad$ 园 $=90^{\circ}$.
$b=8.7833(3) \AA \quad$ 回 $=90^{\circ}$.
$c=28.0793(10) \AA \quad \quad$ O $=90^{\circ}$.
1912.29(11) A ${ }^{3}$

4
$1.807 \mathrm{Mg} / \mathrm{m}^{3}$
$3.293 \mathrm{~mm}^{-1}$
992
$0.15 \times 0.09 \times 0.02 \mathrm{~mm}^{3}$
2.43 to 25.08°.
$-9<=h<=9,-10<=k<=10,-33<=\mid<=33$
20538
3395 [R (int) $=0.0475$]
99.8 \%

Semi-empirical from equivalents
0.9477 and 0.6379

Full-matrix least-squares on F^{2}

Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [$1>2$ sigma(I)]
R indices (all data)
Absolute structure parameter Largest diff. peak and hole

3395 / 0 / 203
1.164
$R 1=0.0204, w R 2=0.0485$
R1 $=0.0235, w R 2=0.0659$
-0.05(4)
0.674 and -0.576 e. \AA^{-3}

Table S6. Atomic coordinates ($\mathrm{x} 10^{4}$) and equivalent isotropic displacement parameters ($\AA^{2} \times 10^{3}$) for 19. $\mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized Uij tensor.

	x	y	z	$\mathrm{U}(\mathrm{eq})$	
$\mathrm{I}(1)$	$11818(1)$	$3963(1)$	$1938(1)$	$21(1)$	
$\mathrm{I}(2)$	$6315(1)$	$6641(1)$	$1489(1)$	$24(1)$	
$\mathrm{O}(1)$	$4554(5)$	$1679(5)$	$2200(1)$	$21(1)$	
$\mathrm{O}(2)$	$6423(5)$	$4094(4)$	$2369(1)$	$20(1)$	
$\mathrm{C}(1)$	$8210(7)$	$5113(6)$	$1762(2)$	$18(1)$	
$\mathrm{C}(2)$	$9854(7)$	$5480(6)$	$1710(2)$	$17(1)$	
$\mathrm{C}(3)$	$10576(7)$	$6887(6)$	$1492(2)$	$19(1)$	
$\mathrm{C}(4)$	$11342(8)$	$6828(7)$	$1046(2)$	$34(2)$	
$\mathrm{C}(5)$	$12059(9)$	$8137(8)$	$848(2)$	$44(2)$	
$\mathrm{C}(6)$	$12060(9)$	$9464(8)$	$1095(2)$	$39(2)$	
$\mathrm{C}(7)$	$11341(8)$	$9525(7)$	$1553(2)$	$33(1)$	
$\mathrm{C}(8)$	$10610(8)$	$8231(6)$	$1749(2)$	$25(1)$	
$\mathrm{C}(9)$	$7463(6)$	$3671(6)$	$1973(2)$	$16(1)$	
$\mathrm{C}(10)$	$6476(6)$	$2706(6)$	$1613(2)$	$16(1)$	
$\mathrm{C}(11)$	$5793(6)$	$1259(6)$	$1847(2)$	$20(1)$	
$\mathrm{C}(12)$	$7589(7)$	$2293(6)$	$1178(2)$	$20(1)$	
$\mathrm{C}(13)$	$6552(7)$	$1652(6)$	$768(2)$	$21(1)$	
$\mathrm{C}(14)$	$6835(9)$	$179(7)$	$601(2)$	$29(1)$	
$\mathrm{C}(15)$	$5318(8)$	$2527(8)$	$542(2)$	$29(1)$	
$\mathrm{C}(16)$	$4354(9)$	$1993(9)$	$171(2)$	$41(2)$	
$\mathrm{C}(17)$					
$\mathrm{C}(20)$	$4638(9)$	$535(9)$	$12(2)$	$42(2)$	
	$5867(10)$	$-367(8)$	$223(2)$	$42(2)$	

Table S7. Bond lengths [\AA] and angles [${ }^{\circ}$] for 19.

$\mathrm{I}(1)-\mathrm{C}(2)$	$2.122(5)$	$\mathrm{C}(16)-\mathrm{C}(17)$	$1.374(11)$
$\mathrm{I}(2)-\mathrm{C}(1)$	$2.133(5)$	$\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~A})$	0.9300
$\mathrm{O}(1)-\mathrm{C}(11)$	$1.430(6)$	$\mathrm{C}(17)-\mathrm{C}(20)$	$1.373(10)$
$\mathrm{O}(1)-\mathrm{H}(1 \mathrm{~A})$	$0.86(5)$	$\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~A})$	0.9300
$\mathrm{O}(2)-\mathrm{C}(9)$	$1.422(6)$	$\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~A})$	0.9300
$\mathrm{O}(2)-\mathrm{H}(2 \mathrm{~A})$	0.8200		
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.323(8)$	$\mathrm{C}(11)-\mathrm{O}(1)-\mathrm{H}(1 \mathrm{~A})$	$108(3)$
$\mathrm{C}(1)-\mathrm{C}(9)$	$1.514(7)$	$\mathrm{C}(9)-\mathrm{O}(2)-\mathrm{H}(2 \mathrm{~A})$	109.5
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.490(7)$	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(9)$	$128.0(5)$
$\mathrm{C}(3)-\mathrm{C}(8)$	$1.384(8)$	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{H}(2)$	$118.1(4)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.387(8)$	$\mathrm{C}(9)-\mathrm{C}(1)-\mathrm{H}(2)$	$113.8(4)$
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.394(9)$	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$127.6(5)$
$\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$	0.9300	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{I}(1)$	$120.4(4)$
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.356(10)$	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{I}(1)$	$112.1(4)$
$\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~A})$	0.9300	$\mathrm{C}(8)-\mathrm{C}(3)-\mathrm{C}(4)$	$119.7(5)$
$\mathrm{C}(6)-\mathrm{C}(7)$	$1.404(9)$	$\mathrm{C}(8)-\mathrm{C}(3)-\mathrm{C}(2)$	$120.0(5)$
$\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~A})$	0.9300	$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2)$	$120.1(5)$
$\mathrm{C}(7)-\mathrm{C}(8)$	$1.383(8)$	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$120.0(6)$
$\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~A})$	0.9300	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$	120.0
$\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	0.9300	$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$	120.0
$\mathrm{C}(9)-\mathrm{C}(10)$	$1.526(7)$	$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(4)$	$120.3(6)$
$\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~A})$	0.9800	$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~A})$	119.8
$\mathrm{C}(10)-\mathrm{C}(11)$	$1.526(7)$	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~A})$	119.8
$\mathrm{C}(10)-\mathrm{C}(12)$	$1.538(7)$	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	$120.1(6)$
$\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~A})$	0.9800	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~A})$	120.0
$\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~A})$	0.9700	$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~A})$	120.0
$\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~B})$	0.9700	$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(6)$	$119.7(6)$
$\mathrm{C}(12)-\mathrm{C}(13)$	$1.512(7)$	$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~A})$	120.1
$\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~A})$	0.9700	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~A})$	120.1
$\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B})$	0.9700	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(3)$	$120.1(5)$
$\mathrm{C}(13)-\mathrm{C}(15)$	$1.382(8)$	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	120.0
$\mathrm{C}(13)-\mathrm{C}(14)$	$1.394(8)$	$\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	120.0
$\mathrm{C}(14)-\mathrm{C}(20)$	$1.385(9)$	$\mathrm{C}(9)-\mathrm{C}(10)$	$107.7(4)$
$\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~A})$	0.9300	$112.3(4)$	
$\mathrm{C}(15)-\mathrm{C}(16)$	$\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~A})$	0.9300	$113.3(4)$
C			

$\mathrm{C}(1)-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~A})$	107.8	$\mathrm{H}(12 \mathrm{~A})-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B})$	107.8
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~A})$	107.8	$\mathrm{C}(15)-\mathrm{C}(13)-\mathrm{C}(14)$	$118.0(5)$
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	$110.6(4)$	$\mathrm{C}(15)-\mathrm{C}(13)-\mathrm{C}(12)$	$120.7(5)$
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(12)$	$112.1(4)$	$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(12)$	$121.2(5)$
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(12)$	$109.9(4)$	$\mathrm{C}(20)-\mathrm{C}(14)-\mathrm{C}(13)$	$119.6(6)$
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~A})$	108.1	$\mathrm{C}(20)-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~A})$	120.2
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~A})$	108.1	$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~A})$	120.2
$\mathrm{C}(12)-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~A})$	108.1	$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{C}(13)$	$122.6(6)$
$\mathrm{O}(1)-\mathrm{C}(11)-\mathrm{C}(10)$	$108.5(4)$	$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~A})$	118.7
$\mathrm{O}(1)-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~A})$	110.0	$\mathrm{C}(13)-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~A})$	118.7
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~A})$	110.0	$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	$118.6(7)$
$\mathrm{O}(1)-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~B})$	110.0	$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~A})$	120.7
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~B})$	110.0	$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~A})$	120.7
$\mathrm{H}(11 \mathrm{~A})-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~B})$	108.4	$\mathrm{C}(20)-\mathrm{C}(17)-\mathrm{C}(16)$	$120.6(6)$
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(10)$	$113.2(4)$	$\mathrm{C}(20)-\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~A})$	119.7
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~A})$	108.9	$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~A})$	119.7
$\mathrm{C}(10)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~A})$	108.9	$\mathrm{C}(17)-\mathrm{C}(20)-\mathrm{C}(14)$	$120.4(6)$
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B})$	108.9	$\mathrm{C}(17)-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~A})$	119.8
$\mathrm{C}(10)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B})$	108.9	$\mathrm{C}(14)-\mathrm{C}(20)-\mathrm{H}(20 \mathrm{~A})$	119.8

Symmetry transformations used to generate equivalent atoms:

Table S8. Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for 19. The anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} U^{11}+\ldots+2 h k a^{*} b^{*} U^{12}\right]$

	U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
$\mathrm{I}(1)$	$12(1)$	$22(1)$	$30(1)$	$1(1)$	$1(1)$	$0(1)$
$\mathrm{I}(2)$	$18(1)$	$19(1)$	$35(1)$	$8(1)$	$-2(1)$	$1(1)$
$\mathrm{O}(1)$	$20(2)$	$18(2)$	$24(2)$	$5(2)$	$9(2)$	$-1(2)$
$\mathrm{O}(2)$	$20(2)$	$18(2)$	$22(2)$	$-1(2)$	$7(2)$	$-2(2)$
$\mathrm{C}(1)$	$20(3)$	$14(2)$	$20(2)$	$-1(2)$	$-2(2)$	$2(2)$
$\mathrm{C}(2)$	$19(3)$	$14(3)$	$18(3)$	$0(2)$	$0(2)$	$1(2)$
$\mathrm{C}(3)$	$17(3)$	$20(3)$	$19(3)$	$2(2)$	$-6(2)$	$-5(2)$
$\mathrm{C}(4)$	$37(4)$	$36(3)$	$28(3)$	$0(3)$	$6(3)$	$-18(3)$
$\mathrm{C}(5)$	$47(4)$	$52(4)$	$33(3)$	$3(3)$	$3(3)$	$-24(4)$
$\mathrm{C}(6)$	$29(4)$	$40(4)$	$48(4)$	$24(3)$	$-13(3)$	$-21(3)$
$\mathrm{C}(7)$	$36(3)$	$21(3)$	$42(4)$	$3(3)$	$-13(3)$	$-7(3)$
$\mathrm{C}(8)$	$29(3)$	$22(3)$	$25(3)$	$3(3)$	$-2(2)$	$-5(3)$
$\mathrm{C}(9)$	$11(2)$	$16(3)$	$20(2)$	$-2(2)$	$0(2)$	$3(2)$
$\mathrm{C}(10)$	$10(3)$	$20(3)$	$18(2)$	$6(2)$	$1(2)$	$1(2)$
$\mathrm{C}(11)$	$16(3)$	$22(3)$	$24(3)$	$-1(2)$	$4(2)$	$0(2)$
$\mathrm{C}(12)$	$19(3)$	$20(3)$	$23(3)$	$-2(2)$	$3(2)$	$2(2)$
$\mathrm{C}(13)$	$26(3)$	$25(3)$	$12(2)$	$3(2)$	$5(2)$	$-6(3)$
$\mathrm{C}(14)$	$38(3)$	$24(3)$	$24(3)$	$0(2)$	$7(3)$	$-4(3)$
$\mathrm{C}(15)$	$25(3)$	$37(4)$	$24(3)$	$9(3)$	$-1(3)$	$-1(3)$
$\mathrm{C}(16)$	$34(4)$	$65(5)$	$24(3)$	$10(3)$	$-6(3)$	$-3(4)$
$\mathrm{C}(17)$	$43(4)$	$64(5)$	$19(3)$	$0(3)$	$-6(3)$	$-21(4)$
$\mathrm{C}(20)$	$57(5)$	$45(4)$	$25(3)$	$-9(3)$	$14(3)$	$-17(4)$

Table S9. Hydrogen coordinates (x 10^{4}) and isotropic displacement parameters ($\AA^{2} \times 10^{3}$) for 19.

	x	y	z	$\mathrm{U}(\mathrm{eq})$
$\mathrm{H}(1 \mathrm{~A})$	$4290(70)$	$880(60)$	$2363(18)$	$13(14)$
$\mathrm{H}(2 \mathrm{~A})$	5648	3469	2403	30
$\mathrm{H}(4 \mathrm{~A})$	11377	5913	879	41
$\mathrm{H}(5 \mathrm{~A})$	12540	8101	544	53
$\mathrm{H}(6 \mathrm{~A})$	12537	10335	960	47
$\mathrm{H}(7 \mathrm{~A})$	11356	10430	1725	40
H(8A)	10141	8265	2053	30
H(9A)	8424	3057	2094	19
H(10A)	5486	3300	1501	19
H(11A)	5259	610	1609	24
H(11B)	6734	701	1993	24
H(12A)	8192	3197	1071	25
H(12B)	8448	1551	1273	25
H(14A)	7669	-434	742	35
H(15A)	5138	3519	646	34
H(16A)	3521	2604	28	49
H(17A)	3992	155	-240	51
H(20A)	6051	-1350	111	51

Table S10. Torsion angles [${ }^{\circ}$] for 19

$\mathrm{C}(9)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$178.5(5)$	$\mathrm{I}(2)-\mathrm{C}(1)-\mathrm{C}(9)-\mathrm{C}(10)$	$62.0(5)$
$\mathrm{I}(2)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$1.9(7)$	$\mathrm{O}(2)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	$-58.8(5)$
$\mathrm{C}(9)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{I}(1)$	$0.0(8)$	$\mathrm{C}(1)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	$178.8(4)$
$\mathrm{I}(2)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{I}(1)$	$-176.6(2)$	$\mathrm{O}(2)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(12)$	$178.2(4)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(8)$	$78.7(7)$	$\mathrm{C}(1)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(12)$	$55.8(6)$
$\mathrm{I}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(8)$	$-102.8(5)$	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{O}(1)$	$64.8(5)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$-106.6(7)$	$\mathrm{C}(12)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{O}(1)$	$-171.0(4)$
$\mathrm{I}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$72.0(6)$	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(12)-\mathrm{C}(13)$	$-167.0(4)$
$\mathrm{C}(8)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$-3.4(9)$	$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(12)-\mathrm{C}(13)$	$69.6(6)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$-178.2(6)$	$\mathrm{C}(10)-\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(15)$	$63.3(6)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$2.0(11)$	$\mathrm{C}(10)-\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	$-118.1(5)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	$\mathrm{C}(15)-\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(20)$	$-1.0(8)$	
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(20)$	$-179.6(5)$	
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(3)$	$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(15)-\mathrm{C}(16)$	$1.4(9)$	
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(8)-\mathrm{C}(7)$	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(15)-\mathrm{C}(16)$	$180.0(5)$	
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(8)-\mathrm{C}(7)$	$\mathrm{C}(10)$	$\mathrm{C}(13)-\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	$-0.9(10)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(9)-\mathrm{O}(2)$	$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(20)$	$0.0(10)$	
$\mathrm{I}(2)-\mathrm{C}(1)-\mathrm{C}(9)-\mathrm{O}(2)$	$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(20)-\mathrm{C}(14)$	$0.3(10)$	
$C(2)-C(1)-C(9)-\mathrm{C}(10)$	$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(20)-\mathrm{C}(17)$	$0.2(9)$	

Symmetry transformations used to generate equivalent atoms:

Table S11. Hydrogen bonds for 19 [$\AA{ }^{\circ}$ and $^{\circ}$].

D-H...A	$\mathrm{d}(\mathrm{D}-\mathrm{H})$	$\mathrm{d}(\mathrm{H} . . \mathrm{A})$	$\mathrm{d}(\mathrm{D} \ldots \mathrm{A})$	$<(\mathrm{DHA})$
$\mathrm{O}(1)-\mathrm{H}(1 \mathrm{~A}) \ldots \mathrm{O}(2) \# 1$	$0.86(5)$	$1.82(6)$	$2.682(5)$	$172(5)$
$\mathrm{O}(1)-\mathrm{H}(1 \mathrm{~A}) \ldots \mathrm{I}(2) \# 1$	$0.86(5)$	$3.32(5)$	$3.741(4)$	$113(4)$
$\mathrm{O}(2)-\mathrm{H}(2 \mathrm{~A}) \ldots \mathrm{O}(1)$	0.82	1.88	$2.613(5)$	149.0
$\mathrm{O}(2)-\mathrm{H}(2 \mathrm{~A}) \ldots \mathrm{I}(1) \# 2$	0.82	3.27	$3.772(4)$	121.9

Symmetry transformations used to generate equivalent atoms:
\#1-x+1,y-1/2,-z+1/2 \#2 x-1,y,z

L) ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ RMN of compounds.

(20)

3Ai

3Bd

(2000

(

(

M) HPLC chromatograms of selected products

(土)anti-3Aa

Processed Channel Descr.: 2998 Ch2
210nm@2.4nm

	Processed Channel Descr.	RT	Area	\% Area	Height
1	2998 Ch 2 210nm@2.4nm	35,372	9057902	48,06	103362
2	$2998 \mathrm{Ch} 2210 \mathrm{~nm} @ 2.4 \mathrm{~nm}$	47,096	9790717	51,94	90944

Processed Channel Descr.: 2998 Ch2

210nm@2.4nm

	Processed Channel Descr.: PDA 210,0 nm					
		Processed Channel Descr.	RT	Area	\% Area	Height
	1	PDA 210,0 nm	14,282	10185489	51,83	294058
	2	PDA 210,0 nm	31,613	9465881	48,17	169419

(2Me Orocessed Channel Descr.: PDA 210,0 nm

	Processed Channel Descr.	RT	Area	\% Area	Height
1	2998 Ch1 254nm@2.4nm	23,005	7638919	47,27	50844
2	2998 Ch1 254nm@2.4nm	33,833	8521675	52,73	53980

(\pm)-anti-3Ab

3Ab

Processed Channel Descr.: PDA 209,8
nm

	Processed Channel Descr.	RT	Area	\% Area	Height
1	PDA 209,8 nm	19,688	8030630	96,78	49408
2	PDA 209,8 nm	28,888	267337	3,22	3563

(+)anti 3Ad

Processed Channel Descr.: PDA 221.3 nm

	Processed Channel Descr.	RT	Area	\% Area	Height
1	PDA 221.3 nm	20.073	4586585	46.31	111918
2	PDA 221.3 nm	24.624	329225	3.32	7217
3	PDA 221.3 nm	26.675	303986	3.07	6676
4	PDA 221.3 nm	28.685	4684898	47.30	73517

Processed Channel Descr.: PDA 210,0 nm

	Processed Channel Descr.	RT	Area	$\%$ Area	Height
1	PDA 210,0 nm	18,508	15563763	50,04	365883
2	PDA $210,0 \mathrm{~nm}$	24,320	15538789	49,96	284030

3Ae

Processed Channel Descr.: PDA 210,0 nm

	Processed Channel Descr.	RT	Area	\% Area	Height
1	PDA 210,0 nm	18,973	1924681	4,69	52776
2	PDA 210,0 nm	24,338	39085502	95,31	691688

PDA 240nm, Chiralpak AS-H, 90:10 hex:ipr, f:1mL/min Processed Channel Descr.: PDA 240,0 nm

($\mathbf{\pm}$)anti-3Af

	Processed Channel Descr.	RT	Area	\% Area	Height
1	PDA $240,0 \mathrm{~nm}$	14,134	26256755	51,43	567546
2	PDA $240,0 \mathrm{~nm}$	17,188	24795620	48,57	511488

3Af

Processed Channel Descr.: PDA 240,0 nm

	Processed Channel Descr.	RT	Area	\% Area	Height
1	PDA 240,0 nm	14,131	137379555	97,11	2319140
2	PDA 240,0 nm	17,407	4083750	2,89	69693

Processed Channel Descr.: PDA 210,0 nm

	Processed Channel Descr.	RT	Area	\% Area	Height
1	PDA 210,0 nm	31,294	12131233	50,58	170537
2	PDA 210,0 nm	36,323	11851663	49,42	151805

(\pm)-anti-8Af

Processed Channel Descr.: PDA 210,0
nm

	Processed Channel Descr.	RT	Area	$\%$ Area	Height
1	PDA 210,0 nm	30,913	253398	2,67	5972
2	PDA 210,0 nm	36,912	9243051	97,33	117740

8Af

(\pm) anti-3Ag

Processed Channel Descr.: PDA 240,0
nm

	Processed Channel Descr.	RT	Area	\% Area	Height
1	PDA $240,0 \mathrm{~nm}$	28,118	3287985	51,41	43503
2	PDA $240,0 \mathrm{~nm}$	30,952	3107720	48,59	39630

3Ag
Processed Channel Descr.: PDA 240,0 nm

	Processed Channel Descr.	RT	Area	$\%$ Area	Height
1	PDA $240,0 \mathrm{~nm}$	27,990	83366956	95,97	1028432
2	PDA $240,0 \mathrm{~nm}$	31,131	3500131	4,03	42865

(\pm)anti-3Ah

Processed Channel Descr.: PDA 240,0 nm

	Processed Channel Descr.	RT	Area	\% Area	Height
1	PDA 240,0 nm	11,754	37766089	50,20	1288695
2	PDA 240,0 nm	13,967	37468214	49,80	1075921

Processed Channel Descr.: PDA 240,0 nm					
3Ah	Processed Channel Descr.	RT	Area	$\%$ Area	Height
1	PDA $240,0 \mathrm{~nm}$	11,724	54770546	95,42	1674406
2	PDA $240,0 \mathrm{~nm}$	13,992	2628661	4,58	66162

 (\pm)anti-3Ai		Processed Channel Descr.	RT	Area	\% Area	Height
	1	PDA 208.0 nm	19.745	616200	3.26	21209
	2	PDA 208.0 nm	22.817	620133	3.28	18256
	3	PDA 208.0 nm	36.392	8932161	47.19	164853
	4	PDA 208.0 nm	50.275	8759745	46.28	111366

3Ai

Processed Channel Descr.: PDA 210,0 nm

(\pm)anti-3Aj

	Processed Channel Descr.	RT	Area	\% Area	Height
1	PDA 210,0 nm	55,794	3016962	6,65	16803
2	PDA 210,0 nm	65,219	3774808	8,32	16200
3	PDA 210,0 nm	104,689	19451537	42,89	85214
4	PDA 210,0 nm	112,681	19108239	42,13	74861

Processed Channel Descr.: PDA 210,0 nm

	Processed Channel Descr.	RT	Area	\% Area	Height
1	PDA $210,0 \mathrm{~nm}$	100,886	18983398	100,00	64457

3Aj

(\pm) anti-3Bd

Processed Channel Descr.: PDA 211.9 nm

	Processed Channel Descr.	RT	Area	\% Area	Height
1	PDA 211.9 nm	26.644	55924034	59.53	985210
2	PDA 211.9 nm	32.114	6866605	7.31	78522
3	PDA 211.9 nm	35.005	31146529	33.16	481322

3Bd
Processed Channel Descr.: PDA 208.4 nm

	Processed Channel Descr.	RT	Area	\% Area	Height
1	PDA 208.4 nm	26.558	60759401	94.83	1119080
2	PDA 208.4 nm	31.837	3239118	5.06	56806
3	PDA 208.4 nm	35.467	75713	0.12	2750

PDA 254.1nm, Chiralpak IC, 90:10 hex:ipr, f:1mL/min

(\pm) anti-3Bf
Processed Channel Descr.: PDA 254.1 nm

	Processed Channel Descr.	RT	Area	\% Area	Height
1	PDA 254.1 nm	13.699	21138223	50.38	494449
2	PDA 254.1 nm	15.651	20821017	49.62	439792

Processed Channel Descr.: PDA 254.3 nm

	Processed Channel Descr.	RT	Area	\% Area	Height
1	PDA 254.3 nm	14.285	322132	2.10	9375
2	PDA 254.3 nm	16.410	15005305	97.90	292813

3Bf

Processed Channel Descr.: PDA 215.0 nm

 (\pm)anti-3Bk		Processed Channel Descr	RT	Area	\% Area	Height
	1	PDA 215.0 nm	23.746	3102156	5.40	97838
	2	PDA 215.0 nm	25.933	2941034	5.12	84795
	3	PDA 215.0 nm	31.534	24562707	42.76	578382
	4	PDA 215.0 nm	41.821	26830736	46.71	466338

Processed Channel Descr.: PDA 215.0 nm

| RT | Area | \% Area | Height |
| ---: | ---: | ---: | ---: | ---: |
| 31.957 | 331909 | 0.86 | 8599 |
| 41.832 | 38186368 | 99.14 | 577829 |

PDA 225.0 nm , Daicel Chiralcel OD-H ,95 : 5 hex : ipr, f: $0.75 \mathrm{~mL} / \mathrm{min}$
Processed Channel Descr.: PDA 225.0 nm

| Processed
 Channel
 Descr. | RT | Area | \% Area | Height | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (\pm)anti-3BI | PDA 225.0 nm | 42,013 | 2067904 | 4,258 | 21047 |
| 2 | PDA 225.0 nm | 45,973 | 20761994 | 42,752 | 168818 |
| 3 | PDA 225.0 nm | 51,200 | 25733573 | 52,990 | 172220 |

Processed Channel Descr.: PDA 225.0 nm

3BI

	Processed Channel Descr.	RT	Area	\% Area	Height
1	PDA 225.0 nm	42,067	4412274	9,802	37511
2	PDA 225.0 nm	46,320	82187	0,183	1107
2	PDA 225.0 nm	51,333	40520603	90,016	261500

Processed Channel Descr.: PDA 225.0 nm

	Processed Channel Descr.	RT	Area	\% Area	Height
1	PDA 225.0 nm	46,320	100850	0,248	1241
2	PDA 225.0 nm	51,333	40588685	99,752	261661

deriv. (\pm) anti-3Ca

Processed Channel Descr.: PDA 225.5 nm

	Processed Channel Descr.	RT	Area	\% Area	Height
1	PDA 225.5 nm	15.577	6945095	50.99	230890
2	PDA 225.5 nm	17.598	6674108	49.01	172715

Processed Channel Descr.: PDA 209.8 nm

	Processed Channel Descr.	RT	Area	\% Area	Height
1	PDA 209.8 nm	15.509	36180568	100.00	892057

deriv. 3Ca

Processed Channel Descr.: PDA 240,0 nm
$\mathbf{~} \pm$)-anti-3Cf

	Processed Channel Descr.: PDA 240,0 nm					
		Processed Channel Descr.	RT	Area	\% Area	Height
	1	PDA $240,0 \mathrm{~nm}$	8,482	63648367	96,92	2458930
3Cf	2	PDA $240,0 \mathrm{~nm}$	9,726	2021843	3,08	70139

(\pm)-anti-8Cf

Prac|c|r|r|r|

(\pm)anti-3De

Processed Channel Descr.: PDA 218,0 nm

	Processed Channel Descr.	RT	Area	\% Area	Height
1	PDA 218,0 nm	29,879	5989969	11,26	62019
2	PDA 218,0 nm	37,293	21189331	39,84	134316
3	PDA 218,0 nm	43,556	21594696	40,60	133255
4	PDA 218,0 nm	54,750	4413243	8,30	23553

Processed Channel Descr.: PDA 218,0 nm

	Processed Channel Descr.	RT	Area	\% Area	Height
1	PDA 218,0 nm	34,971	77334	0,13	1823
2	PDA $218,0 \mathrm{~nm}$	40,645	60933758	99,87	333168

3De

PDA 207.0 nm, Phenomenex Lux 3μ Cellulose-4,

90 :10 hex :ipr, f : $1.5 \mathrm{~mL} / \mathrm{min}$

(\pm)anti-3Ed

Processed Channel Descr.: PDA 207.0 nm

	Processed Channel Descr.	RT	Area	\% Area	Height
1	PDA 207.0 nm	33.251	13315513	47.23	188060
2	PDA 207.0 nm	51.580	14878183	52.77	128701

PDA 207.0 nm, Phenomenex Lux 3μ Cellulose-4,

90 :10 hex :ipr, f :1.5 mL/min

	Processed Channel Descr.: PDA 207.0 nm					
		Processed Channel Descr.	RT	Area	\% Area	Height
	1	PDA 207.0 nm	33.687	2617316	2.64	39337
	2	PDA 207.0 nm	49.238	96472644	97.36	557987

deriv. 3 Fb

Processed Channel Descr.: PDA 209,8
nm

	Processed Channel Descr.	RT	Area	\% Area	Height
1	PDA 209,8 nm	7,575	365534	4,33	10439
2	PDA 209,8 nm	16,949	8080611	95,67	70102

MeO		ces		Descr.:	DA 2	nm
		Processed Channel Descr.	RT	Area	\% Area	Height
Ph	1	PDA 240,0 nm	19,781	2824138	2,24	64368
	2	PDA 240,0 nm	22,014	123181399	97,76	1807772

8Ff

deriv. (\pm)anti-8Fm

Processed Channel Descr.: PDA 240.0
nm

	Processed Channel Descr.	RT	Area	\% Area	Height
1	PDA 240.0 nm	4.084	1151453	42.36	64124
2	PDA 240.0 nm	4.858	1566586	57.64	59833

Processed Channel Descr.: PDA 234.1

	Processed Channel Descr.	RT	Area	\% Area	Height
1	PDA 234.1 nm	4.241	11176393	100.00	571846

deriv. 8Fm

(\pm)anti-8Gf

Processed Channel Descr.: PDA 243.4 nm

	Processed Channel Descr.	RT	Area	\% Area	Height
1	PDA 243.4 nm	23.105	4379286	49.27	85241
2	PDA 243.4 nm	25.719	4508588	50.73	80296

Processed Channel Descr.: PDA 243.4 nm

	Processed Channel Descr.	RT	Area	\% Area	Height
1	PDA 243.4 nm	25.111	15052120	100.00	224132

Processed Channel Descr.: PDA 210,0 nm

	Processed Channel Descr.	RT	Area	$\%$ Area	Height
1	PDA 210,0 nm	32,330	102202564	57,69	717221
2	PDA 210,0 nm	37,265	74965294	42,31	572864

(\pm)anti-3Hc

Processed Channel Descr.: PDA 240,0

nm						
Processed Channel Descr.	RT	Area	\% Area	Height		
1	PDA 240,0 nm	31,105	14786	0,37	330	
2	PDA 240,0 nm	36,602	3966787	99,63	31375	

[^0]: ${ }^{1}$ Gómez-Bengoa, E.; Jimenez, J.; Lapuerta, .I; Mielgo, A.; Oiarbide, M.; Otazo, I.; Velilla, I.; Vera, S.; Palomo, C. Chem. Sci. 2012, 3, 2949-2957.

[^1]: ${ }^{2}$ Y. Chi, E. P. English, W. C. Pomerantz, W. S. Horne, L. A. Joyce, L. R. Alexander, W. S. Fleming, E. A. Hopkins, S. H. Gellman J. Am. Chem. Soc.. 2007, 129, 6050-6055

[^2]: ${ }^{3}$ Adapted from: X. Xiao, S. Antony, G. Kohlhagen, Y. Pommier, M. Cushman, Bioorg. Med. Chem. 2004, 12, 51475160.

[^3]: ${ }^{4}$ Adapted from: Takeishi, K.; Sugishima, K.; Sasaki, K.; Tanaka, K. Chem. Eur. J. 2004, 10, 5681-5688.
 ${ }^{5}$ Adapted from: Lopez, R.; Zalacain, M.; Palomo, C. Chem. Eur. J. 2011, 17, 2450-2457.

[^4]: ${ }^{6}$ Paz, J.L.; Rodroguez, J.A.R.; J. Braz. Chem. Soc. 2003, 14, 975-981.
 ${ }^{7}$ Ishihara, K.; Nakamura, S.; Yamamoto, H. J. Am. Chem. Soc. 1999, 121, 4906-4907.

[^5]: ${ }^{8}$ Surendra. K.; E. J. Corey, J. Am. Chem. Soc. 2008, 130 (27), 8865-8869
 ${ }^{9}$ Surendra, K.; Qiu, W.; E. J. Corey, J. Am. Chem. Soc., 2011, 133 (25), 9724-9726

[^6]: ${ }^{10}$ Lopez, S.; Fernandez-Trillo, F.; Midón, P.; Castedo, L.; Saá, C. J. Org. Chem. 2005, 70, 6346-6352.
 ${ }^{11}$ L. Brandsma, Preparative Acetylenic Chemistry (Studies in Organic Chemistry 34) Ed. Elsevier, Amsterdam, 1988, 97-112

[^7]: ${ }^{12}$ Y. -L. Shen, W. -T. Wu, Q. Liu, G. -L. Wu, L. -M. Wu. J. Chem. Res. 2006, 545-546.
 ${ }^{13}$ S. Ma, J. Liu, S. Li, B. Chen' J. Cheng, J. Kuang, Y. Liu, B. Wan, Y. Wang, J. Ye, Q. Yu, W. Yuan, S. Yu, Adv. Synth. Cat. 2011, 353, 1005-1017.
 ${ }^{14}$ C.R. Solorio-Alvarado, A. M. Echavarren, J. Am. Chem. Soc. 2010, 132, 11881-11883.

[^8]: ${ }^{15}$ K. Frimpong, J. Wzorek, C. Lawlor, K. Spencer, T. Mitzel J. Org. Chem. 2009, 74, 5861-5870.

[^9]: ${ }^{16}$ For the reactions with propanal a threefold excess of aldehyde was employed.
 ${ }^{17}$ In some particular cases because of peak overlapping in the aldehyde region the dr was determined by integration of CHOH .
 ${ }^{18}$ Partial epimerization has been observed when the reduction is performed at higher temperatures.

[^10]: ${ }^{19}$ Procedure adapted from, T. Kano, Y. Yamaguchi, Y. Tanaka, K. Maruoka, Angew. Chem. Int. Ed. 2007, 46, 1738.

[^11]: ${ }^{\text {a }}$ Reactions conducted on a 0.5 mmol scale in 0.5 mL of THF (mol ratio 1/2/4/BA/Cul, 1.5-1.2:1:0.2: 0.2:0.1. ${ }^{\text {b }}$ Combined yield of the anti:syn cross aldol mixture after chromatography. ${ }^{\circ}$ Determined by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and corroborated by HPLC; data in parentheses refer to reactions carried out with benzoic acid as the sole cocatalyst. ${ }^{\text {d }}$ Determined by chiral HPLC. ${ }^{e}$ NO reactions unsing either CuCl or Cul as the sole calatyst.

[^12]: ${ }^{20}$ a) Cozzi, P. G.; Hilgraf, R.; Zimmermann, N. Eur. J. Org. Chem 2004, 4095-4105. b) Pu, L. Tetrahedron 2003, 59, 9873-9886. c) Lu, G; Li, Y.M, X. S. Li, A.S. C. Chan Coord. Chem. Rev. 2005, 249, 1736-1744.

[^13]: ${ }^{21}$ Adapted from: a) Tamaru, Y; Kimura, M; Tanaka, S; Kura, S. Yoshida, Z. Bull. Chem. Soc. Jpn. 1994, 67, 2838-2849 b) Ohe, K.; Ishihara, T.; Chatani, Y. K.; Murai, S. J. Org. Chem. 1991, 56, 2267-2268.

[^14]: ${ }^{22}$ Adapted from: Vasudev, R.; Looper, R. E. J. Am. Chem. Soc. 2011, 133, 20172-20174.

[^15]: ${ }^{23}$ Nishizawa, M.; Takemoto, T.; Sasaki, I.; Nakano, M; Ho, E.; Namba, K.; Yamamoto, H.; Imagawa, H. Synlett 2009, 1175-1179.

[^16]: ${ }^{24}$ a) Turlington, M.; Yue, Y.; Yu, X.-Q.; Pu, L. J. Org. Chem. 2010, 75, 6941-6952. b) Mukai, C.; Sonobe, H.; Kim, J. S. ; Hanaoka, M. J.Org. Chem. 2000, 65, 6654-6659.

[^17]: ${ }^{25}$ Heathcock, C.H. "The Aldol Addition Reaction" in "Asymmetric Synthesis"; Morrison J.D., Ed.; Academic Press: New York, 1983; Vol 3, Chapter 2, pp. 111-212.

[^18]: ${ }^{26}$ Experimental procedure adapted from: I.K. Mangion, A. B. Northrup, D. W. C. MacMillan. Angew. Chem. Int. Ed. 2004, 43, 6722-24

[^19]: ${ }^{27}$ Adapted from the literature (A. B. Northrup, D.W.C MacMillan, J. Am. Chem. Soc. 2002, 124, 67986799.), but without using syringe pump
 ${ }^{28}$.A. Seifert, U. Scheffler, M. Markert, R Mahrwald; Org. Lett, 2010, 12.1660.

