Supplementary Information for:

Chiral Recognition in Contact Ion-pairs; Observation, Characterization and Analysis.

Jevgenij A. Raskatov, Amber L. Thompson, Andrew R. Cowley, Timothy D. W. Claridge and John. M. Brown

Chemistry Research Laboratory, University of Oxford, 12 Mansfield Rd., Oxford OX1 3TA.

A. Synthesis of substituted BINOL Borates –	2
B. Synthesis of Diphosphine Borate Ion Pairs -	6
C. NMR Spectra of Diphosphine Borate Ion Pairs and Precursors –	14
D. PGSE DOSY experiments with ((S),(S,S)-, (R),(S,S) and (rac),(rac)-6	28
E. Experiments for Chiral Discrimination in Solution –	32

F. DFT calculations on (S), (S, S)- and (R), (S, S)-6 - 35

A. Synthesis of substituted BINOL Borates

B. General Experimental Details

Solvents were dried by passage through an activated alumina column.ⁱ Preparative chromatography was performed on Merck 60Å, 230-400 mesh silica gel. NMR solvents were stored over 4Å molecular sieves and degassed before all experiments (3 freeze-pump-thaw cycles). NMR spectra were recorded on a Bruker DRX500, AVC500 or DPX250 spectrometer. Mass spectra were recorded on the Bruker MicroTOF spectrometer. Melting points were measured on a Reichert-Koffler block apparatus. IR spectra were recorded on a Bruker Tensor 27 FTIR (thin films) or on a Nicolet 6700 FTIR with Goldengate ATR accessory (neat solids). Chemical shifts (δ) are reported in parts per million (ppm) and referenced to the residual solvent peak (¹H and ¹³C NMR) or *via* external reference (¹¹B NMR, ³¹P NMR). All precious metals were generous loans from Johnson Matthey. The organometallic complexes [Rh(cod)Cl]₂, [Rh(nbd)Cl]₂, [Ir(cod)Cl]₂, [Rh(cod)₂]BF₄ and [Rh(nbd)₂]BF₄ were synthesised from RhCl₃ and IrCl₃, following established synthetic protocols. All neutral rhodium and iridium complexes were stable over several months, whereas the cationic BF₄-salts were found prone to slow decomposition upon formation of rhodium black, typically over weeks. BINOL used in preparation of all chiral borates was purchased in bulk quantities from Reuter Chemische Apparatebau (Freiburg). The enantiomeric ratios of both (R)- and (S)-BINOL were given as 99.9:0.1. DFT calculations were carried out using Gaussian03ⁱⁱ and dispersion corrected by the method of Grimme.ⁱⁱⁱ We thank Dr. Robert Paton for help with this procedure.

Sodium *Bis*((*S*)-1,1'-binaphthalene-2,2'-dioxy)-borate[§]

(*S*)-1,1'-binaphthalene-2,2'-diol (3.20 g, 11.2 mmol) and NaB(OMe)₄ (0.90 g, 5.7 mmol) were dissolved in 30 ml THF and heated to reflux for 10 h. The suspension was then allowed to cool down to 40 °C and treated with B(OMe)₃ (0.75 g, 1.00 ml, 7.1 mmol). Upon cooling, a white precipitate spontaneously formed. The resulting suspension was stirred at 40 °C for 1 h and then refluxed for 3 h. The suspension was subsequently allowed to cool down to 20 °C and the title compound allowed to crystallise over 5 h. The thus obtained white precipitate was filtered off and washed with 20 ml THF, followed by 2 x 20 ml Et₂O and 20 ml pentane. Drying *in vacuo* yielded

the title compound as a white crystalline solid (3.31 g, 5.5 mmol, 98 %).¹ m.p. > 300 °C; $[\alpha]_D^{20}$ +279 (*c* 1.0, DMSO); IR (neat) 3059, 1618, 1591, 1506, 1464, 1429, 1367, 1333, 1265, 1246, 1070, 985, 949, 908 cm⁻¹; δ_H (500 MHz, DMSO-d₆): 7.13 (1H, d, $J_{8,7}$ = 8 Hz, H-8), 7.16 (1H, t, *J* = 8 Hz, H-7), 7.29 (1H, t, *J* = 7 Hz, H-6), 7.33 (1H, d, $J_{3,4}$ = 9 Hz, H-3), 7.93 (1H, d, $J_{5,6}$ = 9 Hz, H-5), 7.97 (1H, d, $J_{4,3}$ = 9 Hz, H-4); δ_C (126 MHz, DMSO-d₆): 121.8 (C-1), 122.3 (C-6), 124.5 (C-3), 124.8 (C-7), 125.8 (C-8), 128.0 (C-5), 128.1 (C-4), 128.9 (C-9), 132.8 (C-10), 156.1 (C-2); δ_B (160 MHz, DMSO-d₆): 9.2 ppm; *m/z* (ESI -) calc. for [C₄₀H₂₄BO₄]⁻ 579.1773, found 579.1791.

Following the general borate preparation procedure from (*R*)-1,1'-binaphthalene-2,2'-diol (4.50 g, 15.7 mmol) the (*R*)-enantiomer of the product (4.41 g, 7.3 mmol, 93 %) was afforded. $[\alpha]_{D}^{20}$ -278 (*c* 1.0, DMSO); the spectroscopic characterisation of the title compound was identical to the (S)-enantiomer. The only literature example quotes an optical rotation of $[\alpha]_{D}^{20}$ +173.6 (*c* 1.04, DMSO) for the (*R*)-enantiomer without giving any further characterisation details.²⁵ This value conflicts the optical rotation the authors claimed for the same borate as the triethylammonium salt, stated as $[\alpha]_{D}^{20}$ -232.4 (*c* 1.01, DMSO). Given the fact that the anion is sensitive to water and the use of aqueous THF in their procedure, it is likely that the authors isolated a sodium salt of (*R*)-BINOL instead of the claimed product).

Following the general borate preparation procedure from (\pm) -1,1'-binaphthalene-2,2'-diol (1.00 g, 3.5 mmol) afforded the racemate of the title product (1.01 g, 1.75 mmol, 96%); the spectroscopic characterisation of the title compound was identical to that for the enantiopure analogues.

Sodium *Bis*((*S*)-6,6'-dibromo-1,1'-binaphthalene-2,2'-dioxy)-borate;

Following the general borate preparation procedure from (*S*)-6,6'-dibromo-1,1'-binaphthalene-2,2'diol (1.252 g, 2.82 mmol) afforded the title compound (0.580 g, 0.63 mmol, 45 %). m.p. > 300 °C; $[\alpha]_D^{20}$ +70 (*c* 0.2, DMSO); IR (neat) 3056, 1583, 1489, 1462, 1371, 1354, 1329, 1265, 1246, 1066, 984, 944, 872 cm⁻¹; δ_H (500 MHz, DMSO-d₆): 7.02 (1H, d, $J_{8,7}$ = 9 Hz, H-8), 7.29-7.38 (2H, m, H-3 and H-7), 8.00 (1H, d, $J_{4,3}$ = 9 Hz, 1H, 4-H), 8.22 (1H, d, $J_{5,7}$ = 2 Hz, 1H, 5-H); δ_C (126 MHz, DMSO-d₆): 115.5 (C-6), 121.5 (C-1), 125.6 (C-3), 127.8 (C-4 or C-8), 127.9 (C-4 or C-8), 128.1

[§]This procedure is later described as the general borate preparation procedure, utilised in other cases. When spontaneous crystallisation did not occur, the ion-pair was precipitated with Et₂O.

(C-7), 129.9 (C-5), 130.3 (C-9 or C-10), 131.3 (C-9 or C-10), 156.5 (C-2); δ_B (80 MHz, DMSO-d₆): 8.8 ppm; *m/z* (ESI -) calc. for [C₄₀H₂₀BBr₄O₄]⁻ 890.8188, found 890.8194.

Following the general borate preparation procedure from (\pm) -6,6'-dibromo-1,1'binaphthalene-2,2'-diol (221 mg, 0.50 mmol) afforded the racemate of the title product (80 mg, 0.087 mmol, 35 %); the spectroscopic characterisation was identical to the enantiopure analogue.

Sodium *Bis*((*S*)-6,6'-dimethyl-1,1'-binaphthalene-2,2'-dioxy)-borate;

Following the general borate preparation procedure from (*S*)-6,6'-dimethyl-1,1'-binaphthalene-2,2'diol (1.121 g, 3.57 mmol) afforded the title compound (0.68 g, 1.0 mmol, 65 %). m.p. > 300 °C; IR (neat) 2974, 1591, 1500, 1473, 1363, 1336, 1273, 1246, 1072, 1057, 1026, 1003, 982, 957, 914, 876, 818 cm⁻¹; $[\alpha]_D^{20}$ +197 (*c* 0.3, DMSO); δ_H (500 MHz, DMSO-d₆): 2.42 (3H, s, H-11), 6.98 (1H, d, $J_{7,8} = 9$ Hz, H-7 or H-8), 7.04 (1H, d, $J_{7,8} = 9$ Hz, H-7 or H-8), 7.26 (1H, d, $J_{3,4} = 9$ Hz, H-3), 7.67 (1H, s, H-5), 7.83 (1H, d, $J_{4,3} = 9$ Hz, H-4); δ_C (126 MHz, DMSO-d₆): 20.9, 121.9, 124.6, 125.9, 126.9, 127.4, 129.1, 131.0, 131.1, 155.5; δ_B (160 MHz, DMSO-d₆): 9.2 ppm; *m/z* (ESI -) calc. for [C₄₄H₃₂BO₄]⁻ 635.2399, found 635.2415.

Following the general borate preparation procedure from (\pm) -6,6'-dimethyl-1,1'binaphthalene-2,2'-diol (660 mg, 2.1 mmol) afforded the racemate of the title product (470 mg, 0.71 mmol, 68 %). Single crystals of X-Ray quality were obtained by allowing the refluxing concentrated THF solution of the title compound to cool down to 20 °C over 5 h. The spectroscopic characterisation was identical to that of the enantiopure material.

Sodium *Bis*((*S*)-6,6'-*bis*(4-methoxyphenyl)-1,1'-binaphthalene-2,2'-dioxy)-borate;

Following the general borate preparation procedure from (*S*)-6,6'-*bis*(4-methoxyphenyl)-1,1'binaphthalene-2,2'-diol (360 mg, 0.73 mmol) afforded the title compound (244 mg, 65 %). m.p. > 300 °C; IR (thin film) 3017, 1608, 1518, 1495, 1469, 1341, 1247, 1179, 1079, 1027, 819 cm⁻¹; $[\alpha]_D^{20}$ +171 (*c* 0.1, DMSO); δ_H (500 MHz, DMSO-d₆): 3.82 (3H, s, H-15), 7.06 (2H, d, $J_{13,12}$ = 9.0 Hz, H-13), 7.27 (1H, d, $J_{8,7}$ = 9.0 Hz, H-8), 7.38 (1H, d, $J_{3,4}$ = 9.0 Hz, H-3), 7.55 (1H, dd, $J_{7,8}$ = 9.0 Hz, $J_{7,5} = 1.5$ Hz, H-7), 7.76 (2H, d, $J_{12,13} = 9.0$ Hz, H-12), 8.07 (1H, d, $J_{4,3} = 9.0$ Hz, H-4), 8.22 (1H, d, $J_{5,7} = 1.5$ Hz, H-5); $\delta_{\rm C}$ (126 MHz, DMSO-d₆): 56.0 (C-15), 115.3 (C-13), 122.6, 124.6 (C-7), 125.5 (C-5), 125.8 (C-3), 127.3 (C-8), 128.5 (C-12), 129.4 (C-4), 130.2, 132.6, 133.3, 134.4, 157.0 (C-2), 159.5 (C-14); $\delta_{\rm B}$ (160 MHz, DMSO-d₆): 9.0 ppm; *m*/*z* (ESI -) calc. for [C₆₈H₄₈BO₈]⁻ 1003.3448, found 1003.3465.

Following the general borate preparation procedure from (\pm) -(*S*)-6,6'-*bis*(4-methoxyphenyl)-1,1'-binaphthalene-2,2'-diol (150 mg, 0.30 mmol) afforded the racemate of the title product (90 mg, 58 %). The spectroscopic characterisation was identical to that of the enantiopure material.

B1. Precursor complexes and NMR assignents:

((S) - 2, 2' - Bis(diphenylphosphino) - 1, 1' - binaphthyl)(1, 5 - cyclooctadiene) rhodium(I) tetrafluoroborate

[Rh(cod)Cl]₂ (10.3 mg, 0.02 mmol) was dissolved in 2 ml CH₂Cl₂ under argon and (S)- 2,2'bis(diphenylphosphino)-1,1'-binaphthyl (25.2 mg, 0.04 mmol) added. After stirring for 5 min, AgBF₄ (15 mg, 0.08 mmol) was added as a solid. After stirring at 20 °C for 2 h, the suspension was filtered over a Celite pad and washed with CH₂Cl₂. The yellow solution was concentrated to 1 ml and the complex precipitated with Et₂O. Subsequent washing with Et₂O and drying under high vacuum afforded the title compound (28.1 mg, 78 %). m.p. 202-205 °C (decomp.); $\delta_{\rm H}$ (500 MHz, CDCl₃): 2.19 (1H, m, H_b²), 2.40 (1H, m, H_b), 2.46 (1H, m, H_a²), 2.67 (1H, m, H_a), 4.66 (1H, m, H_B), 4.84 (1H, m, H_A), 6.51 (1H, d, $J_{8.7}$ = 8.6 Hz, H-8), 6.76 (2H, t, J = 7.6 Hz, H-3_{ax}), 6.84 (1H, t, $J_{4.3}$ = 7.6 Hz, H-4_{ax}), 7.03 (1H, t, J = 7.7 Hz, H-7), 7.39 (1H, t, J = 7.7 Hz, H-6), 7.44 (2H, m, H-2_{ax}), 7.58 (2H, m, H-2_{eq}), 7.60 (3H, m, H-3,4_{eq}), 7.66 (1H, d, $J_{5.6} = 8.2$ Hz, H-5), 7.78 (1H, d, $J_{4.3} = 8.9$ Hz, H-4), 7.93 (1H, m, H-3); δ_C (126 MHz, CDCl₃): 29.3 (C_b), 32.3 (C_a), 98.1 (m, C_A), 103.4 (m, C_B), 127.0 (BINAP CH), 127.3 (t, *J*_{C,P} = 4 Hz, BINAP CH), 127.4 (BINAP CH), 128.0 (BINAP CH), 128.3 (t, J_{CP} = 6 Hz, BINAP CH), 128.5 (BINAP CH), 128.6, 128.7, 128.9, 129.1, 129.3 (t, *J_{C,P}* = 5 Hz, BINAP CH), 129.6 (t, *J_{C,P}* = 4 Hz, BINAP CH), 130.5 (BINAP CH), 131.5 (BINAP <u>C</u>H), 133.9 (t, $J_{C,P}$ = 3 Hz, BINAP <u>C</u>H), 134.1 (BINAP <u>C</u>H), 134.3 (t, $J_{C,P}$ = 4 Hz, BINAP <u>C</u>H), 135.1 (t, $J_{C,P} = 7$ Hz, BINAP CH), 139.0 (t, $J_{C,P} = 7$ Hz, BINAP CH); δ_P (202 MHz, CDCl₃): 25.4 (d, $J_{P.Rh} = 145$ Hz) ppm.

((±)-2,2'-Bis(diphenylphosphino)-1,1'-binaphthyl)(2,5-norbornadiene) rhodium (I) tetrafluoroborate.

[Rh(nbd)Cl]₂ (0.200 g, 0.43 mmol) were dissolved in 20 ml CH₂Cl₂ and the solution stirred at 20 °C for 5 min. Then (\pm) -2,2'-bis(diphenylphosphino)-1,1'-binaphthyl (0.543 g, 0.87 mmol) was added as a solid and stirring continued for further 1 h. The clear light orange solution was subsequently treated with AgBF₄ (0.180 mg, 0.92 mmol) as a solid. The resulting suspension was filtered over a Celite pad and the off-white residue washed with CH₂Cl₂ until the filtrate was colourless. The obtained light orange solution was concentrated to 5 ml and the complex precipitated by a slow addition of 50 ml Et₂O under vigorous stirring. Subsequent washing of the orange solid with Et₂O (2 x 20 ml) and drying under high vacuum afforded the title compound (0.76 g, 0.84 mmol, 98 %). m.p. 218-220 °C (decomp.); δ_H (500 MHz, CDCl₃): 1.65 (1H, s, H_b), 4.19 (1H, s, H_a), 4.98 (2H, m, H_A and H_B), 6.53 (1H, d, $J_{8,7}$ = 8.5 Hz, H-8), 6.77 (2H, t, J = 7.5 Hz, H-3_{ax}), 6.83 (1H, t, $J_{4ax,3ax}$ = 7.5 Hz, H-4_{ax}), 7.04 (1H, m, H-7), 7.38 (1H, t, J = 7.5 Hz, H-6), 7.48 (4H, m, H-2_{ax} and H-2_{eq}), 7.55 $(1H, t, J_{4eq,3eq} = 7 Hz, H-4_{eq}), 7.60 (2H, t, J = 7.5 Hz, H-3_{eq}), 7.65 (1H, d, J_{5,6} = 8 Hz, H-5), 7.75$ (2H, m, H-3 and H-4); $\delta_{\rm C}$ (126 MHz, CDCl₃, unassigned multiplet contributions italicised): 54.1 (C_a), 70.1 (C_b), 82.3 (q, J = 5 Hz, C_B), 90.1 (q, J = 5 Hz, C_A), 127.0 127.1 (m), 127.4, 127.6, 127.8 (C-4_{ax}), 128.0, 128.4, 128.5 (t, J = 6 Hz), 128.5, 128.7, 129.1, 129.2, 129.3, 129.4, 129.5 (t, J = 4.5 Hz), 129.7 (t, J = 4.5 Hz), 130.5, 131.3 (C-4_{eq}), 133.7 (t, J = 5 Hz, C-2_{eq}), 133.9 (t, J = 4 Hz, C-9), 134.2 (C-10), 134.8 (t, J = 7 Hz, C-2_{ax}), 139.1 (t, J = 7 Hz, C-1); $\delta_{\rm B}$ (160 MHz, CDCl₃): -1.3 ppm; $δ_P$ (202 MHz, CDCl₃): 27.2 (d, $J_{P,Rh}$ = 156 Hz) ppm.

B 2 Ion Pairs of Organometallic Complexes with Chiral Borates

(S)-(2,2'-Bis(diphenylphosphino)-1,1'-binaphthyl)(2,5-norbornadiene)rhodium (I) bis-(S)-(2,2')binaphtholatoborate; [(S)-(5)](S,S)-B_H

[Rh(nbd)(*S*)-BINAP]BF₄ (19.1 mg, 0.021 mmol) was dissolved in 2 ml CH₂Cl₂ and Na(*S*,*S*)-**B**_H (13.2 mg, 0.022 mmol) added. The suspension was stirred for 2 h and the quantitative ion exchange demonstrated *via* ¹¹B NMR by showing the complete disappearance of the BF₄⁻ resonance at δ_B = -1.3 ppm along with the new signal at 9.1 ppm. The NaBF₄ precipitate was removed by filtering the suspension over Celite. The residue was washed with CH₂Cl₂ until the filtrate became colourless. The solution was concentrated to 1 ml and the compound precipitated with 25 ml Et₂O, followed by 10 ml pentane. The resulting orange solid was dried in vacuo to afford the ion pair as a bright orange solid. This general procedure was used in preparation of all subsequently described chiral ion pairs, unless denoted otherwise. δ_H (500 MHz, CDCl₃): 1.03 (1H, m, H_b), 3.45 (1H, m, H_a), 4.40 (1H, m, H_B), 4.62 (1H, m, H_A), 6.38 (3H, m, H-8 and H-3_{ax}), 6.59 (1H, t, *J_{ax,3ax}* = 8 Hz, H-4_{ax}), 6.93 (1H, t, *J* = 7 Hz, H-7), 7.04 (3H, m, H-7_B and H-4_{eq}), 7.16 (2H, t, *J* = 7 Hz, H-3_{eq}), 7.18 (4H, m, H-2_{ax} and H-2_{eq}), 7.23 (2H, m, H-6_B), 7.29 (1H, t, *J* = 8 Hz, H-6), 7.34 (2H, d, *J_{5B,6B}* = 8 Hz, H-5_B), 7.91 (2H, d, *J_{4B,3B}* = 8 Hz, H-4_B); δ_B (160 MHz, CDCl₃): 9.1 ppm; δ_P (202 MHz, CDCl₃): 27.2 (d, *J_{P,Rh}* = 161 Hz) ppm.

(S)-(2,2)-Bis(diphenylphosphino)-1,1)-binaphthyl)(2,5-norbornadiene) rhodium (I) bis-(R)-(2,2)-binaphtholato-borate; [(S)-(5)](R,R)-B_H

The ion pair was prepared from the precursor salts according to the standard ion exchange procedure. Single crystals of X-Ray quality were obtained by slow diffusion of Et₂O into the CH₂Cl₂ solution of the title compound. $\delta_{\rm H}$ (500 MHz, CD₂Cl₂): 1.46 (1H, m, H_b), 3.91 (1H, m, H_a) 4.69 (1H, m, H_B), 4.89 (1H, m, H_A), 6.50 (1H, d, $J_{8,7} = 9$ Hz, H-8), 6.64 (2H, t, J = 7 Hz, H-3_{ax}), 6.75 (1H, t, $J_{4ax,3ax} = 7$ Hz, H-4_{ax}), 7.02 (1H, m, H-7), 7.14 (2H, m, H-7_B), 7.28-7.40 (9H, m, H-6_B, H-8_B, H-3_{eq}, H-4_{eq}, H-4, H-6), 7.48 (3H, m, H-3 and phenyl H-2), 7.56 (2H, d, $J_{3B,4B} = 9$ Hz, H-3_B), 7.59 (1H, d, $J_{5,6} = 8$ Hz, H-5), 7.66 (2H, m, phenyl H-2), 7.92

 $(2H, d, J_{5B,6B} = 8 \text{ Hz}, \text{H-5}_B)$, 7.96 $(2H, d, J_{4B,3B} = 9 \text{ Hz}, \text{H-4}_B)$; $\delta_B (160 \text{ MHz}, \text{CD}_2\text{Cl}_2)$: 9.2 ppm; $\delta_P (202 \text{ MHz}, \text{CD}_2\text{Cl}_2)$ CD_2Cl_2): 26.9 (d, $J_{P,Rh} = 161$ Hz) ppm.

(±)-(2,2'-Bis(diphenylphosphino)-1,1'-binaphthyl)(2,5-norbornadiene) rhodium bis-(S)-(2,2')-**(I)** binaphtholato-borate; $[(\pm)-(5)](S,S)-B_{H}$

The ion pair was prepared from the precursor salts according to the standard ion exchange procedure. δ_B (80 MHz, CDCl₃): 9.1; δ_P (101 MHz, CDCl₃): 27.3 (d, *J*_{P,Rh} = 161 Hz), 27.6 (d, *J*_{P,Rh} = 161 Hz) ppm.

(±)-(2,2'-Bis(diphenylphosphino)-1,1'-binaphthyl)(2,5-norbornadiene) rhodium **(I)** binaphtholatoborate; $[(\pm)-(5)](\pm)-B_{H}$

$$(\pm)$$
- $(2,2^{2})$ -

The ion pair was prepared from the precursor salts according to the standard ion-exchange procedure. Single crystals of X-Ray quality were obtained via either slow evaporation of a CHCl₃ solution of the title compound or slow diffusion of Et₂O into the CH₂Cl₂ solution of the ion pair. δ_B (80 MHz, CDCl₃): 9.1; δ_P (101 MHz, CDCl₃): 27.5 (d, $J_{P,Rh}$ = 161 Hz) ppm.

(S)-(2,2'-Bis(diphenylphosphino)-1,1'-binaphthyl)(1,5-cyclooctadiene) rhodium (I) bis-(S)-(2,2')-binaphtholato-borate; [(S)-(6)](S,S)-B_H

The ion pair was prepared from the precursor salts according to the standard ion exchange procedure. Single crystals of X-Ray quality were obtained by slow diffusion of Et₂O into the CH₂Cl₂ solution of the title compound. $\delta_{\rm H}$ (500 MHz, CDCl₃): 1.69 (1H, m, H_b·), 1.86 (1H, m, H_a·), 2.03 (1H, m, H_b), 2.17 (1H, m, H_a), 4.30 (1H, m, H_B), 4.53 (1H, m, H_A), 6.38 (1H, d, $J_{8,7}$ = 9 Hz, H-8), 6.49 (1H, t, J = 8 Hz, H-3_{ax}), 6.61 (1H, t, $J_{4ax,3ax}$ = 8 Hz, H-4_{ax}), 6.94 (1H, t, J = 8 Hz, H-7), 7.07 (2H, t, J = 8 Hz, H-7_B), 7.16 (1H, m, H-2_{ax}), 7.21-7.31 (6H, m, H-3_{eq}, H-4_{eq}, H-6, H-6_B), 7.33 (1H, m, H-2_{eq}), 7.38 (2H, d, $J_{8B,7B}$ = 9 Hz, H-8_B), 7.45 (1H, d, $J_{5,6}$ = 8 Hz, H-5), 7.47, (1H, d, $J_{4,3}$ = 9 Hz, H-4), 7.59 (2H, d, $J_{3B,4B}$ = 9 Hz, H-3_B), 7.66 (1H, m, H-3), 7.86 (2H, d, $J_{5B,6B}$ = 8 Hz, H-5_B), 7.87 (2H, d, $J_{4B,3B}$ = 9 Hz, H-4_B); $\delta_{\rm B}$ (160 MHz, CDCl₃): 9.1; $\delta_{\rm P}$ (202 MHz, CDCl₃): 25.4 (d, $J_{P,Rh}$ = 146 Hz) ppm.

(S)-(2,2'-Bis(diphenylphosphino)-1,1'-binaphthyl)(1,5-cyclooctadiene)rhodium (I) bis-(R)-(2,2')-binaphtholato-borate; [(S)-(6)](R,R)-B_H

The ion pair was prepared from the precursor salts according to the standard ion exchange procedure. $\delta_{\rm H}$ (500 MHz, CDCl₃): 1.45 (1H, m, H_a'), 1.66 (1H, m, H_b'), 1.99 (1H, m, H_b), 2.35 (1H, m, H_a), 4.11 (1H, m, H_B), 4.29 (1H, m, H_A), 6.33 (3H, m, H-3_{ax} and H-4_{ax}), 6.46 (1H, d, *J* = 9 Hz, H-8), 6.89 (1H, t, *J* = 8 Hz, H-7), 7.02 (1H, m, H-2_{ax}), 7.04 (1H, d, *J*_{5,6} = 8 Hz, H-5), 7.07 (2H, t, *J* = 8 Hz, H-7_B), 7.13 (3H, m, H-3_{eq} and H-4_{eq}), 7.17 (1H, t, *J* = 8 Hz, H-6), 7.22 (2H, d, *J*_{8B,7B} = 9 Hz, H-8_B), 7.23 (2H, m, H-2_{eq}), 7.27 (2H, t, *J* = 8 Hz, H-6_B), 7.52 (1H, d, *J*_{4,3} = 9 Hz, H-4), 7.73 (2H, d, *J*_{3B,4B} = 9 Hz, H-3_B), 7.75 (1H, m, H-3), 7.92 (2H, d,

 $J_{5B,6B} = 8$ Hz, H-5_B), 7.97 (2H, d, $J_{4B,3B} = 8$ Hz, H-4_B); δ_B (160 MHz, CDCl₃): 9.1; δ_P (202 MHz, CDCl₃): 26.2 (d, $J_{P,Rh} = 145$ Hz) ppm.

(±)-(2,2'-Bis(diphenylphosphino)-1,1'-binaphthyl)(1,5-cyclooctadiene) rhodium (I) bis-(S)-(2,2')-binaphtholato-borate; $[(\pm)-(6)](S,S)-B_{\rm H}$

The ion pair was prepared from the precursor salts according to the standard ion exchange procedure. δ_B (80 MHz, CDCl₃): 9.1; δ_P (101 MHz, CDCl₃): 26.7 (d, $J_{P,Rh}$ = 145 Hz), 27.5 (d, $J_{P,Rh}$ = 145 Hz) ppm.

(±)-(2,2'-Bis(diphenylphosphino)-1,1'-binaphthyl)(1,5-cyclooctadiene) rhodium (I) (±)-(2,2')-binaphtholato-borate; $[(\pm)-(6)](\pm)-B_H$

The ion pair was prepared from the precursor salts according to the standard ion exchange procedure. Single crystals of X-Ray quality were obtained by slow diffusion of Et₂O into the CH₂Cl₂ solution of the title compound. δ_B (80 MHz, CDCl₃): 9.1; δ_P (101 MHz, CDCl₃): 27.2 (d, $J_{P,Rh}$ = 145 Hz) ppm.

(±)-(2,2'-Bis(diphenylphosphino)-1,1'-binaphthyl)(1,5-cyclooctadiene) rhodium (I) bis-(S)-binaphtholato-borate; $[(\pm)-(7b)](S,S)-B_{Br}$

The ion pair was prepared from the precursor salts according to the standard ion exchange procedure. δ_B (80 MHz, CD₂Cl₂): 9.0; δ_P (101 MHz, CDCl₃): 26.5 (d, $J_{P,Rh}$ = 145 Hz), 27.3 (d, $J_{P,Rh}$ = 145 Hz) ppm.

(±)-(2,2'-Bis(diphenylphosphino)-1,1'-binaphthyl)(1,5-cyclooctadiene) rhodium (I) (±)-binaphtholato-borate; $[(\pm)-(7b)](\pm)-B_{Br}$

The ion pair was prepared from the precursor salts according to the standard ion exchange procedure. δ_B (80 MHz, CD₂Cl₂): 9.0; δ_P (101 MHz, CDCl₃): 27.1 (d, $J_{P,Rh}$ = 145 Hz) ppm.

(±)-(2,2'-Bis(diphenylphosphino)-1,1'-binaphthyl)(1,5-cyclooctadiene) rhodium (I) bis-(S)binaphtholato-borate; $[(\pm)-(7a)](S,S)-B_{Me}$

The ion pair was prepared from the precursor salts according to the standard ion exchange procedure. δ_B (80 MHz, CD₂Cl₂): 9.1; δ_P (101 MHz, CDCl₃): 26.8 (d, $J_{P,Rh}$ = 145 Hz), 27.6 (d, $J_{P,Rh}$ = 145 Hz) ppm.

(±)-(2,2'-Bis(diphenylphosphino)-1,1'-binaphthyl)(1,5-cyclooctadiene) rhodium (I) (±)-binaphtholato-borate; $[(\pm)-(7a)](\pm)-B_{Me}$

The ion pair was prepared from the precursor salts according to the standard ion exchange procedure. Single crystals of X-Ray quality were obtained by slow diffusion of Et₂O into the CH₂Cl₂ solution of the title compound. δ_B (80 MHz, CD₂Cl₂): 9.1; δ_P (101 MHz, CDCl₃): 27.4 (d, $J_{P,Rh} = 145$ Hz) ppm.

(±)-(2,2'-Bis(diphenylphosphino)-1,1'-binaphthyl)(1,5-cyclooctadiene) rhodium (I) bis-(S)-binaphtholato-borate; $[(\pm)-(7c)](S,S)$ -B_{pOMePh}

The ion pair was prepared from the precursor salts according to the standard ion exchange procedure. δ_B (80 MHz, CD₂Cl₂): 9.1; δ_P (101 MHz, CDCl₃): 26.7 (d, $J_{P,Rh}$ = 145 Hz), 27.7 (d, $J_{P,Rh}$ = 145 Hz) ppm.

(±)-(2,2'-Bis(diphenylphosphino)-1,1'-binaphthyl)(1,5-cyclooctadiene) rhodium (I) (±)binaphtholato-borate; [(±)-(7c)](±)-B_{pOMePh}

The ion pair was prepared from the precursor salts according to the standard ion exchange procedure. δ_B (80 MHz, CD₂Cl₂): 9.1; δ_P (101 MHz, CDCl₃): 27.3 (d, $J_{P,Rh}$ = 145 Hz) ppm.

(±)-(2,2'-Bis(diphenylphosphino)-1,1'-binaphthyl)(1,5-cyclooctadiene) iridium (I) bis-(S)-binaphtholato-borate; $[(\pm)-(8)](S,S)-B_H$

The ion pair was prepared from the precursor salts according to the standard ion exchange procedure. δ_B (80 MHz, CDCl₃): 9.1; δ_P (101 MHz, CDCl₃): 16.4, 17.6 ppm.

(±)-(2,2'-Bis(diphenylphosphino)-1,1'-binaphthyl)(1,5-cyclooctadiene) iridium (I) (±)-binaphtholato-borate; $[(\pm)-(8)](\pm)-B_H$

The ion pair was prepared from the precursor salts according to the standard ion exchange procedure. δ_B (80 MHz, CDCl₃): 9.1; δ_P (101 MHz, CDCl₃): 17.2 ppm.

C1. NMR Spectra of Na Borates

Electronic Supplementary Material (ESI) for Chemical Science This journal is The Royal Society of Chemistry 2013

NaBrBorate 13-C DMSO

C2. BINAP cationic complexes as BF₄ salts, CDCl₃

CODRhBINAP BF4 31-P

C3. Alkene BINAP Rh borate complexes

COD SSS 2-76 31-P 283K

¹H Assignments for (COD)RhBINAP complexes, CDCl₃, 500 MHz. Top (R),(S,S)- **6**, middle (S), (S,S)- **6**, bottom (COD)RhBINAP.BF₄

VT Comparison of *(R),(S,S*)-6 and *(S),(S,S)*-6 BINAPRh BINOLBorates (from racemic BINAP) by 31-P NMR:

NB One ¹³CH₂ signal is obscured by the solvent; insufficient solubility in CDCl₃.

NBD SSS 1-H

¹H Assignments for (NBD)RhBINAP complexes, CDCl₃, 500 MHz. Top (R),(S,S)- **5**, middle (S), (S,S)-**5**, bottom (NBD)RhBINAP.BF₄

D. PGSE DOSY experiments

All diffusion experiments were performed on a Bruker DRX-500 spectrometer equipped with a tuneable multinuclear triple (TBI) resonance probe. 5 mm NMR tubes of quality appropriate for high field experiments were used in all experiments. All studies used degassed CDCl₃ as the NMR solvent, using 0.6 ml of the solvent for each sample. Because of the low solvent viscosity, convection complications were encountered. Different approaches to convection suppression were tested with a standard quinine sample. An efficient approach used the DSTE pulse sequence with the integrated convection suppression. Data acquisition needed to be performed with static samples, the sample spinning leading to offset values irrespective of the spinning rate. Convection suppression was also successfully achieved by spinning the NMR samples and acquiring data with the LED-BPP pulse sequence. The spinning rate had to be set to such a value that an integer number of sample rotations were completed during the diffusion time D, however. Mismatched spinning rates led to strongly offset values. Hence the DSTE pulse sequence was used, because it performed better at temperatures below 238 K. The data was analysed using the Bruker TOPSPIN software package; data for both 283 K and 258 K is shown in the following pages:

(R), (S,S)-6, 283 K, 0.02 M in CDCl₃ NB Et₂O, 3.53 ppm

(R), (S,S)-6, 258 K, 0.02 M in CDCl₃

(S), (S,S)-6, 283 K, 0.02 M in CDCl₃

(S), (S,S)-6, 258 K, 0.02 M in CDCl₃

(rac), (S,S)-6, 283 K, 0.02 M in CDCl₃

(rac), (S,S)-6, 258 K, 0.02 M in CDCl₃

E. Experiments for Chiral Discrimination in Solution

COD complex chiral shift comparison; ³¹P NMR in CDCl₃ vs. CD₂Cl₂; a, b: (*rac*),(*rac*)-6, c,d (*rac*),(*S*,*S*)-6.

NBD complex chiral shift; ³¹P NMR in CDCl₃ for: (*rac*),(*rac*)-5 (above) (*rac*),(*S*,*S*)-5 (below).

Chiral solvation of $[(\pm)-(7b)](S,S)-B_{Br}(a)$, $[(\pm)-(7a)](S,S)-B_{Me}(b)$ and $[(\pm)-(7c)](S,S)-B_{pOMePh}(c)$; homochiral ion pairs shown as \blacklozenge heterochiral as \blacksquare (³¹P NMR, 101 MHz, 298 K).

Dilution experiments (7a) (a), (7b) (b) and (7c) (c); ³¹P NMR, 101 MHz; see text of MS.

F. DFT calculations on (R),(S,S)- and (S),(S,S)-6

(R)-(2,2'-Bis(diphenylphosphino)-1,1'-binaphthyl)(1,5-cyclooctadiene) rhodium (I) bis-(S)-(2,2')-binaphtholatoborate; [(R)-(6)](S,S)-B_H

1.341460 (Hartree/Particle)
1.421738
1.422683
1.222306
-4664.624997
-4664.544718
-4664.543774
-4664.744150
-0.033789 au
-4464.658786

 $E_{rel} = 0 \text{ Kcal.mol}^{-1}$

(R),(S,S)-6

С	2.506400	5.518800	3.323500
С	3.102600	4.493900	2.541300
С	2.792500	4.395100	1.141100
С	1.840100	5.316500	0.615800
С	1.264600	6.288600	1.406100
С	1.607800	6.406200	2.774100
С	3.404400	3.367500	0.340800
С	4.159300	2.380200	0.985400
С	4.479700	2.505300	2.367300
С	3.988700	3.543500	3.117600
0	4.661500	1.320200	0.334700
В	3.784700	0.343700	-0.327900
0	4.663900	-0.321500	-1.298400
С	4.435300	-1.567500	-1.737500
С	4.387000	-2.674700	-0.881000
С	4.039700	-3.957200	-1.434100
С	3.910800	-4.115000	-2.856900

С	4.086700	-2.978900	-3.692500
С	4.314300	-1.741200	-3.146200
С	3.592300	-5.389500	-3.398900
С	3.369900	-6.478000	-2.585500
С	3.455200	-6.323000	-1.181500
С	3.780800	-5.103700	-0.625600
С	3.260000	3.301600	-1.140900
С	3.586300	4.409500	-2.001800
С	3.368300	4.300800	-3.418200
С	2.883500	3.076600	-3.950700
С	2.662600	1.999100	-3.129400
С	2.865000	2.097900	-1.726700
С	3.671500	5.401600	-4.264100
С	4.203000	6.565300	-3.757000
С	4.466300	6.662200	-2.370300
С	4.168500	5.618300	-1.521600
0	2.618700	0.996100	-0.974900

С	4.671200	-2.481000	0.568400
С	4.007800	-1.463500	1.256100
С	4.168000	-1.308300	2.659400
С	5.017100	-2.121400	3.366000
С	5.799500	-3.100200	2.698400
С	5.647600	-3.266400	1.280000
С	6.747800	-3.889500	3.402400
С	7.553900	-4.790300	2.744600
С	7.445500	-4.923500	1.340500
С	6.522100	-4.185700	0.631900
0	3.165400	-0.613400	0.616900
Н	5.128700	1.746700	2.794300
Н	4.250100	3.636700	4.169900
Н	4.396000	5.707600	-0.466200
Н	4.918500	7.566200	-1.970000
Н	4 438700	7 396700	-4 416100
Н	3 490300	5 297100	-5 332200
н	2 728800	2,993900	-5 024700
н	2 336000	1.042500	-3 525900
н	3 845700	-5.008500	0.452200
н	3 269500	-7 176000	-0 532900
н	3 127500	-7 447000	-3 014000
н	3 522300	-5 486300	-4 480900
н	4 017600	-3 102000	-4 771600
н	4 4 2 8 2 0 0	-0.855900	-3 764600
н	6 467700	-4 291200	-0.445100
н	8 103700	-5.608700	0.812200
н	8 281500	-5 382400	3 293700
н Ц	6.835600	3 753100	<i>J.273700</i> <i>A 478400</i>
н Ц	5 130800	2 001000	4.478400
н Ц	3.130800	-2.001000	3 146200
н Ц	1 556800	5 237500	0.427300
п п	0.538100	6.070000	-0.427300
н Ц	1 1 5 9 5 0 0	7 186000	3 38/600
н Ц	2 772500	5 584200	J.384000 4 376000
Γ	2.772300	0.0384200	4.370900
C	-0.427700	-0.038400	1 303200
C	-1.843300	1 1 8 9 8 0 0	-1.393200
C	-2.373700	-1.189800	-1./18000
C	-1.912900	-2.294000	-2.370800
C	-0.304000	-2.222000	-2.023900
C	0.218000	-1.089200	-2.173300
C	-2.393100	-5.464300	-2.739700
C	-1.923000	-4.314300	-3.380800
C	-0.338400	-4.420400	-3.040200
C	0.13/300	-3.302700	-5.204200
C	-4.008200	-1.5/1900	-1.318900
C	-4.338000	-1.398800	0.01//00
C	-3.704000	-1.941200	0.330700
C C	-0.0/4/00	-2.009600	-0.039200
C C	-0.3/3200	-1./18900	-1.990800
C	-3.020300	-1.403800	-2.33/300
C	-4./30300	-1.110000	-5./01100
C	-5./20300	-1.128200	-4.658200
C	-/.054900	-1.449200	-4.309400
U P	-/.5/1000	-1./39300	-3.002500
۲ C	-3.114800	-1.382300	1.405600
C	-4.03/200	-1.952000	2.910300

С	-3.667500	-3.091400	3.638700
С	-4.343200	-3.435100	4.814300
Ċ	-5.399100	-2.651600	5.276900
Č	-5 774500	-1 509200	4 563500
C	-5 092300	-1 157500	3 400200
P	-2 520800	1 366100	-0 415400
C	-4 306600	1.666800	-0.776000
C	-5.212100	1 788800	0.286400
C	-5.212100	2 162200	0.280400
C	-0.33/100	2.103200	1.252600
C	-0.900800	2.420700	-1.232000
C	-6.06/500	2.309900	-2.31/000
C	-4./43800	1.944800	-2.080500
C	-1.866100	-2.694400	1.089400
C	-2.261300	-4.00/200	0.776200
С	-1.301600	-4.986000	0.524100
С	0.059100	-4.665800	0.565700
С	0.460000	-3.364600	0.868700
С	-0.498900	-2.384200	1.133000
С	-1.853700	2.937300	-1.150500
С	-2.363900	4.133900	-0.609600
С	-1.966700	5.372400	-1.107900
С	-1.050100	5.442700	-2.160200
С	-0.549600	4.266300	-2.714700
С	-0.951700	3.021600	-2.220500
Rh	-2 037100	0 766100	1 806200
Н	-5 975900	-2 170600	1 352500
н	-7 692000	-2 285300	-0.371200
н	-3 102900	4 099000	0.186500
и П	2 376700	6 281100	0.100500
н Ц	-2.370700	6.281100	-0.075700
11 11	-0.731800	0.407000	-2.340100
11 11	0.170200	4.303300	-3.320300
п	-0.332000	2.129700	-2.063100
H	-4.868000	1.601000	1.300900
H	-7.228900	2.258800	0.882100
H	-7.996300	2.714100	-1.439000
H	-6.396200	2.512200	-3.332300
Н	-4.047500	1.882900	-2.911400
Н	0.182500	0.774100	-1.198900
Н	1.299300	-1.062400	-2.267200
Н	-3.653500	-3.584000	-2.563700
Н	-2.472300	-5.407400	-3.678100
Н	-0.020300	-5.250500	-4.128100
Н	1.228100	-3.229000	-3.430500
Н	-3.711900	-0.867100	-3.982200
Н	-5.475300	-0.897900	-5.691400
Н	-7.824600	-1.465700	-5.076100
Н	-8.391900	-1.986100	-2.721200
Н	-3.316400	-4.260400	0.715900
Н	-1 616600	-5 995600	0 274700
Н	0.806800	-5 419500	0 336700
Н	1 512100	-3 097700	0.875600
н	-0 183000	-1 366000	1 338000
H	-2 852200	-3 716200	3 202/00
и П	-2.052500	4 221000	5 36400
н ц	-4.038/00	-4.321000 2 022000	5.304000
п	-3.923900	-2.922800	0.188300
п	-0.391900	-0.88/100	4.918000
н	-5.582900	-0.236900	2.865000

С	-1.067800	-0.028000	3.735400
С	0.361100	0.478400	3.863100
С	0.886600	1.191300	2.594700
С	-0.155800	1.982700	1.843700
С	-1.155500	2.779600	2.391900
С	-1.317700	3.073700	3.875000
С	-2.299900	2.106600	4.562500
С	-2.215400	0.684100	4.052500
Н	0.098700	2.156200	0.799500
Η	-1.620000	3.498800	1.725400

Η	-1.685600	4.099100	3.992300
Η	-0.339800	3.048800	4.364500
Η	-2.152000	2.119000	5.654300
Η	-3.325400	2.457100	4.392200
Н	-3.118000	0.103000	4.218800
Η	-1.173400	-1.108500	3.663500
Н	0.434200	1.137600	4.734600
Н	1.014100	-0.375400	4.074000
Η	1.717000	1.862300	2.858300
Η	1.320500	0.459600	1.906400

(S)-(2,2'-Bis(diphenylphosphino)-1,1'-binaphthyl)(1,5-cyclooctadiene)	rhodium	(I)	bis-(S)-(2,2')-
---	---------	------------	-----------------

binaphtholatoborate; [(S)-(6)](S,S)-B_H

Zero-point correction=	1.341214 (Hartree/Particl	e)
Thermal correction to Energy=	1.421597	
Thermal correction to Enthalpy=	1.422542	
Thermal correction to Gibbs Free Energy=	1.220910	
Sum of electronic and zero-point Energies=	-4664.624347	
Sum of electronic and thermal Energies=	-4664.543964	
Sum of electronic and thermal Enthalpies=	-4664.543020	
Sum of electronic and thermal Free Energies=	-4664.744651	
Corrected ZPE=	-4464.657733	$E_{rel} = 0.66 \text{ Kcal.mol}^{-1}$

(S), (S, S)-6

В	-3.741300	0.571000	0.137400
С	-4.787800	-1.227700	-1.175800
С	-4.993200	-1.321000	-2.582300
С	-4.924500	-2.528000	-3.230600
С	-4.596800	-3.712800	-2.517200
С	-4.428300	-4.955300	-3.184800
С	-4.054400	-6.090500	-2.500800
С	-3.826700	-6.016300	-1.106100
С	-4.001400	-4.829700	-0.425600
С	-4.409800	-3.637500	-1.094100
С	-4.590200	-2.383700	-0.411000
С	-4.533700	-2.268600	1.072900
С	-5.357100	-3.066500	1.944500
С	-6.387300	-3.924900	1.462900
С	-7.161400	-4.673600	2.322600
С	-6.953700	-4.614400	3.720800
С	-5.986500	-3.775900	4.225900
С	-5.184800	-2.976200	3.367900

С	-4.233800	-2.060800	3.890700
С	-3.528300	-1.233800	3.052100
С	-3.690500	-1.313800	1.642500
С	-3.714300	2.565700	1.563900
С	-3.661400	2.639400	2.985700
С	-2.969100	3.641700	3.617500
С	-2.250400	4.608300	2.863800
С	-1.455600	5.598300	3.500200
С	-0.724200	6.507800	2.769800
С	-0.763600	6.453600	1.356900
С	-1.538700	5.514900	0.710200
С	-2.321100	4.564400	1.429100
С	-3.127400	3.565100	0.778600
С	-3.334000	3.529800	-0.697000
С	-3.834200	4.658000	-1.439900
С	-4.295600	5.852500	-0.815000
С	-4.768000	6.916000	-1.553300
С	-4.809600	6.853700	-2.966000
С	-4.400900	5.704900	-3.604500
С	-3.925700	4.584200	-2.871900
С	-3.568500	3.375100	-3.525300
С	-3.188900	2.276300	-2.797300
С	-3.090800	2.338300	-1.382100

Н	-3.820700	-4.794100	0.642600
Н	-5.210700	-0.398300	-3.111900
Н	-5.094600	-2.589100	-4.303700
Н	-4.593500	-4.988900	-4.260200
Н	-3.926600	-7.033900	-3.025200
Н	-3.511900	-6.904500	-0.563500
Н	-1.429100	5.616800	4.588000
Н	-6.574000	-3.972200	0.396500
Н	-7.946300	-5.309800	1.921400
Н	-7.566700	-5.213900	4.388700
Н	-5.830200	-3.696900	5.300000
Η	-4.102300	-1.997200	4.969000
Н	-2.833700	-0.493200	3.436700
Н	-4.196700	1.874500	3.540100
Н	-2.946700	3.698500	4.704100
Н	-0.117300	7.257300	3.270800
Н	-0.178400	7.160900	0.774000
Н	-1.566200	5.496400	-0.372900
Η	-5.121700	7.808300	-1.042800
Н	-5.179800	7.700400	-3.538200
Н	-4.452500	5.628100	-4.688900
Н	-3.636300	3.323100	-4.610000
Н	-2.961000	1.328500	-3.275800
Н	-4.288300	5.914000	0.266800
0	-2.973500	-0.457200	0.874600
0	-4.394000	1.540800	1.029300
0	-2.716800	1.210600	-0.726600
0	-4.853700	-0.004100	-0.632100
С	2.395700	0.763600	5.314600
С	1.040500	1.128800	5.490600
С	0.247200	1.356000	4.390100
С	0.775400	1.241500	3.076400
С	-0.053100	1.412900	1.940700
С	0.466200	1.323000	0.674900
С	1.858600	1.093900	0.463500
С	2.131100	-2.421700	1.705500
С	0.733000	-2.336500	1.644600
С	-0.044300	-2.651900	2.762100
С	0.570800	-3.055100	3.947100
С	1.964700	-3.130600	4.021900
С	4.089600	-3.585300	-0.126100
С	3.809300	-4.795100	0.525000
С	4.469100	-5.972400	0.157400
С	5.420800	-5.960100	-0.860400
С	5.704900	-4.762400	-1.523500
С	5.037700	-3.591500	-1.168500
С	4.123400	1.307200	-1.588900
С	4.945600	0.432300	-2.311300
С	6.236400	0.816600	-2.683600
С	6.714800	2.080000	-2.336300
С	7.553900	1.786900	2.176100
С	5.898100	2.961200	-1.621800
С	4.607200	2.582400	-1.258700
С	1.594500	2.218900	-2.297200
С	1.899200	2.212100	-3.672400
С	1.424800	3.212700	-4.517500
С	0.641000	4.247600	-4.002800

С	0.357800	4.281200	-2.639200
С	0.833100	3.280200	-1.786800
С	4.459400	-0.867200	0.920700
С	5.823200	-1.274200	0.930300
С	6.822400	-0.431200	1.351500
C	6.529900	0.886500	1.776300
Č	2 742600	-2.809000	2 911400
Č	7 248900	3 065700	2 580500
Č	5 899700	3 495500	2.602000
C	4 885300	2 642300	2 228600
C	5 162400	1 310500	1 804900
C	4 123100	0.406700	1 392600
C	2 692000	0.830500	1.552000
C	2.052000	0.906800	2 889200
C	2 937600	0.500000	4 053000
н	3 972900	3 282800	-0 723700
н	2 542000	1 437300	-4.082000
н	1 672200	3 185000	-5.575300
н Ц	0.260800	5.025600	-5.575500
н Ц	0.200800	5.025000	-4.038300
н ц	-0.241300	3.080000	-2.227000
н ц	0.002700	3.347000	-0.730700
н ц	6.028300	2 274100	2.883100
н ц	7.855000	-2.274100	1 357400
11 11	7.833000 8.585700	-0.772100	1.337400
п	8.383700 5.662700	1.444700	2.132100
п	3.002/00	4.307400	2.918/00
п	3.83/300	2.983400	2.234000
п	3.977700	0.307700	5.94/300
H H	3.01/900	0.568800	6.184200
H H	0.629900	1.221400	6.492400
H H	-0./98000	1.632000	4.499400
Н	-1.114400	1.594600	2.068500
H	-0.222900	1.40/200	-0.15/600
H	0.250200	-2.000400	0.732900
H	-1.125200	-2.566400	2.706100
H	-0.034500	-3.299600	4.815600
H	2.44/000	-3.430800	4.948300
H	3.825800	-2.85/600	2.983000
H	3.075800	-4.826800	1.322600
H	4.233800	-6.898800	0.6/4100
H	5.934200	-6.8/5200	-1.141/00
H	6.440100	-4./41600	-2.323400
H	5.257700	-2.6/2900	-1./05900
H	4.562900	-0.546700	-2.590400
H	6.863000	0.130/00	-3.247700
H	7.717600	2.381900	-2.626200
H	6.264900	3.947200	-1.351300
P	3.156400	-2.021300	0.229300
P	2.356900	0.854000	-1.295800
Kh	1./95400	-1.400400	-1.685600
C	-0.224500	-0.880100	-2.509900
C	0.629600	-1.021900	-3.599400
C	0.654400	-2.219400	-4.538100
C	1.699800	-3.272900	-4.124200
C	1.828300	-3.449200	-2.626300
C	0.799800	-3.477200	-1.695700
C	-0.684800	-3.357600	-2.001200

С	-1.205500	-1.901700	-1.991100
Η	1.473700	-4.243500	-4.593700
Η	-0.426100	0.130600	-2.157800
Η	1.052100	-0.109400	-4.006000
Η	2.783700	-3.861500	-2.314300
Η	1.042600	-3.894400	-0.720600
Η	-0.341400	-2.669000	-4.593300
Η	0.885000	-1.868900	-5.550800
Η	2.683000	-2.972800	-4.507800
Η	-0.898600	-3.835800	-2.962200
Η	-1.248400	-3.928500	-1.257400
Η	-2.134600	-1.834400	-2.575700
Η	-1.492700	-1.607500	-0.977200

References:

ⁱ Pangborn, A. B.; Giardello, M. A.; Grubbs, R. H.; Rosen, R. K.; Timmers, F. J. Organometallics **1996**, *15*, 1518-1520.

ⁱⁱⁱ S. Grimme, J. Antony, S. Ehrlich and H. Krieg, J. Chem. Phys., 2010, 132, 154104/154101-154104/154119.

ⁱⁱ Gaussian 03, Revision C.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Wallingford CT, 2004.