Supporting Information

Rhodium (III)-catalyzed intramolecular annulations involving amidedirected C-H activations: synthetic scope and mechanistic studies

Noelia Quiñones, Andrés Seoane, Rebeca García-Fandiño, Jose Luis Mascareñas and Moisés Gulías

Contents

1. General experimental procedures	S3
2. Experimental data	S4
3. DFT calculations	S18
4. NMR Spectra	S61

1. General experimental procedures

Reactions were conducted in dry solvents under Argon atmosphere unless otherwise stated. Dry solvents were freshly distilled under Argon from an appropriate drying agent before use. Toluene was distilled from Na, THF from Na / benzophenone. Dried dichloromethane and *tert*-amyl alcohol (2-methylbutan-2-ol) were purchased from Aldrich and used without further purification. [RhCp*Cl₂]₂ (99%) [12354-85-7] was purchased from Strem, [Ru(*p*-cymene)Cl₂]₂ was purchased from TCI [52562-29-0] (>95%) and CsOAc (99%) [3396-11-0] was purchased from Alfa Aesar, All other chemicals were purchased from Aldrich and used without further purification.

The abbreviation "*rt*" refers to reactions carried out at a temperature between 21-25 °C. Reaction mixtures were stirred using Teflon-coated magnetic stir bars. High reaction temperatures were maintained using Thermowatch-controlled silicone oil baths. Thin-layer chromatography (TLC) was performed on silica gel plates and components were visualized by observation under UV light, and / or by treating the plates with *p*-anisaldehyde or cerium nitrate solutions, followed by heating. Flash chromatography was carried out on silica gel. Dryings were performed with anhydrous Na₂SO₄. Concentration refers to the removal of volatile solvents via distillation using a Büchi rotary evaporator followed by high vacuum.

All Rhodium-catalyzed reactions were carried out without any particular precautions to extrude moisture or oxygen.

¹H NMR (300MHz) spectra were recorded at room temperature on a Varian 300MHz spectrometer in CD Cl3 [using (CH₃)₄Si (for 1H, δ = 0.00) as internal standard]. ¹³C NMR (75 MHz) spectra on a Varian spectrometer in CDCl₃ [using CDCl₃ (for ¹³C, δ = 77.160) as internal standard]. The following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br s = broad singlet (typically NH). Carbon types and structure assignments were determined from DEPT-NMR and two dimensional experiments (HMQC and HMBC, COSY and NOESY). NMR spectra were analyzed using MestReNova© NMR data processing software (www.mestrelab.com). Mass spectra were acquired using electronic impact (EI) and were recorded at the CACTUS facility of the University of Santiago de Compostela.

2. Experimental data

General procedure for the synthesis of alkynylbenzamides (1a-1n), exemplified for 1a.

To a solution of *tert*-butyl benzoylcarbamate**7a** (4 g, 17.8 mmol), triphenylphosphine (5.60 g, 21.4 mmol) and 4-pentyn-1-ol (10.0 g, 202 mmol) in THF (90 mL) at 0 °C was added diisopropylazodicarboxylate (DIAD, 4.16 mL, 21.4 mmol) dropwise, very slowly. After complete addition, the yellow solution was stirred at r.t. overnight. The reaction was concentrated, water (40 mL) was added and the mixture was extracted with Et_2O (3x20 mL). The combined organic layers were dried over sodium sulfate and the solvent was evaporated *in vacuo* to afford a viscous oil that was purified by flash chromatography (hexanes:diethylether 1:3) to obtain the *tert*-butyl benzoyl(pent-4-yn-1-yl)carbamate (3.58 g, 70%).

To a solution of *tert*-butyl benzoyl(pent-4-yn-1-yl)carbamate (2.9 g, 10.1 mmol) in CH₂Cl₂ (40 mL) at 0 °C was added trifluoroacetic acid (0.78 mL, 1 eq) dropwise. After complete addition, the solution was stirred at r.t. overnight. Water (15 mL) was added and the mixture was extracted with CH₂Cl₂ (3x10 mL). The combined organic layers were dried over sodium sulfate and the solvent was evaporated *in vacuo* to afford a yellow oil that was purified by flash chromatography (hexanes:diethylether 1:1) to obtain the corresponding *N*-(pent-4-yn-1-yl)benzamide **1p** (1.10 g, 58%). Amorfous white solid. ¹H **NMR** (300 MHz, CDCl₃) δ 7.76 (dd, *J* = 11.3, 4.3 Hz, 2H), 7.52 – 7.30 (m, 3H), 6.91 (s, 1H), 3.51 (dd, *J* = 12.8, 6.7 Hz, 2H), 2.25 (td, *J* = 6.9, 2.6 Hz, 2H), 1.97 (dd, *J* = 3.5, 1.8 Hz, 1H), 1.90 – 1.73 (m, 2H). ¹³C **NMR** (75 MHz, CDCl₃) δ 167.8 (C), 134.6 (C), 131.4 (CH), 128.5 (CH), 127.0 (CH), 83.7 (C), 69.2 (CH), 39.3 (CH₂), 28.1 (CH₂), 16.3 (CH₂).

To a solution of benzamide **1p** (100 mg, 0.53 mmol), $Pd(PPh_3)_4$ (48 mg, 10 mol%) and Cul (10.17 mg, 10 mol%) in DMF (8 mL), bromobenzene (125 mg, 0.795 mmol) was added Et₃N (0.75 mL, 5.34 mmol). After complete addition, the solution was stirred at 80 °C overnight. The reaction mixture was diluted with EtOAc (30 mL) and washed with water (10 mL) and brine (10mL). The combined organic layers were dried over anhidrous sodium sulfate and the solvents were evaporated *in vacuo* to afford a yellow oil that was purified by flash chromatography hexanes:ethyl acetate 1:3) to obtain the corresponding arene **1a** (112 mg, 80%).

N-(5-Phenylpent-4-yn-1-yl)benzamide (1a): white solid. ¹H NMR (300 MHz, CDCl₃) δ 7.86 – 7.60 (m, 2H),

7.51 – 7.13 (m, 8H), 6.53 (br s, 1H), 3.57 (dd, J = 12.6, 6.4 Hz, 2H), 2.48 (t, J = 6.7 Hz, 2H), 1.99 – 1.77 (m, 2H). ¹³C NMR (75 MHz, CDCl₃) δ 167.5 (C), 134.5 (C), 131.5 (CH), 131.3 (CH), 128.5 (CH), 128.2 (CH), 127.8 (CH), 126.8 (CH), 123.4 (C), 89.2 (C), 81.6 (C), 39.7 (CH₂), 28.2

(CH₂), 17.5 (CH₂).**LRMS** (*m/z*, *l*) 263 (87), 262 (43) 235 (27) **HRMS** calculated for C₁₈H₁₇NO 263.1310, found 263.1318.

4-Methoxy-N-(5-phenylpent-4-yn-1-yl)benzamide (1b): yellow solid. ¹H NMR (300 MHz, CDCl₃) δ 7.74 –

7.54 (m, 2H), 7.42 – 7.09 (m, 5H), 6.83 – 6.66 (m, 2H), 6.51 (br s, 1H), 3.73 (s, 3H), 3.53 (dt, J = 13.9, 6.9 Hz, 2H), 2.46 (t, J = 6.8 Hz, 2H), 1.92 – 1.80 (m, 2H). ¹³C NMR (75 MHz, CDCl₃) δ 167.2 (C), 162.1 (C), 131.7 (CH), 128.8 (CH), 128.4 (CH), 127.9 (CH), 126.9

(C), 123.6 (C), 113.72 (CH), 89.5 (C), 81.7 (C), 55.4 (CH₃), 39.8 (CH₂), 28.4 (CH₂), 17.6 (CH₂). **LRMS** (*m/z*, *l*) 293 (16), 292 (25), 291 (291), 277 (4).

N-(5-Phenylpent-4-yn-1-yl)-4-(trifluoromethyl)benzamide (1c): yellow solid. ¹H NMR (300 MHz, CDCl₃)

δ 7.82 (d, J = 8.6 Hz, 2H), 7.53 (d, J = 8.5 Hz, 2H), 7.40 – 7.22 (m, 5H), 6.90 (br s, 1H), 3.65 (dd, J = 12.5, 6.3 Hz, 2H), 2.55 (t, J = 6.7 Hz, 2H), 2.08 – 1.83 (m, 2H). ¹³C NMR (75 MHz, CDCl₃) δ 166.4 (C), 137.9 (C), 133.1 (q, J = 32.8 Hz, C), 131.6 (CH), 128.4 (CH),

128.1 (CH), 127.5 (CH), 125.6 (q, J = 3.5 Hz, CH), 123.4 (C), 120.1 (q, J = 272.4 Hz, C), 89.4 (C), 81.9 (C), 40.2 (CH₂), 28.1 (CH₂), 17.7 (CH₂). **LRMS** (m/z, l) 331 (74), 330 (27), 312 (13), 302 (23), 277 (15). **HRMS** calculated for C₁₉H₁₆NOF₃ 331.1184, found 331.1187

4-Bromo-N-(5-phenylpent-4-yn-1-yl)benzamide (1d): white solid. ¹H NMR (300 MHz, CDCl₃) δ 7.66 -

7.06 (m, 8H), 6.80 (br s, 1H), 3.53 (dd, J = 12.5, 6.3 Hz, 2H), 2.46 (t, J = 6.7 Hz, 2H), 2.03 – 1.64 (m, 2H). ¹³**C NMR** (75 MHz, CDCl₃) $\delta\delta$ 166.7 (C), 133.5 (C), 131.7 (CH), 131.6 (CH), 128.6 (CH), 128.4 (CH), 128.0 (CH), 126.1 (C), 123.4 (C), 89.4 (C), 81.8 (C), 40.0 (CH₂),

28.2(CH₂), 17.6 (CH₂).**LRMS** (*m*/*z*, *l*) 341 (28), 313 (9). **HRMS** calculated for C₁₈H₁₆NOBr 341.0415, found 341.0428.

3-methyl-N-(5-phenylpent-4-yn-1-yl)benzamide (1e): white solid. ¹H NMR (300 MHz, CDCl₃) & 7.60 -

7.47 (m, 1H), 7.40 – 7.30 (m, J = 6.7, 3.1 Hz, 1H), 7.30 – 7.17 (m, 2H), 6.49 (s, 1H), 3.63 (dd, J = 12.6, 6.4 Hz, 1H), 2.54 (t, J = 6.8 Hz, 1H), 2.30 (s, 1H), 2.01 – 1.86 (m, J = 6.7 Hz, 1H). ¹³C NMR (75 MHz, CDCl₃) δ 167.9 (C), 138.5 (C), 134.7 (C), 132.2 (CH), 131.7

(CH), 128.4 (CH), 128.4 (CH), 127.9 (CH), 127.7 (CH), 124.0 (CH), 123.6 (C), 89.4 (C), 81.7 (C), 39.8 (CH₂), 28.4 (CH₂), 21.3 (CH₃), 17.6 (CH₂).

3-methoxy-N-(5-phenylpent-4-yn-1-yl)benzamide (1f): white solid . ¹H NMR (300 MHz, CDCl₃) δ 7.40 -

7.30 (m, 3H), 7.30 – 7.15 (m, 5H), 7.02 – 6.95 (m, 1H), 6.61 (s, 1H), 3.79 (s, 3H), 3.62 (dd, J = 12.6, 6.5 Hz, 2H), 2.53 (t, J = 6.8 Hz, 2H), 1.99 – 1.86 (m, 2H). ¹³C NMR (75 MHz, CDCl₃) δ 167.6 (C), 159.9 (C), 136.2 (C), 131.7 (CH), 129.6 (CH), 128.3 (CH), 127.9

(CH), 123.6 (C), 118.7 (CH), 117.7 (CH), 112.4 (CH), 89.3 (C), 81.7 (C), 55.5 (CH₃), 39.8 (CH₂), 28.4 (CH₂), 17.5 (CH₂).

N-(5-Phenylpent-4-yn-1-yl)-1-naphthamide (1g): white solid. ¹H NMR (300 MHz, CDCl₃) δ 8.34 – 8.13 (m, 1H), 7.90 – 7.69 (m, 2H), 7.61 – 7.11 (m, 9H), 6.60 (br s, 1H), 3.59

(m, 1H), 7.90 – 7.69 (m, 2H), 7.61 – 7.11 (m, 9H), 6.60 (br s, 1H), 3.59 (dd, J = 12.6, 6.4 Hz, 2H), 2.50 (t, J = 6.9 Hz, 2H), 2.00 – 1.75 (m, 2H). ¹³C NMR (75 MHz, CDCl₃) δ 170.1 (C), 134.9 (C), 134.0 (C), 131.9 (CH), 130.8 (CH), 130.5 (C), 128.7 (CH), 128.2 (CH), 127.4 (CH), 126.8 (CH),

125.8 (CH), 125.3 (CH), 125.1 (CH),124.0 (C), 89.6 (C), 82.0 (C), 39.9 (CH₂), 28.8(CH₂), 17.8 (CH₂). **LRMS** (*m/z*, *l*) 313 (57), 312 (90), 285 (40).

N-(6-Phenylhex-5-yn-1-yl)benzamide (1h): white solid. ¹H NMR (300 MHz, CDCl₃) δ 7.76 – 7.61 (m, 2H),

7.53 – 7.01 (m, 8H), 6.48 (br s, 1H), 3.39 (dt, J = 6.7, 3.8 Hz, 2H), 2.35 (dd, J = 9.3, 4.2 Hz, 2H), 1.80 – 1.44 (m, 4H). ¹³C NMR (75 MHz, CDCl₃) δ 167.7 (C), 134.8 (C), 131.7 (CH), 131.5 (CH), 128.7 (CH), 128.3 (CH), 127.8 (CH), 127.0 (CH), 123.9 (C), 89.8 (C), 81.3 (C), 39.7 (CH₂), 29.0

(CH₂), 26.2 (CH₂), 19.2 (CH₂). **LRMS** (*m/z*, *l*) 277 (32), 261 (50), 249 (12). **HRMS** calculated for C₁₉H₁₇NO 275.1310, found 275.1312

N-(7-Phenylhept-6-yn-1-yl)benzamide (1i): yellow oil. ¹H NMR (300 MHz, CDCl₃) δ 7.79 – 7.54 (m, 2H),

7.47 – 7.22 (m, 5H), 7.23 – 7.12 (m, 3H), 6.31 (br s, 1H), 3.47 – 3.26 (m, 2H), 2.34 (t, J = 6.7 Hz, 2H), 1.70 – 1.36 (m, 6H). ¹³C NMR (75 MHz, CDCl₃) δ 167.7 (C), 134.9 (C), 131.6 (CH), 131.4 (CH), 128.6 (CH), 128.3 (CH), 127.6 (CH), 126.9 (CH), 124.0 (C),

90.0 (C), 80.1(C), 40.0 (CH₂), 29.3 (CH₂), 28.4 (CH₂), 26.2 (CH₂), 19.4 (CH₂). **LRMS** (*m/z*, *l*) 291 (36), 277 (16). **HRMS** calculated for C₂₀H₁₉NO 291.1623, found 291.1624.

N-(5-(*o*-Tolyl)pent-4-yn-1-yl)benzamide (1j): brown oil. ¹H NMR (300 MHz, CDCl₃) δ 7.77 – 7.52 (m, 2H),

7.48 – 6.89 (m, 8H), 6.53 (br s, 1H), 3.58 (dd, J = 12.5, 6.7 Hz, 2H), 2.61 – 2.40 (m, 2H), 2.32 (s, 3H), 1.97 – 1.77 (m 2H). ¹³C NMR (75 MHz, CDCl₃) δ 167.7 (C), 140.1 (C), 134.6 (C), 132.0 (CH), 131.5 (CH), 129.5 (CH), 128.6 (CH), 127.9 (CH), 127.0 (CH), 125.6 (CH), 123.3 (C), 93.2

(C), 80.6 (C), 39.8 (CH₂), 28.6 (CH₂), 20.9 (CH₃), 17.7 (CH₂). **LRMS** (*m/z*, *l*) 277 (59), 259 (28). **HRMS** calculated for C₁₉H₁₉NO 277.1467, found 277.1455.

N-(5-(3,5-Dimethylphenyl)pent-4-yn-1-yl)benzamide (1k): brown solid. ¹H NMR (300 MHz, CDCl₃) δ 7.66

(dd, J = 7.9, 6.7 Hz, 2H), 7.42 – 7.32 (m, 1H), 7.31 – 7.20 (m, 2H), 6.92 (s, 2H), 6.84 (s, 1H), 6.59 (brs, 1H), 3.56 (dd, J = 12.6, 6.3 Hz, 2H), 2.46 (dd, J = 8.4, 5.0 Hz, 2H), 2.18 (s, 3H), 1.92 – 1.78 (m, 2H). ¹³C NMR (75 MHz, CDCl₃) δ 168.0 (C), 138.3 (C), 135.1 (C), 131.8

(CH), 130.3 (CH), 129.8 (CH), 129.0 (CH), 127.4 (CH), 123.6 (C), 89.0 (C), 82.5 (C), 40.3 (CH₂), 28.8 (CH₃),
21.6 (CH₂), 18.1 (CH₂). LRMS (*m/z*, *l*) 291 (55), 263 (20). HRMS calculated for C₂₀H₂₁NO 291.1623, found
291.1622.

N-(5-(Naphthalen-1-yl)pent-4-yn-1-yl)benzamide (1l): brown solid. ¹H NMR (300 MHz, CDCl₃) δ 8.24

(dd, J = 7.9, 1.1 Hz, 1H), 7.96 – 7.00 (m, 11H), 6.64 (brs, 1H), 3.72 – 3.46 (m, 2H), 2.56 (dt, J = 31.6, 6.8 Hz, 2H), 2.15 – 1.80 (m, 2H). ¹³C NMR (75 MHz, CDCl₃) δ 167.7 (C),134.5 (C), 133.4 (C), 133.2 (C), 131.4 (CH), 130.3 (CH), 128.5 (CH), 128.3 (CH), 127.0 (CH), 126.8

(CH), 126.5 (CH), 126.4 (CH), 126.2 (CH), 125.3 (CH), 121.2 (C), 94.4 (C), 79.7 (C), 39.9 (CH₂), 28.6(CH₂), 17.9(CH₂). **LRMS** (*m/z*, *l*) 313 (47), 262 (7). **HRMS** calculated for C₂₂H₁₉NO 313.1467, found 313.1470.

N-(5-(4-Methoxyphenyl)pent-4-yn-1-yl)benzamide (1m): brown solid. ¹H NMR (300 MHz, CDCl₃) δ 7.68

(dd, J = 8.3, 1.2 Hz, 2H), 7.47 – 7.11 (m, 5H), 6.82 – 6.67 (m, 2H), 6.56 (brs, 1H), 3.69 (d, J = 23.8 Hz, 3H), 3.55 (dt, J = 22.2, 10.9 Hz, 2H), 2.48 (dd, J = 12.6, 6.0 Hz, 2H), 2.03 – 1.77 (m, 2H). ¹³C NMR (75 MHz, CDCl₃) δ 167.6 (C), 159.3 (C), 134.7 (C), 133.1

(CH), 131.7 (C), 131.5 (CH), 128.6 (CH), 127.0 (CH), 114.0 (CH), 87.8 (C), 81.5 (C), 55.4 (CH₃), 39.9 (CH₂), 28.4 (CH₂), 17.6 (CH₂). **LRMS** (*m/z*, *l*) 293 (45), 262 (6). **HRMS** calculated for C₁₉H₁₉NO₂ 293.1416, found 293.1420.

N-(5-(*p*-Tolyl)pent-4-yn-1-yl)benzamide (1n): brown solid. ¹H NMR (300 MHz, CDCl₃) 7.66 (dd, J = 6.2, 5.2 Hz, 2H), 7.37 (dd, J = 10.6, 4.1 Hz, 1H), 7.31 – 7.16 (m, 4H), 7.00 (d, J = 8.0 Hz, 2H), 6.54 (brs, 1H), 3.56 (q, J = 6.3 Hz, 2H), 2.53 – 2.39 (m, 2H), 2.26 (s, 3H), 1.95 – 1.78 (m, 2H).¹³C NMR (75 MHz, CDCl₃) δ 168.1 (C), 138.4 (C), 135.1 (C), 132.0 (CH), 131.9 (CH),

129.6 (CH), 129.0 (CH), 127.4 (CH), 120.9 (C), 89.0 (C), 82.3 (C), 40.3 (CH₂), 28.8 (CH₂), 22.0 (CH₃), 18.0 (CH₂). LRMS (*m/z*, *l*) 277 (33), 262 (6) 249 (6) HRMS calculated for C₁₉H₁₉NO 277.1467, found 277.1455.

δ 7.87 – 7.04 (m, 9H), 6.85 (s, 1H), 3.52 (dd, J = 12.7, 6.7 Hz, 2H), 2.44 (t, J = 6.9 Hz, 2H), 2.00 – 1.70 (m, 2H). ¹³C NMR (75 MHz, CDCl₃) δ 167.8 (C), 134.5 (C), 131.8 (CH), 131.4 (CH), 129.4 (q, J = 32.6 Hz, C), 128.5 (CH), 127.5 (C), 127.0 (CH), 125.2 (q, J =

3.8 Hz, CH), 124.0 (q, *J* = 272.3 Hz, C), 92.1 (C), 80.3 (C), 39.6 (CH₂), 28.3 (CH₂), 17.4 (CH₂). **LRMS** (*m/z*, *I*) 331 (44), 330 (33), 303 (8), 262 (9). **HRMS** calculated for C₁₉H₁₆NOF₃ 331.1184, found 331.1182.

N-(Hex-4-yn-1-yl)benzamide (1q)¹: white solid. ¹H NMR (300 MHz, CDCl₃) δ 7.88 – 7.65 (m, 2H), 7.55 – 7.30 (m, 3H), 6.55 (d, *J* = 35.7 Hz, 1H), 3.56 (dd, *J* = 12.6, 6.5 Hz, 2H), 2.37 – 2.13 (m, 2H), 1.85-1.70 (m,

5H). ¹³**C** NMR (75 MHz, CDCl₃) δ 167.5(C), 134.7(C), 131.3 (CH), 128.5 (CH), 126.9 (CH), 78.4 (C), 76.6 (C), 39.7 (CH₂), 28.3 (CH₃), 16.7 (CH₂), 3.5(CH₂). LRMS (*m/z*, *l*) 201 (24), 200 (93) 173 (38). HRMS calculated for

C₁₃H₁₅NO201.1154, found 201.1114.

¹ This substrate was prepared using 4-hexyn-1-ol as starting material for the Mitsunobu reaction following the general procedure for the synthesis of benzamides.

General procedure for the synthesis of alkynylbenzamides (1p-r), exemplified for 1r.

Acryloyl chloride (0.2 mL, 2.4 mmol) was stirred in CH_2CI_2 (10 mL) with triethylamine (0.46 mL, 0.36 mmol) at rt for 10 min. Addition of commercial available 4-pentynamine (200 mg, 2.40 mmol) was followed by stirring for 5 h. The CH_2CI_2 was removed in *vacuo*, and the remaining residue was dissolved in ethyl acetate. The solution was washed with 10% HCl and brine, dried over magnesium sulfate and filtered. The solvent was removed and the product was purified by column chromatography (hexanes:EtOAc; 1:1) to afford *N*-(pent-4-yn-1-yl)acrylamide (208 mg, 63%).

In a Schlenk flask containing $Pd(PPh_3)_4$ (87 mg, 5 mol %) and Cul (14 mg, 5 mol%) at rt, *N*-(pent-4-yn-1-yl)acrylamide (206 mg, 1.5 mmol) and Et_3N (10 mL) were added with stirring. Then iodobenzene (0.16 mL, 1 equiv.) was added and the mixture was heated to 60 °C. After 5 hours the solvent was removed and the product was purified by column chromatography (hexanes:ethyl acetate; 1:1) to afford the product **1r** (262 mg, 82%).

N-(5-Phenylpent-4-yn-1-yl)acrylamide (1r): yellow oil. ¹H NMR (300 MHz, CDCl₃) δ 7.42 – 7.21 (m, 5H),

6.48 (s, 1H), 6.25 (d, J = 17.0 Hz, 1H), 6.11 (dd, J = 17.0, 10 Hz, 1H), 5.57 (d, J = 10.0 Hz, 1H), 3.47 (q, J = 6.4 Hz, 2H), 2.45 (t, J = 6.9 Hz, 2H), 1.83 (m, 2H). ¹³C NMR (75 MHz, CDCl₃) δ 165.7 (C), 131.4 (CH), 130.8 (CH), 128.1 (CH), 127.6 (CH), 126.1 (CH₂), 123.5 (C), 88.9 (C), 81.3 (C), 38.8 (CH₂), 28.2 (CH₂), 17.0

(CH₂). LRMS (*m/z*, *l*) 157 (50), 140 (69).

N-(5-Phenylpent-4-yn-1-yl)methacrylamide (1r): yellow solid ¹H NMR (300 MHz, CDCl₃) δ 7.44 – 7.34 (m, 2H), 7.33 – 7.22 (m, 3H), 6.14 (s, 1H), 5.71 – 5.64 (m, 1H), 5.33 – 5.26 (m, 1H), 3.49 (dd, *J* = 12.7, 6.7 Hz, 2H), 2.49 (t, *J* = 6.9 Hz, 2H), 1.99 – 1.92 (m, 3H), 1.86 (p, *J* = 6.9 Hz, 2H).¹³C NMR (75 MHz, CDCl₃) δ 168.5 (C),

140.1 (C), 131.5 (CH), 128.2 (CH), 127.8 (CH), 123.5 (C), 119.3 (CH₂), 89.0 (C), 81.5 (C), 39.1 (CH₂), 28.2 (CH₂), 18.6 (CH₃), 17.3 (CH₂). **LRMS** (*m/z*, *l*) 212 (7), 199 (40). **HRMS** calculated for C₁₅H₁₇NO 227.1310, found 227.1312.

N-(5-Phenylpent-4-yn-1-yl)cyclohex-1-enecarboxamide (1t): yellow oil. ¹H NMR (300 MHz, CDCl₃) δ 7.41

- 7.34 (m, 2H), 7.31 - 7.24 (m, 3H), 6.66 - 6.54 (m, 1H), 6.03 (s, 1H), 3.49 (dd, J = 12.6, 6.5 Hz, 2H), 2.49 (t, J = 6.8 Hz, 2H), 2.23 - 2.16 (m, 2H), 2.08 (dd, J = 6.1, 2.4 Hz, 2H), 1.85 (p, J = 6.7 Hz, 2H), 1.67 - 1.50 (m, 4H).¹³C NMR (75 MHz, CDCl₃) δ 168.6 (C), 133.3 (CH), 133.1 (C), 131.5 (CH), 128.2

(CH), 127.7 (CH), 123.5 (C), 89.2 (C), 81.5 (C), 39.1 (CH₂), 28.3 (CH₂), 25.3 (CH₂), 24.3 (CH₂), 22.1 (CH₂), 21.5 (CH₂), 17.4 (CH₂). **LRMS** (*m/z*, *l*) 250 (11), 239 (30).

General procedure C: synthesis of hexynamides 5 and 6 (exemplified for compound 6).

To a solution of hex-5-ynoic acid (1.1 mL, 10 mmol) in CH_2Cl_2 (50 mL) at room temperature under argon were added dimethylaminopyridine (DMAP, 12 mg, 0.10 mmol), *N*,*N'*-Dicyclohexylcarbodiimide (DCC, 2.06 g, 10 mmol) and naphthalen-1-amine (1.43 g, 10.0 mmol). The mixture was stirred 10 min. at this temperature and then heated at reflux for 5 hours. CH_2Cl_2 (20 ml) was added and the precipitate filtered off. The resulting homogeneous solution was washed with 10% HCl (20 ml) and saturated NaHCO₃ (20 ml). The solvent was evaporated and the crude product purified by flash chromatography (Hexanes:EtOAc; 3:1) to give N-(naphthalen-1-yl)hex-5-ynamide (1.28 g, 54 %) as a white solid.

In a Schlenk flask containing $Pd(PPh_3)_4$ (232 mg, 5 mol %) and Cul (37 mg, 5 mol%), N-(naphthalen-1yl)hex-5-ynamide (744 mg, 4 mmol) and Et₃N (20 mL) were stirred at room temperature. Then iodobenzene (0.43 mL, 1 equiv.) was added and the mixture was heated to 60 °C. After 5 hours the solvent was removed and the crude product was purified by column chromatography (hexanes:diethylether; 1:1) to afford the product **6** (511 mg, 59%).

N-(Naphthalen-1-yl)-6-phenylhex-5-ynamide (6):¹H NMR (300 MHz, CDCl₃) δ 8.04 (s, 1H), 7.89 – 7.79 (m, 2H), 7.71 (dd, J = 33.9, 7.8 Hz, 2H), 7.53 – 7.21 (m, 8H), 2.59 (t, J = 7.2 Hz, 2H), 2.50 (t, J = 6.9 Hz, 2H), 2.07 – 1.95 (m, 2H).¹³C NMR (75 MHz, CDCl₃) δ 171.5 (C), 133.9 (C), 132.2 (C), 131.5 (CH), 128.4 (CH), 128.2 (CH), 127.7 (CH), 127.4 (C), 126.0 (CH), 125.8 (CH), 125.4 (CH), 123.6 (C), 121.3 (CH), 121.0 (CH), 89.0 (C), 81.7 (C), 35.8 (CH₂), 24.4 (CH₂), 18.7 (CH₂).

LRMS (*m/z, I*) 183 (19), 128 (27). HRMS calculated for C₂₇H₁₉NO 313.1467, found 313.1465.

 N,6-Diphenylhex-5-ynamide (5): ¹H NMR (300 MHz, CDCl₃) δ 7.67 (s, 1H), 7.60 – 7.21 (m, 9H), 7.16 –

 O
 Ph
 6.96 (m, 1H), 2.68 – 2.41 (m, 4H), 2.09 – 1.95 (m, 2H). ¹³C NMR (75 MHz, CDCl₃)

 δ 170.8 (C), 137.9 (C), 131.5 (CH), 128.9 (CH), 128.2 (CH), 127.7 (CH), 124.1

 (CH), 123.6 (C), 119.9 (CH), 88.9 (C), 81.6 (C), 36.2(CH₂), 24.2 (CH₂), 18.8

 (CH₂).LRMS (m/z, l) 220 (18), 159 (34). HRMS calculated for C₁₈H₁₇NO

263.1310, found 263.1309.

General procedure for catalytic reactions of alkynylbenzamides 1a-q.

In a Schlenk flask equipped with a stir bar were added1a-q (0.25 mmol), [Cp*RhCl₂]₂ (3.9 mg, 2.5% mol) and Cu(OAc)₂ (91 mg, 0.52 mmol) without any particular precautions to extrude oxygen or moisture. t-AmOH (2.0 mL) was then added and the flask sealed and placed in a pre-heated (110 °C) block. The reaction was stirred for 16 hours, cooled to room temperature and checked by TLC. The solvent was removed in vacuo and the remaining residue was purified by flash column chromatography on silica gel (hexanes:ethyl acetate) to afford the corresponding product 2a-q.

10-Phenyl-2,3-dihydropyrrolo[1,2-b]isoquinolin-5(1H)-one (2a): white solid. ¹H NMR (300 MHz, CDCl₃) δ 8.48 (ddd, J = 7.9, 1.5, 0.5 Hz, 1H), 7.58 – 7.34 (m, 5H), 7.34 – 7.22 (m, 3H), 4.31 – 4.20 (m, 2H), 2.93 (t, J = 7.6 Hz, 2H), 2.14 (dt, J = 14.8, 7.5 Hz, 2H). ¹³C NMR (75 MHz, CDCl₃) δ 161.0 (C), 141.2 (C), 138.0 (C), 136.3 (C), 131.8 (CH), 130.5 (CH), 128.6 (CH), 127.5 (CH), 127.3 (CH), 125.5 (CH), 124.9 (C), 124.2 (CH), 113.6 (C), 48.5 (CH₂), 31.0 2a (CH₂), 21.8 (CH₂) .LRMS (m/z, I) 261 (100), 260 (75) HRMS calculated for C₁₈H₁₅NO

261.1154, found 275.1160.

MeC

8-Methoxy-10-phenyl-2,3-dihydropyrrolo[1,2-b]isoquinolin-5(1H)-one (2b): brown solid. ¹H NMR (300 MHz, $CDCl_3$) δ 8.31 (d, J = 8.9 Hz, 1H), 7.66 – 7.12 (m, 6H), 7.04 – 6.82 (m, 1H), 6.55 (d, J = 2.5 Hz, 1H), 4.28 – 4.02 (m, 2H), 3.63 (s, 3H), 2.82 (t, J = 7.6 Hz, 2H), 2.04 (dt, J = 14.9, 7.5 Hz, 2H).¹³C NMR (75 MHz, CDCl₃) δ 162.6 (C), 160.9 (C), 142.1 (C), 140.3 (C), 136.5 (C), 130.6 (CH), 129.5 (CH), 128.8 (CH), 127.6 (CH), 2b 119.1 (C), 114.5 (CH), 113.4 (C), 106.0 (CH), 55.3 (CH₃), 48.4 (CH₂), 31.2 (CH₂),

21.9 (CH₂).LRMS (m/z, l) 291 (100), 277 (30). LRMS (m/z, l) 341 (28), 313 (9), 212 (38). HRMS calculated for C₁₉H₁₇NO₂ 291.1259, found 291.1266

10-Phenyl-8-(trifluoromethyl)-2,3-dihydropyrrolo[1,2-b]isoquinolin-5(1H)-one (2c): green solid. ¹H **NMR** (300 MHz, $CDCl_3$) δ 8.52 (d, J = 8.4 Hz, 1H), 7.63 – 7.31 (m, 5H), 7.31 – 7.15 (m, 2H), 4.23 (t, J = 7.2 Hz, 2H), 2.89 (t, J = 7.6 Hz, 2H), 2.25 – 2.03 (m, 2H). ¹³C NMR (75 MHz, CDCl₃) δ 160.3 (C), 143.2 (C), 138.1 (C), 135.3 (C), 133.53 (q, J F₃C = 32.1 Hz, C), 130.4 (CH), 129.1 (CH), 128.6 (CH), 128.1 (CH), 127.0 (C), 123.9 (q, 2c J = 273.0 Hz, C), 121.6 (q, J = 3.4 Hz, CH), 113.6 (C), 48.8 (CH₂), 31.3 (CH₂), 21.8

(CH₂). **LRMS** (*m*/*z*, *l*) 329 ([M] 100), 328 (38) **HRMS** calculated for C₁₉H₁₄NOF₃ 329.1027, found 329.1019.

8-Bromo-10-phenyl-2,3-dihydropyrrolo[1,2-b]isoquinolin-5(1H)-one (2d): green solid ¹H NMR (300 MHz, CDCl₃) δ 8.23 (d, J = 8.6 Hz, 1H), 7.32 (ddd, J = 46.4, 25.7, 6.7 Hz, 7H), 4.16 (t, J = 7.2 Hz, 2H), 2.84 (t, J = 7.6 Hz, 2H), 2.29 - 1.92 (m, 2H).¹³C NMR (75 MHz, CDCl₃) δ 160.6 (C), 143.0 (C), 139.7 (C), 135.6 (C), 130.5 (CH), 129.3 (CH), 129.0 (CH), 128.9 (CH), 127.9 (CH), 127.4 (C), 126.8 (CH), 123.7 (C), 112.8 (C), 48.7 (CH₂), 2d 31.3 (CH₂), 21.8 (CH₂).LRMS (m/z, I) 341 (28), 313 (9), 212 (38) HRMS calculated

for C₁₈H₁₄NOBr 339.0259, found 339.0259.

7-methyl-10-phenyl-2,3-dihydropyrrolo[1,2-b]isoquinolin-5(1H)-one (2e): yellow solid. ¹H NMR (300 MHz, CDCl₃) δ 8.28 (s, 1H), 7.53 – 7.22 (m, 6H), 7.18 (d, J = 8.3 Hz, 1H), 4.30 – 4.22 (m, 2H), 2.92 (t, J = 7.6 Hz, 2H), 2.46 (s, 3H), 2.20 – 2.07 (m, 2H). ¹³C NMR (75 MHz, CDCl₃) δ 161.1 (C), 140.4 (C), 136.6 (C), 135.9 (C), 135.7 (C), 133.5 (CH), 130.7 (CH), 128.8 (CH), 127.5 (CH), 127.1 (CH), 125.0 (C), 124.3 (CH), 113.7 (CH), 48.6 (CH₂), 31.03 (CH₂), 22.1 (CH₂), 21.3 (CH₃).

7-methoxy-10-phenyl-2,3-dihydropyrrolo[1,2-b]isoquinolin-5(1H)-one (2f): yellow solid. ¹H NMR (300 MHz, CDCl₃) δ 7.88 (d, J = 2.7 Hz, 1H), 7.58 – 7.33 (m, 3H), 7.33 – 7.10 (m, 4H), 4.32 – 4.23 (m, 2H), 3.93 (s, 3H), 2.92 (t, J = 7.6 Hz, 2H), 2.21 – 2.09 (m, 2H). ¹³C NMR (75 MHz, CDCl₃) δ 160.7 (C), 157.9 (C), 138.8 (C), 136.4 (C), 132.2 (C), 130.5 (CH), 128.6 (CH), 127.4 (C), 126.1 (C), 125.9 (CH), 122.3 (CH), 113.7 (C), 107.1 2f (CH), 55.6 (CH₃), 48.6 (CH₂), 30.7 (CH₂), 22.0 (CH₂).

9-methoxy-10-phenyl-2,3-dihydropyrrolo[1,2-b]isoquinolin-5(1H)-one (2f'): yellow solid. ¹H NMR (300

MeO

MHz, CDCl₃) δ 8.13 (dd, J = 8.1, 1.0 Hz, 1H), 7.47 – 7.12 (m, 6H), 6.97 (dd, J = 7.8, 0.7 Hz, 1H), 4.37 – 4.11 (m, 2H), 3.35 (s, 3H), 2.79 (t, J = 7.7 Hz, 2H), 2.22 – 1.98 (m, 2H). ¹³C NMR (75 MHz, CDCl₃) δ 160.8 (C), 155.9 (C), 141.9 (C), 141.0 (C), 129.5 (CH), 128.5 (C), 127.5 (CH), 126.9 (C), 126.3 (CH), 126.2 (CH), 120.0 (CH), 114.1 (CH), 112.1 (C), 55.9 (CH₃), 48.9 (CH₂), 31.6 (CH₂), 21.7 (CH₂).

Assignment of regioisomers by 1H-NMR

The two regioisomers were assigned based on the coupling constants. As expected, in the ¹H-NMR spectrum of 1f, H_a appears as a doublet (d) with a small J_{ac} = 2.7 Hz characteristic of this long distant couplings. Meanwhile, in the ¹H-NMR spectrum of 2f', H_a is a double of doublets (dd) with a J_{ab} = 8.1 Hz and a small J_{ac} = 1 Hz, which are also characteristic of these couplings.

7-Phenyl-9,10-dihydrobenzo[h]pyrrolo[1,2-b]isoquinolin-12(8H)-one (2g): yellow solid. ¹H NMR (300 MHz, CDCl₃) δ 10.25 (d, J = 8.7 Hz, 1H), 8.02 – 6.98 (m, 10H), 4.44 – 4.13 (m, 2H), 2.84 (td, J = 7.7, 2.5 Hz, 2H), 2.25 – 1.88 (m, 2H). ¹³C NMR (75 MHz, CDCl₃) δ 161.6 (C), 143.2 (C), 139.5 (C), 136.8 (C), 133.1 (CH), 132.3 (C), 131.7 (C), 130.9 (CH), 128.8 (CH), 128.2 (CH), 128.0 (CH), 127.6 (CH), 127.4 (CH), 126.0 (CH), 122.8 (CH), 117.9 (C), 114.2 (C), 49.5 (CH₂), 31.6 (CH₂), 21.4 (CH₂). LRMS (m/z, I) 313(57), 312 (89),

285 (40) **HRMS** calculated for C₂₂H₁₇NO311.1309, found 311.1310

11-Phenyl-3,4-dihydro-1H-pyrido[1,2-b]isoquinolin-6(2H)-one (2h): orange solid ¹H NMR (300 MHz,

2g

CDCl₃) δ 8.47 (dd, J = 8.0, 1.4 Hz, 1H), 7.78 – 6.78 (m, 8H), 4.40 – 4.04 (m, 2H), 2.73 – 2.38 (m, 2H), 2.11 – 1.84 (m, 2H), 1.84 – 1.59 (m, 2H). 13 C NMR (75 MHz, CDCl₃) δ 162.5 (C), 138.4 (C), 137.3 (C), 136.9 (C), 131.9 (CH), 131.1 (CH), 128.9 (CH), 127.8 (CH), 127.6 (CH), 125.7 (CH), 124.7 (CH), 124.0 (C), 116.3 (C), 41.2 (CH₂), 26.8 (CH₂), 22.0 (CH₂), 19.1 (CH₂).LRMS (EI) m/z 275 (100), 260 (13) 246 (8) LRMS (m/z, I) 341

(28), 313 (9), 212 (38). **HRMS** calculated for C₁₉H₁₇NO275.1310, found 275.1312.

12-Phenyl-8,9,10,11-tetrahydroazepino[1,2-b]isoquinolin-5(7H)-one (2i): white solid. ¹H NMR (300 MHz, CDCl₃) δ 8.60 - 8.25 (m, 1H), 7.58 - 7.02 (m, 7H), 7.02 - 6.77 (m, 1H), 4.62 -0 4.25 (m, 2H), 2.77 – 2.44 (m, 2H), 1.66 (ddd, *J* = 17.1, 15.4, 11.8 Hz, 6H). ¹³C NMR (75 MHz, CDCl₃) δ 162.5 (C), 142.9(C), 137.8 (C), 137.6 (C), 132.0 (CH), 131.1 (CH), 128.9 (CH), 128.1 (CH), 127.5 (CH), 125.9 (CH), 125.2 (CH), 124.3 (C), 116.8 (C), 43.8 (CH₂), 2i 30.9 (CH₂), 29.3 (CH₂), 28.6 (CH₂), 27.8 (CH₂). LRMS (*m/z*, *I*) 289 (100), 274 (9), 260

(25), 234 (26) LRMS (*m/z*, *l*) 341 (28), 313 (9), 212 (38). HRMS calculated for C₂₀H₁₉NO289.1467, found 289.1466.

10-(o-Tolyl)-2,3-dihydropyrrolo[1,2-b]isoquinolin-5(1H)-one (2j): pale yellow solid. ¹H NMR (300 MHz,

CDCl₃) δ 8.54 – 8.38 (m, 1H), 7.71 – 7.20 (m, 5H), 7.16 (d, J = 7.0 Hz, 1H), 6.99 (dd, J = 8.1, 0.9 Hz, 1H), 4.38 - 4.17 (m, 2H), 2.98 - 2.60 (m, 2H), 2.28 - 2.06 (m, 2H), 2.04 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 161.4 (C), 141.2 (C), 138.1 (C), 137.8 (C), 135.6 (C), 132.1 (CH), 131.0 (CH), 130.4 (CH), 128.2 (CH), 127.6 (CH), 126.4 (CH), 125.7 (CH), 125.0 (C), 124.2 (CH), 113.0 (C), 48.6 (CH₂), 30.8 (CH₂), 21.9 (CH₂), 19.8 (CH₃). LRMS

(*m/z*, *I*) 275 (100), 260 (3), 246 (7). **HRMS** calculated for C₁₉H₁₇NO275.1310, found 275.1316.

10-(3,5-Dimethylphenyl)-2,3-dihydropyrrolo[1,2-b]isoquinolin-5(1H)-one (2k): yellow solid. ¹H NMR (300 MHz, CDCl₃) δ 8.40 (d, J = 8.0 Hz, 1H), 7.72 – 7.11 (m, 3H), 6.93 (d, J = 21.7 Hz, 1H), 6.84 (s, 2H), 4.35 – 4.08 (m, 2H), 2.87 (t, J = 7.6 Hz, 2H), 2.54 – 2.17 (m, 6H), 2.07 (dt, J = 15.2, 7.5 Hz, 2H). ¹³C NMR (75 MHz, CDCl₃) δ 161.2 (C), 141.1 (C), 138.3 (2xC), 136.2 (C), 131.9 (CH), 130.7 (C), 129.2 (CH), 128.3 (2xCH), 127.4 (CH), 125.6 (CH), 2k Me 125.0 (C), 124.5 (CH), 114.1 (C), 48.6 (CH₂), 31.2 (CH₂), 22.0 (CH₂), 21.5 (CH₃).LRMS

(*m*/*z*, *I*) 289 (100), 274 (7). **HRMS** calculated for C₂₀H₁₉NO289.1467, found 289.1467.

10-(Naphthalen-1-yl)-2,3-dihydropyrrolo[1,2-b]isoquinolin-5(1H)-one (2I): brown oil. ¹H NMR (300 MHz, CDCl₃) δ 8.58 – 8.47 (m, 1H), 7.95 (d, J = 7.8 Hz, 2H), 7.63 – 7.32 (m, 7H), 6.98 – 6.88 (m, 1H), 4.42 - 4.24 (m, 2H), 2.94 - 2.78 (m, 1H), 2.63 (ddd, J = 17.0, 8.2, 6.8 Hz, 1H), 2.23 – 2.03 (m, 2H).¹³C NMR (75 MHz, CDCl₃) δ 161.9 (C), 142.8 (C), 139.2 (C), 134.4 (C), 134.2 (C), 133.2 (C), 132.5 (CH), 129.2 (CH), 129.0 (CH), 128.9 (CH), 127.9 (CH), 126.9 (CH), 126.6(CH), 126.3 (CH), 126.2 (CH), 126.1 (CH), 125.3 (C), 125.1 (CH),

111.9 (C), 49.1 (CH₂), 31.3 (CH₂), 22.2 (CH₂). LRMS (m/z, l) 311 (100) 282 (5) HRMS calculated for C₂₂H₁₇NO 311.1310, found 311.1310

10-(4-Methoxyphenyl)-2,3-dihydropyrrolo[1,2-b]isoquinolin-5(1H)-one (2m): yellow oil. ¹H NMR (300

21

MHz, CDCl₃) δ 8.40 (dd, J = 8.0, 1.4 Hz, 1H), 7.50 - 7.09 (m, 5H), 7.03 - 6.88 (m, 2H), 4.29 - 4.12 (m, 2H), 3.80 (s, 3H), 2.86 (t, J = 7.6 Hz, 2H), 2.07 (dt, J = 15.3, 7.6 Hz, 2H).¹³C NMR (75 MHz, CDCl₃) δ 161.2 (C), 159.1 (C), 141.5 (C), 138.5 (C), 131.9 (CH), 131.7 (CH), 128.5 (C), 127.5 (CH), 125.6 (CH), 125.0 (C), 124.4 (CH), 114.2 (CH), 113.42 (C), 55.4 (CH₃), 48.6 (CH₂), 31.2 (CH₂), 22.0 (CH₂). LRMS (*m/z*, *l*) 275 (100), 261 (24) **HRMS** calculated for C₁₉H₁₇NO₂ 291.1250, found 291.1260.

10-(p-Tolyl)-2,3-dihydropyrrolo[1,2-b]isoquinolin-5(1H)-one (2n): yellow solid. ¹H NMR (300 MHz,

CDCl₃) δ 8.39 (d, J = 7.9 Hz, 1H), 7.48 – 7.27 (m, 3H), 7.21 (dd, J = 8.1, 4.3 Hz, 2H), 7.11 (d, J = 7.8 Hz, 2H), 4.19 (t, J = 7.2 Hz, 2H), 2.85 (t, J = 7.6 Hz, 2H), 2.35 (s, 3H), 2.13-1.98 (m 2H). 13 C NMR (75 MHz, CDCl₃) δ 161.2 (C), 141.3 (C), 138.4 (C), 137.3 (C), 133.4 (C), 131.9 (CH), 130.5 (CH), 129.5 (CH), 127.5 (CH), 125.6 (CH), 125.1 (C), 124.4 (CH), 113.8 (C), 48.6 (CH₂), 31.2 (CH₂), 22.0 (CH₂), 21.4 (CH₃).LRMS (*m/z, l*) 275 (100), 261 (24) **HRMS** calculated for C₁₉H₁₇NO275.1310, found 275.1304.

10-(4-(Trifluoromethyl)phenyl)-2,3-dihydropyrrolo[1,2-b]isoquinolin-5(1H)-one (20): yellow solid. ¹H

NMR (300 MHz, CDCl₃) δ 8.41 (dd, J = 8.0, 1.3 Hz, 1H), 7.67 (d, J = 8.2 Hz, 2H), 7.51 -7.32 (m, 4H), 7.13 (d, J = 8.0 Hz, 1H), 4.24 – 4.16 (m, 2H), 2.85 (t, J = 7.6 Hz, 2H), 2.17 – 2.03 (m, 2H).¹³C NMR (75 MHz, CDCl₃) δ 161.1 (C), 141.8(C), 140.4 (C), 137.6 (C), 132.2 (CH), 131.2 (2xCH), 129.9 (q, J = 33.0 Hz) (C), 127.7 (CH), 126.0 (CH), 125.8 (q, J = 3.6 Hz) (2xCH), 125.1 (C), 120.7 (q, *J* = 271.7 Hz) (C), 112.4 (C), 48.7 (CH₂), 31.2 (CH₂), 22.0 (CH₂). LRMS (*m/z*, *I*) 329 (100), 328 (48), 310 (7) HRMS calculated for C₁₉H₁₄NOF₃ 329.1027, found 329.1028.

10-methyl-2,3-dihydropyrrolo[**1,2-b**]isoquinolin-5(**1H**)-one (**2q**): white solid ¹H NMR (300 MHz, CDCl₃) δ 8.37 (d, J = 8.0 Hz, 1H), 7.57 (ddd, J = 12.8, 9.8, 4.7 Hz, 2H), 7.45 – 7.28 (m, 1H), 4.26 – 4.04 (m, 2H), 3.03 (t, J = 7.6 Hz, 2H), 2.41 – 2.02 (m, 5H). ¹³C NMR (75 MHz, CDCl₃) δ 161.5 (C), 140.6 (C), 138.9 (C), 132.4 (CH), 128.1 (CH), 125.9 (CH), 125.7 (C), 122.9 (CH), 106.2 (C), 48.9 (CH₂), 30.7 (CH₂), 22.1 (CH₂), 13.9 (CH₃).**LRMS** (*m/z, l*) 199 (100),

184 (8), 170 (9) **HRMS** calculated for C₁₃H₁₃NO199.0097, found 199.0098.

General procedure for catalytic reactions of acrylamides 1r-t.

 $[Cp*RhCl_2]_2$ (3.9 mg, 2.5 mol%), Cu(OAc)_2·H_2O (91 mg, 0.52 equiv.) and CsOAc (58 mg, 0.30mmol) were added to a Schlenk flask followed by the addition of *t*-AmOH (2.0 mL) and acrylamide **1r-t** (0.25 mmol). The reaction was sealed and placed in a pre-heated (110°C) block. The reaction was stirred for 14 hours, cooled to room temperature and checked by TLC. The solvent was removed and the compound purified by flash column chromatography on silica gel (hexanes:ethyl acetate; 1:1) to afford the product **2r-t**.

8-Phenyl-2,3-dihydroindolizin-5(1*H*)-one (1r): yellow solid. ¹H NMR (300 MHz, CDCl₃) δ 7.47 – 7.08 (m, 6H), 6.44 (d, *J* = 9.2 Hz, 1H), 4.25 – 4.02 (m, 2H), 3.09 (t, *J* = 7.6 Hz, 2H), 2.09 (dt, *J* = 14.8, 7.6 Hz, 2H). ¹³C NMR (75 MHz, CDCl₃) δ 161.6 (C), 147.4 (C), 141.6 (CH), 137.6 (C), 128.6 (CH), 128.0 (CH), 127.0 (CH), 117.7 (CH), 116.2 (C), 49.0 (CH₂), 32.0 (CH₂), 21.6 (CH₂).LRMS (m/z, *l*) 210 (100), 181 (25) .HRMS calculated for C₁₄H₁₃NO 211.0997, found 211.0997.

6-Methyl-8-phenyl-2,3-dihydroindolizin-5(1*H*)-one (2s): yellow liquid. ¹H NMR (300 MHz, CDCl₃) δ 7.38 -7.28 (m, 2H), 7.28 – 7.17 (m, 4H), 4.19 – 4.09 (m, 2H), 3.07 (t, *J* = 7.6 Hz, 2H), 2.12 (s, 3H), 2.11 – 2.05 (m, 2H).¹³C NMR (75 MHz, CDCl₃) δ 161.7 (C), 144.3 (C), 139.0 (CH), 137.9 (C), 128.5 (CH), 128.0 (CH), 126.7 (CH), 126.6 (C), 115.5 (C), 49.0 (CH₂), 31.7 (CH₂), 22.0 (CH₂), 16.4 (CH₃). LRMS (*m/z*, *I*) 212 (8), 271 (3). HRMS calculated for

C₁₅H₁₅NO 225.1154, found 225.1149.

10-Phenyl-2,3,6,7,8,9-hexahydropyrrolo[1,2-b]isoquinolin-5(1H)-one (2t): yellow liquid. ¹H NMR (300 MHz, CDCl₃) δ 7.48 – 7.29 (m, 3H), 7.22 – 7.11 (m, 2H), 4.19 (t, *J* = 7.2 Hz, 2H), 2.78 (t, *J* = 7.7 Hz, 2H), 2.69 – 2.56 (m, 2H), 2.22 (t, *J* = 6.1 Hz, 2H), 2.17 – 2.01 (m, 2H), 1.82 – 1.66 (m, 2H), 1.66 – 1.53 (m, 2H). ¹³C NMR (75 MHz, CDCl₃) δ 161.2 (C), 146.7 (C), Ph 2t 143.1 (C), 137.0 (C), 130.0 (CH), 128.4 (CH), 127.2 (CH), 124.4 (C), 117.0 (C), 48.9 (CH₂), 31.1 (CH₂), 28.3 (CH₂), 23.8 (CH₂), 22.3 (CH₂), 22.0 (CH₂), 21.4 (CH₂). **LRMS** (*m/z*, *l*) 250 (21), 236 (5). **HRMS** calculated for C₁₈H₁₉NO 265.1467, found 265.1461.

General procedure for annulation of <u>hexynamides</u> 5 and 6. (Exemplified for the synthesis of 7-phenyl-9,10-dihydrobenzo[de]pyrido[1,2-a]quinolin-11(8H)-one(7).)

In a Schlenk flask, under argon atmosphere, $[Cp*RhCl_2]_2$ (2.5 mg, 2.5 mol%), and $Cu(OAc)_2 \cdot H_2O$ (64 mg, 2.1 equiv.) were added with stirring followed by the addition of *t*-AmOH (1.12 mL) and hexynamide **6** (0.15 mmol, 47 mg). The reaction was sealed and placed in a pre-heated (110°C) block. The reaction was stirred for 6 hours and then cooled to room temperature and checked by TLC. The solvent was removed and the remaining residue was purified by flash column chromatography on silica gel (hexanes:ethyl acetate; 3:1) to afford the product **7** (33 mg, 71%). Yellow solid. ¹H NMR (300 MHz, CDCl₃) δ 8.14 (d, *J* = 7.4 Hz, 1H), 7.37 (ddd, *J* = 14.9, 11.3, 4.7 Hz, 6H), 7.16 (dd, *J* = 6.5, 5.1 Hz, 2H), 7.09 – 6.99 (m, 1H), 6.25 (d, *J* = 7.2 Hz, 1H), 2.71 (t, *J* = 6.6 Hz, 2H), 2.44 – 2.36 (m, 2H), 1.82 – 1.72 (m, 2H). ¹³C NMR (75 MHz, CDCl₃) δ 170.2 (C), 137.3 (C), 134.9 (C), 134.2 (C), 133.8 (C), 131.5 (C), 130.2 (CH), 129.2 (CH), 127.5 (CH), 126.3 (CH), 126.2 (CH), 124.3 (CH), 122.8 (CH), 122.2 (C), 118.3 (CH), 118.0 (CH), 35.2 (CH₂), 28.2 (CH₂), 18.6 (CH₂). LRMS (*m/z*, *I*) 282 (57), 253 (69). HRMS calculated for C₂₇H₁₇NO 311.1310, found 311.1307.

To fully confirm the regiochemistry of the cycloaddition we have compared the NMR spectra of **7** (1H, 13C, COSY, COSY, HMBC and HMQC) with those of the analogs **8** and **9**.

KINETIC STUDIES.

In a Schlenk flask equipped with a stir bar were added **1a** (120 mg, 0.456 mmol) or **1a-D5** (122 mg, 0,456 mmol), [Cp*RhCl₂]₂ (7.0 mg, 0.011 mmol), and Cu(OAc)₂ (91 mg, 0.52 mmol) without any particular precautions to extrude oxygen or moisture. *t*-AmOH (2.0 mL) was then added and the flask sealed and placed in a pre-heated (110 °C) block. Both reactions were set at the same time in the same heater. Aliquots (0.1 mL) were taken every 5 min for **1a** and every 15 min for **1a-D5**. The aliquots were diluted in 1 mL of CH₂Cl₂ and immediately filtered through a florisil pad. Volatiles were removed and ¹H NMR of the crude residues were taken. The yield was found by integrating the methylene peaks of the benzamide and the isoquinolone.

DATA FOR 1a

Time	Run 1	Run 2			
300	0,0004	0,0004			
600	0,013	0,019			
900	0,031	0,031			
1200	0,046	0,043			
Slope = 4.96 x 10 ⁻⁵ M·s ⁻¹					

DATA for 1a-D5

Time	Run 1	Run 2
900	0,012	0,012
1800	0,030	0,033
2700	0,049	0,048

Slope = 2.00 x 10⁻⁵ M·s⁻¹

KIE = 2.48

3. DFT calculations

Methods:

Gas-phase calculations were performed with Gaussian03² and Gaussian 09³ at DFT level. The geometries of all complexes here reported were optimized using the B3LYP hybrid functional. Optimizations were carried out using the standard 6-31G(d) basis set for C, H, O, and N. The LANL2DZ basis set, which includes the relativistic effective core potential (ECP) of Hay and Wadt, and employs a split valence (double-zeta) basis set, was used for Rh. Harmonic frequencies were calculated at the same level to characterize the stationary points and to determine the zero-point energies (ZPE). The starting approximate geometries for the transition states (TS) were located graphically. Intrinsic reaction coordinate (IRC) studies were performed to confirm that all transition state structures connect the proposed reactants and products. Single-point PCM calculations (methanol) were performed with Gaussian 09 using the 6-311+G- (2df,2p) basis set for C, H, O, and N, and SDD for Rh. Electronic energy values calculated with the smaller basis set have been corrected using the residual energy at the zero point vibrational energy (ZPE). The evaluation of enthalpy (H) and Gibbs free energy (G) implies the use of the harmonic oscillator / rigid rotor approximation, which introduces some uncertainty in the calculation of the vibrational entropy. Unless otherwise stated, the energy values included in the main text refer to the single point calculations in methanol performed with the higher quality base on previously optimized structures.

² Gaussian 03, Revision C.02, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, Jr., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; and Pople, J. A.; Gaussian, Inc., Wallingford CT, 2004.

³ Gaussian 09, Revision A.1, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2009.

MECHANISTIC PATHWAYS INVESTIGATED BY DFT CALCULATIONS OF THE INTRAMOLECULAR REACTION FOR STANDARD SUBSTRATE 1a.

Figure S1: Intermediates involved in the C-H bond cleavage via a concerted metallation-deprotonation transition state. Geometries obtained with B3LYP/6-31G(d) and LANL2DZ for Rh. Distances are given in Å.

Figure S2: Intermediates involved in the carbometallation step. Geometries obtained with B3LYP/6-31G(d) and LANL2DZ for Rh. Distances are given in Å.⁴

Figure S3: Intermediates involved in the reductive elimination after the carbometallation step. Geometries obtained with B3LYP/6-31G(d) and LANL2DZ for Rh. Distances are given in Å. 5

⁴ Two different conformations were found for intermediate **C**: one of them (with a lower energy), showing a "pseudo-chair" conformation, evolving through **TS2**, and another one with a "pseudo-boat" conformation, reacting through **TS4**. All intends to find a transition state analogous to **TS4** starting with a "pseudo-chair" conformation failed, however, if it would exist, the conclusions presented in this paper would be even more enforced.

⁵ Intermediate **E**₁ was the one obtained by IRC calculations, and has lower energy than **E**, (figure S5) which is the only one showed in the main text.

Figure S4: Intermediates involved in the N-metallation step. Geometries obtained with B3LYP/6-31G(d) and LANL2DZ for Rh. Distances are given in Å.⁵

Figure S5: Intermediates involved in the reductive elimination after the N-metallation step. Geometries obtained with B3LYP/6-31G(d) and LANL2DZ for Rh. Distances are given in Å.⁶

ENERGY PROFILESS FOR THE MIGRATORY INSERTION STEP OF THE INTERMOLECULAR

REACTION.

Figure S6: Intermediates involved in the carbometallation step for the intermolecular version. Geometries obtained with B3LYP/6-31G(d) and LANL2DZ for Rh. Distances are given in Å.

Figure S7: Intermediates involved in the N-metallation step for the intermolecular version. Geometries obtained with B3LYP/6-31G(d) and LANL2DZ for Rh. Distances are given in Å.

ENERGY PROFILES FOR THE MIGRATORY INSERTION STEP OF THE SUBSTRATE WITH AN ELONGATED CONNECTING CHAIN.

Figure S8: Intermediates involved in the carbometallation step for the substrate with an elongated chain. Geometries obtained with B3LYP/6-31G(d) and LANL2DZ for Rh. Distances are given in Å.

Figure S9: Intermediates involved in the N-metallation step for the substrate with an elongated chain. Geometries obtained with B3LYP/6-31G(d) and LANL2DZ for Rh. Distances are given in Å.

Atomic Cartesian coordinates and computed energies (atomic units) for the stationary points calculated with basis set [B3LYP/6-31G(d) (C, H, O, N) LANL2DZ (Rh)

1a

_

Zero-point correction= (Hartree/Particle)	0.305399
Thermal correction to Energy=	0.323629
Thermal correction to Enthalpy=	0.324574
Thermal correction to Gibbs Free Energy=	0.252629
Sum of electronic and zero-point Energies=	-825.773279
Sum of electronic and thermal Energies=	-825.755049
Sum of electronic and thermal Enthalpies=	-825.754104
Sum of electronic and thermal Free Energies=	-825.826049

Center Number	Atomic Number	Atomic Type	Coorc X	dinates (Angs Y	stroms) Z
1	 7	 0	-2.444107	-1.392368	-0.312168
2	6	0	-1.237033	-2.127416	0.040854
3	6	0	-3.094706	-0.613775	0.612733
4	6	0	-4.273085	0.172581	0.107850
5	6	0	-4.984456	-0.157260	-1.054988
6	6	0	-4.680287	1.277550	0.867766
7	6	0	-6.071626	0.617970	-1.460341
8	6	0	-5.761059	2.055589	0.458824
9	6	0	-6.457409	1.729419	-0.708249
10	8	0	-2.741425	-0.565953	1.788497
11	6	0	0.042727	-1.285177	-0.062341
12	6	0	1.294157	-2.096823	0.336056
13	6	0	2.534181	-1.331437	0.213376
14	6	0	3.548493	-0.675542	0.102565
15	6	0	4.747679	0.093029	-0.024626
16	6	0	5.902496	-0.468800	-0.603629
17	6	0	7.068021	0.284101	-0.726734
18	6	0	7.104165	1.606592	-0.277287
19	6	0	5.964469	2.173536	0.298844
20	6	0	4.795485	1.426790	0.426403
21	1	0	-2.613271	-1.208752	-1.290916
22	1	0	-1.369675	-2.478101	1.067754
23	1	0	-1.171200	-3.007675	-0.610796
24	1	0	-4.719643	-1.040716	-1.630113
25	1	0	-4.134346	1.504597	1.777526
26	1	0	-6.622002	0.348346	-2.357660
27	1	0	-6.063649	2.915072	1.050862
28	1	0	-7.302862	2.333807	-1.025943
29	1	0	-0.053086	-0.413459	0.593110
30	1	0	0.164232	-0.910845	-1.086779
31	1	0	1.359724	-3.000895	-0.287251
32	1	0	1.179591	-2.450379	1.371132
33	1	0	5.871852	-1.496634	-0.952216
34	1	0	7.951548	-0.162997	-1.174684
35	1	0	8.014653	2.191525	-0.375298
36	1	0	5.986201	3.201440	0.651048

37	1	0	3.908815	1.864306	0.874954

RhCp*(OAc)₂

Zero-poi	.nt correction=			0.327269	
(Hartree	e/Particle)	-		0 0 5 1 4 0 1	
Thermal	correction to	Energy=		0.351481	
Thermal	correction to	Enthalpy	/=	0.352425	
Thermal	correction to	Gibbs Fi	ree Energy=	0.273184	000144
Sum of	electronic and	zero-po:	Int Energies=	-956.	300144
Sum of	electronic and	thermal	Energies=	-956.	275931
Sum of	electronic and	thermal	Enthalpies=	-956.	2/498/
Sum or	electronic and	thermal	Free Energies=	-956.	354229
Center	Atomic	Atomic	Соот	rdinates (Ang	stroms)
Number	Number	Tvpe	X	Y	Ζ
1	45	0	0.010241	0.216054	-0.092084
2	6	0	1.251742	-1.149599	1.088793
3	6	0	0.836594	-1.851442	2.344732
4	6	0	1.155407	-1.681973	-0.242964
5	6	0	0.607803	-3.028057	-0.603774
6	6	0	1.675575	-0.699200	-1.153448
7	6	0	1.797894	-0.830334	-2.641290
8	6	0	2.190771	0.416922	-0.364405
9	6	0	2.849282	1.633225	-0.942241
10	6	0	1.929160	0.140619	1.006467
11	6	0	2.256303	1.004326	2.186865
12	8	0	-1.868965	-0.417690	-0.669726
13	6	0	-2.489647	-1.362380	-0.018612
14	8	0	-2.031410	-2.047908	0.898510
15	6	0	-3.927928	-1.552147	-0.498049
16	1	0	-0.158879	-2.283184	2.215991
17	1	0	0.802771	-1.160326	3.191291
18	1	0	1.549158	-2.650800	2.591527
19	1	0	-0.252177	-3.273242	0.021783
20	1	0	1.385172	-3.791588	-0.462096
21	1	0	0.291048	-3.064219	-1.649444
22	1	0	1.687436	0.139309	-3.135442
23	1	0	1.035701	-1.500145	-3.047161
24	1	0	2.782638	-1.235014	-2.913686
25	1	0	2.267872	2.035015	-1.777675
26	1	0	3.851865	1.385982	-1.315354
27	1	0	2.952830	2.427055	-0.198744
28	1	0	3.088599	0.571453	2.757000
29	1	0	1.397341	1.090730	2.859044
30	1	0	2.545019	2.013320	1.882946
31	1	0	-4.548052	-0.739896	-0.100917
32	1	0	-3.986449	-1.505991	-1.589466
33	1	0	-4.319876	-2.505019	-0.135679
34	6	0	-1.274763	2.405363	0.066718
35	8	0	-0.678756	2.092090	-1.012778
36	8	0	-1.117004	1.669903	1.094411
37	6	0	-2.187996	3.602994	0.118992
38	1	0	-3.201288	3.283292	-0.151144
39	1	0	-2.217896	4.018131	1.129325
40	1	0	-1.865783	4.361651	-0.598367

AcOH

Zero-point correction=	0.062022
(Hartree/Particle)	
Thermal correction to Energy=	0.066602
Thermal correction to Enthalpy=	0.067546
Thermal correction to Gibbs Free Energy=	0.034684
Sum of electronic and zero-point Energies	-229.015588
Sum of electronic and thermal Energies=	-229.011008
Sum of electronic and thermal Enthalpies=	-229.010063
Sum of electronic and thermal Free Energi	es= -229.042925

Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	Туре	Х	Y	Z
1	8	0	0.645495	1.202079	0.000002
2	8	0	0.778870	-1.046544	-0.000004
3	6	0	0.092467	0.125600	-0.000008
4	6	0	-1.397568	-0.110018	0.00000
5	1	0	-1.685280	-0.691964	-0.881887
6	1	0	-1.685359	-0.691357	0.882263
7	1	0	-1.917537	0.848189	-0.000348
8	1	0	1.723861	-0.802641	0.000034

Α

Zero-poi (Hartree Thermal Thermal Sum of Sum of Sum of Sum of	nt correction= /Particle) correction to correction to correction to electronic and electronic and electronic and electronic and	Energy= Enthalpy= Gibbs Free zero-point thermal En thermal En thermal F:	e Energy= t Energies= nergies= nthalpies= ree Energies=	0.570386 0.608136 0.609080 0.496621 -1553. -1552. -1552. -1553.	031955 994205 993261 105719
Center	Atomic	Atomic	Coor	dinates (Ang	stroms)
Number	Number	Туре	X	Y	Z
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	45 7 6 6 6 6 6 6 6 8 6 6 6 6 6 6 6		$\begin{array}{c} 1.962382\\ 0.270829\\ -0.744023\\ 0.379400\\ 1.264199\\ 1.547678\\ 1.737335\\ 2.313989\\ 2.516352\\ 2.808454\\ -0.259275\\ -2.174136\\ -3.216567\\ -4.595572\\ -5.734431\end{array}$	-0.775810 0.372899 -0.421177 1.654103 2.627699 2.521952 3.744660 3.501360 4.712106 4.592123 2.075622 -0.070278 -0.905986 -0.648346 -0.422655	0.176124 -0.335589 -1.045293 -0.802657 -0.060246 1.308573 -0.767720 1.946555 -0.134047 1.228475 -1.782953 -0.604839 -1.379886 -0.966415 -0.613781
16 17 18	6 6 6	0 0 0	-9.248562 -9.728009 -8.885345	-0.953072 0.358979 1.412120	0.556885 0.589001 0.223953

Electronic Supplementary Material (ESI) for Chemical Science This journal is O The Royal Society of Chemistry 2013

19	6	0	-7.573526	1.159584	-0.170919
20	6	0	-7.079127	-0.159455	-0.207144
21	6	0	-7.937830	-1.213396	0.163590
22	1	0	-0.660447	-0.267873	-2.131839
23	1	0	-0.567370	-1.477082	-0.827070
24	1	0	1.164863	1.679472	1.871895
25	1	0	1.462496	3.843675	-1.813204
26	1	0	2.516408	3.413907	3.011362
27	1	0	2.882041	5.567684	-0.696654
28	1	0	3.404529	5.351807	1.728206
29	1	0	-2.358595	0.993485	-0.775996
30	1	0	-2.278681	-0.260193	0.469718
31	1	0	-2.994923	-1.976436	-1.253883
32	- 1	0	-3 115158	-0 698734	-2 455286
33	1	0	-9 898541	-1 777305	0 839181
34	1	0	-10 751024	0 559315	0 896046
35	1	0	-9 251639	2 435210	0.246456
36	1	0	-6 916864	1 976091	-0 155316
37	1	0	-7 563092	-2 232204	0.137580
38	6	0	3 973138	-0 0572204	-0.425002
30	6	0	J. J/973130	-1 338268	-0.425002
10	C C	0	4.1402J4 2 441502	-1.330200	0.201400
40	6	0	2 700200	-2.323037	-0.40/033
41	6	0	2.790209	-1.009941	-1.000300
42	6	0	3.206214	-0.288242	-1.613058
43	0	0	4.646981	1.21/009	-0.020851
44	6	0	4.938836	-1.516942	1.522416
45	6	0	3.301564	-3./8019/	-0.144249
46	6	0	2.024481	-2.366203	-2.686427
4 /	6	0	2.895960	0.705628	-2.690660
48	1	0	5.685/88	1.221885	-0.380552
49	1	0	4.670893	1.326818	1.066648
50	1	0	4.140378	2.094749	-0.427368
51	1	0	4.644998	-0.780479	2.277191
52	1	0	6.011298	-1.385648	1.327322
53	1	0	4.795582	-2.510768	1.953404
54	1	0	3.699655	-4.015711	0.845476
55	1	0	3.841940	-4.389101	-0.880697
56	1	0	2.250502	-4.085583	-0.162260
57	1	0	1.445385	-3.202896	-2.284454
58	1	0	2.703241	-2.767691	-3.451898
59	1	0	1.329417	-1.681760	-3.179614
60	1	0	3.503994	0.485071	-3.578301
61	1	0	3.120697	1.725013	-2.372283
62	1	0	1.843219	0.681853	-2.985997
63	8	0	0.543026	-2.080826	1.194528
64	8	0	1.486095	-0.469912	2.342302
65	6	0	0.640051	-1.413817	2.278504
66	6	0	-0.267009	-1.722747	3.441420
67	1	0	0.207506	-1.436712	4.383031
68	1	0	-1.190470	-1.141791	3.331386
69	1	0	-0.531400	-2.783007	3.452012

TS1

Zero-point correction= 0.564943 (Hartree/Particle) Thermal correction to Energy= 0.602174 Thermal correction to Enthalpy= 0.603118 Thermal correction to Gibbs Free Energy= 0.492197 Sum of electronic and zero-point Energies= -1553.007949 Sum of electronic and thermal Energies= -1552.970719

Sum of	electronic	and thermal	Enthalpies=	-1552.	.969774	
Sum of	electronic	and thermal	Free Energies=	-1553.	.080695	
Center	Atomic	Atomic	Coor	rdinates (Ang	gstroms)	
Number	Number	Туре	Х	Y	Z	
1	45	0	1.814789	-0.452572	0.135743	
2	/	0	0.523278	0.580/96	-1.106593	
3	6	0	-0.550875	-0.036867	-1.871683	
4	6	0	0.757760	1.901639	-1.308472	
5	6	0	1.823219	2.433425	-0.394906	
6	6	0	2.175037	1.654745	0.730278	
7	6	0	2.441677	3.656021	-0.655308	
8	6	0	3.189119	2.143857	1.579374	
9	6	0	3.451259	4.112022	0.193703	
10	6	0	3.823004	3.358940	1.315461	
11	8	0	0.171168	2.616791	-2.133364	
12	6	0	-1.936474	0.194500	-1.247292	
13	6	0	-3.068228	-0.409881	-2.107296	
14	6	0	-4.386151	-0.280723	-1.485879	
15	6	0	-5.462759	-0.163155	-0.938509	
16	6	0	-8.775140	-1.014748	0.579712	
17	6	0	-9.227445	0.246424	0.976228	
18	6	0	-8.434719	1.371986	0.737264	
19	6	0	-7.198941	1.241790	0.107454	
20	6	0	-6.732317	-0.025098	-0.296182	
21	6	0	-7.540343	-1.152965	-0.050212	
22	1	0	-0.543009	0.371330	-2.892006	
23	1	0	-0.362234	-1.115210	-1.937081	
24	1	0	2.122850	4.225344	-1.523860	
25	1	0	3.446223	1.592696	2.481503	
26	1	0	3.943132	5.060614	-0.007558	
27	1	0	4.591360	3.731573	1.988904	
28	1	0	-2.098891	1.271139	-1.135990	
29	1	0	-1.958766	-0.254372	-0.249226	
30	1	0	-2.859908	-1.474130	-2.295020	
31	1	0	-3.075452	0.077309	-3.093051	
32	1	0	-9.386841	-1.894562	0.761954	
33	1	0	-10.190944	0.351482	1.467710	
34	1	0	-8.780469	2.356098	1.042722	
35	1	0	-6.581153	2.114883	-0.079252	
36	1	0	-7.186735	-2.132076	-0.359067	
37	6	0	3.812155	-0.810965	-0.760572	
38	6	0	3.883419	-1.325717	0.603345	
39	6	0	2.920154	-2.355338	0.726451	
40	6	0	2.264428	-2.534916	-0.565226	
41	6	0	2.865344	-1.619193	-1.486062	
42	6	0	4.734045	0.212458	-1.356088	
43	6	0	4.875744	-0.897087	1.643516	
44	6	0	2.598727	-3.158466	1.951036	
45	6	0	1.249788	-3.598036	-0.865048	
46	6	0	2.572278	-1.500796	-2.951244	
47	1	0	5.685042	-0.249793	-1.655707	
48	- 1	0	4.957174	1.011845	-0.644584	
49	1	0	4.295127	0.675696	-2.243666	
50	1	0	5.176265	0.143340	1,504603	
51	- 1	0	5.781335	-1.516394	1.581214	
52	- 1	0	4.475176	-0.998087	2.656475	
53	- 1	0	3 117499	-2.774286	2.833069	
54	⊥ 1	0	2 896495	-4 206612	1 816213	
5.5	1	0	1.523067	-3.138776	2.156130	
	-	0	2.02000/			

Electronic Supplementary Material (ESI) for Chemical Science This journal is The Royal Society of Chemistry 2013

56	1	0	0.532691	-3.700552	-0.044772
57	1	0	1.733912	-4.574079	-1.009510
58	1	0	0.684959	-3.372939	-1.773996
59	1	0	3.322396	-2.055704	-3.530864
60	1	0	2.595755	-0.458806	-3.280227
61	1	0	1.590286	-1.907662	-3.203447
62	8	0	0.121234	-0.918427	1.380065
63	8	0	0.180426	1.103114	2.352694
64	6	0	-0.312294	-0.056032	2.203952
65	6	0	-1.518290	-0.422968	3.043373
66	1	0	-1.457876	0.055607	4.023503
67	1	0	-2.417940	-0.050294	2.539520
68	1	0	-1.603701	-1.506553	3.146192
69	1	0	1.163048	1.241149	1.494724

В

В					
Zero-poi	nt correction=			0.569929	
(Hartree	/Particle)				
Thermal	correction to	Energy=		0.607018	
Thermal	correction to	Enthalpy	/=	0.607962	
Thermal	correction to	Gibbs Fi	ree Energy=	0.497764	
Sum of	electronic and	zero-po	int Energies=	-1553.	022684
Sum of	electronic and	thermal	Energies=	-1552.	985595
Sum of	electronic and	thermal	Enthalpies=	-1552.	984651
Sum of	electronic and	thermal	Free Energies=	-1553.	094848
Center	Atomic	Atomic	Coo:	rdinates (Ang	(stroms)
Number	Number	Туре	Х	Y	Z
1	45	0	1.917165	-0.373288	0.131874
2	7	0	0.592945	0.388867	-1.271351
3	6	0	-0.470857	-0.370987	-1.911868
4	6	0	0.758571	1.674650	-1.680417
5	6	0	1.796172	2.375174	-0.858010
6	6	0	2.406500	1.622278	0.163244
7	6	0	2.076313	3.732129	-1.033885
8	6	0	3.277084	2.285696	1.041920
9	6	0	2.972753	4.368999	-0.174995
10	6	0	3.559526	3.648167	0.869398
11	8	0	0.106177	2.236122	-2.572146
12	6	0	-1.853867	-0.077137	-1.305922
13	6	0	-2.986680	-0.824596	-2.042382
14	6	0	-4.298679	-0.618970	-1.429055
15	6	0	-5.373523	-0.431560	-0.897807
16	6	0	-8.245236	1.295376	0.766353
17	6	0	-9.135522	0.234190	0.949786
18	6	0	-8.781188	-1.047467	0.520672
19	6	0	-7.547276	-1.269807	-0.086407
20	6	0	-6.641210	-0.207467	-0.276333
21	6	0	-7.009847	1.081008	0.159216
22	1	0	-0.493927	-0.130370	-2.984064
23	1	0	-0.255861	-1.440308	-1.810754
24	1	0	1.570719	4.262041	-1.836884
25	1	0	3.741054	1.754691	1.869818
26	1	0	3.198723	5.424579	-0.302506
27	1	0	4.238598	4.146195	1.558287
28	1	0	-2.037891	1.000545	-1.355963
29	1	0	-1.854974	-0.371147	-0.249700
30	1	0	-2.762972	-1.901781	-2.068145
31	1	0	-3.014289	-0.495098	-3.090980

Electronic Supplementary Material (ESI) for Chemical Science This journal is The Royal Society of Chemistry 2013

32	1	0	-8.514935	2.295156	1.096359
33	1	0	-10.098882	0.405052	1.422597
34	1	0	-9.469471	-1.877280	0.658297
35	1	0	-7.270545	-2.264662	-0.421964
36	1	0	-6.317682	1.904670	0.013300
37	6	0	3.519434	-1.340393	-0.944994
38	6	0	4.029353	-1.141958	0.402870
39	6	0	3.199660	-1.879456	1.280002
40	6	0	2.280963	-2.694957	0.470192
41	6	0	2.516663	-2.408718	-0.880374
42	6	0	4.158969	-0.835671	-2.206032
43	6	0	5.257637	-0.357309	0.754316
44	6	0	3.307706	-1.971928	2.773880
45	6	0	1.288485	-3.656914	1.052224
46	6	0	1.898358	-3.059830	-2.080511
47	1	0	4.925412	-1.536086	-2.567732
48	1	0	4.638422	0.133537	-2.045296
49	1	0	3.418892	-0.707830	-3.000918
50	1	0	5.332536	0.565906	0.174985
51	1	0	6.152412	-0.959803	0.544768
52	1	0	5.284439	-0.091434	1.814530
53	1	0	3.858667	-1.124636	3.191111
54	1	0	3.830115	-2.890442	3.075821
55	1	0	2.317975	-1.988532	3.241611
56	1	0	0.658333	-3.163558	1.800729
57	1	0	1.794952	-4.495858	1.548225
58	1	0	0.629797	-4.072621	0.285010
59	1	0	2.587997	-3.804510	-2.501851
60	1	0	1.684932	-2.333130	-2.869293
61	1	0	0.966166	-3.576371	-1.835929
62	8	0	0.247077	-0.258828	1.693333
63	8	0	-0.086268	1.966368	1.856059
64	6	0	-0.388351	0.708406	2.120330
65	6	0	-1.610644	0.553237	2.983925
66	1	0	0.701411	1.992301	1.255750
67	1	0	-1.625069	1.310929	3.771445
68	1	0	-2.500023	0.701226	2.359841
69	1	0	-1.641562	-0.449865	3.410622

С

Zero-point correction=	0.506868
(Hartree/Particle)	
Thermal correction to Energy=	0.538133
Thermal correction to Enthalpy=	0.539077
Thermal correction to Gibbs Free Energy=	0.445450
Sum of electronic and zero-point Energies=	-1323.997559
Sum of electronic and thermal Energies=	-1323.966294
Sum of electronic and thermal Enthalpies=	-1323.965350
Sum of electronic and thermal Free Energies=	-1324.058976

Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	Туре	Х	Ү	Z
1	45	0	-0.650891	-0.202761	-0.030164
2	7	0	-1.560665	1.365937	0.999016
3	6	0	-2.375337	1.142801	2.179552
4	6	0	-1.065264	2.624987	0.813596

S32

5	6	0	0.005224	2.640395	-0.222483
6	6	0	0.429611	1.400968	-0.714464
7	6	0	0.606605	3.830267	-0.642555
8	6	0	1.483405	1.362670	-1.632460
9	6	0	1.639691	3.789650	-1.578364
10	6	0	2.076995	2.555087	-2.068646
11	8	0	-1.432191	3.632874	1.432168
12	6	0	0.119531	-0.544372	1.992111
13	6	0	1.176928	-0.576219	1.330134
14	6	0	-1.534727	0.746208	3.402007
15	6	0	-0.752099	-0.565132	3.185641
16	6	0	2.572011	-0.727559	1.004238
17	6	0	3.136171	-2.015308	0.904322
18	6	0	4.493589	-2.174378	0.633394
19	6	0	5.310073	-1.054221	0.458835
20	6	Õ	4 761189	0 226432	0 561452
21	6	Õ	3 404063	0 395104	0 829326
22	1	0	-2 911827	2 070973	2 403322
22	1	0	-3 119107	0 361861	1 974241
2.5	1	0	0 2/9691	1 764612	-0 217237
25	1	0	1 865038	0 /16121	-2 006043
25	1	0	2 110063	1 700081	_1 017743
20	1	0	2.110003	2 514026	-1.91/743
27	1	0	-2.192479	2.514030	-2.700079
20	1	0	-2.102045	1 560154	4.200010
29	1	0	-0.034909 -1.462363	-1 200569	2 007066
3U 21	1	0	-1.402303	-1.399300	3.097966
31	1	0	-0.123296	-0.//5/35	4.062001
32	1	0	2.304618	-2.884834	1.060775
33	1	0	4.915045	-3.1/36/9	0.564476
34	1	0	6.368825	-1.1/9101	0.248//4
35	1	0	5.392187	1.101424	0.432238
36		0	2.977620	1.38848/	0.906237
37	6	0	-1.273922	-0.800790	-2.174383
38	6	0	-0.462725	-1.858158	-1.646864
39	6	0	-1.191429	-2.461640	-0.549341
40	6	0	-2.416284	-1.768045	-0.376902
41	6	0	-2.447583	-0.696752	-1.350943
42	6	0	-1.021025	-0.021476	-3.431231
43	6	0	0.792666	-2.414672	-2.255441
44	6	0	-0.732306	-3.671698	0.209062
45	6	0	-3.539446	-2.139686	0.548471
46	6	0	-3.595403	0.244928	-1.566395
47	1	0	-1.454677	-0.548062	-4.292948
48	1	0	0.045593	0.113062	-3.623649
49	1	0	-1.472021	0.973119	-3.387257
50	1	0	1.274508	-1.687990	-2.915033
51	1	0	0.574468	-3.307612	-2.858665
52	1	0	1.524180	-2.704063	-1.494302
53	1	0	0.327187	-3.601390	0.474843
54	1	0	-0.854710	-4.578570	-0.398966
55	1	0	-1.300769	-3.814615	1.132102
56	1	0	-3.179480	-2.650493	1.447172
57	1	0	-4.248345	-2.817095	0.051450
58	1	0	-4.106931	-1.261879	0.870808
59	1	0	-4.369674	-0.221989	-2.191191
60	1	0	-3.272747	1.163501	-2.062905
61	1	0	-4.057488	0.533055	-0.618359

TS2

Zero-point correction= (Hartree/Particle)	0.506154
Thermal correction to Energy=	0.536416
Thermal correction to Enthalpy=	0.537361
Thermal correction to Gibbs Free Energy=	0.446224
Sum of electronic and zero-point Energies=	-1323.968903
Sum of electronic and thermal Energies=	-1323.938640
Sum of electronic and thermal Enthalpies=	-1323.937696
Sum of electronic and thermal Free Energies=	-1324.028833

Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
		туре	^	I	ے
1	45	0	-0.862977	-0.124952	0.018270
2	7	0	-0.919370	1.574852	1.251649
3	6	0	-1.418490	1.477837	2.618012
4	6	0	-0.008960	2.558436	1.002855
5	6	0	0.770758	2.284386	-0.242012
6	6	0	0.851607	0.945748	-0.685967
7	6	0	1.400795	3.310103	-0.948993
8	6	0	1.522800	0.678379	-1.895175
9	6	0	2.060415	3.031565	-2.146809
10	6	0	2.105602	1.714983	-2.623838
11	8	0	0.192274	3.555546	1.710039
12	6	0	0.389231	-0.528776	1.574771
13	6	0	1.327612	-0.340733	0.703368
14	6	0	-0.416928	0.754162	3.541184
15	6	0	0.009605	-0.637195	3.001720
16	6	0	3.759421	0.021906	0.197151
17	6	0	5.055558	-0.475674	0.084091
18	6	0	5.302804	-1.843985	0.230287
19	6	0	4.245480	-2.714350	0.500951
20	6	0	2.947444	-2.218633	0.624940
21	6	0	2.687374	-0.844676	0.475257
22	1	0	-1.586629	2.488521	3.006411
23	1	0	-2.379192	0.951289	2.615024
24	1	0	1.335245	4.319446	-0.552092
25	1	0	1.620494	-0.344937	-2.248078
26	1	0	2.533689	3.831418	-2.710196
27	1	0	2.614859	1.492952	-3.558855
28	1	0	-0.841363	0.635733	4.547530
29	1	0	0.474607	1.384337	3.631928
30	1	0	-0.816766	-1.351269	3.115076
31	1	0	0.854853	-1.017949	3.592483
32	1	0	3.569654	1.084124	0.086226
33	1	0	5.876717	0.207011	-0.117071
34	1	0	6.314822	-2.228255	0.134469
35	1	0	4.429580	-3.779234	0.616255
36	1	0	2.121043	-2.890051	0.839659
37	6	0	-2.037571	-0.507339	-1.994192
38	6	0	-1.497206	-1.756082	-1.486193
39	6	0	-2.150828	-2.059443	-0.244679
40	6	0	-2.988568	-0.954796	0.083848
41	6	0	-2.924578	0.004574	-1.021256
42	6	0	-1./07393	0.094318	-3.328564
43	6	U	-0.5890/1	-2.681180	-2.246418
44	6	U	-1.990101	-3.322601	0.550/06
45	6	U	-3.9/2067	-0.885145	1.216007

Electronic Supplementary Material (ESI) for Chemical Science This journal is The Royal Society of Chemistry 2013

46	6	0	-3.738170	1.263502	-1.094876
47	1	0	-2.208946	-0.452660	-4.138849
48	1	0	-0.631551	0.070719	-3.530284
49	1	0	-2.024191	1.138938	-3.387726
50	1	0	0.068751	-2.131767	-2.926432
51	1	0	-1.169454	-3.387925	-2.856853
52	1	0	0.043234	-3.271041	-1.575606
53	1	0	-0.982107	-3.738459	0.453077
54	1	0	-2.694622	-4.094737	0.211173
55	1	0	-2.179009	-3.156061	1.615831
56	1	0	-3.620245	-1.426510	2.099680
57	1	0	-4.933887	-1.329548	0.921712
58	1	0	-4.172165	0.148126	1.513649
59	1	0	-4.797105	1.036571	-1.280621
60	1	0	-3.392601	1.919406	-1.898048
61	1	0	-3.675778	1.830573	-0.160548

D_1

Zero-poi	Int correction	=		0.508498	
(Hartree Thermal Thermal Sum of Sum of Sum of Sum of	e/Particle) correction to correction to electronic and electronic and electronic and electronic and	o Energy= o Enthalpy= o Gibbs Free d zero-point d thermal En d thermal En d thermal Fr	Energy= Energies= ergies= thalpies= ee Energies=	0.538850 0.539794 0.448500 -1324. -1323. -1323. -1324.	011068 980716 979771 071066
Center	Atomic Number	Atomic	Coord	dinates (Ang	stroms)
1	45	0	-0.986001	-0.183280	0.030688
2	7	0	-0.373250	-0.622464	1.945659
3	6	0	-0.110952	-1.980490	2.403752
4	6	0	0.461667	0.382665	2.298460
5	6	0	0.436887	1.476103	1.224746
6	6	0	1.088501	1.262873	-0.034833
7	6	0	-0.063545	2.760890	1.535550
8	6	0	1.204500	2.358070	-0.924653
9	6	0	0.040762	3.804860	0.630957
10	6	0	0.684000	3.601826	-0.605834
11	8	0	1.173759	0.479361	3.297219
12	6	0	0.809160	-1.071504	-0.239298
13	6	0	1.715223	-0.077822	-0.328678
14	6	0	1.068290	-2.644807	1.657062
15	6	0	1.019460	-2.514499	0.107362
16	6	0	-3.132277	0.820539	-0.537556
17	6	0	-2.340826	0.489877	-1.734652
18	6	0	-2.152247	-0.910040	-1.777791
19	6	0	-2.667584	-1.446025	-0.527829
20	6	0	-3.361494	-0.356754	0.174676
21	6	0	-3.581774	2.211823	-0.202045
22	6	0	-1.974666	1.489223	-2.792269
23	6	0	-1.562704	-1.712483	-2.901239
24	6	0	-2.856921	-2.901474	-0.212420
25	6	0	-4.106161	-0.533132	1.464899
26	6	0	3.182793	-0.184683	-0.519113
27	6	0	3.732972	-1.046873	-1.484339
28	6	0	5.114282	-1.152640	-1.646521

29	6	0	5.975615	-0.388311	-0.856287
30	6	0	5.442598	0.481890	0.098193
31	6	0	4.062325	0.585445	0.264307
32	1	0	0.119143	-1.956334	3.476014
33	1	0	-1.026575	-2.570392	2.275148
34	1	0	-0.505544	2.921012	2.515056
35	1	0	1.734323	2.209249	-1.861666
36	1	0	-0.344859	4.788295	0.886908
37	1	0	0.791517	4.429665	-1.302135
38	1	0	1.121555	-3.706590	1.934877
39	1	0	1.995487	-2.172240	2.000681
40	1	0	0.221603	-3.147426	-0.301267
41	1	0	1.968781	-2.891045	-0.294764
42	1	0	-4.288715	2.588925	-0.953563
43	1	0	-2.736000	2.909430	-0.173261
44	1	0	-4.077204	2.253422	0.771566
45	1	0	-1.544962	2.396211	-2.353800
46	1	0	-2.861107	1.791028	-3.367909
47	1	0	-1.244644	1.082288	-3.497407
48	1	0	-0.856198	-1.122587	-3.492079
49	1	0	-2.350163	-2.067428	-3.580790
50	1	0	-1.028560	-2.592212	-2.530903
51	1	0	-2.881787	-3.080348	0.867035
52	1	0	-2.059091	-3.517705	-0.636722
53	1	0	-3.808443	-3.265375	-0.627152
54	1	0	-4.956169	-1.216767	1.339274
55	1	0	-4.496884	0.417320	1.838027
56	1	0	-3.456230	-0.950106	2.243121
57	1	0	3.065457	-1.621288	-2.121152
58	1	0	5.518138	-1.824349	-2.400038
59	1	0	7.051839	-0.466641	-0.985602
60	1	0	6.104334	1.077727	0.721749
61	1	0	3.656369	1.246939	1.024810

TS3

Zero-point correction=		0.507061
(Hartree/Particle)		
Thermal correction to H	Energy=	0.537165
Thermal correction to H	Enthalpy=	0.538110
Thermal correction to (Gibbs Free Energy=	0.446812
Sum of electronic and a	zero-point Energies=	-1323.991913
Sum of electronic and t	thermal Energies=	-1323.961808
Sum of electronic and t	thermal Enthalpies=	-1323.960864
Sum of electronic and t	thermal Free Energies=	-1324.052162

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z
1	 45	 0	-0.973925	-0.203704	-0.014176
2	7	0	-0.415993	0.493839	1.910014
3	6	0	-0.623980	-0.277921	3.131240
4	6	0	0.122019	1.758122	1.990256
5	6	0	0.628635	2.233799	0.668381
6	6	0	1.261800	1.329489	-0.244332
7	6	0	0.528618	3.594487	0.360137
8	6	0	1.707630	1.863997	-1.476903
9	6	0	0.973516	4.090836	-0.861737
10	6	0	1.558366	3.212185	-1.782967
11	8	0	0.202711	2.426308	3.023986
----	---	---	-----------	-----------	-----------
12	6	0	0.705413	-0.803138	0.863366
13	6	0	1.629753	-0.067447	0.156103
14	6	0	0.544550	-1.272232	3.266732
15	6	0	0.859567	-1.892697	1.877183
16	6	0	-2.686049	0.306699	-1.661930
17	6	0	-1.881378	-0.894770	-1.961185
18	6	0	-2.153138	-1.885928	-0.977919
19	6	0	-2.911549	-1.229755	0.056934
20	6	0	-3.311339	0.107764	-0.438431
21	6	0	-2.723279	1.523654	-2.538242
22	6	0	-1.110379	-1.085665	-3.235674
23	6	0	-1.721999	-3.323445	-0.996339
24	6	0	-3.525417	-1.893312	1.254341
25	6	0	-4.214068	1.043087	0.310711
26	6	0	2.966912	-0.602253	-0.200435
27	6	0	4.114349	0.214362	-0.140673
28	6	0	5.377017	-0.300334	-0.425030
29	6	0	5.531692	-1.643636	-0.780807
30	6	0	4.405143	-2.464171	-0.856656
31	6	0	3.139055	-1.947575	-0.579883
32	1	0	-0.656621	0.409916	3.981424
33	1	0	-1.581538	-0.806368	3.071757
34	1	0	0.087307	4.248578	1.106350
35	1	0	2.199372	1.202665	-2.184400
36	1	0	0.870357	5.146473	-1.096582
37	1	0	1.911682	3.584601	-2.741593
38	1	0	0.334332	-2.051821	4.009618
39	1	0	1.428865	-0.720342	3.606615
40	1	0	0.170775	-2.720168	1.665539
41	1	0	1.879225	-2.294827	1.872549
42	1	0	-3.219661	1.307648	-3.494489
43	1	0	-1.714015	1.882900	-2.772723
44	1	0	-3.262518	2.347047	-2.062295
45	1	0	-0.574229	-0.173743	-3.516881
46	1	0	-1.782753	-1.339805	-4.067813
47	1	0	-0.374714	-1.890291	-3.146541
48	1	0	-0.784154	-3.455537	-1.544880
49	1	0	-2.477762	-3.957755	-1.481227
50	1	0	-1.571179	-3.714082	0.015254
51	1	0	-3.660724	-1.188111	2.080070
52	1	0	-2.913840	-2.725275	1.616271
53	1	0	-4.517663	-2.297292	1.005785
54	1	0	-5.244829	0.663269	0.337885
55	1	0	-4.238468	2.034253	-0.150186
56	1	0	-3.886008	1.171232	1.348351
57	1	0	4.010178	1.256751	0.145354
58	1	0	6.246787	0.348627	-0.359803
59	1	0	6.517680	-2.042279	-1.003788
60	1	0	4.508126	-3.506766	-1.147339
61	1	0	2.264127	-2.585381	-0.673788

E₁

Zero-point correction= 0.509924 (Hartree/Particle) Thermal correction to Energy= 0.540110 Thermal correction to Enthalpy= 0.541054 Thermal correction to Gibbs Free Energy= 0.450189 Sum of electronic and zero-point Energies= -1324.047336

Sum	of	electronic	and	thermal	Energies=	-1324.017151
Sum	of	electronic	and	thermal	Enthalpies=	-1324.016207
Sum	of	electronic	and	thermal	Free Energies=	-1324.107071

Center Number	Atomic Number	Atomic Type	Coord X	Coordinates (Angstroms) X Y Z		
1	 45		-0.857330	-0.059080	-0.034731	
2	7	0	-0.218498	1.584712	1.476090	
3	6	0	-1.040682	1.755694	2.697408	
4	6	0	0.209613	2.741031	0.794400	
5	6	0	1.329260	2.545216	-0.147812	
6	6	0	1.898221	1.260017	-0.341352	
7	6	0	1.820663	3.671127	-0.815059	
8	6	0	2.999087	1.178389	-1.215873	
9	6	0	2.893537	3.558815	-1.694368	
10	6	0	3.478923	2.304027	-1.884119	
11	8	0	-0.336880	3.813573	1.023541	
12	6	0	0.447202	0.306632	1.482209	
13	6	0	1.349502	0.081863	0.379504	
14	6	0	-0.992163	0.377206	3.378669	
15	6	0	0.330126	-0.246263	2.886343	
16	6	0	-1.641164	-1.043044	-2.011120	
17	6	0	-1.663147	-1.958892	-0.860774	
18	6	0	-2.684367	-1.513419	0.053822	
19	6	0	-3.114211	-0.243240	-0.409376	
20	6	0	-2.508707	0.017858	-1.720917	
21	6	0	-0.874442	-1.263361	-3.282994	
22	6	0	-1.012193	-3.311065	-0.823205	
23	6	0	-3.189193	-2.266988	1.250321	
24	6	0	-4.149470	0.641420	0.224831	
25	6	0	-2.833215	1.198156	-2.591266	
26	6	0	3.101716	-3.090401	-0.822647	
27	6	0	2.296661	-1.952036	-0.789264	
28	6	0	2.178973	-1.171081	0.373133	
29	6	0	2.921042	-1.566952	1.498264	
30	6	0	3.716076	-2.715546	1.475565	
31	6	0	3.809439	-3.484424	0.315614	
32	1	0	-0.580505	2.541633	3.306345	
33	1	0	-2.047794	2.084602	2.435691	
34	1	0	1.341635	4.625544	-0.621450	
35	1	0	3.488884	0.224472	-1.371829	
36	1	0	3.272736	4.432397	-2.216437	
37	1	0	4.327639	2.197314	-2.555515	
38	1	0	-1.834185	-0.236672	3.048046	
39	1	0	-1.038462	0.464958	4.468048	
40	1	0	0.333475	-1.337883	2.914197	
41	1	0	1.167752	0.107682	3.507957	
42	1	0	-1.462243	-1.853719	-4.001329	
43	1	0	0.055037	-1.812586	-3.106229	
44	1	0	-0.613479	-0.318512	-3.769659	
45	1	0	-0.879593	-3.661515	0.205037	
46	1	0	-0.026382	-3.305386	-1.293363	
47	1	0	-1.628197	-4.054532	-1.350614	
48	1	0	-2.388559	-2.822100	1.750457	
49	1	0	-3.960305	-2.998682	0.966722	
50	1	0	-3.640921	-1.598782	1.990928	
51	1	0	-4.257141	0.438142	1.294987	
52	1	0	-5.135917	0.494068	-0.237967	
53	1	0	-3.896682	1.701342	0.110060	

C₂

Zero-po:	int correction=			0.507267	
Therma	l correction to	Energy=		0.538257	
Therma	l correction to	Enthalpy=		0.539201	
Therma	l correction to	Gibbs Free 1	Energy=	0.445987	
Sum of	electronic and	zero-point 1	Energies=	-1323.	991468
Sum of	electronic and	thermal Ene	rgies=	-1323.	960478
Sum of	electronic and	thermal Ent	halpies=	-1323.	959533
Sum of	electronic and	thermal Free	e Energies= 	-1324.	052748
Center	Atomic	Atomic	Coor	dinates (Ang	stroms)
Number	Number	''уре 	X	¥	Z
1	45	0	-0.592862	-0.200204	0.004959
2	7	0	-1.452661	1.351988	1.105769
3	6	0	-2.253820	1.176436	2.313037
4	6	0	-1.050542	2.623377	0.818737
5	6	0	0.005603	2.645421	-0.228850
6	6	0	0.470898	1.412427	-0.700265
7	6	0	0.559352	3.848578	-0.675324
8	6	0	1.530203	1.39/119	-1.610/89
9	6	0	1.596/26	3.829226	-1.605436
10	6	0	2.083440	2.602118	-2.065182
	8	0	-1.4/9432	3.63//54	1.384285
12	6	0	1.259463	-0.631242	1.209034
14	6	0	-1 0.293999	-0.400550	2 042026
14	6	0	-1.966089	-0.139330	2 255406
15 16	6	0	2 663748	-0.375259	0 808338
17	6	0	3 126257	-1 406892	-0 267958
18	6	0	J. 191716	-1 560969	-0 /99375
19	6	0	5 421234	-1 083129	0.426715
20	6	0	4 974121	-0 448755	1 588686
21	6	0	3 610426	-0 294639	1 825025
22	1	0	-3 330487	1 229843	2 090678
2.3	1	0	-2.039733	2.021843	2.979434
24	1	0	0.164121	4.775872	-0.268941
25	1	0	1.949319	0.462912	-1.969765
26	1	0	2.034787	4.758578	-1.960542
27	1	0	2.906547	2.575780	-2.776458
28	1	0	-2.470653	-0.118306	4.018001
29	1	0	-2.381091	-0.989064	2.489297
30	1	0	-0.307735	-1.289418	3.844413
31	1	0	-0.043274	0.454195	3.840560
32	1	0	2.404507	-1.773476	-0.988165
33	1	0	4.830946	-2.053396	-1.406913
34	1	0	6.485692	-1.200113	0.243166
35	1	0	5.689807	-0.068256	2.312476
36	1	0	3.263089	0.204695	2.724302

37	6	0	-0.850527	-1.214682	-2.069603
38	6	0	-0.790925	-2.289760	-1.130564
39	6	0	-1.951674	-2.217124	-0.270490
40	6	0	-2.698526	-1.077523	-0.650051
41	6	0	-1.996400	-0.408172	-1.731398
42	6	0	0.000543	-1.046906	-3.293883
43	6	0	0.163271	-3.450178	-1.136498
44	6	0	-2.318029	-3.265388	0.741544
45	6	0	-4.033211	-0.643275	-0.121641
46	6	0	-2.527113	0.756159	-2.517279
47	1	0	-0.472651	-1.543972	-4.152411
48	1	0	0.994475	-1.486972	-3.170339
49	1	0	0.135491	0.005822	-3.552153
50	1	0	0.989950	-3.298769	-1.834904
51	1	0	-0.358192	-4.367195	-1.444197
52	1	0	0.588166	-3.636537	-0.144391
53	1	0	-1.460687	-3.548304	1.362389
54	1	0	-2.672782	-4.180594	0.246686
55	1	0	-3.116239	-2.928999	1.408993
56	1	0	-4.252977	-1.079240	0.856405
57	1	0	-4.831096	-0.956219	-0.809504
58	1	0	-4.087927	0.444608	-0.029387
59	1	0	-3.263304	0.427002	-3.264399
60	1	0	-1.724951	1.278839	-3.044279
61	1	0	-3.017017	1.484895	-1.864792

TS4

	0.506380
T	0 506707
Energy=	0.536/8/
Enthalpy=	0.537731
Gibbs Free Energy=	0.446474
zero-point Energies=	-1323.976009
thermal Energies=	-1323.945601
thermal Enthalpies=	-1323.944657
thermal Free Energies=	-1324.035914
	Energy= Enthalpy= Sibbs Free Energy= Sero-point Energies= Ehermal Energies= Ehermal Enthalpies= Ehermal Free Energies=

Center Atomic Atomic		Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Ζ
1	45	0	-0.457446	-0.371446	-0.177873
2	7	0	-1.658754	0.426571	1.413657
3	6	0	-2.268235	-0.312601	2.511845
4	6	0	-2.038407	1.755099	1.262357
5	6	0	-1.432346	2.373712	0.058726
6	6	0	-0.641226	1.564969	-0.774694
7	6	0	-1.659594	3.725144	-0.231367
8	6	0	-0.071924	2.156285	-1.911859
9	6	0	-1.093530	4.295416	-1.367751
10	6	0	-0.297648	3.505991	-2.205256
11	8	0	-2.792072	2.350092	2.037610
12	6	0	1.146163	0.367352	1.063893
13	6	0	0.365988	0.407343	2.063463
14	6	0	-1.194936	-0.737478	3.539570
15	6	0	-0.074566	0.311931	3.464355
16	6	0	2.575490	0.456131	0.768437
17	6	0	3.503013	-0.275962	1.534559
18	6	0	4.870035	-0.186196	1.273446

19	6	0	5.336849	0.640547	0.249096
20	6	0	4.424861	1.373164	-0.514566
21	6	0	3.055795	1.278418	-0.265466
22	1	0	-2.803393	-1.191233	2.130661
23	1	0	-2.995506	0.353184	2.985127
24	1	0	-2.285794	4.298817	0.446446
25	1	0	0.562326	1.576541	-2.577795
26	1	0	-1.264831	5.342669	-1.602437
27	1	0	0.155054	3.943931	-3.092832
28	1	0	-1.612297	-0.790631	4.550884
29	1	0	-0.782356	-1.724086	3.296628
30	1	0	0.786763	0.025960	4.082566
31	1	0	-0.447941	1.281909	3.817216
32	1	0	3.142389	-0.916079	2.334990
33	1	0	5.570838	-0.759135	1.875168
38	6	0	0.382479	-1.596035	-1.872003
39	6	0	0.417348	-2.515440	-0.745329
40	6	0	-0.904263	-2.733555	-0.302928
41	6	0	-1.792539	-1.958764	-1.155556
42	6	0	-1.534433	-0.608768	-3.371784
43	6	0	1.558203	-1.275165	-2.751198
44	6	0	1.669233	-3.137989	-0.200443
45	6	0	-1.355344	-3.664109	0.785869
46	6	0	-3.292181	-1.981853	-1.087273
47	1	0	-1.657698	-1.313975	-4.205737
48	1	0	-0.864533	0.186432	-3.707062
49	1	0	-2.508131	-0.152015	-3.175058
50	1	0	1.356524	-0.411200	-3.391279
51	1	0	1.797247	-2.120032	-3.413490
52	1	0	2.455811	-1.050244	-2.166627
53	1	0	2.481036	-2.408494	-0.119763
54	1	0	2.019109	-3.943206	-0.861479
55	1	0	1.510733	-3.572581	0.790957
56	1	0	-0.540070	-3.916014	1.470499
57	1	0	-1.732491	-4.607359	0.366155
58	1	0	-2.168079	-3.233501	1.380089
59	1	0	-3.696342	-2.859117	-1.612585
60	1	0	-3.729537	-1.090702	-1.545628
61	1	0	-3.647889	-2.028658	-0.053670

D_2

2				
Zero-point correction=			0.508604	
(Hartree/Particle)				
Thermal correction to	Energy=		0.538964	
Thermal correction to	Enthalpy=		0.539908	
Thermal correction to	Gibbs Free Ener	rgy=	0.448728	
Sum of electronic and	zero-point Ener	gies=	-1324.0	11344
Sum of electronic and	thermal Energie	es=	-1323.9	80985
Sum of electronic and	thermal Enthalp	oies=	-1323.9	80040
Sum of electronic and	thermal Free Er	nergies=	-1324.0	71220
Center Atomic	Atomic	Coord	inates (Angs	troms)
Number Number	Туре	Х	Y	Z
1 45	0 -		0.495321	-0.077740
2 7	0 -	-0.840069	-1.300397	-1.407022
3 6	0 -	0.981533	-1.405215	-2.879489
4 6	0 -	1.748864	-2.178964	-0.667980
5 6	0 -	1.656598	-2.016625	0.794162

S41

6	6	0	-1 033740	-0 859265	1 311025
0	0	0	-1.033740	-0.039203	1.511025
/	6	0	-2.2151/5	-2.998497	1.628665
8	6	0	-0.943112	-0.755123	2.707582
9	6	0	-2.122554	-2.863798	3.008924
10	6	0	-1.475843	-1.742055	3.542621
11	8	0	-2 504468	-2 931415	-1 256266
10	6	0	1 1 ()) 2	2.731413	1.230200
12	6	0	1.162335	-0./495/9	-0.353/68
13	6	0	0.604985	-1.623096	-1.189603
14	6	0	-0.075283	-2.597056	-3.287829
15	6	0	0.992051	-2.719768	-2.154949
16	6	0	3 622521	-0 591412	-0 806997
17	e e	0	1 040905	0.400225	0.250760
1 /	0	0	4.940095	-0.499333	-0.339700
18	6	0	5.220012	-0.4/2600	1.008312
19	6	0	4.167137	-0.531067	1.925768
20	6	0	2.848273	-0.613301	1.480986
21	6	0	2,551491	-0.658715	0.105019
22	1	0	-0 617040	-0 465729	-3 303880
22	1	0	0.017040	1 EEOCE1	2 1 4 0 0 0 4
23	1	0	-2.02//26	-1.550651	-3.149084
24	1	0	-2.712492	-3.851627	1.175413
25	1	0	-0.446754	0.099969	3.159217
26	1	0	-2.541419	-3.621018	3.665792
27	1	0	-1 385136	-1 635998	4 621919
29	1	0	-0 674560	-3 508325	-3 351/83
20	1	0	-0.074500	-3.300323	-3.331403
29	1	0	0.382673	-2.424079	-4.266576
30	1	0	2.014893	-2.591179	-2.519560
31	1	0	0.941881	-3.709699	-1.683095
32	1	0	3.412215	-0.602359	-1.873158
33	1	0	5 751692	-0 447669	-1 082292
31	- 1	0	6 247071	-0 102671	1 356470
25	1	0	4 274246	0.402074	1.000470
30	1	0	4.3/4346	-0.511451	2.992853
36	1	0	2.029594	-0.659635	2.192913
37	6	0	-1.465228	2.395391	0.817007
38	6	0	-0.011574	2.420345	0.898167
39	6	0	0.496799	2.604348	-0.455047
10	6	0	-0 596/39	2 53/385	-1 339/67
40	6	0	1 010202	2.004000	1.555407 0 E40100
41	0	0	-1.818282	2.393920	-0.549189
42	6	0	-2.400757	2.411485	1.990099
43	6	0	0.794681	2.637386	2.147147
44	6	0	1.933980	2.862194	-0.800823
45	6	0	-0.565292	2.679278	-2.833915
46	6	0	-3 204715	2 378933	-1 128191
40	1	0	2 464022	2.370333	2 410404
4 /	1	0	-2.404922	3.421109	2.419404
48	Ţ	0	-2.0/2580	1./3503/	2.784939
49	1	0	-3.411651	2.108803	1.703198
50	1	0	0.286715	2.233873	3.028325
51	1	0	0.959518	3.709446	2.330614
52	1	0	1 776614	2 158/85	2 070010
52	1	0	2.(10014)	2.130405	2.075015
55	1	0	2.012344	2.243403	-0.206505
54	1	0	2.193828	3.913209	-0.610082
55	1	0	2.141096	2.659432	-1.855766
56	1	0	0.429148	2.473143	-3.240924
57	1	0	-0.840719	3.698414	-3.140460
5.8	- 1	0 0	-1 273050	1 999259	-3 320815
50	⊥ 1	0	1.2/3030	2 201024	1 100170
59	1	U	-3.52/868	3.391834	-1.4081/6
60	1	0	-3.937136	1.984280	-0.418497
61	1	0	-3.258977	1.763802	-2.033011

Zero-poi	nt correction=			0.507423	
(Hartree	/Particle)	_			
Thermal	correction to	Energy=		0.537468	
Thermal	correction to	Enthalpy	/=	0.538412	
Thermal	correction to	Gibbs Fi	ree Energy=	0.447527	
Sum of	electronic and	zero-po	int Energies=	-1323.	987655
Sum of	electronic and	thermal	Energies=	-1323.	957610
Sum of	electronic and	thermal	Enthalpies=	-1323.	956666
Sum of	electronic and	thermal	Free Energies=	-1324.	047551
Center	Atomic	Atomic	Coo1	rdinates (Ang	stroms)
Number	Number	Туре	Х	Y	Z
1	45	0	0.825921	-0.094480	-0.169353
2	7	0	-0.950028	2.184922	-1.346943
3	6	0	-1.447978	2.886836	-2.546731
4	6	0	-0.222544	2.941218	-0.413855
5	6	0	-0.138323	2.373299	0.946628
6	6	0	-0.211285	0.971349	1.207564
7	6	0	-0.063923	3.288283	2.012300
8	6	0	-0.341178	0.560754	2.558852
9	6	0	-0.156064	2.857608	3.328862
10	6	0	-0.319072	1.486995	3.593803
11	8	0	0.190159	4.057668	-0.734144
12	6	0	-1.278879	0.075520	-0.200281
13	6	0	-1.709430	1.033370	-1.064724
14	6	0	-2.508403	1.927394	-3.113870
1.5	6	0	-2.978379	1.124834	-1.883487
16	6	0	2 676753	-1 013881	0 871965
17	6	0	1 645189	-1 977161	0 500385
18	6	0	1 696386	-2 164114	-0.962314
19	6	0	2 5/3990	-1 181550	-1 16111
20	6	0	3 1292/2	-0 /38702	-0 326/33
20	6	0	3 091309	-0 682138	2 274451
22	6	0	0.063036	-0.002130 -2.018185	1 1/19715
22	6	0	1 006539	-2.910105	_1 71/782
2.3	6	0	2 000000	-0.020034	-2.000000
24	G	0	2.090091 A 122257	-0.920034	-2.900800
25	G	0	4.132237	1 046074	-0.403432
20	G	0	-2.101302	-1.040974	0.100001
27	6	0	-2.529704	-2.145095	-0.700708
28	6	0	-3.193504	-3.198013	-0.396881
29	6	0	-3.926804	-3.183831	0.792319
30	6	0	-3./98664	-2.098557	1.000030
31	6	0	-2.943184	-1.039074	1.349858
32	1	0	-0.625/19	3.090328	-3.238025
33	1	0	-1.865335	3.854139	-2.245444
34	1	0	0.0354/8	4.341415	1.767390
35	1	0	-0.446259	-0.496407	2.783927
36	1	0	-0.123841	3.574411	4.144339
37	1	0	-0.409797	1.142403	4.622010
38	1	0	-3.320218	2.462793	-3.614290
39	1	0	-2.051979	1.249027	-3.844060
40	1	0	-3.398924	0.148161	-2.131690
41	1	0	-3.746889	1.687184	-1.330631
42	1	0	3.637454	-1.517891	2.733274
43	1	0	2.226948	-0.459721	2.910589
44	1	0	3.747332	0.192560	2.299658
45	1	0	-0.040670	-3.181901	1.104782
46	1	0	0.877230	-2.482590	2.448264
47	1	0	1.539851	-3.850577	1.544732
48	1	0	0.029993	-3.498189	-1.283425

49	1	0	1.602933	-4.185762	-1.687250
50	1	0	0.856470	-3.003066	-2.767845
51	1	0	2.907802	0.152720	-3.123407
52	1	0	2.175096	-1.390239	-3.581522
53	1	0	3.888593	-1.311938	-3.145799
54	1	0	5.110809	0.272265	-0.794641
55	1	0	4.273727	1.220568	0.446245
56	1	0	3.818710	1.385169	-1.250821
57	1	0	-1.767653	-2.154375	-1.629905
58	1	0	-3.296249	-4.028521	-1.091253
59	1	0	-4.596241	-4.005045	1.034176
60	1	0	-4.375763	-2.067879	2.581612
61	1	0	-2.866423	-0.192105	2.023678

Ε

Zero-point correction= (Hartree/Particle)	0.509084
Thermal correction to Energy=	0.539501
Thermal correction to Enthalpy=	0.540445
Thermal correction to Gibbs Free Energy=	0.448728
Sum of electronic and zero-point Energies=	-1324.054768
Sum of electronic and thermal Energies=	-1324.024351
Sum of electronic and thermal Enthalpies=	-1324.023407
Sum of electronic and thermal Free Energies=	-1324.115124

Center Atomic Atomic Coordinates (Ang			stroms)		
Number	Number	Туре	Х	Y	Z
1	45	0	0.602860	-0.246958	-0.064514
2	7	0	-0.163108	2.367867	-1.189780
3	6	0	-0.171307	2.934222	-2.535693
4	6	0	0.665750	2.778534	-0.185550
5	6	0	0.568389	1.904175	1.033357
6	6	0	-0.599226	1.082208	1.286976
7	6	0	1.435879	2.218558	2.120336
8	6	0	-0.857848	0.667389	2.635941
9	6	0	1.179707	1.762388	3.390609
10	6	0	0.010248	0.993864	3.648177
11	8	0	1.396430	3.763693	-0.260255
12	6	0	-1.342651	0.613086	0.127350
13	6	0	-0.749981	1.051220	-1.121651
14	6	0	-0.498363	1.717053	-3.419529
15	6	0	-1.344720	0.812749	-2.501099
16	6	0	-2.979518	-1.256700	-0.402453
17	6	0	-4.262164	-1.801698	-0.334370
18	6	0	-5.271521	-1.144638	0.372048
19	6	0	-4.987041	0.066763	1.004855
20	6	0	-3.706235	0.615040	0.928961
21	6	0	-2.677323	-0.038669	0.226542
22	1	0	0.795674	3.398355	-2.746517
23	1	0	-0.944016	3.710984	-2.619303
24	1	0	2.270253	2.880804	1.913015
25	1	0	-1.747254	0.079403	2.838125
26	1	0	1.844249	2.021506	4.210310
27	1	0	-0.201420	0.665891	4.662788
28	1	0	-1.018919	1.995543	-4.340331
29	1	0	0.428987	1.202686	-3.695482
30	1	0	-1.324445	-0.236456	-2.800991

31	1	0	-2.396782	1.134357	-2.512791
32	1	0	-2.197409	-1.784195	-0.938532
33	1	0	-4.470613	-2.747511	-0.828194
34	1	0	-6.268659	-1.572646	0.429284
35	1	0	-5.763950	0.591051	1.555339
36	1	0	-3.496725	1.565517	1.412528
37	6	0	1.928590	-2.012938	0.927023
38	6	0	0.997875	-2.627639	0.074447
39	6	0	1.169849	-2.051835	-1.256735
40	6	0	2.317724	-1.172684	-1.229926
41	6	0	2.719014	-1.076106	0.133333
42	6	0	2.121516	-2.251903	2.397071
43	6	0	0.018693	-3.707543	0.433565
44	6	0	0.501394	-2.562446	-2.501771
45	6	0	3.005376	-0.554912	-2.414633
46	6	0	3.876421	-0.287431	0.673680
47	1	0	3.042284	-2.819490	2.593882
48	1	0	1.289140	-2.818821	2.824524
49	1	0	2.196466	-1.309765	2.951989
50	1	0	-0.247522	-3.675530	1.494496
51	1	0	0.433938	-4.705195	0.229015
52	1	0	-0.910933	-3.623658	-0.137467
53	1	0	-0.543224	-2.836433	-2.322376
54	1	0	1.010893	-3.460719	-2.879385
55	1	0	0.518817	-1.818480	-3.303924
56	1	0	2.319576	-0.422210	-3.257454
57	1	0	3.834346	-1.185375	-2.768975
58	1	0	3.421246	0.428571	-2.174742
59	1	0	4.746004	-0.937702	0.846203
60	1	0	3.626227	0.184308	1.630108
61	1	0	4.184233	0.503050	-0.016679

2a

Zero-point correction=	0.286555
(Hartree/Particle)	
Thermal correction to Energy=	0.301718
Thermal correction to Enthalpy=	0.302662
Thermal correction to Gibbs Free Energy=	0.243386
Sum of electronic and zero-point Energies=	-824.663563
Sum of electronic and thermal Energies=	-824.648401
Sum of electronic and thermal Enthalpies=	-824.647457
Sum of electronic and thermal Free Energies=	-824.706732

Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	Туре	Х	Y	Ζ
1	7	0	-1.657605	-1.430834	0.084401
2	6	0	-2.093958	-2.830861	0.169651
3	6	0	-2.572002	-0.383593	0.070660
4	6	0	-1.949490	0.948368	-0.014012
5	6	0	-0.537113	1.105510	-0.047541
6	6	0	-2.795245	2.068808	-0.067598
7	6	0	-0.022766	2.418695	-0.149292
8	6	0	-2.265762	3.345965	-0.159364
9	6	0	-0.871200	3.513936	-0.202650
10	8	0	-3.781898	-0.605423	0.119596
11	6	0	0.320884	-0.069125	0.009265
12	6	0	-0.280181	-1.290990	0.072927

13	6	0	-0.826511	-3.606184	-0.226186
14	6	0	0.328580	-2.670800	0.192915
15	6	0	2.564104	-0.315707	-1.115158
16	6	0	3.956980	-0.219956	-1.106973
17	6	0	4.620386	0.250438	0.027830
18	6	0	3.882583	0.624108	1.153332
19	6	0	2.490709	0.522269	1.145161
20	6	0	1.809914	0.047712	0.011869
21	1	0	-2.948553	-2.989284	-0.490989
22	1	0	-2.420093	-3.052810	1.193792
23	1	0	-3.865950	1.894672	-0.036674
24	1	0	1.051625	2.564155	-0.188008
25	1	0	-2.921961	4.210719	-0.200803
26	1	0	-0.449435	4.512850	-0.281059
27	1	0	-0.773837	-4.588900	0.249572
28	1	0	-0.808646	-3.756507	-1.311439
29	1	0	1.228856	-2.789045	-0.413715
30	1	0	0.619930	-2.851773	1.237359
31	1	0	2.048843	-0.667314	-2.005424
32	1	0	4.522663	-0.506601	-1.989753
33	1	0	5.704324	0.327944	0.034549
34	1	0	4.391050	0.991072	2.041154
35	1	0	1.920121	0.808479	2.024854

F

Zero-point correction=		0.467853
(Hartree/Particle)		
Thermal correction to Ene	rgy=	0.498968
Thermal correction to Ent	halpy=	0.499912
Thermal correction to Gib	bs Free Energy=	0.405593
Sum of electronic and zer	o-point Energies=	-1246.598040
Sum of electronic and the	rmal Energies=	-1246.566924
Sum of electronic and the	rmal Enthalpies=	-1246.565980
Sum of electronic and the	rmal Free Energies=	-1246.660299

Center	Atomic	Atomic	Coordinates (Angstro		
Number	Number	Туре	Х	Y	Z
1	45	0	0.683165	-0.240669	-0.217272
2	7	0	1.692371	1.216530	-1.321110
3	6	0	2.698587	0.922775	-2.320364
4	6	0	1.384154	2.522104	-1.092972
5	6	0	0.303205	2.651430	-0.072995
6	6	0	-0.216157	1.468719	0.464699
7	6	0	-0.174021	3.899547	0.335146
8	6	0	-1.235713	1.546060	1.418120
9	6	0	-1.181121	3.974676	1.297576
10	6	0	-1.709244	2.797768	1.836755
11	8	0	1.919182	3.491092	-1.647980
12	6	0	-1.341520	-0.501593	-1.487712
13	6	0	-0.276041	-0.493164	-2.129440
14	6	0	-2.698090	-0.576523	-1.034424
15	6	0	-3.324291	-1.833273	-0.898410
16	6	0	-4.658161	-1.917349	-0.507095
17	6	0	-5.386987	-0.753729	-0.246143
18	6	0	-4.776750	0.495614	-0.385104
19	6	0	-3.443050	0.591529	-0.775722
20	1	0	2.436402	0.020852	-2.889210
21	1	0	3.693661	0.751649	-1.879211

22	1	0	2.787516	1.768974	-3.009486
23	1	0	0.263169	4.787244	-0.114500
24	1	0	-1.682476	0.646491	1.834857
25	1	0	-1.555796	4.940977	1.625805
26	1	0	-2.498812	2.848093	2.584023
27	1	0	0.286800	-0.485178	-3.043343
28	1	0	-2.760102	-2.733295	-1.123479
29	1	0	-5.130917	-2.890934	-0.411155
30	1	0	-6.427802	-0.820483	0.058478
31	1	0	-5.342333	1.402397	-0.189969
32	1	0	-2.966902	1.558672	-0.883883
33	6	0	1.330051	-0.898280	1.896149
34	6	0	0.429218	-1.892665	1.401756
35	6	0	1.068608	-2.538852	0.267852
36	6	0	2.328508	-1.934189	0.046703
37	6	0	2.470866	-0.865099	1.018910
38	6	0	1.186606	-0.105921	3.161661
39	6	0	-0.839749	-2.350806	2.062097
40	6	0	0.502787	-3.704861	-0.488525
41	6	0	3.363617	-2.377105	-0.946608
42	6	0	3.691309	-0.015306	1.220772
43	1	0	1.611899	-0.666159	4.006183
44	1	0	0.141889	0.110368	3.396490
45	1	0	1.711299	0.850708	3.098906
46	1	0	-1.224397	-1.594651	2.751803
47	1	0	-0.671327	-3.268210	2.643690
48	1	0	-1.630620	-2.562974	1.335881
49	1	0	-0.587783	-3.739798	-0.415464
50	1	0	0.887031	-4.651653	-0.084453
51	1	0	0.767095	-3.670001	-1.549892
52	1	0	2.905622	-2.828748	-1.832428
53	1	0	4.032354	-3.129908	-0.505803
54	1	0	3.987243	-1.545377	-1.283836
55	1	0	4.351756	-0.462456	1.976763
56	1	0	3.427721	0.990419	1.558645
57	1	0	4.265631	0.089593	0.297328

TS6

Zero-poi	int correction=			0.467773	
(Hartree	e/Particle)				
Thermal	l correction to	Energy=		0.497641	
Thermal	l correction to	Enthalp	y=	0.498585	
Thermal	l correction to	Gibbs F:	ree Energy=	0.408184	
Sum of	electronic and	zero-po:	int Energies=	-1246.5	574583
Sum of	electronic and	thermal	Energies=	-1246.5	544716
Sum of	electronic and	thermal	Enthalpies=	-1246.5	543772
Sum of	electronic and	thermal	Free Energies=	-1246.0	634172
Center	Atomic	Atomic	Coor	dinates (Angs	stroms)
Number	Number	Туре	Х	Y	Z
1	45	0	0.904209	-0.147940	-0.244726
2	7	0	0.844405	1.593693	-1.401094
3	6	0	1.645044	1.782742	-2.594384
4	6	0	-0.068020	2.546365	-1.093621
5	6	0	-0.880934	2.160158	0.102916
6	6	0	-0.840501	0.823903	0.539905
7	6	0	-1.607233	3.117819	0.816092

8	6	0	-1.508426	0.472424	1.725124
9	6	0	-2.263322	2.761356	1.994796
10	6	0	-2.199858	1.439712	2.455662
11	8	0	-0.234512	3.623945	-1.684580
12	6	0	-0.350670	-0.807792	-1.705434
13	6	0	-1.348056	-0.542778	-0.948037
14	6	0	-3.741507	0.091554	-0.556881
15	6	0	-5.077393	-0.281226	-0.436079
16	6	0	-5.438105	-1.632313	-0.446011
17	6	0	-4.454657	-2.613529	-0.583728
18	6	0	-3.115605	-2.246036	-0.713212
19	6	0	-2.744579	-0.888933	-0.705074
20	1	0	1.200886	2.569063	-3.213191
21	1	0	2.677117	2.088059	-2.359875
22	1	0	1.698615	0.850848	-3.172238
23	1	0	-1.617398	4.135405	0.435379
24	1	0	-1.520706	-0.561992	2.059882
25	1	0	-2.819582	3.506678	2.557499
26	1	0	-2.707667	1.158863	3.375476
27	1	0	-0.140663	-1.205823	-2.686862
28	1	0	-3.459251	1.138854	-0.544360
29	1	0	-5.840864	0.484978	-0.333791
30	1	0	-6.481848	-1.917848	-0.345875
31	1	0	-4.728530	-3.665141	-0.591431
32	1	0	-2.345286	-3.003061	-0.826945
33	6	0	2.129658	-0.450583	1.740736
34	6	0	1.651838	-1.731352	1.256893
35	6	0	2.275958	-1.991321	-0.009730
36	6	0	3.055048	-0.847454	-0.362625
37	6	0	2.967964	0.105914	0.742596
38	6	0	1.807640	0.139021	3.082651
39	6	0	0.820302	-2.706794	2.040199
40	6	0	2.152409	-3.260344	-0.802864
41	6	0	3.991821	-0.733728	-1.530253
42	6	0	3.721778	1.401756	0.810638
43	1	0	2.356847	-0.382389	3.878611
44	1	0	0.740003	0.065367	3.312900
45	1	0	2.078179	1.196952	3.132015
46	1	0	0.168207	-2.196681	2.754927
47	1	0	1.457114	-3.394920	2.614390
48	1	0	0.188621	-3.315756	1.385961
49	1	0	1.162026	-3.712637	-0.690954
50	1	0	2.890837	-4.002321	-0.469006
51	1	0	2.321291	-3.087593	-1.869870
52	1	0	3.634163	-1.299953	-2.395614
53	1	0	4.986567	-1.123321	-1.270111
54	1	0	4.119350	0.305091	-1.845069
55	1	0	4.777319	1.225400	1.059982
56	1	0	3.307020	2.070622	1.569011
57	1	0	3.689932	1.931919	-0.145490

G_1

Zero-point correction= 0.470625 (Hartree/Particle) 0.500723 Thermal correction to Energy= 0.501667 Thermal correction to Gibbs Free Energy= 0.409852 Sum of electronic and zero-point Energies= -1246.628247 Sum of electronic and thermal Energies= -1246.598150

Sum of	electronic	and	thermal	Enthalpies=	-1246	5.597206
Sum or	electronic	and	thermal	Free Energies=	-1246	.689021
Center	Atomic		Atomic	Coo	rdinates (Ar	nastroms)
Number	Number		Туре	Х	Y	Z
1	45		0	-0.970149	-0.242097	7 0.175103
2	7		0	-0.534069	0.424201	L 2.078738
3	6		0	-0./1881/	-0.251044	4 3.34/145
4 5	6		0	0.338896	1 858010	1.995033
5	6		0	1 342672	1 071474	-0.343370
7	6		0	0.141305	3.140993	0.145285
8	6		0	1.644184	1.610799	-1.632294
9	6		0	0.425925	3.636762	2 -1.118588
10	6		0	1.190523	2.866527	7 -2.010900
11	8		0	0.886229	2.061533	3 2.913200
12	6		0	0.816050	-1.149063	3 0.317442
13	6		0	1.817356	-0.314624	4 -0.003762
14 15	6		0	4.23///9	0.331569	0.189388
15	6		0	5.595280	U.UI3U35	0.101832
10 17	6		0	5.050059	-2 271430	-0.124848
18	6		0	3 693913	-1 952922	-0.362804
19	6		0	3.260960	-0.647952	-0.064603
20	1		0	-0.455071	0.431272	2 4.161842
21	1		0	-1.761517	-0.565923	3.471604
22	1		0	-0.082016	-1.145253	3.428239
23	1		0	-0.396654	3.748124	0.867989
24	1		0	2.256847	1.024741	-2.311992
25	1		0	0.085268	4.627943	3 -1.406274
26	1		0	1.439646	3.259029	9 -2.993580
27	1		0	0.956/6/	-2.180878	3 0.638021
28 29	1		0	5.92/425	1.344620 0.785130	0.429199 0.370991
30	1		0	7 067228	-1 536068	-0.149406
31	1		0	5.360144	-3.286582	-0.622199
32	1		0	2.955200	-2.716513	-0.591511
33	6		0	-3.035767	0.324410	-0.966590
34	6		0	-2.137840	-0.511700	-1.784692
35	6		0	-1.967809	-1.756350	-1.137347
36	6		0	-2.599070	-1.642172	2 0.172370
37	6		0	-3.350531	-0.375696	5 0.197258
38	6		0	-3.485623	1.695681	-1.375843
39 40	6		0	-1.040014	-0.122244	-3.147734
40	6		0	-2 793128	-2.765250	1 147981
42	6		0	-4.232174	0.058578	1.329734
43	1		0	-4.117884	1.649598	3 -2.272771
44	1		0	-2.630979	2.339992	2 -1.613780
45	1		0	-4.060947	2.186299	9 -0.586644
46	1		0	-1.265458	0.904726	5 -3.159016
47	1		0	-2.457642	-0.179697	7 -3.886649
48	1		0	-0.839994	-0.778358	-3.486726
49	1		0	-0.531761	-2.725699	-2.424471
5U 51	1		0	-2.021307	-3.64556	/ -2.15/494
51 50	1		U	-U./90348 _1 0/2070	-3.330858	-0.000/29
J∠ 53	⊥ 1		0	-1.943072 -3 kq1nkq	-3.404302) <u>0</u> 898226
54	± 1		0	-2.913245	-2.39189	7 2.169045
55	- 1		0	-5.116385	-0.588099	9 1.407983

56	1	0	-4.581207	1.086061	1.198890
57	1	0	-3.703407	0.010453	2.287452

TS7

Zero-poin	nt correction=			0.468360	
(Hartree,	corroction to	Enorati		0 198208	
Thermal	correction to	Energy-		0.490200	
Thermal	correction to	Cibba Eree	Enorati	0.499132	
Cum of	correction to	Sama maint	Energy-	1246	575162
Sum of	electronic and	zero-point	Energies=	-1246.	D/D403 E4EC14
Sum of e	electronic and	thermal Ene	ergles=	-1246.	545614
Sum of e	electronic and	thermal Fre	e Energies=	-1246.	634967
Center	Atomic	Atomic	 Coor	dinates (Ang	stroms)
Number	Number	Туре	X	Y	Z
1	45	0	0.494025	-0.385879	-0.077050
2	7	0	1.639572	0.470306	-1.672304
3	6	0	2.276672	-0.234670	-2.772310
4	6	0	2.018457	1.787354	-1.497513
5	6	0	1.424917	2.382983	-0.275600
6	6	0	0.664894	1.547314	0.559833
7	6	0	1.643501	3.729728	0.038305
8	6	0	0.117287	2.104711	1.723421
9	6	0	1.097454	4.268479	1.200078
10	6	0	0.333526	3.451328	2.040165
11	8	0	2.780810	2.371791	-2.270890
12	6	0	-1.203994	0.371830	-1.206710
13	6	0	-0.386728	0.363920	-2.169935
14	6	0	-2.612778	0.453412	-0.847202
15	6	0	-3.567190	-0.264112	-1.595191
16	6	0	-4.922028	-0.188431	-1.275859
17	6	0	-5.349669	0.610384	-0.212652
18	6	0	-4.411402	1.330045	0.531154
19	6	0	-3.053170	1.248544	0.225222
20	1	0	1.918027	-1.266023	-2.800347
21	1	0	3.366211	-0.233375	-2.652977
22	1	0	2.064375	0.244230	-3.740515
23	1	0	2.247810	4.324842	-0.641196
24	1	0	-0.492288	1.503030	2.392924
25	1	0	1.260799	5.312790	1.452746
26	1	0	-0.101177	3.863794	2.948614
27	1	0	-0.122286	0.374734	-3.212024
28	1	0	-3.234346	-0.878201	-2.426908
29	1	0	-5.644636	-0.749045	-1.863013
30	1	0	-6.406319	0.672747	0.032900
31	1	0	-4.737558	1.958921	1.355349
32	1	0	-2.323933	1.810606	0.797929
33	6	0	1.130451	-1.372374	1.868421
34	6	0	-0.261834	-1.656456	1.621561
35	6	0	-0.327632	-2.548618	0.474380
36	6	0	0.980099	-2.741171	-0.020803
37	6	0	1.888728	-1.976044	0.817276
38	6	0	1.696603	-0.673847	3.069534
39	6	0	-1.408357	-1.369049	2.549504
40	6	0 0	-1.590114	-3.173073	-0.042388
41	6	0 0	1.395163	-3.635233	-1.154078
42	6	0	3.384359	-1.964997	0.688568

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	43	1	0	1.845300	-1.390905	3.889013
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	44	1	0	1.036813	0.116268	3.435296
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	45	1	0	2.663884	-0.213826	2.850262
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	46	1	0	-1.183077	-0.532594	3.217392
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	47	1	0	-1.627842	-2.240160	3.183687
49 1 0 -2.415651 -2.454918 -0.0665 50 1 0 -1.900954 -4.005507 0.6043 51 1 0 -1.462909 -3.572161 -1.0528 52 1 0 0.585603 -3.781175 -1.8757 53 1 0 1.688480 -4.628559 -0.7861 54 1 0 2.255007 -3.230007 -1.6967 55 1 0 3.828376 -2.833052 1.1962 56 1 0 3.819008 -1.064455 1.1307 57 1 0 3.698872 -2.002422 -0.3584	48	1	0	-2.323488	-1.119226	2.003524
50 1 0 -1.900954 -4.005507 0.6043 51 1 0 -1.462909 -3.572161 -1.0528 52 1 0 0.585603 -3.781175 -1.8757 53 1 0 1.688480 -4.628559 -0.7861 54 1 0 2.255007 -3.230007 -1.6967 55 1 0 3.828376 -2.833052 1.1962 56 1 0 3.819008 -1.064455 1.1307 57 1 0 3.698872 -2.002422 -0.3584	49	1	0	-2.415651	-2.454918	-0.066555
51 1 0 -1.462909 -3.572161 -1.0528 52 1 0 0.585603 -3.781175 -1.8757 53 1 0 1.688480 -4.628559 -0.7861 54 1 0 2.255007 -3.230007 -1.6967 55 1 0 3.828376 -2.833052 1.1962 56 1 0 3.819008 -1.064455 1.1307 57 1 0 3.698872 -2.002422 -0.3584	50	1	0	-1.900954	-4.005507	0.604300
52 1 0 0.585603 -3.781175 -1.8757 53 1 0 1.688480 -4.628559 -0.7861 54 1 0 2.255007 -3.230007 -1.6967 55 1 0 3.828376 -2.833052 1.1962 56 1 0 3.819008 -1.064455 1.1307 57 1 0 3.698872 -2.002422 -0.3584	51	1	0	-1.462909	-3.572161	-1.052882
53 1 0 1.688480 -4.628559 -0.7861 54 1 0 2.255007 -3.230007 -1.6967 55 1 0 3.828376 -2.833052 1.1962 56 1 0 3.819008 -1.064455 1.1307 57 1 0 3.698872 -2.002422 -0.3584	52	1	0	0.585603	-3.781175	-1.875758
54 1 0 2.255007 -3.230007 -1.6967 55 1 0 3.828376 -2.833052 1.1962 56 1 0 3.819008 -1.064455 1.1307 57 1 0 3.698872 -2.002422 -0.3584	53	1	0	1.688480	-4.628559	-0.786130
55 1 0 3.828376 -2.833052 1.1962 56 1 0 3.819008 -1.064455 1.1307 57 1 0 3.698872 -2.002422 -0.3584	54	1	0	2.255007	-3.230007	-1.696721
56 1 0 3.819008 -1.064455 1.1307 57 1 0 3.698872 -2.002422 -0.3584	55	1	0	3.828376	-2.833052	1.196251
57 1 0 3.698872 -2.002422 -0.3584	56	1	0	3.819008	-1.064455	1.130744
	57	1	0	3.698872	-2.002422	-0.358498

G2

Zero-point correction=		0 471814
(Hartroo/Darticlo)		0.1/1011
(naitiee/faiticie)		
Thermal correction to	Energy=	0.501193
Thermal correction to	Enthalpy=	0.502137
Thermal correction to	Gibbs Free Energy=	0.413067
Sum of electronic and	zero-point Energies=	-1246.628427
Sum of electronic and	thermal Energies=	-1246.599048
Sum of electronic and	thermal Enthalpies=	-1246.598104
Sum of electronic and	thermal Free Energies=	-1246.687174
Center Atomic	Atomic Coord	inates (Angstroms)

Center	Atomic	Atomic	Coordinates (Angstroms)			
Number	Number	Туре	Х	Y	Ζ	
1	45	0	0.428111	-0.394764	-0.072082	
2	7	0	0.835028	0.731993	-1.973383	
3	6	0	1.242580	0.054198	-3.215915	
4	6	0	1.693786	1.873305	-1.634041	
5	6	0	1.546526	2.306160	-0.233071	
6	6	0	0.938392	1.419582	0.684403	
7	6	0	2.052885	3.555669	0.158912	
8	6	0	0.814005	1.865009	2.009126	
9	6	0	1.922959	3.967610	1.480062	
10	6	0	1.294373	3.119028	2.399588	
11	8	0	2.451575	2.341444	-2.461488	
12	6	0	-1.186048	0.579373	-0.871131	
13	6	0	-0.599536	1.093024	-1.953238	
14	6	0	-2.592738	0.678924	-0.479028	
15	6	0	-3.623540	0.444549	-1.409516	
16	6	0	-4.962776	0.545361	-1.032888	
17	6	0	-5.301527	0.883078	0.279369	
18	6	0	-4.288977	1.116127	1.214328	
19	6	0	-2.949779	1.005607	0.843025	
20	1	0	0.601123	-0.818236	-3.351321	
21	1	0	2.286713	-0.257927	-3.137459	
22	1	0	1.145447	0.722975	-4.078814	
23	1	0	2.540629	4.180813	-0.584045	
24	1	0	0.330204	1.238467	2.753994	
25	1	0	2.300105	4.936488	1.795185	
26	1	0	1.175569	3.438879	3.432990	
27	1	0	-0.986306	1.711058	-2.765485	
28	1	0	-3.362413	0.173345	-2.428900	
29	1	0	-5.743546	0.357673	-1.765739	
30	1	0	-6.345186	0.960061	0.572326	

31	1	0	-4 544027	1 383785	2 236657
			4.544027	1.000/00	2.23003/
32	1	0	-2.160466	1.192523	1.564390
33	6	0	1.461211	-1.772777	1.516069
34	6	0	0.008523	-1.788547	1.594526
35	6	0	-0.484790	-2.485113	0.416396
36	6	0	0.618407	-2.754855	-0.420248
37	6	0	1.828822	-2.304026	0.261596
38	6	0	2.381345	-1.311153	2.607370
39	6	0	-0.801428	-1.521738	2.831862
40	6	0	-1.917022	-2.870068	0.185492
41	6	0	0.600854	-3.486213	-1.732494
42	6	0	3.222378	-2.495589	-0.267151
43	1	0	2.419646	-2.050146	3.419780
44	1	0	2.055375	-0.360578	3.040414
45	1	0	3.401664	-1.169343	2.240685
46	1	0	-0.316619	-0.784259	3.478658
47	1	0	-0.926568	-2.439304	3.425612
48	1	0	-1.801034	-1.148382	2.588686
49	1	0	-2.604505	-2.078451	0.497213
50	1	0	-2.170910	-3.773553	0.757761
51	1	0	-2.115125	-3.082399	-0.869141
52	1	0	-0.382090	-3.439041	-2.210945
53	1	0	0.848856	-4.548689	-1.598035
54	1	0	1.333510	-3.076259	-2.435954
55	1	0	3.567764	-3.526998	-0.107695
56	1	0	3.937859	-1.829038	0.222406
57	1	0	3.278223	-2.303755	-1.344360

Η

•	•					
Ζ	lero-poi	int correction=			0.536345	
(Hartree	e/Particle)				
	Thermal	l correction to	Energy=		0.568566	
	Thermal	l correction to	Enthalp	Y=	0.569510	
	Thermal	L correction to	Gibbs F:	ree Energy=	0.474392	
	Sum of	electronic and	zero-po:	int Energies=	-1363.	269276
	Sum of	electronic and	thermal	Energies=	-1363.	237055
	Sum of	electronic and	thermal	Enthalpies=	-1363.	236111
	Sum of	electronic and	thermal	Free Energies=	-1363.	331229
	Center	Atomic	Atomic	Coor	dinates (Ang	stroms)
	Number	Number	Туре	Х	Y	Z
	1	 4 5	 0		-0 195052	-0 143345
	2	7	0	-1.557735	1.450262	0.740027
	3	6	0	-2.887958	0.421916	2.633449
	4	6	0	-1.000961	2.681004	0.549895
	5	6	0	0.219971	2.605763	-0.299521
	6	6	0	0.610755	1.343666	-0.754545
	7	6	0	0.930604	3.754837	-0.659223
	8	6	0	1.736640	1.237904	-1.576274
	9	6	0	2.043273	3.648466	-1.492938
	10	6	0	2.441390	2.389304	-1.952117
	11	8	0	-1.440912	3.751290	0.994150
	12	6	0	0.096242	-0.507639	1.924885
	13	6	0	1.169309	-0.543004	1.284182
	14	6	0	-1.659710	0.462634	3.555772
	15	6	0	-0.620531	-0.620961	3.219442
	16	6	0	-2.823370	1.401310	1.451890
	17	6	0	2.586858	-0.699875	1.071374

18	6	0	3.150056	-1.991453	1.035043
19	6	0	4.526372	-2.161848	0.900092
20	6	0	5.363690	-1.047992	0.801602
21	6	0	4.816423	0.236827	0.845688
22	6	0	3.440782	0.416012	0.977360
23	1	0	-3.795237	0.663844	3.203280
24	1	0	-3.024076	-0.606094	2.274927
25	1	0	0.582331	4.711026	-0.277977
2.6	1	0	2.092066	0.269301	-1.917002
27	1	0	2 599171	4 536446	-1 783326
28	1	0	3 312616	2 295406	-2 597307
29	1	0	-1 967455	0 286643	4 594138
30	1	0	-1 190764	1 452641	3 524865
31	1	0	-1 118802	-1 600816	3 256885
32	1	0	0 155 <i>171</i>	-0 639034	3 998219
22	1	0	-2 650220	1 166070	0 760012
27	1	0	-3.050520	2 417245	1 010264
34	1	0	-3.003631	2.41/243	1 1200204
35	1	0	2.500533	-2.855907	1.130833
36	1	0	4.945202	-3.1643//	0.8/8/40
37	1	0	6.43/1//	-1.180647	0.69/81/
38	1	0	5.463659	1.106896	0.778085
39	1	0	3.016829	1.412700	1.011409
40	6	0	-0.921743	-0.914570	-2.328295
41	6	0	-0.290197	-1.975401	-1.606600
42	6	0	-1.229798	-2.449267	-0.604544
43	6	0	-2.408189	-1.670468	-0.686304
44	6	0	-2.191188	-0.660564	-1.708657
45	6	0	-0.429056	-0.260437	-3.585011
46	6	0	0.997842	-2.658029	-1.966888
47	6	0	-0.977215	-3.621047	0.298097
48	6	0	-3.714513	-1.925114	0.008457
49	6	0	-3.218291	0.315800	-2.203264
50	1	0	-0.830899	-0.789354	-4.460770
51	1	0	0.660075	-0.275344	-3.660160
52	1	0	-0.747566	0.782890	-3.650878
53	1	0	1.639033	-2.013467	-2.574392
54	1	0	0.806994	-3.571398	-2.548362
55	1	0	1.570492	-2.945524	-1.080673
56	1	0	-0.010314	-3.530693	0.805543
57	1	0	-0.960749	-4.559058	-0.273078
58	1	0	-1.748439	-3.714867	1.067414
59	1	0	-3.588022	-2.517774	0.918571
60	1	0	-4.393889	-2.482477	-0.652171
61	- 1	0 0	-4.222007	-0.996356	0.281990
62	- 1	0	-3 818295	-0 128655	-3 010011
63	- 1	0	-2 751251	1 223174	-2 595248
64	- 1	0	-3.904521	0.616081	-1,407572

TS8

Zero-point correction=	0.535264
	0 500707
Thermal correction to Energy=	0.566/0/
Thermal correction to Enthalpy=	0.567651
Thermal correction to Gibbs Free Energy=	0.474529
Sum of electronic and zero-point Energies=	-1363.250406
Sum of electronic and thermal Energies=	-1363.218963
Sum of electronic and thermal Enthalpies=	-1363.218019
Sum of electronic and thermal Free Energies=	-1363.311141

Center	Atomic	Atomic	Coord	dinates (Angs	stroms)
Number	Number	Туре	Х	Y	Z
		·			0 100706
	45	0	-0.806223	-0.155924	-0.102786
2		0	-1.022227	1.661313	0.930359
3	6	0	-2.018597	0.884891	3.131987
4	6	0	-0.148197	2.661672	0.640090
5	6	0	0.804308	2.26/934	-0.441597
6	6	0	0.91/224	0.906800	-0./8290/
/	6	0	1.514145	3.240148	-1.1514/4
8	6	0	1./14592	0.549422	-1.885/36
9	6	0	2.303401	2.8/5325	-2.242194
10	6	0	2.388/30	1.528085	-2.616325
11	8	0	-0.119410	3./88054	1.159461
12	6	0	0.336006	-0.46/808	1.5/8068
13	6	0	1.324912	-0.296339	0.//1853
14	6	0	-0.643/01	0.505416	3./0/3/6
15	6	0	0.010195	-0./0/303	3.004/02
16	6	0	-1.996596	1.909159	1.980/90
1/	6	0	2.719030	-0./31493	0.654811
18	6	0	3.028938	-2.091314	0.836508
19	6	0	4.354812	-2.525658	0.827078
20	6	0	5.388792	-1.606804	0.640692
21	6	0	5.091085	-0.252114	0.462290
22	6	0	3.768492	0.184240	0.460670
23	1	0	-2.639139	1.320999	3.926874
24	1	0	-2.533116	-0.032630	2.821103
25	1	0	1.403449	4.275213	-0.840695
26	1	0	1.844539	-0.497023	-2.148858
27	1	0	2.845660	3.631875	-2.803373
28	1	0	2.999750	1.236400	-3.467499
29	1	0	-0.751024	0.238559	4.766746
30	1	0	0.037583	1.363617	3.663117
31	1	0	-0.667324	-1.568245	3.090633
32	1	0	0.938552	-0.976741	3.530033
33	1	0	-3.012395	1.964854	1.554786
34	1	0	-1.773074	2.902394	2.385487
35	1	0	2.219789	-2.800298	0.987289
36	1	0	4.578366	-3.579996	0.966939
37	1	0	6.422274	-1.942834	0.634990
38	1	0	5.893713	0.467308	0.324545
39	1	0	3.537131	1.234870	0.320855
40	6	0	-1.739717	-0.722915	-2.193029
41	6	0	-1.191462	-1.904335	-1.554908
42	6	0	-1.956804	-2.170879	-0.368765
43	6	0	-2.893980	-1.109819	-0.205194
44	6	0	-2.752315	-0.209515	-1.349373
45	6	0	-1.320002	-0.185758	-3.529634
46	6	0	-0.167339	-2.823368	-2.158321
47	6	0	-1.803646	-3.378100	0.511042
48	6	0	-4.027564	-1.055825	0.778118
49	6	0	-3.625956	0.984527	-1.600476
50	1	0	-1.691613	-0.828561	-4.339498
51	1	0	-0.231076	-0.128793	-3.623813
52	1	0	-1.713632	0.819911	-3.699054
53	1	0	0.492551	-2.290632	-2.848661
54	1	0	-0.651719	-3.628957	-2.728686
55	1	0	0.458291	-3.295368	-1.394204
56	1	0	-0.754820	-3.678831	0.603047
57	1	0	-2.353567	-4.236467	0.100678
58	1	0	-2.186747	-3.195940	1.519386

59	1	0	-3.824359	-1.654109	1.670586
60	1	0	-4.947434	-1.450347	0.322609
61	1	0	-4.240587	-0.032885	1.101581
62	1	0	-4.609244	0.676548	-1.982798
63	1	0	-3.181154	1.664136	-2.331846
64	1	0	-3.791406	1.555294	-0.682017

I_1

Zero-point correction=		0.537209
(Hartree/Particle)		
Thermal correction to	Energy=	0.568988
Thermal correction to	Enthalpy=	0.569933
Thermal correction to	Gibbs Free Energy=	0.475371
Sum of electronic and	zero-point Energies=	-1363.296162
Sum of electronic and	thermal Energies=	-1363.264383
Sum of electronic and	thermal Enthalpies=	-1363.263439
Sum of electronic and	thermal Free Energies=	-1363.358000

Center	Atomic	Atomic	Coord	dinates (Ang	nates (Angstroms)	
Number	Number	Туре	Х	Y	Ζ	
1	45	0	-0.997637	-0.111832	-0.030169	
2	7	0	-0.455526	-0.756779	1.860664	
3	6	0	-0.221700	-3.249648	1.558312	
4	6	0	0.343937	0.194446	2.371593	
5	6	0	0.442593	1.388741	1.423815	
6	6	0	1.154446	1.321921	0.187092	
7	6	0	-0.025851	2.641977	1.882050	
8	6	0	1.367222	2.522337	-0.532815	
9	6	0	0.169924	3.795841	1.141696	
10	6	0	0.879364	3.734725	-0.073490	
11	8	0	0.935127	0.212251	3.456693	
12	6	0	0.807813	-0.954199	-0.422436	
13	6	0	1.728429	0.020608	-0.300707	
14	6	0	1.101226	-3.183790	0.772289	
15	6	0	1.054122	-2.424739	-0.580541	
16	6	0	-0.523463	-2.064388	2.491549	
17	6	0	3.199483	-0.078167	-0.510597	
18	6	0	3.742258	-0.588936	-1.701908	
19	6	0	5.123694	-0.677701	-1.880172	
20	6	0	5.990513	-0.245687	-0.874550	
21	6	0	5.464737	0.276124	0.310441	
22	6	0	4.084754	0.361860	0.490399	
23	1	0	-0.211735	-4.146497	2.193859	
24	1	0	-1.049537	-3.393311	0.853741	
25	1	0	-0.512755	2.684016	2.852257	
26	1	0	1.944763	2.477696	-1.452262	
27	1	0	-0.190892	4.751360	1.513386	
28	1	0	1.062557	4.643693	-0.641068	
29	1	0	1.421974	-4.209825	0.546619	
30	1	0	1.887226	-2.742718	1.398515	
31	1	0	0.283762	-2.885563	-1.213920	
32	1	0	2.014836	-2.588071	-1.086401	
33	1	0	-1.521128	-2.221371	2.931592	
34	1	0	0.190997	-2.057201	3.324137	
35	1	0	3.071071	-0.903324	-2.496946	
36	1	0	5.522558	-1.075247	-2.810236	
37	1	0	7.066385	-0.311280	-1.013920	
38	1	0	6.131479	0.612295	1.100476	

39	1	0	3.680930	0.752443	1.421064
40	6	0	-2.193774	0.926117	-1.700063
41	6	0	-2.050350	-0.448842	-1.998505
42	6	0	-2.680091	-1.184888	-0.914841
43	6	0	-3.382998	-0.213308	-0.062506
44	6	0	-3.067242	1.064443	-0.521633
45	6	0	-1.714646	2.086914	-2.520522
46	6	0	-1.413504	-1.050467	-3.217129
47	6	0	-2.975270	-2.656398	-0.928719
48	6	0	-4.250355	-0.587358	1.102800
49	6	0	-3.510312	2.385091	0.035299
50	1	0	-2.545835	2.528253	-3.088309
51	1	0	-0.945812	1.785418	-3.237001
52	1	0	-1.290338	2.875535	-1.890271
53	1	0	-0.645700	-0.394343	-3.636583
54	1	0	-2.164710	-1.227592	-3.999486
55	1	0	-0.939924	-2.010981	-2.993969
56	1	0	-2.154016	-3.235455	-1.360486
57	1	0	-3.872481	-2.856668	-1.533048
58	1	0	-3.166836	-3.040351	0.076979
59	1	0	-3.757041	-1.319922	1.749937
60	1	0	-5.195051	-1.032794	0.761671
61	1	0	-4.495895	0.281727	1.718647
62	1	0	-4.184857	2.898239	-0.663768
63	1	0	-2.659389	3.052304	0.214516
64	1	0	-4.043003	2.265643	0.982499

TS9

Zero-point correction= (Hartree/Particle)		0.535093
Thermal correction to	Energy=	0.566756
Thermal correction to	Enthalpy=	0.567700
Thermal correction to	Gibbs Free Energy=	0.473558
Sum of electronic and	zero-point Energies=	-1363.256829
Sum of electronic and	thermal Energies=	-1363.225166
Sum of electronic and	thermal Enthalpies=	-1363.224222
Sum of electronic and	thermal Free Energies=	-1363.318364

Center	Atomic	Atomic	Coordinates (Angstroms)		stroms)
Number	Number	Туре	Х	Y	Z
1	45	0	-0.223965	0.530402	0.067630
2	7	0	-1.865484	-0.456740	-0.880515
3	6	0	-2.642136	-1.181722	-3.170746
4	6	0	-2.653312	-1.204711	-0.042903
5	6	0	-1.997813	-1.441272	1.272608
6	6	0	-0.803601	-0.750267	1.539044
7	6	0	-2.553916	-2.326190	2.203168
8	6	0	-0.162278	-0.989916	2.761736
9	6	0	-1.910271	-2.548999	3.418369
10	6	0	-0.710811	-1.883013	3.690895
11	8	0	-3.771982	-1.642793	-0.345232
12	6	0	0.981995	-1.104180	-0.743863
13	6	0	0.059875	-1.621438	-1.424441
14	6	0	-1.347383	-1.915626	-3.532301
15	6	0	-0.648471	-2.547799	-2.309031
16	6	0	-2.443057	-0.042250	-2.158628
17	6	0	4.274487	-1.833693	0.947956
18	6	0	5.172487	-1.676000	-0.110849

19	6	0	4.691894	-1.321785	-1.373124
20	6	0	3.325149	-1.129185	-1.577512
21	6	0	2.416085	-1.279523	-0.513978
22	6	0	2.908430	-1.629498	0.755121
23	1	0	-3.082374	-0.759722	-4.084870
24	1	0	-3.367605	-1.887784	-2.756112
25	1	0	-3.487690	-2.821143	1.949311
26	1	0	0.772128	-0.490376	3.007632
27	1	0	-2.332140	-3.236372	4.147062
28	1	0	-0.196173	-2.057618	4.633859
29	1	0	-1.572815	-2.722915	-4.240299
30	1	0	-0.643783	-1.239170	-4.036961
31	1	0	0.137422	-3.243142	-2.650048
32	1	0	-1.368137	-3.143544	-1.733421
33	1	0	-1.775180	0.708362	-2.593362
34	1	0	-3.415526	0.438698	-1.977840
35	1	0	4.638502	-2.115743	1.932468
36	1	0	6.236493	-1.829972	0.046073
37	1	0	5.380327	-1.201032	-2.205494
38	1	0	2.951275	-0.862407	-2.561788
39	1	0	2.210749	-1.752233	1.576433
40	6	0	-0.133594	2.341488	1.424303
41	6	0	1.183137	2.116501	0.898556
42	6	0	1.142216	2.423555	-0.525376
43	6	0	-0.180084	2.757575	-0.876692
44	6	0	-0.998937	2.646332	0.320470
45	6	0	-0.522291	2.385918	2.872792
46	6	0	2.440365	1.917847	1.696293
47	6	0	2.344887	2.444214	-1.421633
48	6	0	-0.664179	3.237973	-2.214407
49	6	0	-2.455673	2.999075	0.410514
50	1	0	-1.567511	2.102972	3.022395
51	1	0	-0.392648	3.405789	3.261655
52	1	0	0.087842	1.718187	3.484919
53	1	0	3.144522	1.252103	1.188622
54	1	0	2.226333	1.483395	2.677088
55	1	0	2.954066	2.874923	1.868795
56	1	0	2.065113	2.412091	-2.478812
57	1	0	3.011868	1.599865	-1.223208
58	1	0	2.927148	3.362885	-1.262694
59	1	Û	-0.043020	2.863879	-3.034467
60	1	0	-0.644398	4.335917	-2.265308
61 60	1	U	-1.695314	2.928905	-2.4091/8
62	1	U	-2.99/3/3	2.696691	-0.490654
63 61	1	0	-2.393813	4.UX316U 2 506210	U.JJ1433
04	<u>⊥</u>	U	-2.934806	2.300310	1.200023

l₂

Zero-point correction=	0.537935
(Hartree/Particle)	
Thermal correction to Energy=	0.569211
Thermal correction to Enthalpy=	0.570155
Thermal correction to Gibbs Free Energy=	0.477334
Sum of electronic and zero-point Energies=	-1363.304802
Sum of electronic and thermal Energies=	-1363.273526
Sum of electronic and thermal Enthalpies=	-1363.272582
Sum of electronic and thermal Free Energies	-1363.365403
Center Atomic Atomic C	coordinates (Angstroms)

S57

Number	Number	Туре	Х	Y	Z
1	45	0	0.499684	-0.497577	-0.166395
2	7	0	0.726803	1.675808	-0.759561
3	6	0	0.468779	3.492285	-2.482748
4	6	0	1.609440	2.259445	0.245592
5	6	0	1.478484	1.626085	1.572542
6	6	0	0.943299	0.320927	1.636100
7	6	0	1.944135	2.299254	2.712589
8	6	0	0.846476	-0.266325	2.906299
9	6	0	1.837747	1.693000	3.959607
10	6	0	1.280984	0.411419	4.050254
11	8	0	2.398485	3.140618	-0.045617
12	6	0	-1.205151	0.630244	-0.045965
13	6	0	-0.731947	1.809324	-0.457289
14	6	0	-1.0344/3	3.593497	-2.1/8/82
15	6	0	-1.32/964	3.161952	-0./251/5
16 17	6	0	1.026/88	2.098280	-2.153160
1 /	6	0	-4.956959	0.140722	-0.192925
10	6	0	-3.655670	0.496099	-0.330641
19	6	0	-2.5/6221	0.270444	1 507207
20	6	0	-2.840303	-0.33/910	1.00/30/
21	6	0	-4.140J11 -5.210102	-0.003310	1.926202
22	0	0	-5.210102	-0.447655	-2 5/2200
23	1	0	1 021645	J. 701020	-1 001225
24	1	0	2 383436	3 286705	2 500650
25	1	0	2.303430	-1 260046	3 016615
20	1	0	2 180747	2 207244	4 853063
28	1	0	1 184325	-0 065273	5 023788
29	1	0	-1 386729	4 618196	-2 350176
30	1	0	-1 595055	2 941908	-2 864268
31	1	0	-2.404565	3.134717	-0.528941
32	1	0	-0.892625	3.905743	-0.038783
33	1	0	0.570050	1.345311	-2.803760
34	1	0	2.110660	2.070471	-2.289523
35	1	0	-5.774035	0.322425	-0.886781
36	1	0	-3.463168	0.942933	-1.522396
37	1	0	-2.021448	-0.517904	2.249775
38	1	0	-4.336124	-1.139345	2.895146
39	1	0	-6.223469	-0.724924	1.325824
40	6	0	1.698895	-2.501167	0.020468
41	6	0	0.254936	-2.679932	0.077736
42	6	0	-0.270101	-2.418213	-1.254089
43	6	0	0.792336	-1.949478	-2.052998
44	6	0	2.016977	-1.993970	-1.256688
45	6	0	2.657734	-2.839814	1.124272
46	6	0	-0.496143	-3.393380	1.166193
47	6	0	-1.689906	-2.658995	-1.675695
48	6	0	0.733026	-1.578791	-3.507209
49	6	0	3.382977	-1.649324	-1.779261
50	1	0	2.802281	-3.927104	1.192550
51	1	0	2.297847	-2.493065	2.097769
52	1	0	3.638982	-2.386107	0.959010
53	1	0	-0.001460	-3.281505	2.135766
54	1	0	-0.561729	-4.471695	0.958800
55	1	0	-1.517902	-3.013521	1.265554
56	1	0	-2.397188	-2.373669	-0.891926
57	1	0	-1.851784	-3.723811	-1.896029
58	1	U	-1.949380	-2.093619	-2.575643
59	1	0	-0.277415	-1.287146	-3.809618

60	1	0	1.036061	-2.421177	-4.145293
61	1	0	1.404745	-0.745669	-3.741273
62	1	0	3.796583	-2.470807	-2.381478
63	1	0	4.088249	-1.448008	-0.968087
64	1	0	3.358128	-0.762108	-2.421257

Single Point energies (atomic units) in solution (methanol) calculated with PCM and the basis set [B3LYP/6-311+G(2df,2p) (C, H, O, N) SDD (Rh)] for the stationary points calculated with basis set [B3LYP/6-31G(d) (C, H, O, P) LANL2DZ (Rh)]

1a

SCF Done: E(RB3LYP) = -826.383854445

RhCp*(OAc)₂

SCF Done: E(RB3LYP) = -958.034208475

AcOH

SCF Done: E(RB3LYP) = -229.184617354

Α

SCF Done: E(RB3LYP) = -1555.20491705

TS1

SCF Done: E(RB3LYP) = -1555.17823861

В

SCF Done: E(RB3LYP) = -1555.19747310

С

SCF Done: E(RB3LYP) = -1326.01092398

TS2

SCF Done: E(RB3LYP) = -1325.97607810

D_1

SCF Done: E(RB3LYP) = -1326.01578781

TS3

SCF Done: E(RB3LYP) = -1325.99167880

E_1

SCF Done: E(RB3LYP) = -1326.04167573

C₂

SCF Done: E(RB3LYP) = -1326.00656776

TS4

SCF Done: E(RB3LYP) = -1325.98087699

D_2

SCF Done: E(RB3LYP) = -1326.00869134

TS5

SCF Done: E(RB3LYP) = -1325.98637592

Ε

SCF Done: E(RB3LYP) = -1326.05323034

2a:

SCF Done: E(RB3LYP) = -825.235899617

F:

SCF Done: E(RB3LYP) = -1248.55309852

TS6:

SCF Done: E(RB3LYP) = -1248.52655976

G_1

SCF Done: E(RB3LYP) = -1248.57956030

TS7:

SCF Done: E(RB3LYP) = -1248.52362053

G2

SCF Done: E(RB3LYP) = -1248.56847424

Η

SCF Done: E(RB3LYP) = -1365.32606176

TS8:

SCF Done: E(RB3LYP) = -1365.30182313

I_1

SCF Done: E(RB3LYP) = -1365.34481675

TS9:

SCF Done: E(RB3LYP) = -1365.30375982

I2

SCF Done: E(RB3LYP) = -1365.34370592

4. NMR-Spectra

f1 (ppm) (

. 190 . 130 f1 (ppm) . 80 . 50 . 30

S77

70 0 200 190 . 120 110 100 90 f1 (ppm) 60 50 20 10 . 180 . 170 160 . 150 . 140 . 130 80 40 30

Electronic Supplementary Material (ESI) for Chemical Science This journal is The Royal Society of Chemistry 2013

